ANDRE Pascal Habilitation à diriger les recherches Spécialité: Physique des plasmas et...

Preview:

Citation preview

L

EA

P T

ANDRE Pascal

Habilitation à diriger les recherches

Spécialité:

Physique des plasmas et électrotechnique

Laboratoires Arc Electrique et Plasmas Thermiques

L

EA

P T

1987 Bac C

1992 DEA de Physique (U.B.P)

1995 D.U.

Etude de la composition et des propriétés thermodynamiques des plasmas hors d’équilibre thermodynamique 

Université Blaise Pascal, LAEPT.

Directeur de thèse : Pr. A. Lefort

1995-96 Post-doc LAEPT

Bourse d’excellence régionale

1996-97 A.T.E.R.

à l’U.F.R. sciences (U.B.P.)

1997-01 Maître de Conférences

à l’U.F.R. Sciences (U.B.P.) en 63ème section.

Licence E.E.A.

Curriculum Vitae

L

EA

P T

SODEBOR, EDF 

(Contrat n°: E8360/AEE 2142 ; terminé en 1998)

 Real time detection of metallic species and complex organic species in a fluidized bed.

GIAT Industries (Contrat n° DCAL/GO/97.505)

 Experimental and theoretical study of a plasma torch igniting gun propellant.

GIAT Industries (Contrat débutant en janvier 2001)

  Theoretical study of a low energy plasma

Groupement d’étude des fusibles en moyenne tension

(Schneider Electric, Alstom, Ferraz Shawmut, EDF)

Composition, thermodynamic properties, transport coefficients at thermal equilibrium of Ag, SiO2 mixture.

Industrial Contracts

L

EA

P T

University Collaboration

Laboratoire de Sciences des Procédés Céramiques

et de Traitement de Surface UMR 6638 du CNRS, Université de Limoges, 123, avenue Albert Thomas, F 87060 LIMOGES CEDEX

Calculation of the composition, thermodynamic

properties and transport coefficients in plasmas out of

thermal equilibrium.

 

A.F. Ioffe Phys.-Techn. Inst. Rus. Acad. Sci.

Politechnicheskaya 26, St Petersburg, Russia

Experimental and theoretical study of a discharge with

non-metallic electrodes.

L

EA

P T

Co-guiding of students

Ph.D. (With Prof. A. Lefort)

Ondet J. (D.U. 1062, Dec. 98)

Pollutants detection with an I.C.P. torch

Duffour E. (D.U. 1250, Dec. 00)

Plasma interacting with an insulating wall

Vacher D. (Juin 02)

Pollutants detection with an I.C.P. torch

Barbara H. (Juin 02)

Continuum radiation

Stages de D.E.A. (4)

Stages CNAM (3)

L

EA

P T

Publications in international journals with referee:

21: published

2: submit

Communications in congress: 18

Industrial reports: 3

Publications

L

EA

P T

Work Organisation (Directeur A. Lefort)

E.T.C.

André P.

GIAT

D.N.M.L.E

Shkoln’ik S.

IOFFE

I.C.P.

André P.

Faure G.

G.F.M.T.

Bussière W.

André P. (SPCTS)Composition,Transport Coef.

Faure G.Molecular Spectroscopy

Bussière W.Instrumentations:Pressure, Optical, Electrical.

Picard J.P.Capacitor Bank

Duffour E. (LTSP)Molecular DynamicMeasurementsVacher D.ICP MeasurementsFluidized-bedRochette D. (LMA)Modelisation

Barbara H.Continuum radiation

L

EA

P T

Plasma :

• gas high temperature

•ions, electrons, neutral particles

Translational temperature:

Electrons mobility >> Heavy species mobility

Te->>Th

Boltzmann distribution:

Electronic excitation level: Tex

Rotational level : Trot

Vibrational level: Tvib

Plasma out of thermal equilibrium.(with SPCTS, Limoges)

L

EA

P T

Plasma out of thermal equilibrium.(with SPCTS, Limoges)

Composition calculation (SPCTS, Limoges)

1. Collisionnal radiative model

2. Van de Sanden et al (new function)

3. Potapov (Gibbs Free Energy minimisation)

4. Richley-Tuma (pseudo-kinetic)

5. T*

Theorem H de Boltzmann

Second law of thermodynamic

Gradients, applied forces+Stable in time

Gibbs energy minimisation Idem as Giordano

Application

Plasma Coupled Inductively

Discharge with Liquid Non-Metallic Electrodes

L

EA

P T

Transport Coefficients

V. Rat : D.U. 5 juillet 2001 à Limoges

Bracket Integrals: A, B, A’, B’

