267

À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire
Page 2: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire
Page 3: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

À mon Ami, François…

et à mes Amours

(Hélène, David et Dominic)

Page 4: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire
Page 5: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

JEAN BRODEUR

INTEROPÉRABILITÉ DES DONNÉES GÉOSPATIALES :

ÉLABORATION DU CONCEPT DE

PROXIMITÉ GÉOSÉMANTIQUE

Thèse présentée

à la faculté des études supérieures de l’Université Laval

pour l’obtention du grade de Philosophiæ Doctor (Ph.D.)

Département des sciences géomatiques

FACULTÉ DE FORESTERIE ET DE GÉOMATIQUE UNIVERSITÉ LAVAL

QUÉBEC

JANVIER 2004

© Jean Brodeur, 2004

Page 6: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire
Page 7: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

RÉSUMÉ

Depuis 1990, le nombre de bases de données géospatiales augmente tant au Canada

qu’ailleurs dans le monde. Ces bases de données accessibles sur Internet représentent les

phénomènes géographiques de manière semblable mais non identique. Cet état de fait

cause des problèmes pour repérer les données géospatiales répondant aux besoins exacts

des utilisateurs et pour les intégrer dans des ensembles cohérents. À cet effet,

l'interopérabilité des données géospatiales facilite l’intégration des données sur un plan

informatique mais, à ce jour, ne résout toujours pas les problèmes sémantiques. Cette

thèse a pour but d’identifier, de définir et d’expliquer les éléments de la proximité

sémantique, spatiale et temporelle pour le repérage des données géospatiales qui

répondent au besoin particulier d’un utilisateur. Elle propose un cadre conceptuel

d’interopérabilité des données géospatiales qui est dérivé du processus de communication

entre deux individus. Elle développe la notion de proximité géosémantique qui qualifie la

similitude entre un concept géospatial d’un agent et une représentation conceptuelle

géospatiale d’un message. Enfin, elle présente un prototype où des agents logiciels

communiquent entre eux. Ces agents utilisent des fonctions qui profitent de la notion de

proximité géosémantique pour générer et reconnaître les représentations conceptuelles

géospatiales des messages à partir des concepts géospatiaux de leur ontologie respective.

Jean Brodeur, étudiant Date

Dr Yvan Bédard, directeur Date Dr Bernard Moulin, codirecteur Date

Page 8: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

RÉSUMÉ

Depuis 1990, le nombre de bases de données géospatiales augmente tant au Canada

qu’ailleurs dans le monde. Ces bases de données accessibles sur Internet représentent les

phénomènes géographiques de manière semblable mais non identique, ce qui cause des

problèmes pour repérer les données géospatiales répondant aux besoins exacts des

utilisateurs et pour les intégrer dans des ensembles cohérents. À cet effet,

l'interopérabilité des données géospatiales facilite l’intégration des données sur un plan

informatique mais, à ce jour, elle ne résout toujours pas les problèmes sémantiques. Cette

thèse a pour but d’identifier, de définir et d’expliquer les éléments de la proximité

sémantique, spatiale et temporelle pour le repérage des données géospatiales qui

répondent au besoin particulier d’un utilisateur. On entend ici par repérage la recherche,

l’identification, la sélection et l’extraction de données géospatiales de sources externes.

Cette thèse a été réalisée en cinq étapes : une recherche préliminaire incluant une revue

de travaux précurseurs à cette thèse, l’élaboration d’un cadre conceptuel

d’interopérabilité, la formalisation de la proximité géosémantique, le développement d’un

prototype et l’expérimentation, pour terminer avec la rédaction de la présente thèse.

La revue de littérature nous amène à comparer l’interopérabilité des données géospatiales

à un processus de communication entre des êtres humains. Dans un processus de

communication, deux individus échangent une grande quantité d’information de manière

interopérable. Le deuxième chapitre de cette thèse consiste en une synthèse, en fonction

des objectifs de la présente thèse, des sujets suivants : cybernétique, communication,

cognition, base de données distribuées, interopérabilité, hétérogénéité, similitude

sémantique et ontologie.

Page 9: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

iii

La troisième chapitre élabore un cadre conceptuel d’interopérabilité des données

géospatiales dérivé du processus de communication entre deux individus. Un agent

utilisateur de données désirant de l’information géospatiale soumet une requête dans son

vocabulaire à un agent fournisseur de données. Celui-ci interprète la requête, lui assigne

une signification, identifie les données qu’il possède et les envoie à l’agent utilisateur qui

s’assure qu’elles répondent à sa requête.

La notion de proximité géosémantique, formalisée au quatrième chapitre, établit la

similitude entre un concept géospatial d’un agent et une représentation conceptuelle

géospatiale d’un message. Dans le processus de communication, un concept similaire à

une représentation conceptuelle est utilisé pour lui attribuer une signification. La

proximité géosémantique constitue une fonction de raisonnement des agents pour

produire et reconnaître les messages qu’ils échangent.

Un prototype qui valide la faisabilité informatique de cette notion de proximité

géosémantique fait l’objet du cinquième chapitre de cette thèse. Les résultats obtenus à

l’aide d’ontologies sur le réseau routier et le réseau hydrographique de cinq spécifications

de données géospatiales démontrent l’efficacité et le potentiel de la notion de proximité

géosémantique.

Jean Brodeur, étudiant Date

Dr Yvan Bédard, directeur Date Dr Bernard Moulin, codirecteur Date

Page 10: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

AVANT-PROPOS

Cette thèse est le fruit de plus de trois ans de travail assidu auquel plusieurs personnes

m’ont apporté un support de tout instant dans les moments éprouvants comme dans les

moments excitants. Je désire ici leur témoigner toute ma gratitude.

Je voudrais d’abord exprimé ma profonde reconnaissance au Dr Yvan Bédard, directeur

de recherche. Yvan a démontré un intérêt soutenu à mon projet depuis le tout début, alors

que ce n’était qu’une idée, jusqu’à sa conclusion. Il y a cru en moi et a su maintenir en

moi l’intérêt de réaliser cette thèse. Je lui exprime ici mes plus vifs remerciements pour

tout le temps consacré, ses précieux conseils prodigués et son amitié. Merci Yvan!

Je veux aussi remercier le Dr Bernard Moulin, co-directeur de cette thèse, et le Dr

Geoffrey Edwards, conseiller. Dès leur implication dans cette thèse, leurs commentaires

judicieux m’ont demandé un dépassement à tous points de vue pour donner un sens, une

signification voire même une âme à cette thèse. Merci Bernard! Merci Geoffrey!

J’aimerais souligner le support du personnel (particulièrement Suzie et Marie-Josée) ainsi

que l’encouragement de mes confrères étudiants (Pierre, Marc et Rodolphe) du

laboratoire de SIRS du Centre de recherche en géomatique de l’Université Laval. Merci à

chacun!

Cette thèse n’aurait pas pu voir le jour sans l’intérêt et le support de mon employeur, le

ministère Ressources naturelles Canada, plus particulièrement le Centre d’information

topographique de Sherbrooke (CITS), tout au long des travaux. Le support inconditionnel

Page 11: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

v

des directeurs du CITS (Yves et Denis) ainsi que de tous mes collègues et ami(e)s du

CITS fut grandement apprécié. Sincère merci à chacun personnellement! Ma profonde

gratitude s’adresse particulièrement à mon ami François Massé †. François, même après

avoir quitté ce monde brusquement, tu es demeuré près de moi, tu m’as accompagné et tu

m’as encouragé durant tous mes travaux comme d’habitude. François, là où tu es de

l’autre côté, je t’exprime ma plus profonde reconnaisssance pour cette présence que tu

me manifestes et pour l’amitié qui nous lie. C’est avec beaucoup d’émotion, François,

que je te dédie cette thèse!

Je voudrais souligner aussi la contribution financière du réseau de centres d’excellence en

géomatique GÉOIDE, projet DEC#2 (Conceptualisation des fondations technologiques

pour la prise de décision à l’aide du World Wide Web).

Enfin, je désire aussi exprimer ma plus profonde reconnaissance à mon épouse, Hélène,

et à mes enfants, David et Dominic. Leur présence à mes côtés, leur support, leurs

encouragements mais surtout leur amour ont été pour moi une source constante

d’inspiration. Mes Amours, c’est avec tout mon cœur que je vous dédie aussi cette thèse!

Merci aussi à mes parents Rachel et Gilbert. P.S. Gilbert, tu as cru en moi durant toute

cette aventure, on peut maintenant dire mission accomplie. Merci papa!

Quatre articles composent les chapitres 3, 4 et 5 de cette thèse ainsi que l’annexe C. Moi,

Jean Brodeur, auteur de cette thèse, ai réalisé l’ensemble de la recherche. J’ai rédigé les

manuscrits des quatre articles et, de ce fait, en suis l’auteur principal. Le Dr Yvan

Bédard, le Dr Bernard Moulin ainsi que le Dr Geoffrey Edwards ont contribué aux

articles par la revue des manuscrits et par l’apport de leurs commentaires judicieux. Le

premier article intitulé « Revisiting the concept of geospatial data interoperability within

the scope of human communication processes » a été publié dans le Volume 7, Numéro 2,

de la revue Transactions in GIS (TGIS) en mars 2003. Le manuscrit du second article,

« Geosemantic proximity for geospatial data interoperability », est présentement en

revue par l’auteur principal pour être enrichi et, ensuite, être présenté à une revue

internationale. Le manuscript du troisième article « A geosemantic proximity -based

Page 12: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

vi

prototype for interoperability of geospatial data » a été soumis à la revue Computers,

Environment and Urban Systems en juin 2003. Il est actuellement en révision par l’auteur

principal pour soumettre la version finale à l’éditeur de la revue. Enfin, le dernier article,

« Geosemantic Proximity to Improve Geospatial Information Discovery in a Wireless

Environment », a été publié au printemps 2003 dans le Volume 57, Numéro 1, de la revue

Geomatica; un numéro spécial sur le thème « Internet and Mobile Geospatial

Information Management ».

Page 13: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

TABLE DES MATIÈRES

Résumé................................................................................................................................. i

Résumé................................................................................................................................ ii

Avant-propos...................................................................................................................... iv

Table des matières............................................................................................................. vii

Liste des tableaux............................................................................................................... xi

Liste des figures ................................................................................................................ xii

Chapitre 1 : Introduction..................................................................................................... 1

1.1 Problématique d’accès aux données géospatiales............................................... 4

1.2 Objectifs de cette thèse ....................................................................................... 5

1.3 Méthodologie de recherche................................................................................. 6

1.4 Présentation de la thèse..................................................................................... 10

1.5 Références......................................................................................................... 10

Chapitre 2 : L’interopérabilité sémantique, spatiale et temporelle : un parallèle avec le

processus de communication ............................................................................................ 16

2.1 L’interopérabilité et la communication entre systèmes .................................... 17

2.2 La perception, la connaissance et le raisonnement cognitif de l’être humain .. 22

2.3 La notion d’ontologie et la description des phénomènes.................................. 24

2.3.1 L’Ontologie, un point de vue philosophique ............................................ 25

2.3.2 Une ontologie, un point de vue informatique ........................................... 26

2.4 L’hétérogénéité des données, un frein à l’interopérabilité................................ 31

2.4.1 Hétérogénéité des systèmes ...................................................................... 31

2.4.2 Hétérogénéité syntaxique.......................................................................... 32

2.4.3 Hétérogénéité structurelle ......................................................................... 33

Page 14: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

viii

2.4.4 Hétérogénéité sémantique......................................................................... 34

2.5 Principales approches d’interopérabilité sémantique........................................ 36

2.5.1 Fédération de données............................................................................... 36

2.5.2 Similitude sémantique............................................................................... 38

2.5.3 Le modèle Semantic Formal Data Structure ............................................ 44

2.5.4 Le modèle Matching-Distance.................................................................. 45

2.6 Discussion ......................................................................................................... 47

2.7 Références......................................................................................................... 48

Chapitre 3 : L’interopérabilité des données géospatiales : proposition d’un cadre

conceptuel ......................................................................................................................... 53

3.1 Résumé de l’article ........................................................................................... 53

3.2 Abstract ............................................................................................................. 54

3.3 Introduction....................................................................................................... 55

3.4 Interoperability and the human communication process .................................. 58

3.4.1 Communication process............................................................................ 58

3.4.2 Perception and cognition........................................................................... 59

3.4.3 Ontology and conceptual modelling for database development ............... 61

3.4.4 Context...................................................................................................... 63

3.4.5 Semantic proximity................................................................................... 64

3.5 A conceptual framework of geospatial data interoperability............................ 65

3.6 Ontology of geospatial data interoperability..................................................... 69

3.6.1 The five ontological phases of geospatial data interoperability................ 71

3.6.2 Levels of ontology .................................................................................... 72

3.7 Relationship between concept and conceptual representation.......................... 76

3.8 Geosemantic proximity..................................................................................... 79

3.9 Conclusion ........................................................................................................ 83

3.10 References......................................................................................................... 84

Chapitre 4 : La proximité géosémantique, une composante de l’interopérabilité des

données géospatiales......................................................................................................... 92

4.1 Résumé de l’article ........................................................................................... 92

4.2 Abstract ............................................................................................................. 93

Page 15: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

ix

4.3 Introduction....................................................................................................... 94

4.4 Geospatial data interoperability and geosemantic proximity ............................ 96

4.4.1 Semantic similarity of geospatial data ...................................................... 97

4.4.2 Identity of geographic phenomena............................................................ 98

4.4.3 Boundary of geoConcept and geoConceptRep ....................................... 100

4.4.4 Geosemantic proximity and topology..................................................... 101

4.5 Formalisation of geoConcept and geoConceptRep in relation with

the context ................................................................................................................... 106

4.6 Geosemantic proximity................................................................................... 113

4.6.1 Description of GsP.................................................................................. 114

4.6.2 Examples................................................................................................. 124

4.7 Prototype ......................................................................................................... 128

4.8 Conclusion ...................................................................................................... 132

4.9 References....................................................................................................... 133

Chapitre 5 : Expérimentation de l’interopérabilité sémantique des données

géospatiales et de la proximité géosémantique : présentation du GsP Prototype........... 140

5.1 Résumé de l’article ......................................................................................... 140

5.2 Abstract ........................................................................................................... 141

5.3 Introduction..................................................................................................... 141

5.4 Geospatial data interoperability and communication ..................................... 143

5.5 The GsP Prototype.......................................................................................... 150

5.5.1 Architecture............................................................................................. 150

5.5.2 Implementation ....................................................................................... 157

5.5.3 Experimentation...................................................................................... 162

5.6 Conclusion ...................................................................................................... 176

5.7 References....................................................................................................... 178

Chapitre 6 : Conclusion .................................................................................................. 183

6.1 Sommaire ........................................................................................................ 183

6.2 Discussion ....................................................................................................... 186

6.3 Conclusions..................................................................................................... 188

6.4 Perspectives de recherche ............................................................................... 189

Page 16: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

x

6.5 Références....................................................................................................... 191

Annex A : Query about the street geoConcept encoded in an XML document ............. 193

Annex B : Answer with the road geoConceptRep encoded in an XML document ........ 195

Annex C : La proximité géosémantique au service de la découverte

d’information géospatiale dans un environnement sans fils ........................................... 203

C.1 Résumé de l’article ......................................................................................... 203

C.2 Abstract ........................................................................................................... 204

C.3 Introduction..................................................................................................... 204

C.4 Background ..................................................................................................... 206

C.5 Geospatial Data Interoperability on the Web.................................................. 209

C.6 Geosemantic Proximity and the Web ............................................................. 211

C.6.1 Examples................................................................................................. 214

C.7 Experiments .................................................................................................... 216

C.8 Conclusion ...................................................................................................... 217

C.9 References....................................................................................................... 218

Bibliographie................................................................................................................... 221

Page 17: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

LISTE DES TABLEAUX

Tableau 1 : Représentations spatiales de la norme ISO 19107......................................... 33

Tableau 2 : Nature des conflits structurels de données géospatiales ................................ 35

Table 3: Examples of phenomena abstracted differently in independent topographical

databases ................................................................................................................... 57

Table 4: Examples of geoConcepts recognizing geoConceptReps, both of different

ontologies. ............................................................................................................... 175

Page 18: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

LISTE DES FIGURES

Figure 1 : Diagramme d’activités détaillant la méthode de recherche................................ 9

Figure 2 : Modèle du processus communication .............................................................. 19

Figure 3 : Modèle d’interaction entre le référent, le signifiant et le signifié .................... 19

Figure 4 : Modèle de connaissances communes ............................................................... 21

Figure 5 : Approche modale des images mentales............................................................ 23

Figure 6 : Approche amodale des images mentales.......................................................... 23

Figure 7 : Métamodèle de répertoire de données géospatiales ......................................... 29

Figure 8 : Différentes structures du concept rue............................................................... 34

Figure 9 : Architecture de fédération de données en cinq niveaux................................... 37

Figure 10 : Exemple de réseau de connaissances ............................................................. 40

Figure 11 : Architecture trois tiers du SFDS .................................................................... 44

Figure 12: A conceptual framework of geospatial data interoperability .......................... 70

Figure 13: The three levels of ontology............................................................................ 74

Figure 14: Ontology of geospatial data interoperability ................................................... 75

Figure 15: Geosemantic space .......................................................................................... 80

Figure 16: Various semantics of a building’s geometric representation........................... 80

Figure 17: Geosemantic proximity Predicates .................................................................. 82

Figure 18: UML object class diagram of geoConcept and geoConceptRep ................... 107

Figure 19: UML object class diagram of property types ................................................ 109

Figure 20: UML object class diagram describing the types of intrinsic properties ........ 110

Figure 21: UML object class diagram describing the types of extrinsic properties ....... 112

Figure 22: The context of an abstraction K..................................................................... 113

Figure 23: Intersection between context of K and context of L ...................................... 115

Page 19: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

xiii

Figure 24: GsP predicates............................................................................................... 116

Figure 25: Prototype principle ........................................................................................ 129

Figure 26: Network of geoConcepts ............................................................................... 130

Figure 27: Architecture of the GsP Prototype ................................................................ 153

Figure 28: Object structure of a concept......................................................................... 153

Figure 29: UML class diagram of GEOABSTRACTION, GEOCONCEPT, and

GEOCONCEPTREP............................................................................................... 155

Figure 30: The agent window ......................................................................................... 158

Figure 31: The agent manager interface ......................................................................... 159

Figure 32: Example of the prototype operation .............................................................. 161

Figure 33: Extract of the class road of the data dictionary

of the NTDB road network ..................................................................................... 163

Figure 34: Road network UML class diagrams .............................................................. 167

Figure 35: Hydrographic network UML class diagrams ................................................ 172

Figure 36: Observed success rates – Road Network....................................................... 174

Figure 37: Observed success rates – Hydrographic Network ......................................... 174

Figure C1: A Framework for Geospatial Data Interoperability.......................................210

Figure C2: UML Class Diagram Describing Phenomenon, Abstraction, Context,

Properties, and their Relationships...........................................................................212

Figure C3: Intersection between context of K and context of L ......................................213

Figure C4: The Sixteen Predicates of Geosemantic Proximity Relationships.................215

Page 20: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire
Page 21: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

CHAPITRE 1

INTRODUCTION

L’intérêt pour les données géographiques numériques et les systèmes d’information

géographique (SIG) remonte aux années 1960–1970 avec le Canada Geographic

Information System (CGIS) qui est considéré comme l’un des premiers SIG réalisés

(Coppock et Rhind, 1991). Le CGIS servait à analyser les données du Canada Land

Inventory. Depuis, plusieurs organisations désirant profiter du potentiel de la technologie

des SIG pour les analyses complexes de données géospatiales1 et pour l’automatisation de

leurs activités impliquant des données géospatiales ont élaboré et mis en place des bases

de données géospatiales qui répondent à leurs besoins spécifiques. Les SIG sont

maintenant présents dans les activités de saisie, d’emmagasinage, d’exploitation et de

distribution de données géospatiales. Toutes ces activités ont fortement contribué au

développement et à la définition actuelle des SIG.

La technologie des SIG est aujourd’hui largement répandue. Nous constatons une

croissance importante du nombre de bases de données géospatiales. Par exemple au

1 Par géospatiale, nous entendons un caractère spatial appuyé d’une référence géographique. Dans cette

thèse, nous parlons de données géospatiales et de bases de données géospatiales pour faire référence aux

données et bases de données géographiques numériques.

