Supporting Information Materials for High Voltage Sodium ... · 1 Supporting Information Insights...

Preview:

Citation preview

1

Supporting Information

Insights into the Structural Effects of Layered Cathode

Materials for High Voltage Sodium-ion BatteriesGui-Liang Xu,1 Rachid Amine,2, 3 Yue-Feng Xu,4 Jianzhao Liu,1,5 Jihyeon Gim, 1

Tianyuan Ma,1, 6 Yang Ren,7 Cheng-Jun Sun,7 Yuzi Liu,8 Xiaoyi Zhang,7 Steve M.

Heald,7 Abderrahim Solhy, 9 Ismael Saadoune,10 Wenjuan Liu Mattis,11 Shi-Gang

Sun,4 Zonghai Chen1,* and Khalil Amine1,*

1Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA2 Chemical Engineering Department, University of Illinois at Chicago, Chicago, Illinois 60607, USA3 Materials Science Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA4Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, China5Department of Chemistry, Virginia Tech, 900 W Campus Drive, Blacksburg, VA 24061, USA6 Materials Science Program, University of Rochester, Rochester, NY 14627, USA7X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA 8Center for Nanoscale Materials, Nanoscience Technology, Argonne National Laboratory, Lemont, IL 60439, USA9Center for Advanced Materials, Mohammed VI Polytechnic University, Ben Guerir, Morocco10 Materials Science and Nano-engineering Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco11 Microvast Inc., 12603 Southwest Freeway, Stafford, Texas 77477, USA

To whom correspondence should be addressed:

Email: zonghai.chen@anl.gov (Z.C.) and amine@anl.gov (K.A.)

Electronic Supplementary Material (ESI) for Energy & Environmental Science.This journal is © The Royal Society of Chemistry 2017

2

Table S1 Summary on the electrochemical performance of layered NaTMO2

(Tm=Ni, Co, Fe, Mn…) cathode materials for sodium-ion batteries

Materials Rate,

mA/g

1st

coulombic

efficiency

1st charge

Capacity,

mAh/g

Last

Capacity,

mAh/g

Voltage

Range, V

Ref.

P2/O1/O3-NaxNi1/3Co1/3Mn1/3O2 15 95% 150.3 133/50th 2.0-4.4 This work

P2/O1/O3-NaxNi1/3Co1/3Mn1/3O2 100 87.5% 143.6 100/100th 2.0-4.4 This work

O3-NaNi1/3Co1/3Mn1/3O2 12 72% 156 112.3/1st 2.0-4.2 Chem. Mater.

2012, 24, 1846-

1853.

O3-NaNi0.5Mn0.5O2 8 74% 250 25/26th 2.0-4.5 Inorg. Chem.,

2012, 51, 6211-

6220

Fe-doped

O3 NaFe0.2Ni0.4Mn0.4O2

12 95% 136 125/30th 2.0-4.0 ACS Appl. Mater.

Interf. 2015, 7,

8585-8591

O3 NaTi0.5Ni0.5O2 20 87% 117 93/100th 2.0-4.0 Chem. Commun.,

2014, 50, 457-

459

Li-doped O3

NaLi0.07Ni0.26Mn0.4Co0.26O2

25 81.2% 181 128/50th 1.5-4.5 Electrochem.

Commun.

2015, 60, 13-16.

P3-Na0.5Li0.5Ni1/3Co1/3Mn1/3O2 17 74.85% 201.3 89.8/30th 2.0-4.6 J. Nanosci.

Nanotechnol. 16,

10698–10701,

2016

P2-Na0.85Li0.17Ni0.21Mn0.64O2 15 80% 112 95/50th 2.0-4.2 Adv. Energy

Mater. 2011, 1,

33-336

Zn-doped P2-

Na0.66Ni0.26Zn0.07Mn0.67O2

12 94% 150 118/30th 2.0-4.4 J. Power Sources

2015, 281, 18-26.

Mg doped P2-

Na0.67Mn0.67Ni0.28Mg0.05O2

17.3 94.6% 126.8 104.5/50th 2.5-4.35 Angew. Chem.

Int. Ed. 2016, 55,

1-6

P2-Na2/3(Mn1/2Fe1/4Co1/4)O2 25.8 89.3% 168 130/30th 1.5-4.2 Adv. Energy

Mater. 2015, 5,

1500944

3

P2-Na0.67Mn0.65Co0.2Ni0.15O2 20 >100% N/A 123/50th 2.0-4.4 J. Mater. Chem.

A 2013, 1(12):

3895.

P2-Nax(Fe1/2Mn1/2)O2 N/A >100% 121.3 101.4/80th 1.5-4.2 Chem. Mater.