Plasma out of thermal equilibrium.(with SPCTS, Limoges)

L

EA

P T

Purposes:

•Real time detection

•Avoid calibration

•Fluidized Bed Characterisation

•Control of the combustion

Applications:

•Coal thermal power station (EDF)

•Incinerator

Inductively Coupled Plasma

L

EA

P T

Inductively Coupled Plasma

ICP

(64 MHz)

Oven (1000 K)

Spectrometer

L

EA

P T

Inductively Coupled Plasma

500 W, (Ar+CuSO4, 5 H2O) 1300 W, (Ar+CuSO4, 5 H2O)

0

5000

10000

15000

20000

300 500 700 900 1100

Cu 521 nm.

Ar 518 nm.

Ar 516 nm.

Cu 515 nm.

Cu 510 nm.

Pixels

Inte

nsity

(a.

u.)

500

1000

1500

2000

2500

300 500 700 900 1100

Cu 521 nm.

Ar 518 nm.

Ar 516 nm.

Cu 515 nm.

Cu 510 nm.

Pixels

Inte

nsity

(a.

u.)

10-8

10-5

10-2

101

104

4000 5000 6000 7000 8000 9000 10000

Ar 516.22 nm

Ar 518.77 nm.

Cu 515.35 nm

Cu 521.35 nm

Cu 510.55 nm

Temperature (K)

Vo

lum

etr

ic e

mis

sio

n c

oe

ffic

ien

t (

W m

-3 s

r-1)

10-8

10-5

10-2

101

104

4000 5000 6000 7000 8000 9000 10000

Ar 516.22 nm

Ar 518.77 nm.

Cu 515.35 nm

Cu 521.35 nm

Cu 510.55 nm

Heavy Species Temperature (K)

Vol

umet

ric

em

issi

on

coef

ficie

nt (

W m

-3 s

r-1)

Te/Th=1 Te/Th=1.5

L

EA

P T

Inductively Coupled Plasma

7000

7500

8000

8500

9000

9500

500 700 900 1100 1300 1500

Power (W)

Exc

itatio

nal T

empe

ratu

re (

K)

Excitational Temperature

(510, 515, 521 nm)

Thermal non-equilibrium parameter (Te/Th)

0.9

1.1

1.3

1.5

1.7

7000 7500 8000 8500 9000 9500

Excitational Temperature (K)

=T

e/Th

L

EA

P T

Inductively Coupled Plasma

0

0.5x107

1.0x107

1.5x107

2.0x107

1000 2000 3000 4000 5000 6000

49.6/50.4

40/60

80/20

E=9.43 106 (J/kg)

Temperature (K)

Ent

halp

y (J

/kg

)

N2/O2

(% molaire)

Measured Temperatures Obtained Temperatures

40/60 4010 +/- 350 K 3800 K

49,6/50,4 3960 +/- 350 K 3900 K

80/20 4810 +/- 250 K Reference Temperature

L

EA

P T

Inductively Coupled Plasma

Perspectives:

Vacher D.: D.U. Juin 02

Fundamental •Energy transfert

•Fluidized-Bed characterisation (+CNAM)

Application • Mixture of plastic

• Animal flour

L

EA

P T

Discharge with Liquid Non-Metallic Electrodes

(With Ioffe inst., St Petersbourg)

-U

01

32

5R0

4

h L

-U0

1. Metallic current leads

2. Ceramics chutes

3. Tap water streams

4. Moveable probe

5. Discharge plasma

•Self-maintained discharges

•Volumetric (diffuse) form

•Atmospheric pressure

•Out of thermal equilibrium

L

EA

P T

0

2000

4000

6000

0 2 4 6

Trot

Tvib

Z, mm

Te

mp

era

ture

(K

)

Spectroscopic Measurements (N2 C3u )

Discharge with Liquid Non-Metallic Electrodes

(With Ioffe inst., St Petersbourg)

L

EA

P T

Discharge with Liquid Non-Metallic Electrodes

(With Ioffe inst., St Petersbourg)

Probe measurements

Plasma potential distribution I65 mA, L6 mm (cylindrical probe).

