Présentation Orange foncé avec photo · Euler beams : POU_D_E Timoshenko beams : POU_D_T If you...

Preview:

Citation preview

  • FORMATION ITechCode_Aster et Salomé-

    Méca –

    module 4 : Génie Civil(ARN3960)

    Recherche & Développement

    24-25 mai 2018

    Copyright © EDF 2018 – S. Michel-Ponnelle

  • | 2Aster Génie Civil | 24/05/2018

    Part 1 –

    Overview on civil

    engineering

    models

  • | 3Aster Génie Civil | 24/05/2018

    OUTLINE

    Types of analysis

    Modeling and constitutive laws

    Special Loadings/Boundary conditions

    Pre/Post Processing tools

    Some examples

  • | 4Aster Génie Civil | 24/05/2018

    OUTLINE

    Types of analysis

    Modeling and constitutive laws

    Special Loadings/Boundary conditions

    Pre/Post Processing tools

    Some examples

  • | 5Aster Génie Civil | 24/05/2018

    « STATIC » ANALYSIS

    Linear or non-linear thermal calculation (THER_LINEAIRE, 3D/PLAN/COQUE

    or THER_NON_LINE, PLAN/3D only)

    Thermo-hydration of the concrete (THER_NON_LINE, PLAN/3D only)

    Drying of the concrete (THER_NON_LINE (diffusion only) / STAT_NON_LINE THH calculations, PLAN/3D only)

    Linear or non-linear static calculation (MECA_STATIQUE or STAT_NON_LINE)

    Chained calculationsThermal + static analysis (including structural elements)

    Thermal + thermo-hydration + static analysis

    Thermal + drying analysis + static analysis (excluding structural elements)

    Thermal + Thermo-hydration + drying analysis + static analysis

    Coupled THHM calculations for porous media (STAT_NON_LINE, concrete only, 2D/3D)

  • | 6Aster Génie Civil | 24/05/2018

    SEISMIC ANALYSIS

    Spectral method by modal synthesis COMB_SISM_MODAL“Design“ method

    Linear calculations only

    Vibration dynamics DYNA_VIBRABy Harmonic methods

    By Transient methods

    With modal basis

    With physical basis

    Localized nonlinearities : shock, friction

    Transient dynamics DYNA_NON_LINEBehavior nonlinearities : plasticity

    Geometric nonlinearities : large displacements, friction

  • | 7Aster Génie Civil | 24/05/2018

    OTHERS

    Calculation of reinforcement by the

    Capra and Maury method CALC_FERRAILLAGE

    CODIFICATION =‘EC2’ or ‘BAEL’ or ‘UTILISATEUR’

    Impact analysis in explicit dynamic

    CALC_EUROPLEXUS (interface with EUROPLEXUS)

    Flow of a fluid in a cracked concrete structure

    in 2D MACR_ECREVISSE

    Injection of a hot gaz in a cracked concrete :

    temperature

    Reinforcement map of a floor

    2018

  • | 8Aster Génie Civil | 24/05/2018

    OUTLINE

    Types of analysis

    Modeling and constitutive laws

    Special Loadings/Boundary conditions

    Pre/Post Processing tools

    Some examples

  • | 9

    THE FINITE ELEMENTS MODELS (MECHANICS)

    Several types of finite elements for describing concreteThe isoparametric finite elements : 2D (triangle or quadrangle, linear or quadratic)

    or 3D (hexahedron, tetrahedron, pentahedron, pyramid, linear or quadratic)

    Plates : DKT (triangle or quadrangle linear),

    (DST or Q4G for elastic simulation)

    Shells : COQUE_3D (quadrangle or triangle square) or SHB

    Euler beams : POU_D_E

    Timoshenko beams : POU_D_T

    If you need help to choose the best formulation : cf. [U2.02.01]

    Aster Génie Civil | 24/05/2018

  • | 10

    THE FINITE ELEMENTS MODELS (MECHANICS)

    Several types of finite elements for describing steel3D/2D

    1D elements: BARRE (3D), 2D_BARRE (2D) or beam elements ( POU_D_T,

    POU_D_E)

    Plate elements: GRILLE_MEMBRANE (3D), MEMBRANE (3D), GRILLE_EXCENTREE

    (DKT)

    Models for reinforced concreteMulti-fiber beams (POU_D_EM, POU_D_TGM)

    DKTG plates

    Aster Génie Civil | 24/05/2018

  • | 11Aster Génie Civil | 24/05/2018

    CONSTITUTIVE LAWS FOR CONCRETE

    Elasticity with shrinkage optionally taken into account

    Thermal strains

    Drying shrinkage

    Endogenous shrinkage

    The temperature T, the water concentration C and the hydration x

    are control variables.

