Analyse dAlgorithmes Algorithme Input Output Un algorithme est une procédure étape par étape pour...

Preview:

Citation preview

Analyse d’Algorithmes

AlgorithmeInput Output

Un algorithme est une procédure étape par étapepour résoudre un problème dans un temps fini.

Structures de donnéesIFT-2000

Temps d’exécution Les algorithmes transforment des objets en entrée en des objets en sortie.Le temps d’exécution d’un algorithme croît en fonction de la taille des entrées.Le temps d’exécution en moyenne est souvent difficile à déterminer. Nous nous intéresserons au pire cas dans le temps d’exécution.

Facile à analyser Crucial dans les applications

dans le domaine des jeux, des finances et de la robotique par exemple.

0

20

40

60

80

100

120

Runnin

g T

ime

1000 2000 3000 4000

Input Size

best caseaverage caseworst case

Études Expérimentales

Écrire un programme implémentant un algorithmeExécuter le programme avec différentes tailles des données en entrée.Utiliser une fonction, comme la fonction prédéfinie clock(), pour avoir une mesure des temps d’exécution.Tracer les résultats.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

Tim

e (

ms)

Limitation des expériences

Il est nécessaire d’implémenter l’algorithme, ce qui peut être difficile.Les résultats peuvent ne pas être indicatifs du temps d’exécution d’autres entrées non inlcuses dans l’expérience. Pour comparer deux algorithmes, le même environnement de programmation (matériel et logiciel) doit être utilisé.

Analyse théorique

Utiliser une description de haut niveau de l’algorithme au lieu de l’implémenter.Caracteriser le temps d’exécution comme une fonction de la taille des entrées, n.Tenir compte de toutes les possibilités comme entrée.Nous permet d’évaluer la vitesse d’un algorithme independemment de l’environnement.

Pseudocode description haut niveau de l’algorithmePlus structuré qu’une prose en français!Moins detaillé qu’un programme Algorithme arrayMax(A, n)

Input tableau A de n entiersOutput l’élément maximum de

A

currentMax A[0]for i 1 to n 1 do

if A[i] currentMax thencurrentMax A[i]

return currentMax

Exemple: trouver l’élément max dans un tableau

Pseudocode

Structures de contrôle if … then … [else …] while … do … repeat … until … for … do … L’indentation remplace les

accolades

Declaration d’une méthodeAlgorithme method (arg [,

arg…])Input …Output …

Appel Methode/Fonction var.method (arg [, arg…])

Valeur retournéereturn expression

Expressions Assignation

(comme en C, C++, Java)

Test d’égalité(comme en C, C++, Java)

n2Exposant et autres formats mathématiques permis

Le modèle “Random Access Machine” (RAM)

Le CPU

Une banque de cellules de mémoire illimitée, chacune peut contenir un nombre arbitraire de caractères

01

2

Les cellules de mémoire sont adressables, leur accès prend une unité de temps

Operations primitives

Instructions de base exécutées par un algorithmeOnt leur correspondant en pseudocodeIndependants d’un langage de programmation Leurs définitions exactes ne sont pas importantes On considère qu’elles prennent un temps constant dans le modèle RAM

Exemples: Evaluation d’une

expression Assigner une valeur à

une variable Indexation dans un

tableau Appeler une methode Retourner d’une

méthode

Compter les opérations primitives

En inspectant le pseudocode, nous pouvons determiner le nombre maximum d’opérations primitives exécutées par l’algorithme, comme une fonction de la taille des entrées

Algorithme arrayMax(A, n)

# operations

currentMax A[0] 2for i 1 to n 1 do 2 + n

if A[i] currentMax then 2(n 1)currentMax A[i] 2(n 1)

{ incrémenter le compteur i } 2(n 1)return currentMax 1

Total 7n 1

Estimation du temps d’exécution

L’algorithme arrayMax exécute 7n 1 opérations primitives dans le pire cas.