Page 22: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

2

Canada, nous avons la Base nationale de données topographiques (BNDT) produite par

Ressources naturelles Canada pour la cartographie nationale et les applications SIG

(Ressources naturelles Canada, 1996), les fichiers cartographiques numériques (FCN)

produits par Statistique Canada pour les fins de recensement (Statistique Canada, 1997),

les librairies VMap produites pour des besoins militaires (VMap, 1995), ainsi que de

multiples bases de données géospatiales à plus grande échelle produites par les provinces

canadiennes (BC Ministry of Environment Lands and Parks (Geographic Data BC), 1992;

New Brunswick, 2000; OBM, 1996; P.E.I. Geomatics Information Centre; Québec,

2000). Ces bases de données géospatiales représentent habituellement les mêmes

phénomènes géographiques de manière semblable, mais non identique. Par exemple :

- waterbody , coastline , lake , river/stream , Lac ;

- vegetation , wooded area , vineyard , orchard , milieu boisé , zone

boisée;

- wetland , marsh , swamp , marsh/fen , milieu humide , marais;

- road , limited access road , autoroute , rue , chemin , artère, route

collectrice, chemin local, chemin municipal;

- railroad , railroad siding/railroad spur , railLine , voie ferrée , chemin de

fer, triage de chemin de fer.

L’intérêt que d’autres utilisateurs de SIG manifestent pour les bases de données

géospatiales existantes incite les organismes producteurs à distribuer leurs données

géospatiales. Au début des années 1990, les principaux enjeux de la distribution de

données géospatiales touchaient spécifiquement les formats normalisés de distribution

des données géographiques (ex. SIF, DXF, ARCEXPORT, CCOGIF, SAIF, DIGEST,

SDTS, DLG) et les supports physiques de distribution (ex. ruban magnétique, disquette,

cassette, etc.). Aujourd’hui, la démocratisation d’Internet et du World Wide Web permet

aux producteurs de données géospatiales d’offrir leurs données en ligne. À cet effet, les 2 Description des pictogrammes spatiaux : :0D ; :1D ; :2D ; :géométrie multiple ; :géométrie

alternative (voir Bédard, Y, et M-J Proulx 2002 Perceptory Web Site. WWW Document,

http://sirs.scg.ulaval.ca/Perceptory)

Page 23: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

3

gouvernements favorisent le déploiement d’infrastructures de données géospatiales pour

simplifier l’accès aux données géospatiales. Tel est le cas au Canada avec l’infrastructure

canadienne de données géospatiales (ICDG) (GeoConnections, 2002) et aux État-Unis

avec le National Spatial Data Infrastructure (NSDI) (FGDC, 2002). Maintenant, les

utilisateurs ont accès à une multitude de bases de données géospatiales et naviguent sur

Internet à la recherche des données géospatiales qui répondent à leurs besoins

spécifiques.

Cette plus grande accessibilité aux différentes bases de données géospatiales donne aux

utilisateurs de SIG plus de liberté quant au choix des données. En ce sens, les utilisateurs

recourent maintenant à des données géospatiales de plusieurs bases de données et les

fusionnent pour faire ressortir de l’information que la consultation indépendante de

chaque base de données ne peut fournir. La fusion automatique des données géospatiales

de plusieurs bases de données demeure toutefois un défi important.

La notion d’interopérabilité des données géospatiales (McKee et Buehler, 1998) a été

proposée au début des années 1990 pour simplifier et renforcer le partage, la réutilisation

et l’intégration des données géospatiales. L’objectif de l’interopérabilité des données

géospatiales est de réaliser la pleine intégration dynamique des systèmes et des bases de

données géospatiales résidant sur des nœuds distincts d'un réseau en les considérant

comme un système unique (Bédard, 1998). Par l’interopérabilité des systèmes et des

données géospatiales, les utilisateurs accèderont en ligne à de multiples bases de données

à partir d'un guichet unique qui se comportera comme une base de données unique et

virtuelle (Fuller, 1999). L’Open GIS Consortium Inc. (OGC), le comité technique 211 de

l’Organisation internationale de normalisation (ISO/TC 211), les organismes

gouvernementaux, la communauté de chercheurs en géomatique ainsi que les entreprises

en géomatique ont contribué ensemble à établir les bases actuelles de l’interopérabilité

des données géospatiales. Éventuellement, l’interopérabilité de données géospatiales

permettra l’accès, l’intégration à la volée et l’analyse des données de sources multiples

nonobstant les différences qui les caractérisent.

Page 24: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

4

L’hétérogénéité syntaxique, structurelle, sémantique, spatiale et temporelle des données,

discutée plus en détails à la section 2.4 de cette thèse, constitue un obstacle majeur à

l’interopérabilité des données géospatiales (Bishr, 1997; Charron, 1995; Laurini, 1998;

Ouksel et Sheth, 1999; Sheth, 1999). Bien qu’on note des progrès substantiels en ce qui

concerne l’hétérogénéité syntaxique et structurelle, l’hétérogénéité sémantique, spatiale et

temporelle reste encore un défi majeur (Egenhofer et al., 1999; Ouksel et Sheth, 1999;

Rodriguez, 2000). Elle se caractérise par la différence de signification qui existe entre les

représentations de phénomènes géospatiaux. Elle contribue à la difficulté de repérer et

d’intégrer des données géospatiales qui répondent aux besoins spécifiques des

utilisateurs. Une base de données géospatiales doit saisir la signification de la requête

d’un utilisateur de données afin de répondre exactement à sa demande et, à l’inverse,

l’utilisateur doit être en mesure de comprendre la réponse et de vérifier qu’elle

correspond bien à sa requête (Sheth, 1999) pour qu’il y ait interopérabilité sémantique,

spatiale et temporelle.

1.1 Problématique d’accès aux données géospatiales

Comme nous l’avons mentionné, les utilisateurs de données géospatiales interagissent de

plus en plus avec plusieurs bases de données pour obtenir des données qui répondent à

leurs besoins spécifiques. Toutefois, ils doivent connaître le vocabulaire exact de chaque

base de données géospatiales pour formuler leurs requêtes et obtenir les données désirées.

Une problématique double émerge de cette situation. Le premier problème est de repérer

les classes d’objets, les attributs, les représentations géométriques et temporelles des

bases de données qui fournissent les données géospatiales d’un ensemble de phénomènes

qui répondent au besoin précis d’un utilisateur. Le second problème est d’intégrer les

données géospatiales obtenues des bases de données dans un ensemble-cible cohérent en

présentant les données géospatiales dans un vocabulaire compréhensible par l’utilisateur.

La présente thèse cible précisément le problème de repérage et d’obtention de données

géospatiales. On entend par repérage la recherche, l’identification, la sélection et

l’extraction de données géospatiales de sources externes. Le problème d’intégration des

données géospatiales ne fait pas partie de la portée de cette thèse.

Page 25: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

5

Ce type de problèmes se rencontre fréquemment. Par exemple, les producteurs de

données géospatiales tels que le Centre d’information topographique de Sherbrooke du

ministère Ressources naturelles Canada collaborent de plus en plus avec d’autres

producteurs de données tels que Statistique Canada, Élection Canada, Base de données

toponymiques du Canada, Levés officiels du Canada, Canada Aeronautical Chart

(CANAC), les provinces (ex. Colombie-Britannique, Nouvelle-Écosse, Ontario) et les

agences fédérales (ex. Office des transports du Canada (OTC)) pour élaborer des

entrepôts de données géospatiales à partir de données géospatiales existantes. C’est aussi

le cas des provinces et des regroupements de municipalités (municipalité régionale de

comté, comté, etc.) qui utilisent des données des municipalités, des services 911 qui

utilisent des données de provenances multiples et de la population en général qui utilise

plusieurs bases de données géospatiales accessible sur le Web.

1.2 Objectifs de cette thèse

Cette thèse étudie la notion de proximité géosémantique dans le but d’identifier, de

définir et d’expliquer les éléments de la proximité sémantique, spatiale et temporelle qui

interviennent dans le repérage des données géospatiales répondant au besoin particulier

d’un utilisateur, dans le cadre de l’interopérabilité des données géospatiales. L’hypothèse

de départ de cette thèse s’énonce comme suit : « le concept de proximité géosémantique

contribuerait à repérer des concepts géospatiaux qui répondent aux besoins spécifiques

d’un utilisateur ».

De façon plus précise, le premier objectif de cette thèse est de proposer un cadre

conceptuel d’interopérabilité des données géospatiales qui intègre la notion de proximité

géosémantique. Le deuxième objectif est de définir la notion de proximité

géosémantique. La proximité géosémantique qualifie la similitude sémantique, spatiale et

temporelle entre des abstractions de phénomènes géospatiaux à l’aide de la description de

leurs contextes respectifs et contribue au repérage des classes d’objets qui s’apparentent

au besoin d’un utilisateur. Elle adapte l’approche topologique de limite et d’intérieur des

Page 26: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

6

données spatiales d’Egenhofer (Egenhofer, 1993; Egenhofer et Franzosa, 1991) au

problème de proximité sémantique, spatiale et temporelle des données géospatiales. Le

troisième objectif est de valider la faisabilité informatique de cette notion à l’aide d’un

prototype et de son expérimentation à l’aide d’ontologies sur le réseau routier et le réseau

hydrographique de bases de données géospatiales de ministères fédéraux et de provinces

canadiennes. Enfin, le quatrième et dernier objectif est d’évaluer l’approche proposée et

d’identifier ses forces et ses faiblesses.

1.3 Méthodologie de recherche

La méthode retenue pour réaliser cette thèse se divise en cinq étapes (Figure 1). La

première étape consiste en la recherche préliminaire et regroupe la recherche

bibliographique, la définition du projet de recherche et l’examen de doctorat.

La recherche bibliographique couvre un ensemble de thèmes qui sont étroitement liés au

problème d’interopérabilité des données géospatiales. Plus spécifiquement, la recherche

bibliographique a porté sur les thèmes suivants : base de données distribuées, base de

données fédérées, interopérabilité, interopérabilité sémantique, hétérogénéité dans les

bases de données, similitude sémantique, proximité sémantique, distance sémantique,

réseau sémantique, ontologie, cybernétique, communication, sciences cognitives et

langage naturel.

Bien que l’interopérabilité des données géospatiales soit assez bien couverte dans la

littérature (Abel et al., 1998; Arctur et al., 1998; Bishr, 1998; Fuller, 1999; Goodchild et

al., 1999; Herring, 1999; ISO/TC 211, 2002; Laurini, 1998; McKee, 1999; McKee et

Buehler, 1998; Nebert, 1999; Open GIS Consortium Inc., 2002; Vckovski et al., 1999;

Voisard et Schweppe, 1998), l’interopérabilité sémantique des données géospatiales

demeure encore un sujet marginal dans l’ensemble. On retrouve deux thèses de doctorat

sur l’interopérabilité sémantique des données géospatiales. La première réalisée par Y.

Bishr en 1997 propose le Semantic Formal Data Structure (SFDS) comme solution à

l’interopérabilité sémantique (Bishr, 1997). Le SFDS se base sur une médiation de

Page 27: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

7

contextes entre le modèle externe de bases de données géospatiales et un modèle d’une

fédération de bases de données (Proxy Context). La seconde thèse réalisée par M. A.

Rodriguez en 2000 suggère le modèle Matching-Distance (MD) pour évaluer

quantitativement par une distance conceptuelle la similitude sémantique entre deux

classes d’entités spatiales (Rodriguez et al., 1999).

L’interopérabilité sémantique est toutefois mieux couverte dans le domaine de

l’informatique à travers les bases de données distribuées, les fédérations de bases de

données, les ontologies, etc. Lehmann (1992) et Sowa (1987) traitent des modèles et des

structures de réseaux sémantiques qui associent des concepts. Frankhauser et al. (1991) et

Frankhauser et Neuhold (1992) proposent une approche quantitative pour déterminer une

distance conceptuelle entre deux concepts. Kashyap et Sheth (1996), Kashyap et Sheth,

(1998), Sheth (1999) et Sheth et Kashyap (1992) analysent les différents aspects de

l’hétérogénéité dans les bases de données et présentent une approche qualitative pour

exprimer la proximité sémantique entre classes d’objets. L’approche de Sheth et Kashyap

tient compte plus spécifiquement du contexte de chaque classe d’objets. Le contexte est

considéré comme un élément fondamental de l’interopérabilité sémantique (Ouksel et

Sheth, 1999). On constate aussi dans la littérature que la notion d’ontologie (Gruber,

1993; Guarino, 1998) associée à la description des concepts est intimement reliée au

problème d’interopérabilité sémantique.

Toutefois, il est pertinent de revoir la notion de cybernétique (Campbell, 1982; Weiner,

1950) incluant la théorie de la communication (Darnell, 1971; Schramm, 1971) qui, tout

comme l’interopérabilité, se préoccupe de l’interaction entre systèmes. La cybernétique et

la théorie de la communication nous amènent à étudier les aspects de perception, de

connaissance et de raisonnement plus spécifiquement traités en sciences cognitives

(Barsalou, 1999; Kosslyn, 1980; Lakoff, 1987; Pylyshyn, 1981) ainsi que des éléments du

langage naturel (Cherry, 1978; Denes et Pinson, 1971; Sowa, 1984); ces aspects sont

directement associés au processus de communication entre les êtres humains. Enfin, nous

abordons la notion d’ontologie, telle que perçue par certains philosophes, qui se

préoccupe de la description de la réalité dans son ensemble. Cette revue de littérature fait

Page 28: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

8

un tour d’horizon des éléments qui ont trait à l’interopérabilité sémantique et permet de

positionner notre notion de proximité géosémantique dans un cadre conceptuel

d’interopérabilité des données géospatiales.

La définition du projet de recherche, initialement présentée dans (Brodeur, 2001), résume

la recherche bibliographique (aussi présentée au chapitre 2), identifie le problème

poursuivi dans cette recherche (section 1.1), énonce l’objectif du projet (section 1.2) et

décrit la méthode de recherche.

La deuxième étape (Figure 1) repose sur l’élaboration du cadre conceptuel

d’interopérabilité dans lequel nous étudions la proximité géosémantique. Comme les êtres

humains communiquent naturellement de façon interopérable, notre cadre conceptuel

d’interopérabilité est dérivé du processus de communication entre les êtres humains en

incluant des éléments propres au raisonnement cognitif. Le résultat de cette étape fait

l’objet d’un premier article, présenté au chapitre 3, qui décrit le cadre conceptuel

d’interopérabilité des données géospatiales que nous proposons et introduit la notion de

proximité géosémantique.

La troisième étape (Figure 1) a pour objet de formaliser la notion de proximité

géosémantique. Cette notion s’inspire de la notion de proximité sémantique élaborée par

Kashyap et Sheth (1996) et Sheth et Kashyap (1992) qui est basée sur la comparaison de

deux classes d’objets en tenant compte de leur contexte respectif. Elle tient compte des

propriétés intrinsèques et extrinsèques entre deux abstractions pour décrire leur similitude

et leur différence suivant une matrice à neuf intersections faisant intervenir leur intérieur,

leur limite et leur extérieur. Dans cette thèse, toutefois, nous nous limitons à l’évaluation

de la similitude par la correspondance des propriétés intrinsèques et extrinsèques suivant

une matrice à quatre intersections similairement au modèle topologique des données

spatiales d’Egenhofer (Egenhofer, 1993; Egenhofer et Franzosa, 1991). Tout comme à la

Page 29: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

9

Figure 1 : Diagramme d’activités détaillant la méthode de recherche

deuxième étape, un deuxième article faisant l’objet du chapitre 4 décrit la notion de

proximité géosémantique.

Page 30: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

10

La quatrième étape de la méthodologie poursuivie repose sur l’élaboration d’un prototype

informatique pour valider la faisabilité informatique de la notion de proximité

géosémantique. Le prototype est développé à l’aide d’agents logiciels programmés en

Java™ qui communique entre eux en XML. Il intègre la notion de proximité

géosémantique à notre cadre conceptuel d’interopérabilité. Une expérience a ensuite été

conduite à l’aide du prototype et de répertoires de données géospatiales servant

d’ontologies d’application. Les répertoires de données géospatiales ont été élaborés avec

les spécifications de données sur le réseau routier et le réseau hydrographique de cinq

bases de données géospatiales existantes. Un troisième article, présenté au chapitre 5, fait

état du prototype et de l’expérience conduite.

Enfin la cinquième étape consiste à consolider le tout dans cette thèse.

1.4 Présentation de la thèse

Trois articles réalisés tout au long des travaux de recherche constituent le cœur de cette

thèse. Avant de présenter ces trois articles, nous revoyons au chapitre 2 les notions qui

supportent notre cadre conceptuel d’interopérabilité des données géospatiales et notre

notion de proximité géosémantique. Le chapitre 3 consiste en un premier article qui

propose notre cadre conceptuel d’interopérabilité. Au chapitre 4, nous retrouvons un

deuxième article qui présente notre approche de proximité géosémantique. Nous

exposons au chapitre 5 un troisième article portant sur notre prototype informatique

qu’on nomme le GsP Prototype. Au chapitre 6, nous concluons et présentons les

éléments de recherche à être considérés lors de travaux futurs.

1.5 Références

Abel, D J, B C Ooi, K L Tan, et S H Tan 1998 Towards Integrated Geographical

Information Processing. International Journal of Geographic Information

Science, 12(4): 334-371

Page 31: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

11

Arctur, D, D Hair, G Timson, E P Martin, et R Feagas 1998 Issues and Prospects for the

Next Generation of the Spatial Data Transfer Standard (SDTS). International

Journal of Geographic Information Science, 12(4): 403-425

Barsalou, L W 1999 Perceptual symbol systems. Behavioral and Brain Sciences, 22(4):

577-609

BC Ministry of Environment Lands and Parks (Geographic Data BC) 1992 Digital

Baseline Mapping at 1:20,000. Victoria, Province of British Columbia, BC

Ministry of Environment, Lands and Parks

Bédard, Y 1998 Analyse et conception de systèmes d’information à référence spatiale.

Notes de cours sur l’interopérabilité, Québec, Département des sciences

géomatiques, Université Laval

Bédard, Y, et M-J Proulx 2002 Perceptory Web Site. Web Page Document,

http://sirs.scg.ulaval.ca/Perceptory

Bishr, Y 1997 Semantics Aspects of Interoperable GIS. Ph.D. Dissertation, ITC

Publication

Bishr, Y 1998 Overcoming the Semantic and Other Barriers to GIS Interoperability.

International Journal of Geographic Information Science, 12(4): 299-314

Brodeur, J 2001 Interopérabilité des données géospatiales : Élaboration du concept de

proximité sémantique, spatiale et temporelle. Québec, Département des sciences

géomatiques, Université Laval

Campbell, J 1982 Grammatical Man: Information, Entropy, Language, and Life. New

York, Simon and Schuster

Charron, J 1995 Développement d’un processus de sélection des meilleures sources de

données cartographiques pour leur intégration à une base de données à référence

spatiale. Mémoire de maîtrise, Université Laval

Cherry, C 1978 On Human Communication: a Review, a Survey, and a Criticism.

Cambridge, Massachusetts, The MIT Press

Coppock, J T, et D W Rhind 1991 The History of GIS. In D J Maguire, M F Goodchild,

and D W Rhind (eds) Geographical Information Systems. New York, Longman

Scientific and Technical: 21-43

Page 32: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

12

Darnell, D K 1971 Information Theorie. In J A DeVito (ed) Communication: Concepts

and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 37-45

Denes, P B, et E N Pinson 1971 The Speech Chain. In J A DeVito (ed) Communication:

Concepts and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 3-11

Egenhofer, M 1993 A Model for Detailed Binary Topological Relationships. Geomatica,

47(3 & 4): 261-273

Egenhofer, M, et R D Franzosa 1991 Point-Set Topological Spatial Relations.

International Journal of Geographic Information Science, 5(2): 161-174

Egenhofer, M J, J Glasgow, O Günther, J R Herring, et D J Peuquet 1999 Progress in

Computational Methods for Representing Geographical Concept. International

Journal of Geographic Information Science, 13(8): 775-796

FGDC 2002 NSDI. USGS, Web Page Document, http://www.fgdc.gov/nsdi/nsdi.html

Frankhauser, P, M Kracker, et E Neuhold 1991 Semantic vs. Structural Resemblance of

Classes. SIGMOD Record, 20(4): 59-63

Frankhauser, P, et E J Neuhold 1992 Knowledge Based Integration of Heterogenous

Databases. In Proceedings of IFIP WG2.6 Database Semantics Conference on

Interoperable Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 155-175

Fuller, G W 1999 A Vision for a Global Geospatial Information Network (GGIN).

Photogrammetric Engineering & Remote Sensing, 65(5): 524-538

GeoConnections 2002 Canadian Geospatial Data Infrastructure (CGDI) architecture.