    Be careful ! T is the only control variable for the structural elements

    )( refth TT

    x

    re

    rd CC )( 0 K_DESSIC and/or B_ENDOwith DEFI_MATERIAU/ELAS_FO

    ALPHA with

    DEFI_MATERIAU/ELAS or

    ELAS_FO

  • | 12

    BETON_GRANGER(_V) [R7.01.01]

    basic creep (+ aging effect & humidity effet )

    group in series of Kelvin models (8) (linear viscoelasticity)

    𝜺𝒇𝒍 𝒕 = 𝒌 𝒕𝒄 𝑱(𝒕, 𝒕𝒄) 1+ 𝝊𝒇 ℎ𝝈 − 𝝊𝒇 𝑡𝑟 ℎ𝝈 𝑰

    𝑱 𝒕, 𝒕𝒄 =

    𝒔=𝟏

    𝟖

    𝑱𝒔 𝟏− 𝒆𝒙𝒑 −𝒕 − 𝒕𝒄𝑻𝒔

    BETON_UMLV [R7.01.06]

    Basic creep + drying creep + shrinkage

    Non-linear model based on the work of F. Bendboudjema in Marne-la-Vallée

    + Bazant model for drying creep

    Aster Génie Civil | 24/05/2018

    CONSTITUTIVE LAWS FOR CREEP OF

    CONCRETE (1/2)

    fle

    fdfd

    i

    fd

    r

    fs

    i

    fs

    r

    rerdthe )()(

    ).( ss h ).(dd σh

  • | 13

    BETON_BURGER [R7.01.35]

    Basic creep + drying creep + shrinkage

    Non-linear model developed by EDF+ Bazant model for drying creep

    Better control of the 3D- effect and the long-term evolution of the creep

    FLUA_PORO_BETON [R7.01.36]

    Basic creep + drying creep + shrinkage

    Non-linear model developed by A. Sellier, LMDC

    Aster Génie Civil | 24/05/2018

    CONSTITUTIVE LAWS FOR CREEP OF

    CONCRETE (2/2)

    fdfd

    i

    fd

    r

    fs

    i

    fs

    r

    rerdthe )()(

    Plug-in Salomé

    ARCADE for the

    identification (in

    Salome-

    Meca2017)

    ).( ss h ).( dd σh

  • | 14

    CONSTITUTIVE LAWS FOR CONCRETE :

    CRACKING

    Modeling damage or cracking of the concrete is not easy.

    Problems of reliability, robustness and performance !

    No universal model - choose your model according to the problem you

    want to solve !

    Aster Génie Civil | 24/05/2018

    Biaxial strength envelop [Lee et al.] Cyclic response (1D)

  • | 15

    CONSTITUTIVE LAWS FOR CONCRETE :

    CRACKING

    Non-linear elasticity

    Cohesive zone model

    Aster Génie Civil | 24/05/2018

    Constitutive law Model Remarks

    BETON_REGLE_PR

    [R7.01.27]

    2D (local) 2*1D variation of regulatory law

    BAEL91

    Constitutive law Model Remarks

    CZM_EXP_MIX

    [R7.02.11]

    3D_INTERFACE,

    PLAN_INTERFACE,

    AXIS_INTERFACE

    Paths of cracking are pre-defined

  • | 16

    CONSTITUTIVE LAWS FOR CONCRETE :

    CRACKING

    Isotropic damage

    Aster Génie Civil | 24/05/2018

    Constitutive law Model Remarks

    ENDO_FISS_EXP

    [R5.03.18]

    GRAD_VARI Isotropic damage tension /

    compression + restoration of

    stiffness in compression (V13)

    ENDO_ISOT_BETON

    [R7.01.04]