Définissons:a = le temps que prend par la plus rapide des opérations primitives b = le temps que prend la plus lente des opérations primitives

Soit T(n) le temps dans le pire cas de arrayMax. On peut alors écrire :

a (7n 1) T(n) b(7n 1)

Ainsi, le temps d’exécution T(n) est bornée par deux fonctions linéaires

Taux de croissance du temps d’exécution

Changer l’environnement (matériel/logiciel) Affecte T(n) par un facteur constant, mais Ne doit pas altérer le taux de croissance de T(n)

Le taux de croissance linéaire du temps d’exécution T(n) est une propriété intrinsèque de l’algorithme arrayMax

Taux de croissance

Taux de croissance des fonctions:

Linéaire n Quadratique n2

Cubique n3

Dans le diagramme log-log, la pente d’une droite correspond au taux de croissance de la fonction.

1E+01E+21E+41E+61E+8

1E+101E+121E+141E+161E+181E+201E+221E+241E+261E+281E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10n

T(n)

Cubic

Quadratic

Linear

Facteurs constants

Le taux de croissance n’est pas affecté par

facteurs constants ou des termes de plus

bas ordres

Exemples 102n + 105 est une

fonction linéaire 105n2 + 108n est une

fonction quadratique 1E+01E+21E+41E+61E+8

1E+101E+121E+141E+161E+181E+201E+221E+241E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10n

T(n)

Quadratique

Quadratique

Linéaire

Linéaire

Notation “Grand-Oh” Soit les fonctions f(n) et g(n), nous dirons que f(n) est en O(g(n)) s’ils existent c et n0, des constantes positives, tel quef(n) cg(n) pour n n0

Exemple: 2n + 10 est en O(n)

2n + 10 cn (c 2) n 10 n 10/(c 2) prendre c = 3 and n0 =

10

1

10

100

1,000

10,000

1 10 100 1,000n

3n

2n+10

n

Exemple “Grand-Oh”

Exemple: la function n2 n’est pas en O(n)

n2 cn n c Les 2 inégalités ne

peuvent être satisfaites si c doit être une constante

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000n

n^2

100n

10n

n

Autres Exemples “Grand-Oh”

7n-2

7n-2 est en O(n)besoin de c > 0 and n0 1 tel que 7n-2 c•n pour n n0,

Ceci est vrai pour c = 7 et n0 = 1

3n3 + 20n2 + 5

3n3 + 20n2 + 5 is O(n3)besoin de c > 0 et n0 1 tel que 3n3 + 20n2 + 5 c•n3 pour n

n0,

ceci est vrai pour c = 4 et n0 = 21 3 log n + log log n

3 log n + log log n is O(log n)besoin de c > 0 et n0 1 tel que 3 log n + log log n c•log n pour n

n0,

ceci est vrai pour c = 4 et n0 = 2

“Grand-Oh” et le taux de croissance

La notation “big-Oh” donne une borne supérieure au taux de croissance de la fonctionDire que “f(n) est en O(g(n))” signifie que le taux de croissance de f(n) n’est pas supérieur que le taux de croissance de g(n)Nous pouvons utiliser la notation “big-Oh” pour comparer des fonctions par rapport à leur taux de croissance

f(n) is O(g(n)) g(n) is O(f(n))

g(n) croît plus Oui Non

f(n) croît plus Non Oui

Même croissance Oui Oui

Règles du “Grand-

Oh”

Si f(n) est un polynôme de degrés d, f(n) est alors en O(nd), i.e.,

1. négliger les termes de plus bas degrés2. négliger les coefficients constants

Utiliser la petite possible classe de fonctions Dire “2n est en O(n)” au lieu de “2n est en O(n2)”

Utiliser la plus simple expression de la classe Dire “3n + 5 est en O(n)” au lieu de “3n + est en O(3n)”

Analyse asymptotiqueL’analyse asymptotique d’un algorithme determine le temps d’exécution dans la notation ”big-Oh”Pour appliquer l’analyse asymptotique

Il faut trouver le nombre d’opérations primitives exécutées dans le pire cas en focntion de la taille des entrées

Exprimer par la suite cette fonctiond ans la notation “big-Oh”

Exemple: Nous avons determiné que l’algorithme arrayMax

execute au plus 7n 1 operations primitives Nous dirons que l’algorithme arrayMax “s’exécute en un

temps O(n) ”Depuis que les facteurs constants et les termes de plus bas ordres sont négligés, nous pouvons les négliger également lorsque nous compterons les opérations primitives