Electronic Document, http://www.geoconnections.org/architecture/index_e.html

Goodchild, M, M Egenhofer, R Fegeas, et C Kottman (eds) 1999 Interoperating

Geographic Information Systems. Boston, Massachusetts, Kluwer Academic

Publishers

Gruber, T R 1993 A Translation Approach to Portable Ontology Specification. Stanford,

California, Knowledge Systems Laboratory Technical Report KSL 92-71

Guarino, N 1998 Formal Ontology and Information Systems. In Proceedings of Formal

Ontology in Information Systems (FOIS '98). Amsterdam, IOS Press: 3-15

Herring, J R 1999 The OpenGIS Data Model. Photogrammetric Engineering & Remote

Sensing, 65(5): 585-588

Page 33: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

13

ISO/TC 211 2002 Geographic information/Geomatics. Web Page Document,

http://www.statkart.no/isotc211/

Kashyap, V, et A Sheth 1996 Semantic and Schematic Similarities Between Database

Objects: A Context-Based Approach. The VLDB Journal, 5: 276-304

Kashyap, V, et A Sheth 1998 Semantic Heterogeneity in Global Information Systems: the

Role of Metadata, Context and Ontologies. In M P Papazoglou, and G Schlageter

(eds) Cooperative Information Systems-Trends and Directions. San Diego, CA,

Academic Press: 139-178

Kosslyn, S M 1980 Image in Mind. Cambridge, Massachusetts, Harvard University Press

Lakoff, G 1987 Women, Fire, and Dangerous Things - What Categories Reveal about the

Mind. Chicago, The University of Chicago Press

Laurini, R 1998 Spatial Multi-Database Topological Continuity and Indexing: a Step

Towards Seamless GIS Data Interoperability. International Journal of

Geographic Information Science, 12(4): 373-402

Lehmann, F 1992 Semantic Networks. Computers and Mathematics with Applications,

23(2-5): 50

McKee, L 1999 The Impact of Interoperable Geoprocessing. Photogrammetric

Engineering & Remote Sensing, 65(5): 565-566

McKee, L, et K Buehler (eds) 1998 The OpenGIS Guide. Wayland, Massachusetts,

OpenGIS Consortium Inc.

Nebert, D 1999 Interoperable Spatial Data Catalogs. Photogrammetric Engineering &

Remote Sensing, 65(5): 573-575

New Brunswick 2000 Guide d’utilisation de la Base de données topographiques

numériques (BDTN) du Nouveau-Brunswick. Fredericton, New Brunswick,

Services Nouveau-Brunswick

OBM 1996 Ontario Digital Topographic Database - 1:10,000, 1:20,000 - A Guide for

User. Toronto, Ontario, Ministry of Natural Resources

Open GIS Consortium Inc. 2002 OpenGIS Specifications. Open GIS Consortium Inc.,

Web Page Document, http://www.opengis.org/ogcSpecs.htm

Page 34: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

14

Ouksel, A M, et A Sheth 1999 Semantic Interoperability in Global Information Systems:

A Brief Introduction to the Research Area and the Special Section. Sigmod

Record, 28(1): 5-12

P.E.I. Geomatics Information Centre User’s Guide to Digital and Hardcopy property and

Basemap Products. Charlottetown, P.E.I., Provincial Treasury - Taxation &

Property Records Division

Pylyshyn, Z W 1981 The Imagery Debate: Analogue Media Versus Tacit Knowledge.

Psychological Review, 88(1): 16-45

Québec 2000 Base de données topographiques du Québec (BDTQ) à l’échelle de

1/20 000 - Normes de production (Version 1.0). Québec, Ministère des

Ressources naturelles, Direction générale de l’information géographique, CD

Document

Ressources naturelles Canada 1996 Base nationale de données topographiques - normes

et spécifications. Sherbrooke, Québec, Centre d’information topographique –

Sherbrooke

Rodriguez, A, M J Egenhofer, et R D Rugg 1999 Assessing Semantic Similarities Among

Geospatial Feature Class Definition. In Proceedings of Interoperating

Geographic Information Systems (Interop '99). Berlin, Springer-Verlag Lecture

Notes in Computer Science 1580: 189-202

Rodriguez, M A 2000 Assessing Semantic Similarity Among Entity Classes. Ph.D. Thesis,

University of Maine

Schramm, W 1971 The Nature of Communication Between Humans. In W Schramm, and

D F Robert (eds) The Process and Effects of Mass Communication. Champaign-

Urbana, IL, University of Illinois Press: 3-53

Sheth, A 1999 Changing Focus on Interoperability in Information Systems: From

Systems, Syntax, Structure to Semantics. In M Goodchild, M Egenhofer,

R Fegeas, and C Kottman (eds) Interoperating Geographic Information Systems.

Boston, Massachusetts, Kluwer Academic Publisher: 5-29

Sheth, A, et V Kashyap 1992 So Far (Schematically) Yet So Near (Semantically). In

Proceedings of IFIP WG2.6 Database Semantics Conference on Interoperable

Page 35: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

15

Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 283-312

Sowa, J F 1984 Chapter 7: Limits of Conceptualisation. In Conceptual Structures:

Information Processing in Mind Machine. Reading, Massachusetts, Addision-

Westley Publishing Company: 339-351

Sowa, J F 1987 Semantic Networks. In S C Shapiro (ed) Encyclopedia of Artificial

Intelligence. New York, John Wiley & Sons

Statistique Canada 1997 Fichiers numériques des limites et fichiers numériques

cartographiques, Recensement de 1996 (guide de référence). Ottawa, Ministère

de l’Industrie

Vckovski, A, K Brassel, et H J Schek (eds) 1999 Interoperating Geographic Information

Systems (Interop '99). Berlin, Springer-Verlag

VMap 1995 Vector Map (VMap), Level 1. Bethesda, MD, U.S. National Imagery and

Mapping Agency Mil-V-89033

Voisard, A, et H Schweppe 1998 Abstraction and Decomposition in Interoperable GIS.

International Journal of Geographic Information Science, 12(4): 315-333

Weiner, N 1950 The Human Use of Human Beings: Cybernetics and Society. Boston,

Houghton and Mifflin

Page 36: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

CHAPITRE 2

L’INTEROPÉRABILITÉ SÉMANTIQUE, SPATIALE

ET TEMPORELLE : UN PARALLÈLE AVEC

LE PROCESSUS DE COMMUNICATION

Les êtres humains communiquent entre eux naturellement de manière interopérable (i.e.

capable d’échanger et d’utiliser l’information qui est échangée) puisqu’ils arrivent à se

comprendre dans leurs rapports de tous les jours. C’est donc avec la revue du processus

de communication entre les êtres humains que nous amorçons ce chapitre sur l’étude de

l’interopérabilité sémantique, spatiale et temporelle des données géospatiales. Le

processus de communication nous amène ensuite à aborder certains aspects du

fonctionnement cognitif de l’être humain, plus spécifiquement la perception, l’abstraction

et la représentation des phénomènes que nous observons. Après, nous revoyons les

notions d’ontologie telles qu’utilisées en philosophie et en intelligence artificielle. Ces

notions sont associées à la représentation des phénomènes. Comme il est habituel que des

bases de données géospatiales distinctes représentent les mêmes phénomènes

géographiques différemment, nous examinons aussi les différentes facettes de

l’hétérogénéité inhérente aux données. Nous complétons ce chapitre avec une revue des

principales solutions proposées pour l’interopérabilité sémantique, spatiale et temporelle.

Page 37: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

17

2.1 L’interopérabilité et la communication entre systèmes

C’est avec la cybernétique et la théorie de l’information (Shannon, 1948; Weiner, 1950)

dont les premiers fondements remontent à aussi loin que 1948, que l’étude du processus

de communication débute. La cybernétique est le domaine qui s’intéresse aux aspects de

contrôle qu’un système (un être humain, une machine, etc.) exerce sur son environnement

afin de maintenir l’ordre, l’organisation et l’équilibre. Par exemple, un conducteur

automobile utilise constamment des processus de contrôle pour s’assurer que

l’automobile qu’il conduit demeure sur la bonne voie, ne dépasse pas la limite de vitesse

et se dirige dans la bonne direction. Le conducteur contrôle l’automobile avec le volant,

l’accélérateur et le frein de l’automobile pour la maintenir dans un état d’équilibre

dynamique. Un bibliothécaire s’assure du bon classement des livres et de leur rangement

dans les rayons appropriés d’une bibliothèque afin que les utilisateurs retrouvent les

livres recherchés. Un gestionnaire de base de données modélise les concepts, structure les

données et s’assure de la cohérence des bases de données qu’il maintient afin que les

utilisateurs retrouvent les données qu’ils recherchent. Comme nous le constatons dans ces

exemples, l’information est une notion intimement associée à l’ordre et l’équilibre. Une

mesure de l’information correspond à l’entropie d’un système (Campbell, 1982). Elle

représente le contenu qu’un système échange avec d’autres systèmes tout en considérant

la manière dont le système s’adapte aux autres systèmes (Weiner, 1950). Le

fonctionnement adéquat d’un système dépend de l’information qu’il reçoit et de

l’information qu’il communique.

L’échange d’information entre des systèmes consiste essentiellement en un problème de

communication effective et de contrôle. Un processus de communication comprend

fondamentalement trois composantes : une source d’émission, un message et une

destination (Figure 2) (Schramm, 1971a; Shannon, 1948).

La source d’émission peut correspondre à un individu, une organisation, un journal, une

station de radio ou de télévision, un site Web, une base de données, un système SIG, etc.

Les connaissances qu’une source d’émission possède ne peuvent pas être communiquées

Page 38: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

18

directement. Elles sont formulées sous la forme de messages qui sont envoyés vers une

destination donnée. Considérant le cas où la source et la destination sont deux personnes,

la source choisit d’abord l’information qu’elle veut communiquer à sa destination.

Ensuite, elle l’adapte en fonction d’une situation particulière et de son destinataire. Puis,

elle structure les éléments d’information entre eux et les encode dans un message.

Le message est formé de signaux pouvant prendre la forme d’encre sur du papier,

d’ondes sonores dans les airs, d’ondes visibles dans la fibre optique, de courant électrique

dans le réseau téléphonique ou Internet, etc. (Harrison, 1971). Après avoir encodé le

message, la source le dépose dans le canal de communication vers le destinataire. À ce

moment, le message est libéré de la signification que lui attribuait initialement la source.

La source n’a donc plus de contrôle sur le message. Par conséquent, le message n’a

aucune signification en soi dans le canal de communication. Il agit en tant que médiateur

entre la source et le destinataire. Le canal de communication se divise en sous-canaux où

on retrouve un canal primaire et des canaux secondaires. Le canal primaire achemine les

signaux de forme principale, par exemple les signaux verbaux lors d’une discussion entre

deux individus. Les canaux secondaires ou « back channels » acheminent des signaux de

forme accessoire, par exemple des signaux non verbaux dans une discussion entre deux

individus tels les signes de tête, les gestes des mains, les soupirs, les intonations de la

voix, etc. (Harrison, 1971).

C’est au destinataire, lorsqu’il reçoit le message, que revient la responsabilité de le

décoder et de lui donner une signification particulière. Le destinataire dispose

essentiellement des connaissances qu’il possède pour décoder le message. Il utilise les

connaissances que les signaux du message évoquent en lui pour attribuer une

signification particulière au message. La communication est effective si la signification

que le destinataire donne au message correspond à la signification initiale que la source

accordait au message lors de son dépôt dans le canal de communication.

Page 39: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

19

Figure 2 : Modèle du processus communication (de Schramm, 1971b)

Comme nous venons de le dire, la signification d’un message correspond au sens que les

signaux évoquent tant à la source qu’à la destination. Le sens donné aux signaux

représente le lien qu’une personne fait entre les signaux et les phénomènes que les

signaux désignent. Odgen et Richards ainsi que plusieurs autres illustrent à l’aide d’un

triangle l’interaction qui existe entre un phénomène (i.e. l’objet, ce à quoi nous référons,

le référent), un signal qui exprime le phénomène dans un processus de communication

(le signe ou le signifiant) et le sens induit chez la personne (le signifié) (Figure 3)

(Cherry, 1978; Daconta et al., 2003; Eco, 1988a; Eco, 1988b). Bien qu’il existe un lien

entre le référent et le signifiant qui le représente, ce lien n’est qu’indirect. Ce lien se

concrétise par le sens qu’un individu accorde au signifiant, lequel est associé au référent.

Le référent et le signifiant agissent ensemble pour susciter un sens chez l’individu.

Référent

Signifiant Signifié

Figure 3 : Modèle d’interaction entre le référent, le signifiant et le signifié

(Cherry, 1978; Eco, 1988a)

Page 40: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

20

Le processus de communication inclut aussi le feed-back (Weiner, 1950), également

appelé rétroaction. Le feed-back est un mécanisme de contrôle qui permet à la source

d’ajuster ses messages en fonction des résultats obtenus lors de messages précédents. Par

exemple, un individu A se rendant à l’hôtel X situé sur la rue Y dans la ville Z interroge un

individu B comme suit : « pouvez-vous m’indiquer le chemin pour l’hôtel X? ». Si A

estime que la réponse obtenue de B est correcte, il peut alors considérer que B a bien

compris la question. Par contre, si B répond qu’il ne connaît pas l’hôtel X, alors A peut

ajuster sa question en demandant le chemin pour se rendre à la rue Y de la ville Z. Le

feed-back correspond ici au mécanisme de contrôle qui permet à l’individu A de s’assurer

que son message est bien compris par B et d’ajuster son message dans le cas contraire.

Une source de bruit peut interférer dans la bonne transmission d’un message. Le bruit qui

se mêle au message crée alors un désordre dans l’ensemble des signaux. Il augmente le

niveau d’incertitude dans la bonne transmission du message et, conséquemment, réduit le

niveau d’information que le message véhicule. Un message influencé par une source de

bruit devient plus complexe, voire même impossible à décoder. La redondance dans les

signaux habituellement considérée comme une inefficience dans le message prend ici une

toute autre importance. Elle ajoute un facteur d’assurance dans la transmission d’un

message et accroît la capacité de compréhension du message (Schramm, 1971b). En ce

sens, la redondance augmente le niveau d’information d’un message. La redondance peut

prendre plusieurs formes telles que des règles dans la construction d’un message (ex. les

règles de grammaire dans le langage naturel font que des lettres, des mots ou des

séquences de mots sont prédictibles et, en ce sens, redondants) (Campbell, 1982), le bit

de parité dans un octet et le nombre total de pages d’un bordereau de transmission de

télécopie. La redondance aide à ce qu’un message atteigne son destinataire avec le

minimum de distorsion (Darnell, 1971).

Deux personnes engagées dans un processus de communication travaillent constamment

à maintenir de l’ordre dans leurs échanges pour se comprendre mutuellement. Un

processus de communication désordonné fonctionne difficilement, voire même pas du

Page 41: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

21

tout. Dans un processus de communication, la source génère des messages à partir de ses

propres connaissances, tout comme le destinataire qui les déchiffre aussi à partir de ses

propres connaissances. Les connaissances de la source et du destinataire proviennent de

l’observation directe des signaux que dégagent les phénomènes, de l’observation

indirecte de signaux obtenus des capteurs artificiels (photographies, images satellites,

etc.) et des signaux interprétés provenant d’autres personnes. C’est grâce à leurs

connaissances communes (en anglais commonness (Schramm, 1971a)) que la source et le

destinataire maintiennent l’ordre et l’équilibre dans un processus de communication

(Figure 4) et réussissent à se comprendre. Un destinataire qui n’a aucune connaissance en

commun avec la source d’où provient un message, ne peut pas déchiffrer les signaux du

message correctement. Par exemple, le terme pont prend une signification différente pour

un dentiste et un commandant de navire. Si le dentiste ne sait pas qu’un pont correspond

à un plancher d’un navire et si le commandant de navire ne sait pas que pont représente

une prothèse qui remplace une ou plusieurs dents absentes, alors il sera difficile pour eux

de communiquer avec ce mot puisqu’il ne représente rien de commun aux deux individus.

Schramm (1971a) et Bédard (1986) illustrent les connaissances communes entre la source

et le destinataire sensiblement de la même manière (Figure 4). Les ellipses de la Figure 4

correspondent aux modèles cognitifs de la source et du destinataire, respectivement.

L’union des deux ellipses représente l’ensemble des connaissances de la source et du

destinataire alors que leur intersection représente les connaissances communes

spécifiquement.

Figure 4 : Modèle de connaissances communes (de Schramm, 1971a)

Page 42: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

22

2.2 La perception, la connaissance et le raisonnement cognitif de l’être humain

Comme nous le mentionnions précédemment, le modèle cognitif de l’être humain se

développe à partir de l’observation directe et indirecte des phénomènes. L’être humain

perçoit les phénomènes à partir de ses sens (la vue, l'ouïe, l'odorat, le toucher et le goût)

et de moyens technologiques qui accroissent ses capacités naturelles d’observation (ex.

satellite d’observation de la Terre, caméra numérique, radar, etc.). La perception de l’être

humain donne lieu à des états perceptuels (Barsalou, 1999). Un état perceptuel est un état

du cerveau constitué d’une représentation neuronale inconsciente de l’input physique des

sens et d’une expérience consciente optionnelle. Dans toute la complexité de l’état

perceptuel d’un phénomène, l’attention sélective de l’être humain ne retient qu’un sous-

ensemble significatif de l’état perceptuel en fonction du contexte dans lequel le

phénomène est observé. Ce sous-ensemble est conservé sous forme d’images mentales

dans la mémoire à long terme des personnes.

Une image mentale, appelée aussi symbole perceptuel (Barsalou, 1999), constitue une

représentation abstraite d’un phénomène. C’est le concept dans la mémoire d’une

personne qui est associé au phénomène. La forme que prend une image mentale dans la

mémoire des personnes suscite encore un débat de fond (Pylyshyn, 1981; Pylyshyn, en

impression). Deux approches sont reconnues dans la littérature : l’approche modale et

l’approche amodale.

L’approche modale considère que les images mentales sont conservées dans une structure

qui avoisine celle de l’état perceptuel. Une image mentale constitue une représentation

analogue à une illustration d’un phénomène (Kosslyn, 1980; Kosslyn, 1981). Par

conséquent, le système neural d’une personne conserve une image approximative du

phénomène (ex. une illustration de la forme et de la couleur). La personne utilise par la

suite cette image mentale pour reconnaître le phénomène (Figure 5).

Page 43: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

23

Figure 5 : Approche modale des images mentales (de Barsalou, 1999)

L’approche amodale estime que les images mentales prennent une forme descriptive

(Pylyshyn, 1981; Pylyshyn, en impression). Une partie de l’état perceptuel d’un

phénomène est transformée en propositions qui décrivent l’ensemble des propriétés

significatives de l’objet. L’approche amodale fut inspirée de développements en logique,

en statistique, en mathématique et en informatique desquels plusieurs langages de

représentation sont issus tels que les feature lists, les frames, les schemata et les semantic

nets. Alors qu’une représentation modale d’une chaise correspond à une sorte d’image en

mémoire (Figure 5), sa représentation amodale consiste en une description du type « une

chaise = un dossier + un siège + 4 pattes » (Figure 6).

Figure 6 : Approche amodale des images mentales (de Barsalou, 1999)

Récemment, Barsalou (1999) a décrit un symbole perceptuel comme un enregistrement

de l’activation neuronale sous–jacente à la perception. L’information perçue est

essentiellement emmagasinée de manière qualitative et fonctionnelle. Un symbole

perceptuel n’est pas indépendant des autres existant dans la mémoire à long terme. Il joue

Page 44: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

24

un rôle d’attracteur à l’intérieur d’un réseau pour regrouper et connecter d’autres

symboles perceptuels similaires. En ce sens, la littérature nous réfère aux réseaux

connexionnistes (en anglais connectionist networks) (Barsalou, 1999; Laakso et Cottrell,

2000).

Les symboles perceptuels sont structurés et emmagasinés sous forme de concepts. Un

concept constitue une sorte de simulateur qui produit différentes conceptualisations (ou

représentations conceptuelles) de lui-même, chacune adaptée à un contexte différent. Un

concept regroupe les connaissances et les processus qui représentent correctement un

type d’entités ou d’évènements (Barsalou, 1999). Par exemple, le concept water area

peut être un simulateur des représentations conceptuelles waterbody, coastline, lake,

river/stream et lac (voir Tableau 3, Section 3.3). Un concept qui correspond à une

catégorie est aussi capable de reconnaître ses membres. En ce sens, une entité appartient à

une catégorie si cette catégorie peut produire une simulation satisfaisante de cette entité.

Dans le même ordre d’idée, deux individus qui représentent une même catégorie

différemment peuvent avoir la capacité de simuler la représentation de l’autre.