    Local/GRAD_VARI Isotropic damage in tension +

    restoration of stiffness in

    compression

    MAZARS [R7.01.08] Local

    3D or D_PLAN or C_PLAN

    Isotropic damage tension /

    compression

    MAZARS_GC [R5.03.09] Local

    1D or C_PLAN

    Isotropic damage tension /

    compression

    Restoration of stiffness in

    compression for 1D

  • | 17

    CONSTITUTIVE LAWS FOR CONCRETE :

    CRACKING

    Orthotropic damage

    Plasticity

    Aster Génie Civil | 24/05/2018

    Constitutive law Model Remarks

    ENDO_ORTH_BETON

    [R7.01.09]

    Local Orthotropic damage + restoration of

    stiffness in compression

    Constitutive law Model Remarks

    BETON_DOUBLE_DP

    [R7.01.03]

    Local (regularization with the

    Hillerborg method)

    Plasticity

  • | 18

    CONSTITUTIVE LAWS FOR CONCRETE :

    CRACKING

    Orthotropic damage + plasticity

    Aster Génie Civil | 24/05/2018

    Constitutive law Model Notes

    BETON_RAG

    [R7.01.26]

    local Visco-elastoplastic damage model

    under the effect of the alkali-

    aggregate reaction

    ENDO_PORO_BETON

    [R7.01.36]

    local + regularization with the

    Hillerborg method

    Visco-elastoplastic damage model

  • | 19Aster Génie Civil | 24/05/2018

    CONSTITUTIVE LAWS FOR REINFORCED

    CONCRETE

    Constitutive law Model Remarks

    GLRC_DM

    [R7.01.32]

    DKTG For a moderate damage,

    Symetrical reinforcements

    GLRC_DAMAGE

    [R7.01.31]

    DKTG For impacts

    DHRC

    [R7.01.33]

    DKTG Damage + residual strains

    Plug-in Salomé for the identification of DHRC

    (in progress)

  • | 20Aster Génie Civil | 24/05/2018

    CONSTITUTIVE LAWS FOR STEELS

    Grid reinforcement of concreteGRILLE_CINE_LINE, GRILLE_ISOT_LINE, GRILLE_PINTO_MEN

    and ... all the 1D constitutive laws

    if 1D not possible : ALGO_1D =‘DEBORST’

    1D elementsELAS, VMIS_ISOT_LINE, VMIS_CINE_LINE, PINTO_MENEGOTTO

    [R5.03.09] (elasto-plasticity + Bauschinger effect), CORR_ACIER [R7.01.20]

    (damageable elasto-plasticity with plastic deformation at fracture depending on the

    rate of corrosion)

    and ... all the constitutive laws through ALGO_1D =‘DEBORST’

    Pinto-Menegotto behavior

  • | 21

    HELP TO CHOOSE THE BEHAVIOR LAW ?

    CF. [U2.03.07]

    Aster Génie Civil | 24/05/2018

    GRANGER_V[R7.01.01]

    GRANGER[R7.01.01]

    BETON_UMLV[R7.01.06]

    BETON_BURGER[R7.01.35]

    Fluage propreok ok ok ok

    Fluage de

    dessiccation nook nook ok ok

    Dilatation

    thermique/ Retrait

    endogène/

    Retrait de

    dessiccation

    nook nook ok ok

    Activation

    thermiqueok ok nook nook

    Influence du

    « vieillissement »(hy

    dratation,

    polymérisation,...)

    ok nook nook nook

    Influence de l'âge du

    béton au moment du

    chargementnook nook nook nook

    Influence de la

    teneur en eau ok ok v ok

    Phénomènes

    BE

    TO

    N_

    DO

    UB

    LE

    _D

    P

    [R7

    .01

    .03

    ]

    MA

    ZA

    RS

    [R7

    .01

    .08

    ]

    EN

    DO

    _S

    CA

    LA

    IRE

    [R5

    .03

    .18

    ]

    GR

    AD

    _V

    AR

    I

    EN

    DO

    _IS

    OT_

    BE

    TO

    N

    [R7

    .01

    .04

    ]

    EN

    DO

    _O

    RTH

    _B

    ETO

    N

    [R7

    .01

    .09

    ]