2015, 27,

3150−3158

P2/O3-Na0.8Li0.2Ni0.5Mn0.5O2 15 >100% 130 128/20th 2.0-4.05 Adv. Energy

Mater. 2014, 4,

1400458

P2 Na0.67Ni0.33Mn0.67O2 17 >100% 130 40/100th 2.0-4.5 Electrochim.

Acta 2013, 113,

200-204

4

Williamson-Hall analysis (http://pd.chem.ucl.ac.uk/pdnn/peaks/sizedet.htm)

This method is attributed to G.K.Williamson and his student, W.H.Hall (Acta

Metall. 1, 22-31 (1953)). It relies on the principle that the approximate formulae for

size broadening, βL, and strain broadening, βe, vary quite differently with respect to

Bragg angle, θ:

βL = Kλ/(L cosθ) Equation (1)

βe = Cε tanθ Equation (2)

One contribution varies as 1/cosθ and the other as tanθ. If both contributions are

present then their combined effect should be determined by convolution. The

simplification of Williamson and Hall is to assume the convolution is either a simple

sum or sum of squares. Using the former of these then we get:

βtot = βe + βL = Cε tanθ + Kλ/(L cosθ) Equation (3)

If we multiply Equation (3) by cosθ we get:

βtot cosθ = Cε sinθ + Kλ/L Equation (4)

and comparing this to the standard equation for a straight line (m = slope; c =

intercept)

y = mx + c

we see that by plotting βtotcosθ versus sinθ we obtain the strain component from the

slope (Cε) and the size component from the intercept (Kλ/L).

The Williamson-Hall method has many assumptions: its absolute values should

not be taken too seriously but it can be a useful method if used in the relative sense;

for example a study of many powder patterns of the same chemical compound, but

synthesized under different conditions, might reveal trends in the crystallite size/strain

which in turn can be related to the properties of the product.

5

1 2 3 4 5 6 7

NCM-WQ NCM-600 NCM-Q

2-Theta, degree

Inte

nsity

, a.u

.

Figure S1 Synchrotron HEXRD patterns of NCM-Q, NCM-WQ and NCM-600.

6

NaO

Ni

C

MnCo

a b c

d e f

g h i

Figure S2 SEM images of the oxalate precursor (a-c) and the corresponding

elemental mapping (d-i).

7

a

2 4 6 8 10

CoMnNiCoNiNa

CoNi

NiCoMn

Inte

nsity

, cou

nts

Energy, keV

Mn

Ob

Figure S3 SEM image (a) and EDX analysis (b) of NCM-Q.

8

a b c

d e f

Na O

Co MnNi

Figure S4 SEM images of NCM-Q and the corresponding elemental mapping.

9

Figure S5 Fitting on the diffraction peak of NCM-Q (a, b), NCM-WQ (c, d) and

NCM-600 (e, f) before and after charged to 4.4 V using CMPR software.

10

1.15 1.20 1.25 1.30 2.4 2.6 2.8 3.0 3.2 3.4 3.6

P2(0

02)

P2(-1

13)

O3(

-114

)

O1(

-202

)

P2(0

12)

O3(

012)

P2(0

10)

O3(

-111

)

O3(

00-6

)O

1(00

2)P2

(004

)

P2(0

06)

P2(0

06)In

tens

ity, a

.u.

O1(

001)

P2(0

02)

O3(

003)

O3(

003)

P2/O1/O3_Pristine P2/O1/O3_0.5C for 100 cycles

2-Theta, degree

1 2 3 4 5 6 7

Pristine After 100 cycles@0.5C

Inte

nsity

, a.u

.

2-Theta, degree

a

b

Figure S6 Full (a) and zoomed (b) synchrotron HEXRD patterns of pristine NCM-Q

electrode and after cycled at 0.5 C for 100 cycles.

11

0 5 10 15 20 25 30 35 40 45 50 55 60 650

40

80

120

160

200 Charge Discharge

Capa

city,

mAh

g-1

Cycle number

2-3.8V, 0.1C

Figure S7 Cycle performance of NCM-Q electrode at 0.1 C within 2.0-3.8 V.

12

0 10 20 30 40 500

200

400

600

800

Ener

gy D

ensit

y, W

h K

g-1

Cycle number

46 W kg-1, 2.0-4.4 V

a

0 500 1000 1500 20000

100

200

300

400

500

600

Ener

gy D

ensit

y, W

h kg

-1

Specific power, W kg-1

b

Figure S8 a) Energy density and b) power density of NCM-Q.

13

Figure S9 HEXRD patterns of deep-charged NCM-Q, NCM-WQ and NCM-600

(4.4V).