2.3 La notion d’ontologie et la description des phénomènes

Comme nous le constatons, le concept est une notion importante en cognition. C’est lui

qui maintient la connaissance sur un phénomène ou une catégorie de phénomènes.

Habituellement, l’architecte d’une base de données géospatiales précise et structure

l’ensemble des concepts pour lesquels la base de données emmagasine des données. Les

concepts et leur définition permettent de peupler la base de données, de la gérer ainsi que

d’utiliser les données de manière adéquate. Dans cette section, nous revoyons la notion

d’ontologie telle que présentée par certains philosophes ainsi que celle utilisée en

informatique qui, toutes deux, concernent la description des phénomènes et des concepts.

Page 45: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

25

2.3.1 L’Ontologie, un point de vue philosophique

L’existence, la connaissance et la description de l’Être et de la Vérité sont des questions

qui préoccupent les philosophes au moins depuis Aristote. Les philosophes étudient ces

questions à travers l’Ontologie. L’Ontologie correspond à la description du monde

(Peuquet et al., 1998) ainsi qu’à un modèle et une théorie abstraite du monde (Smith et

Mark, 1999). C’est la science d’Être, du « qu’est-ce que », du type d’entités, des

propriétés, des catégories et des relations qui composent la réalité (Lehmann, 1992;

Peuquet et al., 1998; Smith et Mark, 1999). En philosophie, on suppose qu’il existe une

seule « vraie » réalité à décrire, et par conséquent, qu’il existe une seule Ontologie

indépendante de tout langage. L’Ontologie est décrite soit par une abstraction des

éléments formels qui caractérisent tous les domaines scientifiques (appelée Ontologie

formelle) soit par un énoncé des conditions nécessaires et suffisantes qui décrivent une

sorte d’entité d’un domaine donné (appelée Ontologie matérielle) (Peuquet et al., 1998).

L’Ontologie formelle correspond à l’étude des structures qui sont partagées entre les

différents domaines scientifiques par exemple l’étude de l’identité et de la différence,

l’étude de l’unité et de la pluralité, l’étude des propriétés et des relations, l’étude des

parties et du tout, l’étude de la mesure et de la qualité. L’étude des limites des objets dans

l’espace que l’on retrouve dans (Casati et al., 1998; Smith, 1994; Smith et Mark, 1999;

Smith et Varzi, 2000) est un exemple d’Ontologie formelle. Ces auteurs reconnaissent

deux types de limites : bona fide et fiat.

Une limite bona fide signifie une démarcation franche ou physique entre deux objets qui

se caractérise par une différence qualitative et physique (Smith, 1994). Ce type de limites

s’observe chez des phénomènes comme les bâtiments, les tours, les pistes de course ou

d’envol, les ponts, etc.

Une limite fiat correspond à une démarcation humaine. C’est une limite de nature

théorique, mathématique, artificielle ou virtuelle qui n’a aucune relation avec la

description physique d’un objet (Smith, 1994). On utilise ce type de limites pour décrire

Page 46: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

26

par exemple une limite administrative, la limite entre deux étendues d’eau (ex. entre le

Fleuve Saint-Laurent et le Golfe Saint-Laurent), la limite d’un rapide à l’intérieur d’un

cours d’eau et la limite entre des zones adjacentes de peuplement forestier. Les concepts

et catégories peuvent aussi être considérés comme des représentations de phénomènes de

nature fiat puisqu’ils sont définis de manière purement théorique. De ce fait, les notions

topologiques de limite, d’intérieur, de contact, de séparation et de continuité peuvent être

étendues pour exprimer la similitude entre les concepts et les catégories (Smith et Mark,

1999). Smith (1994) et Smith et Mark (1999) sont d’avis que les objets de limites fiat

possèdent leur propre limite et, en ce sens, le contact et la séparation des objets

s’établissent par la coïncidence en tout ou en partie de leurs limites respectives.

L’Ontologie matérielle se rapporte à l’étude des phénomènes d’un domaine particulier

(ex. les phénomènes naturels, les phénomènes sociaux ou les phénomènes institutionnels,

etc.). De ce fait, l’Ontologie matérielle correspond mieux à la notion d’ontologie que l’on

retrouve en intelligence artificielle.

2.3.2 Une ontologie, un point de vue informatique

En intelligence artificielle, Gruber (1993) définit une ontologie comme une

« spécification explicite d’une conceptualisation » (traduction de l’auteur). C’est une

définition du vocabulaire qui représente une certaine connaissance. Une ontologie inclut

des définitions sur les classes, les relations, les fonctions, etc. spécifiques à un domaine.

D’autres auteurs adhèrent sensiblement à cette définition d’ontologie:

- c’est la couche qui permet de définir les concepts de la réalité (Kashyap et Sheth,

1996);

- c’est un vocabulaire spécifique et des relations utilisées pour décrire certains

aspects de la réalité, et un ensemble d’hypothèses explicites en rapport avec la

signification entendue du vocabulaire (Ouksel et Sheth, 1999);

- c’est une manière qu’un agent perçoit le monde, les éléments qui le composent et

les processus qui représentent l’interaction entre les éléments (Mackay, 1999);

Page 47: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

27

- c’est une hiérarchie de mots-clé, un schéma, un dictionnaire de métadonnées, une

terminologie complexe réalisée dans un langage conceptuel (ex. UML) (Sycara et

al., 1999).

Cependant, Guarino (1998) raffine la définition de Gruber comme suit : « une ontologie

est une théorie logique qui représente la signification voulue d’un vocabulaire, i.e. son

consentement ontologique envers une conceptualisation particulière du monde »

(traduction de l’auteur). Dans cette définition, Guarino établit une relation de

consentement entre une ontologie et la conceptualisation du monde. La conceptualisation

du monde est indépendante de toutes langues au même titre que l’Ontologie (en

philosophie) alors qu’une ontologie dépend de la langue.

Une ontologie constitue une base de connaissances qui conserve la description d’un

ensemble de concepts avec toutes leurs propriétés (incluant les propriétés spatiales et

temporelles) ainsi que les relations qui existent entre les concepts. Elle est habituellement

réputée exacte par une communauté d’utilisateurs (Guarino, 1998). Concrètement, une

ontologie peut prendre la forme d’un réseau sémantique, d’une taxonomie ou

classification, d’un Thésaurus, d’un modèle conceptuel ou d’un répertoire de données.

Un réseau sémantique est une structure de nœuds et d’arcs interconnectés qui représente

une forme de connaissance (Lehmann, 1992; Sowa, 1987). Une structure devient

sémantique lorsqu’elle attribue une signification aux arcs et aux nœuds. Les nœuds

correspondent à des unités conceptuelles et les arcs, aux relations entre les unités.

(Lehmann, 1992) inventorie différentes formes de réseaux sémantiques dont les frame

systems, les graphes relationnels, les structures hiérarchiques et les graphes logiques (ex.

les graphes conceptuels).

Une taxonomie est une classification de concepts en catégories d’un domaine particulier.

Elle décrit de manière hiérarchique les concepts et les catégories qui relèvent de

catégories plus générales.

Page 48: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

28

Un Thésaurus consiste en une collection de concepts qui constitue une ontologie (Meta

Data Coalition, 1999). C’est un vocabulaire contrôlé et organisé dans un ordre connu,

avec des types de relations spécifiques : équivalence (used for/use), hiérarchique

(broader term/narrower term) et association (related term/related term) (Milstead, 1998).

Les concepts qui composent un Thésaurus sont essentiellement représentés par des

termes (i.e. des mots).

Dans le contexte des bases de données, un modèle conceptuel représente une partie de la

réalité de manière simplifiée et abstraite pour un besoin particulier. Il résulte d’une

analyse centrée sur les données qui sont d’intérêt pour les utilisateurs de la base de

données (Bédard, 1999a; Simsion, 2001). Un modèle conceptuel est le fruit d’une

réflexion qui détermine les éléments de la base de données pour fournir l’information

nécessaire aux utilisateurs (Collongues et al., 1987; Simsion, 2001). Il sert aussi à la

documentation, au développement et à la communication des données d’une base de

données (Bédard, 1999b). Un modèle conceptuel représente et organise un ensemble de

concepts sous forme de catégories, de classes d’objets, de propriétés, de relations

(incluant les généralisations et les agrégations), de rôles, de contraintes, de

comportements, de géométries, de temporalités, etc. dans un formalisme lexical (ex.

EXPRESS, formalisme Bakus-Naur) ou graphique (ex. Entité-Relation, UML).

Les répertoires de données constituent une autre forme d’ontologie. On entend par

répertoire de données l’ensemble des métadonnées qui documentent tant la sémantique

que la structure d’une base de données. Un répertoire de données comprend un

dictionnaire de données et un modèle conceptuel (Brodeur et al., 2000; Gal, 1999; Sycara

et al., 1999). Brodeur et al. (2000) propose un métamodèle de répertoire de données

adapté au contexte des données géospatiales représenté à l’aide d’un diagramme de classe

UML (Figure 7). Ce métamodèle présente les composantes nécessaires à la description de

concepts géospatiaux comprenant les classes d’objets, les relations entre les classes

d’objets (association, dépendance, généralisation), les caractéristiques descriptives,

spatiales et temporelles, les domaines de valeurs d’attributs, les opérations, les

contraintes, etc.

Page 49: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

29

Figure 7 : Métamodèle de répertoire de données géospatiales (de Brodeur et al., 2000)

Page 50: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

30

Comme les phénomènes sont habituellement abstraits de manières différentes d’une base

de données à l’autre, leurs descriptions peuvent être plus ou moins détaillées selon les

besoins, le contexte et l’expérience des architectes de la base de données. En ce sens, la

littérature reconnaît trois niveaux de granularité dans les ontologies : les ontologies

globales, les ontologies de domaine et les ontologies d’application (Guarino, 1998).

Une ontologie globale définit des concepts à un haut niveau d’abstraction de manière

indépendante des domaines ou des applications spécifiques. Elle vise une représentation

exhaustive des concepts de la réalité. On peut comparer une ontologie globale à un

dictionnaire qui donne la signification de concepts pour une utilisation générale. Wordnet

(http://termiumplus.bureaudelatraduction.gc.ca) et Le grand dictionnaire terminologique

(http://www.granddictionnaire.com) sont des exemples d’ontologies globales.

Une ontologie de domaine décrit les concepts qui sont communs à une communauté

d’information ou à un champ d’activité. Elle spécialise la signification et l’utilisation des

concepts des ontologies globales pour des utilisations restreintes. Ce type d’ontologie

peut se comparer à un lexique qui inventorie les termes spécifiques à une science ou à

une technique. Le National Standards for the Exchange of Digital Topographic Data -

Volume II – Topographic Codes and Dictionary of Topographic Features (Canadian

Council on Surveying and Mapping, 1984) est un exemple d’ontologie de domaine.

Une ontologie d’application inventorie les concepts spécifiques à une utilisation

particulière. Elle peut se comparer à un glossaire que l’on retrouve à la fin d’un ouvrage

qui précise le sens accordé à certains termes et expressions utilisés dans l’ouvrage. Dans

le monde des bases de données géospatiales, une ontologie d’application correspond aussi

à un modèle conceptuel de données, un dictionnaire de données ou à une spécification de

produit de données géographiques. Par exemple, les Normes et spécifications de la Base

nationale de données topographiques du Canada (BNDT) (Ressources naturelles Canada,

1996) incluent une ontologie qui décrit les concepts utilisés pour représenter un ensemble

de phénomènes topographiques.

Page 51: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

31

2.4 L’hétérogénéité des données, un frein à l’interopérabilité

Le problème d’interopérabilité des données géospatiales consiste à établir une

communication effective dans l’ensemble des bases de données géospatiales et des

utilisateurs de données géospatiales. Toutefois, les bases de données géospatiales et

utilisateurs présentent un certain nombre d’hétérogénéités les uns des autres qui limitent

leur capacité d’interopérer. (Bishr, 1997; Ouksel et Sheth, 1999; Sheth, 1999)

décomposent l’hétérogénéité qui existe entre les bases de données en quatre niveaux :

l’hétérogénéité des systèmes, l’hétérogénéité syntaxique, l’hétérogénéité structurelle et

l’hétérogénéité sémantique.

2.4.1 Hétérogénéité des systèmes

Puisque les bases de données résident souvent sur des systèmes différents, les premiers

efforts réalisés pour établir l’interopérabilité entre des bases de données fut d’établir

l’interconnexion des systèmes. Les travaux qui ont mené aux réseaux de communication

entre les systèmes et aux protocoles de communication (ex. Ethernet, TCP/IP, RPC, FTP,

HTTP, etc.) permettent aujourd’hui de connecter des systèmes fonctionnant à partir de

systèmes d’exploitation différents (ex. Windows, Unix, VMS, OS/400, Mac OS, Linux,

etc.). Les protocoles de communication définissent l’ensemble des règles qui permettent

aux différents systèmes de communiquer entre eux et de partager tant des fichiers de

données que des ressources.

De plus, l’interconnexion entre des systèmes de gestion de bases de données (SGBD)

permet maintenant de partager non seulement des fichiers de données entre les systèmes

mais aussi des données entre les bases de données. Plusieurs applications accèdent

maintenant à des données emmagasinées dans divers SGBD sur des systèmes différents.

Ces applications utilisent les Structured Query Language (SQL) et des outils comme

l’Open Database Connectivity (ODBC) ou le Java Database Connectivity (JDBC) pour

se connecter et communiquer avec les SGBD.

Page 52: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

32

Avec l’émergence de solutions sur l’interconnexion des systèmes hétérogènes durant les

années 1990, les efforts consentis pour réaliser l’interopérabilité se sont depuis orientés

sur les problèmes d’hétérogénéité des données.

2.4.2 Hétérogénéité syntaxique

L’étude de l’hétérogénéité syntaxique concerne spécifiquement la représentation

physique des données (Ouksel et Sheth, 1999), i.e. les signes et l’ordre des signes dans un

message (Cherry, 1978). La syntaxe établit les signes et définit les règles pour ordonner

les signes dans un message. Dans l’hétérogénéité syntaxique, on se préoccupe de la forme

du message plutôt que du contenu. Dans un contexte d’interopérabilité, il appert qu’un

système puisse dans un premier temps décoder les signes d’un message pour ensuite les

comprendre. L’hétérogénéité syntaxique peut être comparée à la langue que deux

individus utilisent pour communiquer. Un individu qui ne connaît pas les signes chinois

(oral ou écrit) ne pourra pas comprendre un individu qui communique essentiellement en

chinois; il lui sera impossible de décoder les signes à cause de leur hétérogénéité

syntaxique.

Dans les données géospatiales, nous observons l’hétérogénéité syntaxique lorsque des

systèmes en interaction n’ont aucun format commun d’échange de données géospatiales

(CCOGIF, ArcExport, MID/MIF, DXF, Shape, etc.). L’approche de l’OGC et de

l’ISO/TC 211 pour remédier à l’hétérogénéité syntaxique entre les SIG est de normaliser

une syntaxe pour permettre la communication des données géographiques. Entre autre,

ces organisations travaillent activement à la définition du Geography Markup Language

(GML) (ISO/TC 211, 2003b; Open GIS Consortium Inc., 2001).

L’hétérogénéité syntaxique se remarque aussi dans les différentes formes utilisées pour

représenter de l’information géographique (Bishr, 1997). Fondamentalement, on retrouve

deux formes de représentation de l’information géographique : la forme matricielle et la

forme vectorielle. La forme matricielle consiste en une mosaïque régulière de cellules

(appelées aussi pixels) auxquelles différentes valeurs sont attribuées pour représenter un

Page 53: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

33

thème (ex. l’essence des arbres du couvert forestier, le relief, les précipitations, etc.). La

forme vectorielle utilise des représentations géométriques telles que le point, la ligne, la

surface et le volume pour la description géométrique des données. Pour simplifier la

syntaxe des données vectorielles, l’ISO/TC 211 a par exemple normalisé un ensemble de

représentations géométriques vectorielles pour les SIG (ISO/TC 211, 2003a). Le tableau

1 résume les principales représentations géométriques de cette norme.

Tableau 1 : Représentations spatiales de la norme ISO 19107

2.4.3 Hétérogénéité structurelle

L’hétérogénéité structurelle se préoccupe des différences dans la modélisation des

données. Par exemple, le concept rue peut être modélisé comme une valeur de l’attribut

classification de la classe d’objets route. Il peut aussi être représenté comme une sous-

classe de la classe d’objets route (Figure 8). Bishr (1997), Charron (1995) et Sheth et

Kashyap (1992) classifient la nature des conflits propres à l’hétérogénéité structurelle de

manière similaire. Nous regroupons au tableau 2 les conflits structurels des données

géospatiales sous quatre volets : concept, propriété, géométrie et temporalité.

Page 54: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

34

Figure 8 : Différentes structures du concept rue

2.4.4 Hétérogénéité sémantique

L’hétérogénéité sémantique correspond à la différence de signification entre les concepts.

Telle qu’illustré à la Figure 3, la signification d’un concept s’établit par le lien fait entre

le signifiant et le référent. La différence entre les modèles cognitifs de deux individus

qui, par exemple, associent des signaux identiques à des phénomènes différents et des

signaux différents aux mêmes phénomènes, illustre bien l’hétérogénéité sémantique.

Puisque les modèles cognitifs se développent par l’observation de phénomènes dans un

contexte particulier, le contexte joue donc un rôle important dans l’hétérogénéité

sémantique des concepts. Il devient nécessaire de considérer le contexte dans lequel les

phénomènes sont observés pour résoudre l’hétérogénéité sémantique entre les concepts.

Les ontologies sont reconnues pour maintenir la signification accordée aux concepts

d’une base de données. Dans les bases de données géospatiales, les ontologies décrivent

un ensemble de concepts avec leur définition, leurs propriétés, leur géométrie et leur

temporalité selon le contexte duquel ils sont abstraits. L’évaluation de la similitude

sémantique entre deux concepts de deux ontologies (ex. railroad de VMap et railLine de

BC Digital Base Line Mapping, voir Tableau 3, Section 3.3) vise à résoudre

l’hétérogénéité sémantique entre les concepts. Bishr (1997) affirme que l’hétérogénéité

sémantique est la principale barrière au partage de données géospatiales.

Page 55: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

35

Tableau 2 : Nature des conflits structurels de données géospatiales

Page 56: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

36

2.5 Principales approches d’interopérabilité sémantique

Les toutes premières bases de données étaient développées dans plusieurs cas à petite

échelle à l’intérieur de départements d’organisations de toutes tailles. Les organisations

ont vite compris l’importance de ces bases de données dans l’ensemble de leurs activités :

« data is a corporate resource » (Sheth, 1999). C’est sur cette base que le partage,

l’échange et la mise en commun des données (en d’autres mots l’interopérabilité des

données) se sont développés. Cette section revoit des approches qui ont marqué le

développement de l’interopérabilité sémantique des données géospatiales et qui sont

précurseurs à la présente thèse. Plus spécifiquement, elle traite de l’approche de

fédération de données (Sheth et Larson, 1990), de la notion de similitude sémantique

(Kashyap et Sheth, 1996; Sheth et Kashyap, 1992), du modèle Semantic Formal Data

Structure (Bishr, 1997) et du modèle Matching-Distance (Rodriguez, 2000).

2.5.1 Fédération de données

L’idée des fédérations de données est de permettre à une communauté d’utilisateurs

l’accès à plusieurs bases de données comme si elles n’en formaient qu’une seule. Une

fédération a pour objet de mettre en commun des données de plusieurs bases de données

indépendantes. Comme chaque base de données est habituellement implantée dans un

SGBD particulier et possède sa propre structure de données, une fédération apporte une

solution pour l’hétérogénéité syntaxique et structurelle des bases de données

participantes.

Sheth (1999) présente une architecture de fédération de bases de données en cinq niveaux

(Figure 9). Au niveau inférieur, on retrouve les différentes bases de données avec leurs

modèles conceptuels respectifs (en anglais local schema). Les modèles conceptuels des

bases de données peuvent êtres exprimés dans des formalismes variés (ex. E/R, UML,

etc.). Ensuite figurent les schémas de composants (en anglais component schema). Ce

sont des traductions des modèles conceptuels des bases de données qui se conforment au

Page 57: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

37

modèle conceptuel de la fédération. Au troisième niveau, nous retrouvons les vues

externes de bases de données (en anglais export schema). Les vues externes identifient les

données des bases de données qui sont rendues disponibles dans la fédération. Une vue

externe agit comme un filtre sur une base de données pour contrôler l’accès aux données

et les transactions aux bases de données. Le modèle conceptuel de la fédération aussi

appelé le modèle canonique se retrouve au quatrième niveau (Sheth, 1999; Tari, 1992).