    EL

    AS

    +Z

    M_

    OU

    V_

    MIX

    [R7

    .02

    .11

    ]

    BE

    TO

    N_

    RA

    G

    [R7

    .01

    .26

    ]

    BE

    TO

    N_

    RE

    GL

    E_

    PR

    (X_

    PL

    AN

    ou

    DK

    T)

    [R7

    .01

    .27

    ]

    MA

    ZA

    RS

    _G

    C

    (1D

    ou

    C_

    PL

    AN

    )

    [R5

    .03

    .09

    ]

    Grandeur représentant la

    fissuration (et v ariable interne

    associée) :

    𝑝𝑡,𝑐: plasticité

    𝐷𝑡 ,𝑐: endommagement scalaire

    𝐵𝑡,𝑐 : endommagement tensoriel

    dn : saut de déplacement

    Elas: élasticité non-linéaire

    𝑝𝑡et 𝑝𝑐(V1 et

    V2)

    𝐷 (V1) 𝐷𝑡 (V1) 𝐷𝑡 (V1)𝐵𝑡(V1 à

    V6)

    et 𝐷𝑐 (V7)

    𝛿𝑛 (V7)𝐵𝑡(V15 à

    V20)

    et 𝐷𝑐 (V21)

    Elas 𝐷 (V3)

    Nombre de paramètres

    (hors élasticité)6(+3) 6 3(+3) 3 6 4 31(+2) 4 6(+2)

    Modélisations disponibles :

    L : locale

    GV : GRAD_VARI

    L L GV L/GV L so L so L

    Régularisation énergétique

    incluseok nook so nook nook so ok nook nook

    Endommagement en traction ok ok ok ok ok ok ok ok ok

    Endommagement en

    compressionok ok ok ok 7 ok

    nook

    (élastiq

    ue)

    ok ok ok

    Comportement en cisaillement ok ok ok ok ok nook ok nook so / ok

    Restauration de rigidité en

    compressionok nook nook ok ok ok ok nook

    ok(1D)/noo

    k (2D)

    Déformations résiduelles

    (plastiques)ok nook nook nook nook nook nook nook nook

    Paramètres v ariables av ec la

    températureok ok nook nook nook nook nook nook nook

    Description de la Réaction

    Alcali-Granulat (RAG)nook nook nook nook nook nook ok nook nook

    Couplage avec d'autres lois via

    KIT_DDI :

    G : GRANGER_FP

    UMLV : BETON_UMLV_FP

    G UMLV nook UMLV nook nook ok nook nook

    Type de chargement adapté :

    M : monotone

    C : cyclique

    I: impact

    M M M M/C M/C M M M C/M

    Niv eau de dégradation

    atteignable :

    - M : Modéré

    - R : Ruine

    M M R R M R M M M

    Type de Modèles :

    - R : réglementaire

    - I : ingénieur

    - E : expertise

    E E E E E E E R I/R

    Robustesse (facilité de

    conv ergence)NS NS M S/NS NS S NS S

    M (1D)/NS

    (2D)

    Some examples from [U2.03.07]

  • | 22Aster Génie Civil | 24/05/2018

    NOTE : JOINT FINITE ELEMENTS

    Possibility of using joint (or interface) elements to represent

    interfaces

    Concrete-steel bond: constitutive law JOINT_BA (fine model) [R7.01.21] : D_PLAN or AXIS for steel and

    concrete

    constitutive law : CZM_LAB_MIX [R7.01.21] : (GRILLE_)MEMBRANE for steel and

    3D for concrete

    Joints between dams elements in 2D or 3D [R7.01.25] – in statics and dynamics :JOINT_MECA_RUPT laws based on a cohesive formulation of failure

    JOINT_MECA_FROT : elastoplastic version of the Mohr-Coulomb friction law

  • | 23Aster Génie Civil | 24/05/2018

    CONSTITUTIVE LAWS FOR SOILS : CONSISTENT

    WITH THM MODELS

    Behavior of soils/clayELAS_GONF

    CAM_CLAY, BARCELONE

    CJS, HUJEUX, MOHR_COULOMB

    Elastoplastic behavior of rocksMOHR_COULOMB

    DRUCK_PRAGER, DRUCK_PRAG_N_A

    LAIGLE, HOEK_BROWN (_EFF) (_TOT)