1 -    Water cathode

2 -     Water anode

Probe characteristicsflat probe faced to the cathode

Ion branches of probe characteristics nions

L

EA

P T

Probe measurements +Microwave sounding

nc  (1.52.0)1018 m‑3 near the cathode

na  (0.91.2)1018 m‑3 near the anode

1014

1016

1018

1020

1200 1400 1600 1800 2000 2200 2400

=2.25

=3.25=3.5

1.5 1018

2 10181.2 1018

9 1017

=3

=2

=1.5

=2.5

=1

Heavy Species Temperature (K)

Ele

ctro

ns

Co

nce

ntr

atio

n (

m-3

)

Discharge with Liquid Non-Metallic Electrodes

(With Ioffe inst., St Petersbourg)

L

EA

P T

Perspectives

•Add copper : Tex

•Electrical conductivity out of thermal

equilibrium

•Heat the water

Near the anode : 3.2

Near the cathode: 2.2

Discharge with Liquid Non-Metallic Electrodes

(With Ioffe inst., St Petersbourg)

L

EA

P T

Plasma interacting with an insulating wall

(with GIAT industries)

Purpose:

Ignite the propulsive powder by plasma

i n d u s t r i e sG I A T

L

EA

P T

Tests before real bomb tests

Axial Projection Radial Projection

Pressure, Spectroscopy, Current, Tension

Plasma interacting with an insulating wall

(with GIAT industries)

L

EA

P T

PE; Vinit = 340 V

-300

0

300

600

900

1200

-0.002 0.002 0.006 0.010-100

100

300

500

Tension

Current

Time (s)

Cu

rre

nt

(A)

Te

nsi

on

(V

)

-300

300

900

1500

-0.002 0.002 0.006 0.010

0

200

400

Current

Tension

Time (s)

Cu

rre

nt

(A)

Te

nsi

on

(V

)

POM; Vinit= 340 V

10-6

10-4

10-2

100

1000 2000 3000 4000 5000

PE

POM5 kg/m3

1kg/m3

0.25 kg/m3

0.05 kg/m3

0.05 kg/m3

5 kg/m3

1kg/m3

0.25 kg/m3

Temperature (K)

Mol

ar F

ract

ion

Graphite fraction Electrical set up

Plasma interacting with an insulating wall

(with GIAT industries)

L

EA

P T

Pressure

-20

20

60

100

-0.002 0.002 0.006 0.010

Time (s)

Pre

ssur

e (B

ars)

-20

20

60

100

-0.002 0.002 0.006 0.010

Time (s)

Pre

ssur

e (B

ars)

PE; Vinit = 340 V POM; Vinit= 340 V

104

105

106

107

108

109

1000 5000 9000 13000 17000

5 kg/m3

0.25 kg/m3

1 kg/m3

0.05 kg/m3

Temperature (K)

Pre

ssur

e (

Pa

)

105

106

107

108

1000 5000 9000 13000 17000

viriel

Pression

Debye Huckel

Temperature (K)

Pre

ssu

re (

Pa

)

PE: 1kg/m3

Plasma interacting with an insulating wall

(with GIAT industries)

L

EA

P T

Temperature from copper spectral lines

Spectra from 430 to 530 nm.

Time ~ 1.14 ms.

Temperature: ~7000 K to ~10000 K

Plasma interacting with an insulating wall

(with GIAT industries)

L

EA

P T

Wall Surface after interaction (M.E.B.)

Copper droplet Expansion of Copper

10-6

10-4

10-2

100

2000 3000 4000 5000

C3

C

C2

C2H

CH2

C4

C5

CH

CuC

2H

2

H

CuH

CH3

C2H

4

Cu2

CH4

C(S)

Cu(l)

Temperature (K)

Mo

lar

Fra

ctio

n

PE+Cu (1%); P=1atm.

Plasma interacting with an insulating wall

(with GIAT industries)

L

EA

P T

•Main process during the interaction?

•Composition of plasma ?

•Boundary conditions ?

Molecular dynamic simulation (D.U. Duffour)

•All interactions between atoms

Plasma interacting with an insulating wall

(with GIAT industries)

L

EA

P T

Plasma interacting with an insulating wall

(with GIAT industries)

L

EA

P T

Perspectives:

Interpretation manipulation

UI internal energy

U/I electrical conductvity

pression, temperature, ablated mass

Micro- plasma : air-bag in cars

Microwave igniter (GORF)

D.M. : pressure, thermal conductivity

Torche modelisation

Cicuit breakers (GEC Alstom) E. Duffour

Plasma interacting with an insulating wall

L

EA

P T

Conclusion

Team working together at the LAEPT

Contracts from industries •Schneider Electric,

• Alstom,

•Ferraz Shawmut,

•GIAT.

University Collaborations

G.I.S. du Massif Central: Pôle Matériaux

(16 laboratories)

Recommended