C’est le résultat de l’intégration des vues externes des bases de données qui composent la

fédération (Spaccapietra et al., 1992; Tari, 1992). Le modèle de la fédération coordonne

les transactions qui lui sont soumises. Il reçoit les transactions de la fédération et les

distribue aux différentes bases de données. Au niveau supérieur, nous avons les vues

externes (en anglais external schema) de la fédération. Ces vues sont des définitions

d’ensembles de données formulés pour des utilisateurs ou des applications spécifiques.

Elles correspondent d’une certaine manière à une spécification de produit.

Figure 9 : Architecture de fédération de données en cinq niveaux

(de Sheth, 1999)

Les fédérations se sont développées selon deux tendances : fédération couplée fortement

et fédération couplée faiblement. Les fédérations couplées fortement fournissent une

architecture robuste et stable. L’intégration des données est forte, mais aussi très rigide.

Page 58: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

38

Une fédération couplée fortement exige une administration de système imposante pour

assurer l’intégrité des modèles et des données. Ce type de fédération convient

particulièrement bien lorsque les objectifs de la fédération sont clairement définis, que le

nombre de bases de donnée locales est faible et que la fédération contrôle bien les bases

de données locales participantes (Kahng et McLeod, 1998). Les fédérations couplées

faiblement ont une architecture dynamique. Chaque base de données de la fédération est

plus autonome, ce qui permet plus de flexibilité dans la participation à la fédération. Dans

une fédération couplée faiblement, le modèle canonique fournit une intégration partielle

des bases de données participantes (Kahng et McLeod, 1998). Une fédération couplée

faiblement exige plus d’investissement de la part des utilisateurs des données.

2.5.2 Similitude sémantique

La notion de similitude sémantique entre concepts est étudiée dans plusieurs disciplines,

notamment en psychologie, en cognition et en intelligence artificielle. Elle exprime les

ressemblances et les différences qui existent entre deux concepts. La notion de similitude

fut développée de plusieurs façons. Rodriguez (2000) dresse un éventail de diverses

approches proposées pour évaluer la similitude sémantique entre concepts.

La similitude sémantique fut étudiée entre autres dans les feature-based models. Ce sont

des approches qui évaluent la similitude sémantique entre deux concepts (a et b)

quantitativement à l’aide d’une distance conceptuelle (D). Certaines approches

déterminent cette distance conceptuelle par la comparaison des propriétés des deux

concepts. C’est le cas du contrast model (Équation 1) et du ratio model (Équation 2) de

Tversky (Tversky, 1977). Ces modèles évaluent la distance conceptuelle en comparant

les propriétés communes et distinctives des concepts. D’autres approches évaluent la

)()()(),( ABfBAfBAfbaD −−−−∩= βαθ où θ, α et β ≥ 0 (Équation 1)

)()()()(),(

ABfBAfBAfBAfbaD

−+−+∩∩=

βαθθ où θ, α et β ≥ 0 (Équation 2)

Page 59: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

39

similitude sémantique à l’aide d’une distance dans un espace sémantique Euclidien

multidimensionnel (Équation 3) (Rips et al., 19973).

−= ∑=

n

ddbda XXbaD

1

2

,,),( (Équation 3)

Où : d est une dimension

X est une coordonnée sémantique

La similitude sémantique entre concepts a aussi été traitée à travers les réseaux

sémantiques. Frankhauser et al. (1991) et Frankhauser et Neuhold (1992) utilisent des

réseaux de connaissances (en anglais knowledge networks) pour quantifier la distance

entre deux concepts dans un même réseau. Cette distance représente le parcours le plus

court qui lie deux concepts. Un coefficient dans l’intervalle [0,1] est attribué à chaque

lien qui unit deux concepts. Ce coefficient exprime le poids attribué à la relation entre les

deux concepts. La similitude sémantique entre deux concepts non adjacents (c.-à-d.

séparés par un ou plusieurs concepts dans le réseau) est déterminée en tenant compte pour

chaque lien de la relation impliquée (association a, généralisation g et spécialisation s) et

du poids de la relation. Les relations sont analysées par paire et en ordre pour déterminer

la nature de la relation résultante (a, g ou s), la fonction de distance à utiliser (d1, d2 ou

d3) et la priorité d’évaluation des fonctions de distance. En utilisant le réseau de

connaissances de la Figure 10, la distance du parcours passerelle – sentier – route – rue

correspond à d2 (d2(.7,.6),.9) = .378.

a g s a g s a g s

a a a a a d2 d2 d2 a 3 1 1

g a g a g d2 d3 d1 g 1 2 3

s a a s s d2 d1 d3 s 1 3 2

Relation résultante

Fonction de distance

Priorité d’évaluation

Page 60: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

40

Où les fonctions de distance sont :

( ) ( )1,0max,1 −+= βαβαd

( ) αββα =,2d (Équation 4)

( ) ( )βαβα ,min,3 =d

Figure 10 : Exemple de réseau de connaissances

Dans une approche basée sur la comparaison d’abstractions à partir d’un contexte

spécifique, Kashyap et Sheth (1996), Kashyap et Sheth (1998) et Sheth et Kashyap

(1992) introduisent la notion de proximité sémantique pour déterminer qualitativement la

similitude sémantique entre deux objets. La proximité sémantique compare deux objets

en fonction du domaine des classes d’objets et de l’état des objets selon un contexte

donné et un type d’appariement des domaines des classes d’objets :

semPro (O1, O2) = <ctx, app, (D1,D2), (E1,E2)> (Équation 5)

où :

Oi : un objet,

ctx : le contexte de comparaison

app : le type d’appariement

Di : le domaine de Oi

Ei : l’état de Oi

Page 61: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

41

Plusieurs auteurs identifient le contexte (ctx) comme une notion fondamentale en

interopérabilité sémantique. Ouksel et Naiman (1993) introduisent le contexte comme la

connaissance nécessaire pour raisonner sur un autre système. Sciore et al. (1992)

définissent le contexte comme la signification, le contenu, l’organisation et les propriétés

des données. Guha (1990) présente le contexte comme une caractéristique associée à un

sous-ensemble d’une ontologie. Sheth et Kashyap (1992) mentionnent que le contexte

peut être vu comme (1) l’association d’une classe d’objets à une base de données ou à

une application, (2) la participation d’une classe d’objets dans une relation, (3)

l’association d’une classe d’objets à une vue externe des données (en anglais external

schema) ou à un modèle de données (en anglais internal schema), ou (4) une collection

nommée des domaines des classes d’objets. Le contexte est le principal médium pour

représenter l’essence même d’un concept, c.-à-d. le phénomène ou l’évènement auquel il

fait référence (Ouksel et Sheth, 1999). Kashyap et Sheth (1996) et Kashyap et Sheth

(1998) proposent une représentation partielle du contexte sous la forme d’une collection

de coordonnées «contextuelles» et de valeurs :

Contexte = <(C1, V1), (C2, V2), …, (Cn, Vn)>

Où :

Ci : un rôle, un aspect du contexte

Vi : valeur attribuée au contexte (peut être une variable)

Exemple :

ContexteRoute = <(classification, {autoroute, principale, secondaire,

rue}), (revêtement, {pavée, non pavée}), (support de la route, {au

sol, autre})>

Un défi en interopérabilité sémantique est de comparer des représentations de

phénomènes en tenant compte du contexte.

Page 62: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

42

L’appariement des domaines (app) des objets est associé à la composante structurelle. Il

décrit la relation qui existe entre les domaines des deux objets. Kashyap et Sheth (1996)

et Kashyap et Sheth (1998) définissent huit relations d’appariement :

Appariement total 1-1 À chaque valeur du domaine d’une classe d’objets

correspond une valeur du domaine de l’autre

classe d’objets et vice versa.

Appariement partiel M-1 Une valeur du domaine d’une classe d’objets

correspond à plusieurs valeurs du domaine de

l’autre classe d’objets; certaines valeurs peuvent

ne pas correspondre.

Généralisation/spécialisation Le domaine d’une classe d’objets est la

généralisation ou la spécialisation du domaine

d’une autre classe d’objets; les domaines des deux

classes d’objets sont la généralisation ou la

spécialisation du domaine d’une troisième classe

d’objets.

Agrégation Le domaine d’une classe d’objets est une

collection de domaines d’autres classes d’objets.

Dépendance fonctionnelle Les valeurs du domaine d’une classe d’objets

dépendent des valeurs du domaine de l’autre

classe d’objets.

Quelconque N’importe laquelle des relations définies ci-haut.

Aucune Aucune correspondance entre les domaines des

classes d’objets.

Le domaine d’une classe d’objets (Di) consiste en l’ensemble des valeurs qu’un objet

peut prendre. Lorsqu’une classe d’objets comporte plusieurs propriétés, le domaine de la

classe d’objets correspond à un sous-ensemble du produit croisé de toutes les valeurs que

les propriétés peuvent prendre, c.-à-d. aux différentes combinaisons acceptées de valeurs

Page 63: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

43

des propriétés. Par exemple, le domaine de route est Droute = ({autoroute, pavée, au sol},

{autoroute, non pavée, au sol}, {principal, pavée, au sol}, …, {rue, non pavée, autre}).

L’état d’un objet (Ei) décrit la représentation de l’objet dans la base de données. C’est

l’extension d’un concept ou d’un phénomène. Par exemple, l’état d’un objet route est

Eroute = (rue, pavée, au sol)

En s’appuyant sur leur définition de la proximité sémantique, Kashyap et Sheth (1996) et

Kashyap et Sheth (1998) élaborent une suite de cinq prédicats indépendants pour qualifier

la proximité sémantique entre deux classes d’objets :

Incompatibilité sémantique Proximité sémantique où les domaines des classes

d’objets n’ont aucune correspondance possible.

C’est la dissimilitude sémantique, la disjonction

des classes d’objets.

Ressemblance sémantique Proximité sémantique où les domaines des classes

d’objets n’ont aucune correspondance mais où les

objets jouent un rôle similaire. Ils ont une

connotation commune.

Pertinence sémantique Proximité sémantique où un appariement

quelconque des domaines des classes d’objets

existe dans certains contextes. Il y a un rapport

entre les classes d’objets indépendamment du

type d’appariement.

Relation sémantique Proximité sémantique où un appariement partiel,

une généralisation ou une agrégation existe entre

les domaines des objets dans tous les contextes.

C’est une forme de chevauchement entre les

classes d’objets.

Équivalence sémantique Proximité sémantique la plus forte entre les

classes d’objets. Les deux classes représentent les

Page 64: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

44

mêmes phénomènes. Il existe un appariement

total des domaines des classes d’objets dans tous

les contextes. L’équivalence sémantique

représente l’égalité des classes d’objets.

2.5.3 Le modèle Semantic Formal Data Structure

Bishr (1997) étudie plus spécifiquement l’interopérabilité sémantique des données

géospatiales pour résoudre le problème de partage de l’information. Il propose le modèle

Semantic Formal Data Structure ou SFDS. Ce modèle est dérivé de l’architecture de

fédération de données présentée plus tôt. Toutefois, l’approche du SFDS traite chaque

domaine d’application de façon indépendante (ex. utilisation du sol, géologie, etc.).

L’architecture du SFDS (Figure 11) se divise en trois tiers. Au tiers inférieur, on retrouve

les bases de données et leur modèle conceptuel respectif. On a au tiers intermédiaire la

vue externe de données qui représente les éléments de la base de données qui sont rendus

accessibles aux utilisateurs. Une description du contexte est associée à la vue externe. Le

médiateur de contexte figure au troisième tiers. Il est composé d’une ontologie commune,

d’un modèle fédéré et d’une description du contexte associé au modèle fédéré.

Figure 11 : Architecture trois tiers du SFDS (de Bishr, 1997)

Page 65: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

45

Les classes du modèle fédéré et des vues externes sont couplées à un concept de

l’ontologie. L’ontologie consiste essentiellement en une hiérarchie d’hypernymes et

d’hyponymes qui définissent un vocabulaire. Une classe d’une vue externe et une classe

du modèle fédéré couplées au même concept de l’ontologie sont considérées similaires.

Les conflits structurels peuvent alors être résolus entre ces classes. Dans l’approche du

SFDS, un utilisateur peut soumettre une requête à la fédération selon le vocabulaire d’une

vue externe et l’intermédiaire du médiateur de contexte. Le contexte est défini dans cette

approche comme un ensemble de définitions de catégories, de définitions de classes et de

descriptions géométriques :

Contexte = (définition de catégories ∧ définition intentionnelle

de classe ∧ description géométrique)

Exemple :

ContexteRoute = ∀route (définition = “Voie de circulation spécialement

aménagée pour le déplacement de véhicules automobiles.”

∧ classification ∈ {autoroute, principale, secondaire, rue} ∧

revêtement ∈ {pavée, non pavée} ∧ support ∈ {au sol,

autre} ∧ géométrie = )

2.5.4 Le modèle Matching-Distance

Rodriguez (2000) a étudié la similitude sémantique entre classes d’objets pour la

recherche et l’intégration de données géospatiales provenant de sources multiples et

répondant à un besoin spécifique. Elle propose le modèle Matching-Distance (MD) pour

évaluer quantitativement la similitude sémantique entre deux classes d’objets spatiaux.

L’évaluation de la similitude sémantique s’appuie sur la description de classes d’objets

obtenues d’ontologies. Le modèle MD ne tient toutefois pas compte des propriétés

géométriques et temporelles des classes d’objets (Rodriguez, 2000).

Page 66: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

46

Dans le modèle MD, la similitude sémantique entre deux classes d’objets est évaluée par

une distance sémantique (D). Cette distance sémantique est une somme pondérée des

distances sémantiques obtenues de la comparaison des parties (p), des fonctions (f) et des

attributs (a) entre deux classes d’objets :

( ) ( ) ( )baDbaDbaDbaD aaffpp ,,,),( ⋅+⋅+⋅= ωωω (Équation 6)

Pour la mesure de la distance sémantique, le modèle MD adapte le ratio model (Équation

2) (Tversky, 1977) :

( ) ( )( ) ABbaBAbaBABA

baD−⋅−+−⋅+∩

∩=

,1,),(

αα (Équation 7)

Le facteur α exprime la profondeur des classes d’objets par rapport à un concept commun

à l’intérieur d’une structure hiérarchique de relations de généralisation (IS_A) et

d’agrégation (Part/Whole) :

( )

( )( ) ( ) ( )

( )( ) ( ) ( )

>−

=

bulbdbuladbad

bulad

bulbdbuladbad

bulad

ba

..,..,,

..,1

..,..,,

..,

,α (Équation 8)

Dans le modèle MD, le contexte précise l’intention de l’utilisateur et, par conséquent, le

domaine d’application. Il est exprimé par une opération représentée par un verbe qui

s’applique sur un ensemble de classes d’objets; chaque classe d’objets est représentée par

un nom. Par exemple, un utilisateur peut s’intéresser aux classes d’objets qui se

rapportent au contexte { }( )véloautomobilecirculerC ,= qui caractérise l’ensemble des

phénomènes où l’on peut circuler en automobile et à vélo.

Page 67: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

47

Dans le modèle MD, la similitude sémantique est évaluée tant sur le plan de la variabilité

(c.-à-d. sur les aspects distinctifs) que sur le plan de la ressemblance (c.-à-d. sur les

aspects ressemblants) entre les classes d’objets. La différence dans l’évaluation de la

distance sémantique sur les plans de la variabilité et de la ressemblance se reflète dans la

manière de calculer les poids ωi (Équation 6) dans lequel le contexte joue un rôle

important.

2.6 Discussion

L’interopérabilité des données géospatiales peut être considérée comme un processus de

communication entre les utilisateurs et les bases de données. Chaque utilisateur et chaque

base de données possèdent une représentation des phénomènes géospatiaux qui lui est

propre. Pour un utilisateur ou une base de données, cette représentation des phénomènes

constitue son ontologie. Dans un processus de communication, nous voyons une

ontologie comme une base de connaissances à partir de laquelle une source formule les

messages qu’elle envoie et de laquelle un destinataire reconnaît les messages qu’il reçoit.

La proximité sémantique constitue une opération sur deux représentations de phénomènes

qui exprime leur similitude sémantique. Dans la présente thèse, nous intégrons la

proximité sémantique au processus de communication. La proximité sémantique est

utilisée par la source pour formuler des messages à partir des concepts qui lui sont

propres. Elle est aussi utilisée par le destinataire pour identifier les concepts pour

attribuer une signification au message.

Plusieurs des approches mentionnées dans ce chapitre optent pour une mesure

quantitative pour évaluer la proximité sémantique. Considérant que l’être humain

raisonne surtout de manière qualitative, nous croyons qu’une telle approche serait plus

appropriée pour exprimer la proximité sémantique des données géospatiales. De plus,

l’approche qualitative semble mieux adaptée au problème de la présence de

l’hétérogénéité dans les bases de données. L’approche de proximité sémantique

développée dans cette thèse se base sur le modèle topologique d’intérieur et de limite

Page 68: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

48

pour comparer qualitativement le contexte entre un concept et une représentation

conceptuelle. Elle s’inscrit dans les approches basées sur le contexte.

2.7 Références

Barsalou, L W 1999 Perceptual symbol systems. Behavioral and Brain Sciences, 22(4):

577-609

Bédard, Y 1986 A Study of the Nature of Data Using a Communication-based

Conceptual Framework of Land Information. Ph.D. Dissertation, University of

Maine

Bédard, Y 1999a Principles of Spatial Database Analysis and Design. In P A Longley,

M F Goodchild, D J Maguire, and D W Rhind (eds) Geographical Information

Systems: Principles, Techniques, Applications and Management. New York, John

Wiley and Sons, Inc.: 413-424

Bédard, Y 1999b Visual Modelling of Spatial Database Towards Spatial PVL and UML.

Geomatica, 53(2): 169-186

Bishr, Y 1997 Semantics Aspects of Interoperable GIS. Ph.D. Dissertation, ITC

Publication

Brodeur, J, Y Bédard, et M J Proulx 2000 Modelling Geospatial Application Databases

using UML-based Repositories Aligned with International Standards in

Geomatics. In Proceedings of Eighth ACM Symposium on Advances in

Geographic Information Systems (ACMGIS) ACM Press: 39-46

Campbell, J 1982 Grammatical Man: Information, Entropy, Language, and Life. New

York, Simon and Schuster

Canadian Council on Surveying and Mapping 1984 National Standards for the Exchange

of Digital Topographic Data: Topographic Codes and Dictionary of Topographic

Features. Ottawa, Topographical Survey Division, Surveys and Mapping Branch,

Energy, Mines and Resources Canada

Casati, R, B Smith, et A C Varzi 1998 Ontological Tools for Geographic Representation.

In N Guarino (ed) Formal Ontology in Information Systems. Amsterdam, IOS

Press: 77-85

Page 69: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

49

Charron, J 1995 Développement d’un processus de sélection des meilleures sources de

données cartographiques pour leur intégration à une base de données à référence

spatiale. Mémoire de maîtrise, Université Laval

Cherry, C 1978 On Human Communication: a Review, a Survey, and a Criticism.

Cambridge, Massachusetts, The MIT Press

Collongues, A, J Hugues, et B Laroche 1987 Merise - Méthode de conception. Paris,

Bordas

Daconta, M C, L J Obrst, et K T Smith 2003 The Semantic Web: A Guide to the Future of

XML, Web Services, and Knowledge Management. Indianapolis, Indiana, Wiley

Publishing, Inc.

Darnell, D K 1971 Information Theorie. In J A DeVito (ed) Communication: Concepts

and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 37-45

Eco, U 1988a Le signe. Bruxelles, Éditions Labor

Eco, U 1988b Sémiotique et philosophie du langage. France, Presses Universitaires de

France

Frankhauser, P, M Kracker, et E Neuhold 1991 Semantic vs. Structural Resemblance of

Classes. SIGMOD Record, 20(4): 59-63

Frankhauser, P, et E J Neuhold 1992 Knowledge Based Integration of Heterogenous

Databases. In Proceedings of IFIP WG2.6 Database Semantics Conference on

Interoperable Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 155-175

Gal, A 1999 Semantic Interoperability in Information Services: Experience with

CoopWARE. Sigmod Record, 28(1): 8

Gruber, T R 1993 A Translation Approach to Portable Ontology Specification. Stanford,

California, Knowledge Systems Laboratory Technical Report KSL 92-71

Guarino, N 1998 Formal Ontology and Information Systems. In Proceedings of Formal

Ontology in Information Systems (FOIS '98). Amsterdam, IOS Press: 3-15

Guha, R V 1990 Micro-theories and contexts in Cyc. I. Basic issues. Austin, Texas,

Micro-electronics and Computer Technology Corporation Technical Report ACT-

CYC-129-90

Page 70: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

50

Harrison, R P 1971 Other Ways of Packaging Information. In J A DeVito (ed)

Communication: Concepts and Processes. Englewood Cliffs, New Jersey,

Prentice-Hall Inc: 88-103

ISO/TC 211 2003a ISO 19107:2003 Geographic Information - Spatial Schema. Geneva,

Switzerland, International Organization for Standardization

ISO/TC 211 2003b WD 19136 Geographic Information - Geography markup language.