    Viscoplastic behavior of rocksVISC_DRUC_PRAG, LETK, LKR

    Thermo-hydro-mechanical coupling (porous media)KIT_HM, KIT_HHM, KIT_THM, KIT_THHM (hyp : isotropy or orthotropy)

  • | 24

    SOME REMARKS

    Help for the identification of some behavior laws

    Macro-command DEFI_MATER_GC for MAZARS and ENDO_FISS_EXP

    Macro-command CALC_ESSAI_GEOMECA to easily simulate typical test (0D)

    Plug-in for BETON_BURGER and DHRC (in progress)

    V&V file for paraseismic computations : see [A4.01.04]

    Behaviour laws concerned : GLRC_DM, MAZARS_GC and ENDO_ISOT_BETON (in

    progress)

    Structures : SMART model, benchmark SAFE, a fuel building, ….

    Aster Génie Civil | 24/05/2018

  • | 25Aster Génie Civil | 24/05/2018

    OUTLINE

    Types of analysis

    Modeling and constitutive laws

    Special Loadings/Boundary conditions

    Pre/Post Processing tools

    Some examples

  • | 26

    SOIL-STRUCTURE / STRUCTURE-SOIL-STRUCTURE

    INTERACTION

    Meshing the soil ->behaviour : ELAS, MOHR-COULOMB, HUJEUX,…

    Ground springs method : RIGI_PARASOL, to define with AFFE_CARA_ELEM (model

    DIS_T or DIS_TR)

    Coupling MISS3D / Code_Aster : RIGI_MISS_3D, to define with AFFE_CARA_ELEM

    (model DIS_T)

    Aster Génie Civil | 24/05/2018

    If you need help to choose the best option : cf. [U2.03.07]

  • | 27

    LOADINGS/BC WITH TO 0D ELEMENTS

    contact with impact or friction :

    model DIS_T or DIS_TR with the behaviour DIS_CHOC or DIS_CONTACT

    To take into account some equipments on a surface through distribute masses :

    model DIS_T with CARA_ELEM/MASS_REP

    To connect 2 models with AFFE_CHAR_MECA :

    - Keyword LIAISON_ELEM : 3D_POU, 2D_POU, COQ_POU, PLAQ_POU_ORTH,

    LIAISON_DDL,

    - Keyword LIAISON_MAIL : TYPE_RACCORD:’COQUE_MASSIF’, ‘MASSIF_COQUE’

    - Keyword LIAISON_COQUE

    Aster Génie Civil | 24/05/2018

  • | 28

    Possibility of "automated" treatment of the tendons

    especially for the tensioning phase (phasing possible) for 1D

    elements thanks to :

    DEFI_CABLE_BP / CALC_PRECONT

    BARRE modeling

    For describing grouted tendons (perfect cable-concrete bond)

    Tension to be applied in tendons calculated by BPEL91 or ETCC-2010

    formula

    CABLE_GAINE modeling

    For describing slipping tendons (with or without friction)

    Tension obtained by the simulation of the tensioning procedure

    Aster Génie Civil | 24/05/2018

    TENSIONING PRESTRESSING TENDONS

  • | 29Aster Génie Civil | 24/05/2018

    Tension profil for a « circular » tendon :

    Comparison of different modelings

    More details in the slides « Modeling of the

    prestressed reinforced concrete »

  • | 30Aster Génie Civil | 24/05/2018

    OUTLINE

    Types of analysis

    Modeling and constitutive laws

    Special Loadings/Boundary conditions

    Pre/Post Processing tools

    Some examples

  • | 31Aster Génie Civil | 24/05/2018

    PRE/POST-PROCESSING TOOLS

    Visualization of some characteristics of the structural elements :

    section, material, etc. see [U7.05.21]

    Command IMPR_RESU(FORMAT=‘MED’,

    CONCEPT=_F(CARA_ELEM=cara),

    _F(CHAM_MATER=champmat),

    _F(CHARGE = charg1) )

    + open with Paravis

  • | 32

    PRE/POST-PROCESSING TOOLS

    Vizualisation of the stress field or strain field with Paravis for

    multi-fiber elements (POU_D_EM) and multi-layer elements (DKT)