Calcul des moyennes de prefix

Nous allons illustrer l’anlayse asymptotique avec deux algorithmes pour le calucl des moyennes de prefix La i-ème moyenne prefix d’un tableau X est la moyenne des (i + 1) premiers éléments de X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Calculer le tableau A des moyennes prefix d’un autre tableau X a des applications dans l’analyse financière

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X

A

Moyennes prefix (Quadratique)

L’algorithme suivant calcule les moyennes prefix en un temps quadratique en appliquant la definition

Algorithm prefixAverages1(X, n)Input tabelau X de n entiersOutput tableau A des moyennes prefix de X #opérations A nouveau tableau de n entiers nfor i 0 to n 1 do n

s X[0] nfor j 1 to i do 1 + 2 + …+ (n

1)s s + X[j] 1 + 2 + …+ (n

1)A[i] s / (i + 1) n

return A 1

Progression arithmétique

Le temps de calcul de prefixAverages1 est O(1 2 …n)

La somme des n premiers entier est n(n 1) 2

Voici une simple preuve visuelle

Ainsi, l’algorithme prefixAverages1 s’exécute en un temps de l’ordre O(n2)

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Moyennes prefix (Linéaire)

L’algorithme suivant calcule les moyennes prefix en un temps linéaire en considérant les sommes courantes

Algorithm prefixAverages2(X, n)Input tableau X de n entiersOutput tableau A des moyennes prefix de X

#opérationsA nouveau tableau of n entiers ns 0 1for i 0 to n 1 do n

s s + X[i] nA[i] s / (i + 1) n

return A 1L’algorithme prefixAverages2 s’exécute en un temps en O(n)

propriétés des logarithmes:logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbxa = alogbx

logba = logxa/logxbpropriétés des exponentiels:a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Sommations (Sec. 1.3.1)Logarithmes et Exposants (Sec. 1.3.2)

Techniques de preuves (Sec. 1.3.3)Probabilité de base (Sec. 1.3.4)

Les Maths que vous devez réviser

Famille du “Grand-Oh”

big-Omega f(n) est (g(n)) s’il existe une constante c > 0

et un entier constant n0 1 tel que

f(n) c•g(n) for n n0

big-Theta f(n) est (g(n)) s’ils existent des constantes c’ > 0 et c’’ > 0 et

un entier constant n0 1 tel que c’•g(n) f(n) c’’•g(n) for n n0

little-oh f(n) est o(g(n)) si, pour toute constante c > 0, il existe un entier

constant n0 0 tel que f(n) c•g(n) pour n n0

little-omega f(n) est (g(n)) si, pour toute constante c > 0, il existe un entier

constant n0 0 tel que f(n) c•g(n) pour n n0

Intuition pour la notation asymptotique

Big-Oh f(n) est O(g(n)) si f(n) est asymptotiquement inférieure ou égale à g(n)

big-Omega f(n) est (g(n)) si f(n) est asymptotiquement supérieure ou égale à

g(n)big-Theta

f(n) est (g(n)) si f(n) est asymptotiquement égale à g(n)little-oh

f(n) est o(g(n)) si f(n) est asymptotiquement strictement inférieur que g(n)

little-omega f(n) est (g(n)) si f(n) est asymptotiquement strictement supérieure

que g(n)

Exemple Utilisation de la famille du “Grand-Oh”

f(n) est (g(n)) si, pour toute constante c > 0, il existe un entier constant n0 0 tel que f(n) c•g(n) pour n n0

besoin 5n02 c•n0 pour un c donné, le n0 qui satisfait cela est

n0 c/5 0

5n2 est (n)

f(n) est (g(n)) s’il existe une constante c > 0 et un entier constant

n0 1 tel que f(n) c•g(n) pour n n0

prendre c = 1 and n0 = 1

5n2 est (n)

f(n) est (g(n)) s’il existe une constante c > 0 et un entier constant

n0 1 tel que f(n) c•g(n) pour n n0

prendre c = 5 and n0 = 1

5n2 est (n2)