Geneva, Switzerland, International Organization for Standardization

Kahng, J, et D McLeod 1998 Dynamic Classificational Ontologies: Mediation of

Information Sharing in Cooperative Federated Database Systems, Context and

Ontologies. In M P Papazoglou, and G Schlageter (eds) Cooperative Information

Systems-Trends and Directions. San Diego, CA, Academic Press: 179-203

Kashyap, V, et A Sheth 1996 Semantic and Schematic Similarities Between Database

Objects: A Context-Based Approach. The VLDB Journal, 5: 276-304

Kashyap, V, et A Sheth 1998 Semantic Heterogeneity in Global Information Systems: the

Role of Metadata, Context and Ontologies. In M P Papazoglou, and G Schlageter

(eds) Cooperative Information Systems-Trends and Directions. San Diego, CA,

Academic Press: 139-178

Kosslyn, S M 1980 Image in Mind. Cambridge, Massachusetts, Harvard University Press

Kosslyn, S M 1981 The Medium and the Message in Mental Imagery: A Theory.

Psychological Review, 88(1): 46-66

Laakso, A, et G Cottrell 2000 Content and Cluster Analysis: Assessing Representational

Similarity in Neural Systems. Physical Psychology, 13(1): 47-76

Lehmann, F 1992 Semantic Networks. Computers and Mathematics with Applications,

23(2-5): 50

Mackay, D S 1999 Semantic Integration of Environmental Models for Application to

Global Information Systems and Decision Making. Sigmod Record, 28(1): 7

Meta Data Coalition 1999 Knowledge Management Model: Knowledge Description.

Milstead, J L 1998 NISO Z39.50: Standard for Structure and Organization of Information

Retrieval Thesauri. In Proceedings of Taxonomic Authority Files Workshop: 9

Open GIS Consortium Inc. 2001 Geography Markup Language (GML) 2.0. Wayland,

Massachusetts, Open GIS Consortium Inc.

Page 71: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

51

Ouksel, A, et C Naiman 1993 Coordinating context build-ing in heterogeneous

information systems. Journal of Intelligent Information Systems, 3: 151–183

Ouksel, A M, et A Sheth 1999 Semantic Interoperability in Global Information Systems:

A Brief Introduction to the Research Area and the Special Section. Sigmod

Record, 28(1): 5-12

Peuquet, D, B Smith, et B Brogaard 1998 The Ontology of Fields. In Proceedings of

Summer Assembly of the University Consortium for Geographic Information

Science

Pylyshyn, Z W 1981 The Imagery Debate: Analogue Media Versus Tacit Knowledge.

Psychological Review, 88(1): 16-45

Pylyshyn, Z W In Press Mental Imagery: In search of a theory. Behavior and Brain

Sciences: 53

Ressources naturelles Canada 1996 Base nationale de données topographiques - normes

et spécifications. Sherbrooke, Québec, Centre d’information topographique –

Sherbrooke

Rips, L, J Shoben, et E Smith 19973 Semantic Distance and the Verification of Semantic

Relations. Journal of Verbal Learning and Verbal Behavior, 12: 1-20

Rodriguez, M A 2000 Assessing Semantic Similarity Among Entity Classes. Ph.D. Thesis,

University of Maine

Schramm, W 1971a How Communication Works. In J A DeVito (ed) Communication:

Concepts and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 12-21

Schramm, W 1971b The Nature of Communication Between Humans. In W Schramm,

and D F Robert (eds) The Process and Effects of Mass Communication.

Champaign-Urbana, IL, University of Illinois Press: 3-53

Sciore, E, M Siegel, et A Rosenthal 1992 Context interchange using metaattributes. In

Proceedings of First International Conference on Information and Knowledge

Management (CIKM): 377-386

Shannon, C E 1948 A Mathematical Theory of Communication. The Bell System

Technical Journal, 27: 379-423, 623-656

Sheth, A 1999 Changing Focus on Interoperability in Information Systems: From

Systems, Syntax, Structure to Semantics. In M Goodchild, M Egenhofer,

Page 72: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

52

R Fegeas, and C Kottman (eds) Interoperating Geographic Information Systems.

Boston, Massachusetts, Kluwer Academic Publisher: 5-29

Sheth, A, et V Kashyap 1992 So Far (Schematically) Yet So Near (Semantically). In

Proceedings of IFIP WG2.6 Database Semantics Conference on Interoperable

Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 283-312

Sheth, A P, et J A Larson 1990 Federated Database Systems for Managing Distributed,

Heterogenous, and Autonomous Databases. ACM Computing Surveys, 22(3): 183-

236

Simsion, G C 2001 Data Modeling Essentials - Analysis, Design, and Innovation.

Scottsdale, Arizona, Coriolis

Smith, B 1994 Fiat Objects. In Proceedings of Workshop on Parts and Wholes:

Conceptual Part-Whole Relations and Formal Mereology, 11th European

Conference on Artificial Intelligence: 15-23

Smith, B, et D Mark 1999 Ontology with Human Subjects Testing: An Empirical

Investigation of Geographic Categories. American Journal of Economics and

Sociology, 58(2): 245-272

Smith, B, et A C Varzi 2000 Fiat and Bona Fide Boundaries. Philosophy and

Phenomenological Research, 60(2): 401-420

Sowa, J F 1987 Semantic Networks. In S C Shapiro (ed) Encyclopedia of Artificial

Intelligence. New York, John Wiley & Sons

Spaccapietra, S, C Parent, et Y Dupont 1992 Model Independent Assertions for

Integration of Heterogenous Schemas. VLDB Journal, 1(1): 81-126

Sycara, K, M Klusch, S Widoff, et J Lu 1999 Dynamic Service Matchmaking Among

Agents in Open Information Environnements. Sigmod Record, 28(1): 47-53

Tari, Z 1992 Interoperability Between Database Models. In Proceedings of IFIP WG2.6

Database Semantics Conference on Interoperable Database Systems (DS-5)/IFIP

Transaction (A-25) Elsevier Science Publishers B.V.: 101-119

Tversky, A 1977 Features of similarity. Psychological Review, 84(4): 327-352

Weiner, N 1950 The Human Use of Human Beings: Cybernetics and Society. Boston,

Houghton and Mifflin

Page 73: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

CHAPITRE 3

L’INTEROPÉRABILITÉ

DES DONNÉES GÉOSPATIALES :

PROPOSITION D’UN CADRE CONCEPTUEL

Revisiting the Concept of Geospatial Data Interoperability

within the Scope of Human Communication Processes

(J. Brodeur, Y. Bédard, G. Edwards, et B. Moulin)

3.1 Résumé de l’article

D’importants travaux réalisés depuis le début des années 1990 ont porté sur la définition

et le développement de l’interopérabilité des données géospatiales. Cependant, la

définition d’un cadre conceptuel de l’interopérabilité des données géospatiales constitue

une contribution significative pour comprendre ce qu’est l’interopérabilité des données

géospatiales, pour reconnaître l’apport de chacune des contributions existantes et pour

stimuler de nouvelles recherches sur ce problème.

L’article qui fait l’objet de ce chapitre revoit le concept d’interopérabilité avec un recul

plus large en considérant la communication entre les êtres humains et leur

fonctionnement cognitif. En effet, la communication entre les êtres humains apparaît un

Page 74: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

54

cadre fertile du fait que les êtres humains communiquent de manière interopérable plus

facilement que les ordinateurs. Par conséquent, ce chapitre propose un cadre conceptuel

d’interopérabilité plus global que les autres cadres existants en l’illustrant par des

exemples concrets. Une ontologie formelle d’interopérabilité des données géospatiales

vient compléter la description du cadre conceptuel proposé. Dans ce cadre conceptuel, les

notions de concept, de contexte, de proximité et d’ontologie apparaissent comme

fondamentales pour élaborer notre approche de proximité géosémantique.

3.2 Abstract

Geospatial data interoperability has been the target of major efforts by standardization

bodies (e.g. OGC, ISO/TC 211) and the research community since the beginning of the

1990s. It is seen as a solution for sharing and integrating geospatial data, more

specifically to solve the syntactic, schematic, and semantic as well as the spatial and

temporal heterogeneities between various representations of real-world phenomena. A

few models have been proposed to automatically overcome heterogeneity of geospatial

data and, as a result, increase the interoperability of geospatial data. However, the

addition of a conceptual framework of geospatial data interoperability would contribute

to understanding geospatial data interoperability, the appreciation of where existing

contributions specifically apply, and would foster new contributions.

In this chapter, we revisit the concept of geospatial data interoperability within the

broader scope of human communication and cognition. Human communication appears

to be a rich framework since humans interoperate more easily than computers do.

Accordingly, we present a conceptual framework of geospatial data interoperability that

is broader in scope than existing frameworks and supported by several practical

examples. An ontology of geospatial data interoperability is also introduced in order to

refine the description of the conceptual framework. In such a communication-based

framework, the notions of concept, context, proximity, and ontology appear to be

fundamental elements. These elements constitute a new approach to geosemantic

proximity.

Page 75: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

55

3.3 Introduction

For almost a decade, interoperability of geospatial data has been a prime concern in the

geospatial information community. Software developers, data producers, and users aim at

enabling the sharing and integration of geospatial data and geoprocessing resources

(Kottman, 1999). Organizations such as the OpenGIS Consortium Inc. (OGC) and

ISO/TC 211, as well as the research community, have pioneered in laying the current

foundation for geospatial data interoperability. This community views interoperability as

a solution to problems arising from syntactic, structural, and semantic heterogeneities,

especially spatial and temporal heterogeneities, between data sources (Bishr, 1997;

Charron, 1995; Laurini, 1998; Ouksel and Sheth, 1999; Sheth, 1999).

Within the context of OGC, interoperability corresponds to “software components

operating reciprocally to overcome tedious batch conversion tasks, import/export

obstacles, and distributed resource access barriers imposed by heterogeneous processing

environments and heterogeneous data” (McKee and Buehler, 1998). Sondheim et al.

(1999) describe interoperability as a non-imposed, bottom-up approach where

heterogeneous systems, data models, and data sources deployed independently of one

another, can exchange data and handle queries (and other processing requests) as well as

make use of a common understanding of the data and requests.

Progress in geospatial interoperability is observed for syntactic heterogeneity (i.e. GIS

format translation and spatial data structure transformation, such as raster to vector

transformation) and geometric data-type definition. Progress is also observed for

structural heterogeneity, that is, differences in the internal organization of GIS

application data, the geodetic datum, map projections, and coordinate systems. Research

in geospatial interoperability, however, must go beyond geometry-related and database-

structure concerns to take into account semantics (Egenhofer, 1999; Rodriguez, 2000).

Reconciling both semantic and geometric heterogeneities between different geospatial

datasets describing the same phenomenon is deemed a major challenge. For example, it is

Page 76: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

56

still a problem to reconcile representations such as wetlands, marshes/swamps, marshes,

swamps, marshes/fens, milieux humides, and marais (see Table 3) that are used to

describe the same phenomena.

The nature of the problem that initiated the research presented in this thesis relates to

users of geospatial data increasingly having to deal with numerous data sources to meet

their specific needs. Examples of Canadian sources include the National Topographic

Data Base produced by the Department of Natural Resources Canada (Natural Resources

Canada, 1996); the Street Network Files, the Digital Boundary Files, and the Digital

Cartographic Files produced by Statistics Canada (Statistics Canada, 1997); the VMap

libraries produced for military purposes (VMap, 1995); the National Atlas of Canada

produced by the Department of Natural Resources Canada (Natural Resources Canada,

1996); and several provincial topographic data sources that are usually carried out at

larger scales (see BC Ministry of Environment Lands and Parks (Geographic Data BC),

1992; New Brunswick, 2000; OBM, 1996; Québec, 2000). Typically, each data source

describes differently closely related topographical phenomena. See for instance

waterbody, lake, lake/pond, coastline, river/stream, and canal in Table 3 which lists

some examples of phenomena represented differently by different sources, both

geometrically and semantically. Consequently, the retrieval of geospatial data complying

with the user’s needs and, subsequently, the data’s integration into a coherent whole

remains a crucial challenge. This kind of interoperability problem could have been

addressed from different points of view (e.g. Harvey, 1997). Our perspective is strongly

influenced by the artificial intelligence and database modelling approaches to human

communication, negotiation, and ontologies, which are connected but different from the

philosophical perspective of these topics.

Accordingly, the next section of this chapter reviews some fundamental notions of

communication, cognitive sciences, ontology, and database modelling that support the

proposed framework of interoperability presented in Section 3.5. In Section 3.6, we

depict the five phases and three levels of the ontology of geospatial data interoperability

Page 77: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

57

Table 3: Examples of phenomena abstracted differently in independent topographical databases

NTDB1 VMap2 BC Digital Baseline Mapping (BCDBM)3

ON Digital Topographic Database

(ONDTD)4 BDTQ5

Information sur les terres et les eaux pour la province du

Nouveau-Brunswick6 - Waterbody - Watercourse - Irrigation Canal - Navigable Canal - Flooded area - Reservoir - Liquid depot/dump

- Lake/Pond - Lake subject to

inundation - River/stream - Coastline/shoreline

- Coastline - Ditch - Flooded land - Lake - River/stream

- Flooded land - Lake - River/stream

- Canal - Cours d’eau - Lac - Mare

- Canal - Rivière–trait double - Lac (?) - Littoral (?) - Lac de rivière (?)

- Wetland - Marsh/swamp - Marsh - Swamp

- Marsh/Fen - Milieu humide (végétation)

- Marais de canneberge (?) - Marais (?)

- Road - Limited access road

- Road - Car track

- Road - Accesway - Road

- Voie de communication

- Autoroute - Rue - Chemin - Route

- Artère (?) - Route collectrice (?) - Chemin local (?) - Chemin municipal (?) - Chemin d’accès aux

ressources naturelles (?) - Route en construction (?) - Rue (?)

- Vegetation - Trees - Orchard/plantation - Vineyard

- Wooded area - Vineyard - Orchard - Nursery

- Wooded area - Milieu boisé - Verger (aires

désignées)

- Clairière (?) - Bande défrichée (>100m) (?) - Pépinière (?) - Verger (?) - Rangée d’arbres (>100m) (?) - Zone boisée (>2m haut) (?)

- Railroad - Railroad - Railroad siding/railroad

spur

- RailLine - Rail line - Voie ferrée - Chemin de fer (?) - Triage de chemin de fer (?)

- Bridge - Obstacle to air

Navigation

- Bridge/overpass/viaduc (?) - Bridge - Trestle

- Bridge (roadway) - Bridge (railway) - Culvert (roadway) - Culvert (railway)

- Pont - Pont d’étagement

- Pont (?) - Ponceau (petit) (?)

Spatial pictogram descriptions: :0D ; :1D ; :2D ; ?:unknown geometry ; :multiple geometry ; :alternate geometry (see (Bédard, 1999b) and (Brodeur et al.,

2000) for more details). (Natural Resources Canada, 1996); 2(VMap, 1995); 3(BC Ministry of Environment Lands and Parks (Geographic Data BC), 1992); 4(OBM,

1996); 5(Québec, 2000); 6(New Brunswick, 2000).

Page 78: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

58

supported by the framework. In Section 3.7, we develop the mapping between a concept

and a conceptual representation. Section 3.8 introduces the approach we are working on

to assess semantic proximity between a geospatial concept and a geospatial conceptual

representation. This is called geosemantic proximity as it considers in a holistic way the

semantic, spatial, and temporal descriptions of geospatial concepts and geospatial

conceptual representations. Section 3.9 concludes this chapter and indicates future work.

3.4 Interoperability and the human communication process

The framework of geospatial data interoperability that will be discussed in the following

sections is supported by some theoretical notions used in the fields of human

communication and perception, ontology, data modelling, and, more specifically, by the

notions of context and semantic proximity found in artificial intelligence. This section

describes these concepts.

3.4.1 Communication process

The study of the different aspects of communication between all kinds of systems

originated in 1948 with Norbert Weiner’s ideas concerning cybernetics and the numerous

adaptations that followed, yielding new insights into human communication (Blake and

Haroldsen, 1975; Campbell, 1982; Sowa, 1984; Weiner, 1950). We believe that the

communication process between humans represents an ideal model of what

interoperability should be. It begins when an individual has something in mind

representing real-world phenomena and wants to communicate it to someone else.

The communication process is described as being composed of a source, a signal, a

communication channel, a destination, a possible source of noise, and feedback. In the

first stage of the communication process, the source has a representation of real-world

phenomena that corresponds, for humans, to their cognitive model (Bédard, 1986; Denes

and Pinson, 1971; Logie and Denis, 1991; Schramm, 1971b) and, for machines, to a part

of their physical memory. This model is developed through the direct observation

Page 79: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

59

(detection and recognition of raw signals) of phenomena and from the observation of

preprocessed, intentional semantic signals from others (Bédard, 1986). The source selects

information to be communicated, transforms it into signals such as words (spoken or

written) or data, and organizes them into a message that is placed in the communication

channel (Campbell, 1982; Denes and Pinson, 1971). This is known as the encoding

process. It follows rules that are more or less formal depending on the context and the

nature of the encoder (human or machine). The resulting signals or data are physical

descriptions free of any intrinsic signification (Bédard, 1986; Campbell, 1982; Cherry,

1978; Schramm, 1971a). Signification is what signals evoke to the source and to the

destination, respectively and, consequently, cannot be transmitted (Cherry, 1978). Signals

are the mediation component between the source and the destination, but their intended

meaning is not embedded within the signal. Once the destination has received the

message, the decoding process starts as it tries to understand the incoming signal, that is,

to find its intended meaning, and the communication process ends with the creation of the

destination’s evoked concepts (Bédard, 1986; Schramm, 1971a). The communication

process works properly when the destination’s evoked concepts are sufficiently

isomorphic to the source’s concepts, that is, when both represent the same real-world

phenomena. Feedback, or retroactive communication may be used to improve

isomorphism. The notion of commonness (Schramm, 1971a) is basic in the

communication process: in other words, the source and destination shall have a common

set of knowledge and signals to make the process work properly. The destination relies

on signals and referents (i.e. knowledge and beliefs of the world) to recognize the

message (Denes and Pinson, 1971; Krech and Crutchfield, 1971).

3.4.2 Perception and cognition

In the communication process, as well as in the case of interoperability, perception and

cognition play a leading role in building, structuring, and disseminating human

information. As mentioned previously, human communication begins when someone

wants to transmit information in mind to someone else. As such, cognitive models are

basic elements of human-to-human communication. They are built up from physical

Page 80: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

60

signals captured through our sensory systems, which generate perceptual states

(Barsalou, 1999). Then, the human selective attention extracts only subsets of interest

among these perceptual states (Barsalou, 1999; Krech and Crutchfield, 1971; Sears and

Freedman, 1971) and stores these permanently in memory as perceptual symbols

(Barsalou, 1999).

The literature essentially recognizes two modes of perceptual symbol representations.

The first corresponds to modal or analogical representations (Barsalou, 1999; Kettani and

Moulin, 1999; Kosslyn, 1980) and is isomorphic to the perceptual state such as an image

captured by the visual sensory system. It consists of the reproduction or conversion of

raw signals into memory. The second mode corresponds to amodal or propositional

representations (Barsalou, 1999; Kettani and Moulin, 1999) and refers to tacit knowledge

(Pylyshyn, 1981). Inspired by logics, statistics, mathematics, and computer science, it

corresponds to structures such as feature lists, frames, schemata, and semantic nets

(Barsalou, 1999; Lehmann, 1992). Moreover, Barsalou (1999) brought a new definition

of a perceptual symbol as a record of neural activation resulting from the perception

process where the neural system, which is common to imagery and perception, underlies

the conceptual knowledge. Perceptual symbols are more likely qualitative and functional,

and are not stored independently from others in memory (Barsalou, 1999; Krech and

Crutchfield, 1971).

In Barsalou’s theory, a perceptual symbol corresponds to a concept and behaves like a

simulator that generates conceptual representations (i.e. simulation of the concept). This

notion of simulator is similar to a kind of dynamic translator generating translations of

the concept on the fly for a specific use. Concepts are made of cognitive elements, which

are not directly accessible, and a translator function that encapsulates these elements. The

translator function reproduces these cognitive elements in the context of data processes.