    Command IMPR_RESU_SP

    -> archive tar.tgz

    - open with Paravis the file .pvd

    Example : crossarm of a lattice tower

    SSNL135A/SV1.01.01 §7

    Aster Génie Civil | 24/05/2018

  • | 33

    PRE/POST-PROCESSING TOOLS

    Vizualisation of the orientation of structural elements

    Command IMPR_RESU(FORMAT=‘MED’,

    CONCEPT=_F(CARA_ELEM=cara, REPERE_LOCAL=‘OUI’, MODELE=MO) )

    ->resu.med

    open with Paravis :

    - CellCenter Filter

    - Glyph Filter for REPLO_1,

    REPLO_2,

    REPLO_3

    Aster Génie Civil | 24/05/2018

  • | 34

    PRE/POST-PROCESSING TOOLS

    Vizualisation of (Fint,Mint) for structural elements; see [U7.05.21], §6

    IMPR_RESU(FORMAT=‘MED’, CONCEPT=_F(CARA_ELEM=cara,

    REPERE_LOCAL=‘ELNO’, MODELE=‘MO’))

    + IMPR_RESU(FORMAT=‘MED..) of the field EFGE_ELNO

    open with Paravis

    Aster Génie Civil | 24/05/2018

  • | 35Aster Génie Civil | 24/05/2018

    PRE/POST-PROCESSING TOOLS

    Calculation of strains (CALC_CHAMP), see [U2.01.05]

    EPSI_ELGA / EPSI_ELNO : total strains

    EPME_ELGA / EPME_ELNO : mechanical strains

    EPVC_ELNO or EPVC_ELGA : strains due to control variables (hydration,

    drying, temperature)

    EPFP_ELGA / EPFP_ELNO : creep strains (BETON_UMLV, BETON_BURGER

    or BETON_GRANGER laws)

    EPFD_ELNO / EPFD_ELGA : drying creep strains (BETON_UMLV,

    BETON_BURGER laws)

    DEGE_ELNO : generalized strains (linear elasticity)

  • | 36Aster Génie Civil | 24/05/2018

    PRE/POST-PROCESSING TOOLS

    For stresses calculation, see [U2.01.05]

    SIEF_ELGA / SIEF_ELNO : stresses

    EFGE_ELGA / EFGE_ELNO : generalized forces

    SIPO_ELNO : Computation of the stresses in the section of beam broken

    up into contributions of each generalized force.

    SIRO_ELEM : the normal and tangential stresses to the faces of the

    elements, calculated at the center of faces (SIG_N, SIG_T1,SIG_T2)

    Visualization of stresses

  • | 37Aster Génie Civil | 24/05/2018

    PRE/POST-PROCESSING TOOLS

    For the calculation of stresses in structural elements, see [U2.01.05]

    SIGM_ELNO

    EFGE_ELNO : structural efforts

    EFCA_ELNO : structural efforts in the global coordinate

    SIPO_ELNO : stresses in the beam section decomposed into contribution

    of each structural effort in the local coordinate system (SN, SMFY, SMFZ,

    SVY, SVZ, SMT)

    SIPM_ELNO : stresses min and max in the beam section (linear elasticity))

    SICO_ELNO : stresses in a layer of shell elements

    A commandPOST_COQUE : to extract the efforts at any point of a shell (SSLS126B)

  • | 38Aster Génie Civil | 24/05/2018

    PRE/POST-PROCESSING TOOLS

    Energy calculations (total energy, kinetic energy, ...)

    Work in progress

    Dissipation (DISS_ELNO / DISS_ELGA) for the GLRC_DM law

    Calculation of masses (POST_ELEM / MASSE )

    For dynamic calculations :Keyword OBSERVATION to accurately track the evolution of a quantity in the

    calculation without storing all time steps

  • | 39Aster Génie Civil | 24/05/2018

    HOW-TO DOCUMENTS

    Panorama of the tools available to carry out civil engineering analysisU2.03.07

    General tips for using the operator STAT_NON_LINE/DYNA_NON_LINEU2.04.01 / U2.06.13

    General tips for structural elementsU2.02.01 (plates,shells,…), U2.02.03 (discrete elements)