14

8330 8340 8350 8360 8370

0.0

0.5

1.0

1.5

2.0

Norm

alize

d Ab

sorp

tion

Inte

nsity

Energy, eV

Pristine C-4.4V D-2.0V

0 1 2 3 4 5 6

Ni-M

FT m

agni

tude

Radial distance (A)

Pristine C-4.4V D-2.0V

Ni-O

7710 7720 7730 7740

0.0

0.5

1.0

1.5

2.0

Norm

alize

d Ab

sorp

tion

Inte

nsity

Energy, eV

Pristine C-4.4V D-2.0V

0 1 2 3 4 5 6

Co-M

FT m

agni

tude

Radial distance (A)

Pristine C-4.4V D-2.0V

Co-O

6540 6550 6560 6570 6580

0.0

0.5

1.0

1.5

2.0

Norm

alize

d Ab

sorp

tion

Inte

nsity

Energy, eV

Pristine C-4.4V D-2.0V

0 1 2 3 4 5 6

Mn-M

FT m

agni

tude

Radial distance (A)

Pristine C-4.4V D-2.0V

Mn-O

o

a

c

e

b

d

f

Figure S10 Ex-situ XANES and EXAFS spectra of the NCM-WQ electrode at

different charge/discharge states: (a, d) Ni K-edge; (b, e) Co K-edge and (c, f) Mn K-

edge. C for charge and D for discharge.

15

8330 8340 8350 8360 8370

0.0

0.5

1.0

1.5

2.0

Norm

alize

d Ab

sorp

tion

Inte

nsity

Energy, eV

Pristine C-4.4V D-2.0V

6540 6550 6560 6570 6580

0.0

0.5

1.0

1.5

2.0

Norm

alize

d Ab

sorp

tion

Inte

nsity

Energy, eV

Pristine C-4.4V D-2.0V

0 1 2 3 4 5 6

FT m

agni

tude

Radial distance (A)

Pristine C-4.4V D-2.0V

0 1 2 3 4 5 6

FT m

agni

tude

Radial distance (A)

Pristine C-4.4V D-2.0V

7710 7720 7730 7740

0.0

0.5

1.0

1.5

2.0

Norm

alize

d Ab

sorp

tion

Inte

nsity

Energy, eV

Pristine C-4.4V D-2.0V

0 1 2 3 4 5 6

FT m

agni

tude

Radial distance (A)

Pristine C-4.4V D-2.0V

a

c

e

b

d

f

Figure S11 Ex-situ XANES and EXAFS spectra of the NCM-600 electrode at

different charge/discharge states: (a, d) Ni K-edge; (b, e) Co K-edge and (c, f) Mn K-

edge. C for charge and D for discharge.

16

8330 8340 8350 8360 8370

0.0

0.5

1.0

1.5

2.0

Norm

alize

d Ab

sorp

tion

Inte

nsity

Energy, eV

Pristine C-4.4V D-2.0V NiO

0 1 2 3 4 5 6

Ni-M Pristine C-4.4V D-2.0V

FT m

agni

tude

Radial distance (A)

Ni-O

8330 8340 8350 8360 8370

0.0

0.5

1.0

1.5

2.0

Norm

alize

d Ab

sorp

tion

Inte

nsity

Energy, eV

Pristine C-4.4V D-2.0V

0 1 2 3 4 5 6

Ni-M

FT m

agni

tude

Radial distance (A)

Pristine C-4.4V D-2.0V

Ni-O

8330 8340 8350 8360 8370

0.0

0.5

1.0

1.5

2.0

Norm

alize

d Ab

sorp

tion

Inte

nsity

Energy, eV

Pristine C-4.4V D-2.0V

0 1 2 3 4 5 6

Ni-O

FT m

agni

tude

Radial distance (A)

Pristine C-4.4V D-2.0V

Ni-M

a

c

e

b

d

f

Figure S12 Ex-situ Ni K-edge XANES and EXAFS for NCM-Q (a, b), NCM-WQ (c,

d) and NCM-600 (e, f) at different charge/discharge states. C for charge and D for

discharge.

17

1 2 3 4 5 6 7

Observed

Inte

nsity

, a.u

.

2-Theta, degree

Calculated Background Difference

0 10 20 30 40 50 60 70 80

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Volta

ge, V

Time, h

15 mA g-1

a b

c

Figure S13 a) Rietveld refinement of HEXRD pattern and b) charge/discharge curves of LiNCM-333, c) in-situ HEXRD pattern of de-lithiated LiNCM-333 with the presence of 2 L electrolytes (1M LiPF6/EC+DMC).

Recommended