A concept can only be communicated via selected data elements translated into physical

signals, which are conceptual representations. A huge literature in the field of semiology

exists which defines rules about the best ways to create conceptual representations. For

instance, a concept corresponding to water area can be translated in a number of

Page 81: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

61

conceptual representations such as waterbody, coastline, lake, and river/stream

represented by either surfaces or lines in different colors, shading and line styles (all

constituting possible simulations of water area). The concept through its translator

function can also recognize conceptual representations associated with the concept

(Barsalou, 1999). This is carried out by matching a simulation of the concept (i.e. a

generated conceptual representation) with the incoming conceptual representation; when

the matching fails, a new concept is instantiated.

3.4.3 Ontology and conceptual modelling for database development

The communication process, as a proper model to depict interoperability, involves real-

world phenomena along with their descriptions: the different human cognitive models

and physical models such as signals. Real-world phenomena, their identification, and

description have been studied within the realms of ontology and conceptual modelling for

database development.

In its philosophical meaning, ontology stands for the description of the world in itself

(Peuquet et al., 1998); a model and an abstract theory of the world (Smith and Mark,

1999); and, the science of being, of the type of entities, of properties, of categories, and

of relationships that compose reality (Bittner and Edwards, 2001; Lehmann, 1992;

Peuquet et al., 1998; Smith and Mark, 1999). It is described from two perspectives. The

first, called formal ontology, refers to shared structures between scientific domains such

as identity, plurality, and unity. The second, called material ontology, relates to the

conditions that are necessary to belong to an entity type within a given domain (Peuquet

et al., 1998). In artificial intelligence (AI), Gruber (1993a) and Gruber (1993b) defines an

ontology as “an explicit specification of a conceptualisation” and Guarino (1998) as “a

logical theory accounting for the intended meaning of a formal vocabulary.” AI

definitions of ontology and the material ontology in philosophy tend to follow a similar

objective. As shown in Table 3, there may be multiple ways of describing a single

conceptualization. This is particularly reflected in Gruber’s definition of ontology, which

admits that each explicit description (i.e. specification, vocabulary) consists of one

Page 82: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

62

specific ontology. Guarino’s definition goes further by considering the ontological

relationship (i.e. the “intended meaning”) that exists between a description (i.e. the

vocabulary) and the concept it evokes. Consequently, we can admit a relationship

between the philosophical and the AI notions of ontology only if we consider that

“conceptualization” in the AI context corresponds to the philosophical definition of

ontology (Rodriguez, 2000). We can also accept that descriptions from multiple

ontologies (as in AI) can ontologically refer to the same concept (or phenomenon). While

there is an obvious connection between the philosophical and the AI definition of

ontology, the latter is considered as the main orientation of this thesis. As such, we refer

to ontology as a formal representation of phenomena with an underlying vocabulary

including definitions and axioms that make the intended meaning explicit and describe

phenomena and their interrelationships.

As applied to databases, a conceptual model is a simplified, abstract representation of a

portion of reality resulting from a data-centered analysis of users’ interests (Bédard,

1999a; Simsion, 2001). It results from reflective thinking to better understand that part of

reality and to communicate information about it (Collongues et al., 1987; Simsion, 2001).

Bédard (1999b) mentions that conceptual models serve as tools for thinking,

communication, development, and documentation. Conceptual models retain, organize,

and store only features of interest in terms of general categories, object classes,

properties, relationships, generalizations, aggregations, roles, constraints, behaviour,

geometry, temporality, and so on, either in a lexical (e.g., EXPRESS, Bakus-Naur

formalism) or graphical formalism (e.g., entity relationship formalism, UML) (Brodeur et

al., 2000). Ideally a data dictionary defining the semantics of each schema component is

included in a conceptual model, which makes the intended meaning of the modelled

feature explicit. In a conceptual model, objects must be unique in the context of the

database and, as such, characterized by only one combination of properties and

relationships (Collongues et al., 1987; Simsion, 2001). Because of the specific

perspective for which a data model is elaborated or because of the experience of the data

modeler, there is usually more than one data model to express the same part of reality

(Collongues et al., 1987; Simsion, 2001). The problem emerging from the existence of

Page 83: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

63

different conceptual models is to establish the relationship between models describing the

same set of phenomena. Based on the definitions of data models and ontology, we see

ontology as a theoretic layer underlying conceptual modelling providing the means to

link classes and instances depicting the same part of reality differently but in similar

ways. This linkage of classes and instances is made possible through the analysis of

intrinsic and extrinsic properties (see Section 3.8) that give them their “identity.”

3.4.4 Context

The situation in which a real-world phenomenon is perceived, abstracted, and used

governs its description. This context affects the definition of concepts and conceptual

representations. Context is widely recognized as a fundamental notion in semantic

interoperability. It provides concepts and conceptual representations with real-world

semantics (Kashyap and Sheth, 1996; Ouksel and Sheth, 1999; Wisse, 2000). As reported

in (Kashyap and Sheth, 1996), however, context has been associated with various other

ideas such as knowledge for reasoning about other systems (Ouksel and Naiman, 1993);

signification, content, organization, and properties about data (Sciore et al., 1992); a

characteristic associated with a partition of an ontology (Guha, 1990); and membership in

a database, relationship, export schema, or internal schema (Sheth and Kashyap, 1992).

Moreover, Frank’s five tiers of ontology (Frank, 2001) introduce context as a main

component of the social ontology. Context has influence at the conceptual level as well as

at the implementation level. On the one hand, context drives how phenomena are

perceived and abstracted, resulting in different object classes, properties, geometries,

temporalities, relationships, and so on. On the other hand, it also acts at the

implementation level, for instance via specific data capture specifications such as “rapids

depicted on a map by three points less than 100 metres apart and stretching over a

distance of more than 100 metres are consolidated into a line.” Following a conceptual

orientation, context is in our approach associated with the manner an individual abstracts

real-world phenomena; the description of these phenomena is organized into intrinsic and

extrinsic properties of the corresponding concepts and conceptual representations.

Intrinsic properties refer to the literal meaning while extrinsic properties refer to the

Page 84: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

64

dependencies with other concepts or conceptual representations (Guarino and Welty,

2000a). For example, the intrinsic properties of a road concept can be described by its

classification, surface type, status, and geometry while extrinsic properties can be the

relationships the road has with concepts such as built-up areas, bridges, dams, fords,

tunnels, and the behaviour of the road in different situations. These together describe the

context of the phenomenon. An important challenge in semantic interoperability of

geospatial data resides in increasing context-based reasoning capabilities.

3.4.5 Semantic proximity

In interoperability, as in the communication process, an incoming conceptual

representation must be recognized and given a specific meaning. This implies matching

the conceptual representation with a concept in the destination’s cognitive model. The

matching operation analyzes the context of both the conceptual representation and that of

the concept to retrieve commonalities between them. This issue has been studied in AI

thanks to the notion of semantic proximity which expresses the similarity between

conceptual representations such as in semantic networks (Cohen, 1982; Lehmann, 1992),

knowledge networks (Frankhauser et al., 1991; Frankhauser and Neuhold, 1992), and

context-based approaches (Kashyap and Sheth, 1996; Kashyap and Sheth, 1998).

Generally speaking, a semantic network is an interconnected node–arc-like structure such

as a frame system, a relational graph, or a hierarchy (e.g., lattice, tree, or acyclic graph) in

which nodes represent conceptual representations and arcs the relationships that exist

between such representations (Cohen, 1982; Lehmann, 1992). Semantic proximity deals

with the semantic relatedness between two different conceptual representations. The

closest conceptual representation to a given one is typically the one having the smallest

conceptual distance i.e. the shortest path to a given conceptual representation in a

representational space (Rodriguez, 2000). Frankhauser et al. (1991) and Frankhauser and

Neuhold (1992) implement knowledge networks in which conceptual representations

(nodes) are linked to others by associations of the type generalization/specialization,

negative association, or positive association. A coefficient expressing the strength

between the two conceptual representations is assigned to each association. For two non-

Page 85: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

65

associated conceptual representations, a relationship and strength are inferred by

traversing the network from one conceptual representation to the other, analyzing the

nature and the strength of each relationship. In (Kashyap and Sheth, 1996; Kashyap and

Sheth, 1998), the semantic proximity between two conceptual representations

corresponds to a comparison modulated by (1) the context of the comparison; (2) the

abstraction or mapping used to associate with each respective domain; (3) the domains

(i.e. the possible values); and (4) the state vectors (i.e. the values they hold at a given

time). Predicates such as semantic resemblance, semantic relevance, semantic relation,

semantic equivalence, and semantic incompatibility are used to express qualitatively the

semantic proximity that exists between two conceptual representations.

3.5 A conceptual framework of geospatial data interoperability

A few attempts have been made to automatically overcome semantic heterogeneity and

increase the interoperability of geospatial data, notably the Semantic Formal Data

Structure (Bishr, 1997), the Matching Distance model (Rodriguez, 2000), and the Isis

approach (Benslimane, 2001). In (Bishr, 1997), interoperability is defined as “the ability

of a system or components of a system to provide information sharing and inter-

application co-operative process control.” Accordingly, the Semantic Formal Data

Structure was elaborated to reconcile heterogeneous representations of a unique concept

combining loosely coupled federated schemata and a Proxy Context mediator. In this

approach, users formulate queries in their own vocabulary and submit them to the

Context Mediator. Subsequently, the Context Mediator translates these queries according

to a shared context definition (i.e. a federated schema) and passes the queries to the data

source export schema to retrieve the data complying with the user’s queries.

Rodriguez (2000) defines the semantic interoperability problem as the “identification of

semantically similar objects belonging to different databases and the resolution of their

schematic differences” (i.e. differences between the database schemata). She proposes the

Matching Distance model to evaluate the semantic similarity between object classes of

geospatial features. The variability and resemblance of class functions, parts, and

Page 86: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

66

attributes are analyzed to compute a quantitative measure of similarity between object

classes. This model makes use of an acyclic graph with is-a and part/whole relationships,

and ontologies in which class definitions are given.

In the Isis approach (Benslimane, 2001), interoperability is defined as an operation in

which (1) clients and data sources adopt a common representation model, (2) clients and

data sources share a mutual understanding of common features, and (3) a process can

dynamically transform one object representation into another, adapting the semantics and

structure to the user’s needs. Based on this definition, the Isis solution was developed

following a context-based mediation orientation. In this solution, each independent

database is associated with a context co-operation schema. A context co-operation

schema results from the interpretation of a database export schema with a unique

reference context, which is derived from a domain ontology. Accordingly, data from one

database can be translated into one another by the use of their respective context co-

operation schema.

In the light of these somewhat different approaches, we believe that a more global

framework would enhance understanding of geospatial data interoperability (Egenhofer,

1999) and provide a theoretical foundation to better appreciate each contribution and

foster new ones. In this section, we revisit the notion of interoperability within the

broader scope of human communication and cognition. People interact using different

representations of observable phenomena but regularly end up understanding each other.

We believe that interoperability consists in a process similar to human communication

(Bédard, 1986; Darnell, 1971; Denes and Pinson, 1971; Lippmann, 1971; Schramm,

1971a; Schramm, 1971b) in which independent systems automatically manipulate,

exchange, and integrate data coming from each other. This assumption motivated the

creation of the conceptual framework of geospatial data interoperability, which is

proposed hereafter, and of the concept of geosemantic proximity introduced in section

3.8.

Page 87: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

67

First, let us assume the following situation. An individual, hereafter called a user agent

(Au), is looking for information about the hydrographic network in the area of the City of

Sherbrooke. He or she launches a query on a search engine with the keywords lake, river,

and Sherbrooke targeting a geospatial database, hereafter called the data provider agent

(Adp). Adp receives and interprets the request, searches for related information and,

referring to the content it is aware of, sends a response to Au. In other words, Adp provides

the main watercourses and waterbodies in the vicinity of Sherbrooke (for instance

Lac des Nations , Magog River , and Saint-François River ). These elements

correspond exactly to Au’s query.

This situation illustrates what interoperability should be between two agents. In this case,

interoperability is associated with an interpersonal communication (Blake and Haroldsen,

1975) (i.e. a dialogue-like communication) between two agents, each of them using its

own vocabulary to express abstractions of real-world phenomena. As long as the two

agents have a common background and a common set of symbols, they regularly end up

understanding each other (Bédard, 1986; Schramm, 1971a).

Let us review this situation described as a communication process between the two

agents. Figure 12 depicts in greater detail the interaction between them. First, there is the

topographic reality as it exists at a given time and about which Au is looking for

hydrographic information (represented by R in the model).

Second, Au’s cognitive model of R is built from observed signals and his or her frame of

reference–the set of rules and knowledge he or she used to abstract phenomena. Au’s

cognitive model consists of properties that are judged significant. These properties are

joined together and structured within concepts. A concept is a simplified version of a

real-world phenomenon or part of it that does not exist in reality; it is entirely fictional

(Sowa, 1984). It is an abstract notion that denotes the “picture” an agent has in mind

(Bédard, 1986; Denis, 1994; Kettani and Moulin, 1999; Lippmann, 1971; Logie and

Denis, 1991; Schramm, 1971a). All concepts that Au has in mind constitute his or her

Page 88: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

68

representation of reality, that is, his or her cognitive model, which is identified by R’ in

the framework.

As they are only abstractions, concepts cannot be communicated directly between agents

and, as such, they must be transformed into physical representations. This is known in the

communication process as the encoding operation. In this operation, only properties that

adequately translate a concept in a given situation are selected. These are then transferred

into signals of different types (words, abbreviations, punctuation, symbols, pictograms,

etc.), which are aligned in a specific order according to a set of rules (i.e. a grammar) to

build a conceptual representation. The encoded conceptual representation becomes the

physical component depicting partly or wholly the concept to which it refers. This

conceptual representation forms the third expression of the reality. It is illustrated by

Lake, River, and Sherbrooke in Figure 12 and is identified by R’’. It designates the data

transmitted and used for interoperability. Conceptual representations are released on the

communication channel exempt of any of Au’s intended meaning and the message

representing Au’s request—“(Lake or River) in Sherbrooke?” (see Figure 12)—travels to

its destination.

At the destination, Adp initiates the decoding operation, which aims at recognizing the

received conceptual representations and at assigning them appropriate meaning. In our

framework, this task is assigned to concepts (this will be discussed in more detail in

Section 3.7). Under perfect conditions, conceptual representations will induce concepts in

Adp that are isomorphic to Au’s concepts. However, in most situations, conceptual

representations will induce in Adp concepts of similar meaning to Au’s concepts. The set

of Adp’s concepts constitutes the fourth expression of reality. It is denoted by R’’’ and

illustrated by Waterbody , Watercourse , and Sherbrooke in the theoretical model

(Figure 12).

When conceptual representations have been recognized, Adp initiates the retrieval of

information complying with Au’s interests. However, as is the case in R’, concepts and

even tokens (i.e. instances of concepts) matching Au’s request cannot be transmitted

Page 89: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

69

directly. Similarly to Au’s cognitive model, concepts consist of internal representations

that are hidden to external agents. Consequently, concepts and tokens must be encoded

into conceptual representations and placed in a reply message on the communication

channel to reach Au. These encoded conceptual representations constitute the fifth

representation of the reality. It is denoted by R’’’’ and illustrated by Lac des Nations ,

Magog River , and Saint-François River in Figure 12.

Once the reply reaches its destination, Au starts the decoding operation in order to

recognize the incoming message; he or she analyzes the conceptual representations

included in the message to assess if they infer the previous concepts in R’. If so, we say

that interoperability occurred during the interaction between the two agents. This means

that interoperability is not simply a one-directional communication process, but it

consists in a bi-directional process as clearly demonstrated in the conceptual framework.

It includes feedback in both directions which ensures that messages issued by Au and Adp

have reached their destination and have been understood properly. We believe that this

issue of bi-directional communication process takes on a fundamental character in the

search for a solution to semantic interoperability of geospatial data.

3.6 Ontology of geospatial data interoperability

As introduced in Section 3.4, ontology refers to a formal and accepted representation of

phenomena with an underlying vocabulary, including definitions that make the intended

meaning explicit. In the framework presented above, we have demonstrated that reality

takes various configurations beginning with the reality itself, human beings’ cognitive

representations (or their physical counterpart in machines), and physical representations.

The proposed conceptual framework introduces five different representations of the same

reality (R, R’, R’’, R’’’, and R’’’’). Each of these representations is a distinct facet of the

reality that occurs in the proposed framework of geospatial data interoperability. Frank

(2001) has already introduced a subdivision of ontology called the five tiers of ontology,

in which a distinction is made between the different abstraction levels that an

Page 90: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

70

Figure 12: A conceptual framework of geospatial data interoperability

(adapted from the communication process of geographic information systems in (Bédard, 1986))

Page 91: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

71

agent has to deal with when building its cognitive model, namely: physical reality,

observation of physical world, objects with properties, social reality, and subjective

knowledge. Here, we introduce a different and complementary subdivision of ontology

for the purpose of geospatial data interoperability composed of the five ontological

phases of geospatial data interoperability and the three levels of ontology presented

hereafter. These new subdivisions will allow us to view interoperability from a different

angle.

3.6.1 The five ontological phases of geospatial data interoperability

The five ontological phases of geospatial data interoperability consist of the five

different facets of reality that appear in the framework of geospatial data interoperability.

The first ontological phase consists of the reality itself (R), which is beyond description.

Each phenomenon has its own identity that makes it distinguishable from the others.

The second ontological phase is Au’s cognitive model of the reality, R’. It gathers all the

concepts that take place in Au’s memory. This phase results from direct observations (i.e.

from our sensory motors) and indirect observations (i.e. mechanical sensors, information

captured by other agents) of reality. It is a partial description of reality and can be viewed

as a subset of R corresponding to Au’s affordances (Gibson, 1979). This ontology is Au’s

internal representation of reality.

The third ontological phase is the set of conceptual representations R’’ (objects and

object classes) that are used to signify concepts of Au’s ontology. This ontological phase

uses a vocabulary, which accurately specifies the intended meaning attributed to the

different concepts. Each conceptual representation describes a concept within a specific

context. Therefore, more than one conceptual representation can refer to a given concept,

for example vegetation, tree, and wooded area (see Table 3 for other examples). It is also

possible that one conceptual representation refers to different concepts, depending on the

context in which they are used. This refers to the notion of polysemy. For example,

Page 92: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

72

Bridge may refer to a road infrastructure, a hazard to air navigation, or even a hazard to

marine navigation.

The fourth ontological phase consists of the set of Adp’s concepts and refers to the

database’s internal representation of reality R’’’. In the theoretical framework, database

agents such as Adp behave as cognitive agents in which descriptions of concepts are

internal representations of real-world phenomena that serve as interlingua in the

interaction with other agents. Database concepts also include functions that can afford

reasoning capabilities such as production and recognition of conceptual representations

(this will be discussed in Section 3.7).

The fifth and last ontological phase consists of the conceptual representations R’’’’ that

Adp’s concepts can produce. Like R’’, this ontological phase consists of physical

representations which use a vocabulary that aims to deliver the intended meaning of Adp’s

concepts (R’’’).

In the five ontological phases of geospatial data interoperability, we consider that each

ontological phase includes a set of properties describing the identity of phenomena. This

set of properties allows the binding of the different representations (R’ to R’’’’) with the

phenomena. Moreover, it is our interpretation that the five tiers of ontology (Frank, 2001)

deal more with the steps involved in cognition, which apply to R’ and R’’’ specifically.

In this regard, the five ontological phases of geospatial data interoperability deal more

with reality and its different representations that occur in the interaction between two

agents. Consequently, we feel that Frank's five tiers of ontology and our five ontological

phases of geospatial data interoperability are complementary.

3.6.2 Levels of ontology

Reality is usually abstracted and described with more or less details depending on the

accuracy needed in a given situation. Accordingly, the meaning of concepts and

conceptual representations is described from more general to more specialized when used

Page 93: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

73

in a global context, within a scientific community or within a specific application,

respectively. In the literature, authors refer typically to global ontology (Bergamaschi et

al., 1999; Guarino, 1998; Kahng and McLeod, 1998; Kashyap and Sheth, 1996; Kashyap

and Sheth, 1998; Sheth, 1999; Smith, 1999), domain ontology (Fowler et al., 1999;

Guarino, 1998; Kashyap and Sheth, 1996; Kashyap and Sheth, 1998; Sheth, 1999; Smith,

1999), and application ontology (Guarino, 1998; Kahng and McLeod, 1998; Kashyap and

Sheth, 1998; Smith, 1999; Sycara et al., 1999). These levels of ontology (Figure 13) are

characterized by a different granularity in the abstraction and description of phenomena.