    Strains, stresses, generalized forces,…U2.01.05

    A civil engineering study with tendonsU2.03.06

    A civil engineering study with seismic loadingU2.06.10

    Several documents for modeling the Soil-structure interaction (SSI) U2.06.05, U2.06.07, U2.06.08 [restricted access], U2.06.12 [restricted access]

    Performing damage calculations in quasi-static analysisU2.05.06

    Etc …

  • | 40Aster Génie Civil | 24/05/2018

    OUTLINE

    Types of analysis

    Modeling and constitutive laws

    Special Loadings/Boundary conditions

    Pre/Post Processing tools

    Some examples

  • | 41

    AGEING OF A CONTAINMENT VESSEL

    Aster Génie Civil | 24/05/2018

  • | 42Aster Génie Civil | 24/05/2018

    SIMULATE THE AGING OF A REINFORCED

    CONCRETE STRUCTURE OVER 60 YEARS

    3D concrete

    Reinforcing steel

    Prestressing tendons

  • | 43Aster Génie Civil | 24/05/2018

    SIMULATE THE AGING OF A REINFORCED

    CONCRETE STRUCTURE OVER 60 YEARS

    Applied loads over time

    Tension CH

    Dome

    Tension CV

    VC1

    VD1

    VD2

    VD3

    VD4

    VD5

    VD6

    7000 400 949058402190760 2044013140 16790 24090

    Building (6 years) Operation (60 years)

    Thermal dilatation

    Drying shrinkage

    Creep / drying creep (BETON_UMLV_FP)

    Endogenous shrinkage

  • | 44Aster Génie Civil | 24/05/2018

    SIMULATE THE AGING OF A REINFORCED

    CONCRETE STRUCTURE OVER 60 YEARS

    Evolution de la concentration en eau dans l'épaisseur, au cours du temps

    40

    50

    60

    70

    80

    90

    100

    110

    120

    130

    0,00 0,20 0,40 0,60 0,80 1,00 1,20

    épaisseur (m)

    co

    ncen

    trati

    on

    (l/m

    3)

    0

    29

    182,25

    400

    758

    1474

    2190

    4035

    5840

    7687,5

    9490

    11337,5

    13140

    14987,5

    16790

    18637,5

    20440

    24090

    Perte de tension dans les câbles

    0,00E+00

    1,00E+06

    2,00E+06

    3,00E+06

    4,00E+06

    5,00E+06

    6,00E+06

    7,00E+06

    8,00E+06

    9,00E+06

    0 5000 10000 15000 20000 25000

    temps (jour)

    ten

    sio

    n N

    (N)

    câble horizontal (H3) câble vertical (V1)

    déformation orthoradiale à coeur

    -3,00E-03

    -2,50E-03

    -2,00E-03

    -1,50E-03

    -1,00E-03

    -5,00E-04

    0,00E+00

    5,00E-04

    0 5000 10000 15000 20000 25000

    temps (jour)

    EP

    Stt

    déformation totale déformation fluage propre déformation fluage dessiccation

    Evolution of the water content

    Evolution of the tension in the tendons

    Evolution of the strains

  • | 45

    SIMULATE THE AGING OF A REINFORCED

    CONCRETE STRUCTURE: VERCORS MOCK-UP

    Ø ~ 15 m

    H ~

    20

    m

    Geometry and mesh via Salomé : concrete (3D), tendons (1D)

    Thermic + Drying (SECH_GRANGER) + delayed strains (BETON_BURGER)

    >300 000 noeuds

    Version 12.4 Code_Aster®

    Duration : ~13h (ther) ~4j (meca)

    Aster Génie Civil | 24/05/2018

  • | 46

    Creep overestimated with

    actual parameters before the

    heating inside the mock-up

    Interest

    Zone

    CIRCONFERENTIAL STRAINS = F(TIME)

    Aster Génie Civil | 24/05/2018

  • | 47Aster Génie Civil | 24/05/2018

    BEHAVIOR IN CASE OF SEVERE ACCIDENT

    First step : strain at 60 years

    (creep)

    Second step : stress with high pressure (~0,5 MPa)

    and high temperature (150°C)

  • | 48

    DAMAGE AND FRACTURE

    Aster Génie Civil | 24/05/2018

  • | 49Aster Génie Civil | 24/05/2018

    SIMULATION OF A BEAM AT EARLY AGE

    + 4-POINTS FLEXION TEST

    Free shrinkage beam : 4-point flexion test

    48 days after casting

    The results are satisfying for

    temperature at early age

    Results obtained with Code_Aster

    (local isotropic damage model)

  • | 50

    Mean opening for cracks: 234 µm

    SIMULATION OF A 3 - POINTS BENDING TEST

    ON A REINFORCED BEAM WITH CZM

    Aster Génie Civil | 24/05/2018

  • | 51Aster Génie Civil | 24/05/2018

    MECHANICAL BEHAVIOR OF CONCRETE PIPES

    WITH METAL WEB

    Cracking

    Plastification of reinforcement bars

    Corrosion of the metal pipe web

    (CORR_ACIER)

    Impact of corrosion on the mechanical resistance

    0

    5

    10

    15

    20

    25

    30

    0 2 4 6 8 10 12 14 16 18

    Flexion (mm)

    Force (

    ton

    nes)

    Tuyau 5 - Partiellement corrodée

    Tuyau 5 - exp. - Partiellement corrodée

    Tuyau 5 - Corrosion variable

    Map of damage + deformations

    force / bending curve (tests / calculation)

    Test device

  • | 52

    UNDERGROUND EXCAVATION

    2D modeling using convergence-confinement method

    Mechanical law : specific elasto-visco-plastic law (LKR)

    Coupling or not with hydraulic (HM simulation)

    Using of a regularization modelPlastic strain hardening

    Aster Génie Civil | 24/05/2018

  • | 53Aster Génie Civil | 24/05/2018

    SIMULATION OF THE ALKALI-AGGREGATE

    REACTION (RAG)

    Validation on an industrial case : an existing dam segment (BETON_RAG)

  • | 54Aster Génie Civil | 24/05/2018

    SIMULATION OF A CONCRETE DAM

    Modeling of the joining up(*) and the friction between arch dam

    segments

    Hydromechanical modeling of the joint between the rock and the

    dam foundation

    * The joining up consists to fill the joints between the blocks at the end of construction of dam by grouting, to ensure the transmission of forces to the rock

  • | 55

    DYNAMIC ANALYSIS

    Aster Génie Civil | 24/05/2018

  • | 56Aster Génie Civil | 24/05/2018

    STUDY OF COOLING TOWERS

    Amplified displacement of a

    cooling tower under wind load

    (shell)

  • | 57Aster Génie Civil | 24/05/2018

    A TGV ON AN AGING PRESTRESSED

    CONCRETE BRIDGEVertical accelerations at ballast

    multifiber beam

    cracking

    dynamic

    rolling load

  • | 58Aster Génie Civil | 24/05/2018

    BENCHMARK SMART

    Reinforced concrete structuresnonlinear GLRC_DM constitutive law

  • | 59Aster Génie Civil | 24/05/2018

    SEISMIC CALCULATION OF DAMS

    Taking into account the energy dissipated in the soil and dam

    waters : Soil-Structure Interaction, Soil-Fluid-Structure Interaction

    Mode of an arch damStresses in a dam under seismic loading

  • | 60Aster Génie Civil | 24/05/2018

    EARTH-FILLED DAM SIMULATION

    -3

    -2,5

    -2

    -1,5

    -1

    -0,5

    0

    0,5

    1

    1,5

    2

    2,5

    3

    3,5

    0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

    TIME [S]

    ACC [M/S/S]

    ACCELERO

    N36

    N109

    N237

    N1099

    N950N36

    N109

    N237

    N1144

    Layered construction Watering Seismic loading

  • | 61Aster Génie Civil | 24/05/2018

    Thanks

  • | 62Aster Génie Civil | 24/05/2018

    End of presentation

    Is something missing or unclear in this document?

    Or feeling happy to have read such a clear tutorial?

    Please, we welcome any feedbacks about Code_Aster training materials.

    Do not hesitate to share with us your comments on the Code_Aster forum

    dedicated thread.

    http://www.code-aster.org/forum2/viewtopic.php?id=17343

Recommended