A comparison can be made with a dictionary describing a set of generic terms, a lexicon

that is a brief dictionary specialized in a given science or technique, and a glossary that

appears at the end of a book defining the specific meaning of terms used in the book. At

the coarser level of granularity, global ontology compiles concepts or conceptual

representations of a high and generic level of abstraction, independent of any specific

domain. Examples of such ontologies are Wordnet

(http://www.cogsci.princeton.edu/~wn/), CYC (http://www.cyc.com/), TERMIUM Plus

(http://termiumplus.bureaudelatraduction.gc.ca), and Le grand dictionnaire

terminologique (http://www.granddictionnaire.com). At the middle level of granularity,

domain ontology makes an inventory of concepts or conceptual representations which are

accepted and shared within an information community. An example of this level of

ontology is the National Standards for the Exchange of Digital Topographic Data:

Topographic Codes and Dictionary of Topographic Features (Canadian Council on

Surveying and Mapping, 1984), which compiles, defines, and structures a set of terms

describing topographic phenomena. At the most detailed level of abstraction, an

application ontology lists, defines, and organizes concepts or conceptual representations

specific to an application. This kind of ontology is documented in many ways, for

instance application schema (ISO/TC 211, 2002), data dictionary, feature catalogue

(ISO/TC 211, 2001), repository (Brodeur et al., 2000), and data specification. For

example, let us mention the National Topographic Data Base—Standards and

Specifications (Natural Resources Canada, 1996) (http://scar.cits.rncan.gc.ca/bndt/),

VMap Specifications (VMap, 1995), British Columbia Specifications and Guidelines for

Geomatics (BC Ministry of Environment Lands and Parks (Geographic Data BC), 1992),

Page 94: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

74

Ontario Digital Topographic Database-1:20,000, 1:10,000-A Guide for Users (OBM,

1996), Base de données topographiques du Québec (BDTQ) à l’échelle 1/20 000—

Normes de production (Québec, 2000), BD TOPO and BD CARTO

(http://www.ign.fr/fr/MP/BDGeo/), ATKIS-Digital Topographic Map 1:10,000

(http://www.atkis.de), and USGS-DLG (http://rockyweb.cr.usgs.gov/nmpstds/

dlgstds.html).

Figure 13: The three levels of ontology

As illustrated in Figure 13, the navigation between the different levels of ontology

follows a bottom-up approach. An agent (Au or Adp) initiates its reasoning using its own

knowledge and, if needed, that of other specific knowledge bases to which it has direct

access. This corresponds to the application ontology level. When required, domain

ontologies can be accessed to get shared conceptual representations within a specific

community to facilitate communication between agents. Domain ontology can also be

linked to other related domain ontologies to expand this level of knowledge. Finally,

domain ontologies can access global ontologies to get conceptual representations of

Page 95: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

75

common usage. Again, such an ontology may be associated with others on the same level

to expand the global representation and knowledge of reality.

Accordingly, we propose, as a complement of the framework, the ontology of geospatial

data interoperability viewed as a two-dimensional subdivision. One dimension consists

of the five ontological phases of geospatial data interoperability and the other in the

three levels of ontology. This ontology of geospatial data interoperability consists of the

various configurations of real-world phenomena descriptions that take place in

interoperability. It shows the complexity and the components involved in geospatial data

interoperability. As shown in our conceptual framework, geospatial data interoperability

is not simply being able to access geospatial data in a given format and schema and use it

with a GIS system. Even if the geospatial data is transferred properly on your GIS

system, they have to mean something otherwise they are useless. Geospatial data

interoperability encompasses various abstractions and understandings of geospatial

phenomena that are in interaction thanks to the communication process in which multiple

ontologies of different granularities have to be considered in every phase of geospatial

data interoperability. As such, the ontology of geospatial data interoperability helps to

grasp and describe as a whole the scope of interoperability of geospatial data. Also, along

with the conceptual framework, it helps to understand all the relationships that exist

Figure 14: Ontology of geospatial data interoperability

Page 96: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

76

between the real-world phenomena and their various descriptions. The ontology of

geospatial data interoperability is then organized as shown in Figure 14, in which OJ

I

identifies one component of the ontology signifying the level I of the ontological phase J.

However, each component of this ontology may have different levels of relevance

according to the different situations in which different geospatial databases take part.

3.7 Relationship between concept and conceptual representation

With respect to the interoperability of geospatial data, encoding and decoding functions

are crucial components since they are responsible for generating and recognizing

geospatial conceptual representations, respectively. They are, to some extent, translation

functions. Generally speaking, translators have been typically implemented as

middleware components performing the conversion of a dataset from one data model and

data format to another. Such an approach assumes that a correlation between data models

and structures is already available or can be made in a timely and practical manner. This

situation is acceptable when dealing with a small amount of databases. This is not the

case when navigating on the Internet and dealing with a large number of datasets, since

we have to deal with a practically infinite number of representations of the reality.

Consequently, encoding and decoding functions are strongly tied to concepts in the

framework of geospatial data interoperability outlined in Section 3.5. Therefore, a

concept may be viewed as consisting of the set of knowledge with the accompanying

processes that an agent maintains about a phenomenon, which generate and recognize

different representations of the concept. This position is supported by Barsalou’s theory:

“… a concept is equivalent to a simulator. It is the knowledge and accompanying

processes that allow an individual to represent some kind of entity or event

adequately. A given simulator can produce limitless simulations of a kind, with

each simulation providing a different conceptualization of it. Whereas a concept

represents a kind generally, a conceptualization provides one specific way of

thinking about it.

Page 97: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

77

… Once a simulator becomes established in memory for a category, it helps

identify members of the category on subsequent occasions …” (Barsalou, 1999)

This approach to the assessment of geospatial data interoperability is in itself different

from those already delineated in the geospatial information community, namely in

(Benslimane, 2001; Bishr, 1997), and appears to be better aligned with human

communication and cognition.

Accordingly, a concept appearing in R’ and R’’’ behaves as a “simulator” which can

generate different simulations of itself, that is, conceptual representations, as well as

recognize a conceptual representation that is bound to it. Essentially, a concept of the

brain or the machine is made of hidden data elements that are encapsulated by a

simulation function (shown in Figure 12 by a dotted ellipse that encompasses the

concept). The simulation function forms the main interface to access a concept.

This simulation function performs the encoding to produce conceptual representations

such as those appearing in R’’ and R’’’’. It is in some way a translation process that goes

from a hidden and more neutral representation—the concept—to a language-dependent

representation—the conceptual representation. This function selects and puts together

properties that adequately describe the concept in a specific situation. It uses a

vocabulary, punctuation, and grammar in order to build conceptual representations.

In order to produce conceptual representations, the concept’s simulation function

searches to find the best way to describe the concept in a given situation. As such, the

function has to take into consideration other concepts of similar meaning. These concepts

are abstracted from a different context and are all organized in the same ontology.

Like perceptual symbols (see Section 3.4), concepts are not stored independently of

others in R’ and R’’’. On the contrary, they are to some extent a kind of attractor within a

dynamic network (as an ontology structure). When a new concept is introduced into the

network, existing similar concepts try to attract this new concept, to place it nearby, and

Page 98: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

78

to build the necessary links with it. Hence, similar concepts are clustered together,

expressing some sort of proximity. On the one hand, a concept is defined as a discrete

notion (Sowa, 1984) that takes part in an ontology as a phenomenon in reality. On the

other hand, ontology is seen as a more continuous but yet partial representation of reality

linking multiple concepts together. The concept’s simulation function takes advantage of

this ontology structure to produce and recognize conceptual representations that are best

suited to any given situation.

The simulation function also implements the decoding operation, that is, recognition of

conceptual representations that are bound to the concept. As stated by Barsalou, “… if the

simulator for a category can produce a satisfactory simulation of a perceived entity, the

entity belongs in the category.” So, in order to recognize a conceptual representation as a

member of a concept, a concept must be able to produce such a conceptual

representation. As illustrated in Figure 12, Waterbody and Watercourse are Adp’s

concepts that can produce the Lake and River conceptual representations and, as

such, Lake and River are bound to the Waterbody and Watercourse concepts.

A conceptual representation describes a concept within a specific context. Context is

introduced here as a metaconcept that is omnipresent in the representation of real-world

phenomena (Wisse, 2000). A context is as imaginary and fictitious as is a concept. It

consists of elements that influence the use of a concept and provide its real signification.

Like Ouksel and Sheth (1999), we consider the context as the main vehicle that provides

real-world semantics. The context description is usually embedded in the components

defining and characterizing conceptual representations (Wisse, 2000) such as object

classes, properties, geometries, temporalities, domains, relationships, behaviours, and

memberships to datasets or ontologies.

Two conceptual representations of the same concept express a contextual variation.

Context adds a degree of freedom to the ontological representation of concepts. It is the

context, which drives us to use different conceptual representations for the description of

real-world phenomena, and, for that reason, it is also a notion related to ontology. Let us

Page 99: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

79

return to the Bridge example, which is a concept describing a road infrastructure, a

hazard to air navigation, or a hazard to marine operations (in three different contexts). In

this example, context consists in the elements that influence the use of the concept and

that specify its meaning. As we can observe in the example, the description of the context

is typically embedded in the properties of the conceptual representations. Each

conceptual representation has its own specific properties, such as structure type, the

elevation of the highest point, or the clearance between the watercourse and the bridge,

respectively. Independently of their specific descriptions, they all refer to the same

concept, which ontologically links all of these representations.

The framework and related ideas presented so far aim at situating the broad picture of

geospatial data interoperability. In the next section, we define the notion of geosemantic

proximity and identify where it applies within our framework.

3.8 Geosemantic proximity

The simulation function presented in the previous section generates and recognizes

conceptual representations and, thus, evaluates the semantic proximity that stands

between a concept and a conceptual representation, namely between R’ and R’’, R’’ and

R’’’, R’’’ and R’’’’, and R’’’’ and R’. In the semantic interoperability of geospatial data,

Bishr (1997) and Rodriguez (2000) mentioned that schematic heterogeneity can be solved

only between semantically similar representations. Because it evaluates the semantic

proximity, the simulation function becomes a key element of the conceptual framework

and also a prerequisite to solving schematic heterogeneity. Consequently, we develop the

notion of geosemantic proximity to concurrently assess the semantic, spatial, and

temporal similarities (as components of a geosemantic space; see Figure 15) between a

geospatial concept and a geospatial conceptual representation. Even if a geospatial

concept and a geospatial conceptual representation have the same semantics, their spatial

and temporal definitions may differ in several ways (Figure 16). For instance, the

geometry of a building in a dataset may refer to the precise footprint of the basement

while the geometry of a building in another dataset may refer to the precise footprint of

Page 100: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

80

the roof. The footprint may be geometrically delineated with more or less details because

of different geometric depiction constraints. Also, in a third dataset, the same building

may be represented as a point and be represented in a fourth dataset as a generalized

surface, where all details smaller than 10% of the width or length of the building are

ignored because of the difference in geometric granularity (e.g. different scales). All

these datasets provide buildings with the same semantics from a pure “object-

class/attribute” point of view (as it is usually considered in semantics proximity analysis)

but they have different meanings from a geometric point of view and such difference is

explicitly taken into account by what we called geosemantic proximity analysis.

Figure 15: Geosemantic space

Figure 16: Various semantics of a building’s geometric representation

According to this approach, work is currently underway to develop a methodology and a

computational model of geosemantic proximity that will end up with geosemantic

Page 101: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

81

proximity predicates that are homomorphic with current spatial and temporal topological

predicates (Allen, 1983; Clementini and Di Felice, 1996; Egenhofer, 1993; Egenhofer et

al., 1994). In this methodology, geospatial concepts and geospatial conceptual

representations are compared to segments on a semantic axis made of an interior and a

boundary, and geosemantic proximity consists essentially of the intersection of their

respective contexts. On the one hand, the interior of a concept consists of its intrinsic

properties that are components providing literal meaning (e.g. identification, attributes,

attribute values, geometries, temporalities, and domain). On the other hand, the boundary

of a concept consists of its extrinsic properties that are components providing meaning

through relationships with other concepts (e.g. semantic, spatial, and temporal

relationships as well as behaviours). Consequently, intersection between intrinsic and

extrinsic properties leads to a set of geosemantic proximity predicates, as illustrated in

Figure 17. In a way similar to human reasoning, geosemantic proximity is then assessed

qualitatively taking into account the contexts of the respective representations (Kashyap

and Sheth, 1996).

This notion of geosemantic proximity is being elaborated based on ontology (Guarino,

1999; Guarino and Welty, 2000a; Guarino and Welty, 2000b), fiat boundaries (Casati et

al., 1998; Smith, 1994; Smith and Mark, 1999; Smith and Varzi, 2000), theories of

temporal (Allen, 1983) and spatial topology (Clementini and Di Felice, 1996; Egenhofer,

1993; Egenhofer et al., 1994), context (Bishr, 1997; Kashyap and Sheth, 1996; Wisse,

2000), and semantic similarity (Kashyap and Sheth, 1996; Ouksel and Sheth, 1999;

Rodriguez, 2000). Its detailed description will be addressed in more detail in the next

chapter.

Page 102: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

82

Figure 17: Geosemantic proximity Predicates (where K is a concept and L is a conceptual representation)

Page 103: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

83

3.9 Conclusion

In this chapter, we have revisited the definitions of geospatial data interoperability and

proposed a conceptual framework based on the cognitive and communication sciences.

The interpersonal communication process between two agents, including the underlying

internal representation of concepts along with encoding and decoding operations, appears

to provide a rich framework to better understand the issues involved in geospatial data

interoperability, especially when extended to human-to-computer communication and

computer-to-computer communication. Central notions involved in this communication-

based framework are concept, conceptual representations, ontology, context, and

proximity.

The description of the conceptual framework is improved with an ontology of geospatial

data interoperability, which is presented in two dimensions: the five ontological phases of

geospatial data interoperability and three levels of ontology. The former describes the

different configurations of reality involved in geospatial data interoperability. The latter

consists of a subdivision of the different levels of granularity used in the description of

real-world phenomena, typically identified by global ontology, domain ontology, and

application ontology.

In the proposed framework, two elements characterize the idea of concept. First, the data

component is hidden and not directly accessible by other agents. Second, a “simulation”

function encapsulates the data component and essentially acts as the main interface for

accessing the concept. This simulation function performs the encoding and decoding

operation as found in the communication process in order to produce or recognize

conceptual representations. It appears to be a fundamental element for the assessment of

geospatial data interoperability. In addition, geosemantic proximity is a constituent

component of the simulation function.

Page 104: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

84

Finally, conceptual representations denote physical representations, which serve as

mediating components between agents. They are essentially context-dependent,

conveying a concept in a specific situation.

In furthering this research, the theoretical model of geosemantic proximity will be

developed in detail. This will necessitate a formalization of geospatial concepts and

conceptual representations that must be aligned with the notion of context. Then a

prototype will be designed and implemented as validation and as the experimental phase

of this research. The expected results of this research should lead to significant progress

concerning the assessment of geospatial data interoperability.

Acknowledgements

The authors wish to acknowledge the contribution of Natural Resources Canada – Centre

for Topographic Information in supporting the first author for this research and of the

GEOIDE Network of Centres of Excellence in geomatics, project DEC#2 (Designing the

Technological Foundations of Spatial Decision-making with the World Wide Web), as

well as the contribution of Mike Major for the English editorial review.

3.10 References

Allen, J F 1983 Maintaining Knowledge about Temporal Intervals. Communication of the

ACM, 26(11): 832-843

Barsalou, L W 1999 Perceptual symbol systems. Behavioral and Brain Sciences, 22(4):

577-609

BC Ministry of Environment Lands and Parks (Geographic Data BC) 1992 Digital

Baseline Mapping at 1:20,000. Victoria, Province of British Columbia, BC

Ministry of Environment, Lands and Parks

Bédard, Y 1986 A Study of the Nature of Data Using a Communication-based

Conceptual Framework of Land Information. Ph.D. Dissertation, University of

Maine

Page 105: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

85

Bédard, Y 1999a Principles of Spatial Database Analysis and Design. In P A Longley,

M F Goodchild, D J Maguire, and D W Rhind (eds) Geographical Information

Systems: Principles, Techniques, Applications and Management. New York, John

Wiley and Sons, Inc.: 413-424

Bédard, Y 1999b Visual Modelling of Spatial Database Towards Spatial PVL and UML.

Geomatica, 53(2): 169-186

Benslimane, D 2001 Interopérabilité de SIG : la solution Isis. Revue internationale de

géomatique, 11(1): 7-42

Bergamaschi, S, S Castano, and M Vincini 1999 Semantic Integration of Semistructured

and Structured Data Sources. Sigmod Record, 28(1): 54-60

Bishr, Y 1997 Semantics Aspects of Interoperable GIS. Ph.D. Dissertation, ITC

Publication

Bittner, T, and G Edwards 2001 Toward an Ontology for Geomatics. Geomatica, 55(4):

475-490

Blake, R H, and E O Haroldsen 1975 A Taxonomy of Concepts in Communication. New

York, Hastings House Publishers

Brodeur, J, Y Bédard, and M J Proulx 2000 Modelling Geospatial Application Databases

using UML-based Repositories Aligned with International Standards in

Geomatics. In Proceedings of Eighth ACM Symposium on Advances in

Geographic Information Systems (ACMGIS) ACM Press: 39-46

Campbell, J 1982 Grammatical Man: Information, Entropy, Language, and Life. New

York, Simon and Schuster

Canadian Council on Surveying and Mapping 1984 National Standards for the Exchange

of Digital Topographic Data: Topographic Codes and Dictionary of Topographic

Features. Ottawa, Topographical Survey Division, Surveys and Mapping Branch,

Energy, Mines and Resources Canada

Casati, R, B Smith, and A C Varzi 1998 Ontological Tools for Geographic

Representation. In N Guarino (ed) Formal Ontology in Information Systems.

Amsterdam, IOS Press: 77-85

Page 106: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

86

Charron, J 1995 Développement d’un processus de sélection des meilleures sources de

données cartographiques pour leur intégration à une base de données à référence

spatiale. Mémoire de maîtrise, Université Laval

Cherry, C 1978 On Human Communication: a Review, a Survey, and a Criticism.

Cambridge, Massachusetts, The MIT Press

Clementini, E, and P Di Felice 1996 A Model for Representing Topological Relationship

Between Complex Geometric Features in Spatial Databases. Information

Sciences, 90(1-4): 121-136

Cohen, P 1982 Model of Cognition: Overview. In P R Cohen, and E A Feigenbaum (eds)

The Handbook of Artificial Intelligence. HeirisTech Press: 1-10

Collongues, A, J Hugues, and B Laroche 1987 Merise - Méthode de conception. Paris,

Bordas

Darnell, D K 1971 Information Theorie. In J A DeVito (ed) Communication: Concepts

and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 37-45

Denes, P B, and E N Pinson 1971 The Speech Chain. In J A DeVito (ed)

Communication: Concepts and Processes. Englewood Cliffs, New Jersey,

Prentice-Hall Inc: 3-11

Denis, M 1994 Image et Cognition. Paris, Presses Universitaires de France

Egenhofer, M 1993 A Model for Detailed Binary Topological Relationships. Geomatica,

47(3 & 4): 261-273

Egenhofer, M, D M Mark, and J R Herring 1994 The 9-Intersection: Formalism and Its

Use for Natural-Language Spatial Predicates. Santa Barbara, CA, University of

California, National Center for Geographic Information and Analysis Technical

Report 94-1

Egenhofer, M J 1999 Introduction: Theory and Concepts. In M Goodchild, M Egenhofer,

R Fegeas, and C Kottman (eds) Interoperating Geographic Information Systems.

Boston, Massachusetts, Kluwer Academic Publisher: 1-4

Fowler, J, B Perry, M Nodine, and B Bargmeyer 1999 Agent-Based Semantic

Interoperability in InfoSleuth. Sigmod Record, 28(1): 8

Page 107: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

87

Frank, A U 2001 Tiers of ontology and Consistency Constraints in Geographic

Information Systems. International Journal of Geographic Information Science,

15(7): 667-678

Frankhauser, P, M Kracker, and E Neuhold 1991 Semantic vs. Structural Resemblance of

Classes. SIGMOD Record, 20(4): 59-63

Frankhauser, P, and E J Neuhold 1992 Knowledge Based Integration of Heterogenous

Databases. In Proceedings of IFIP WG2.6 Database Semantics Conference on

Interoperable Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 155-175

Gibson, J J 1979 The Ecological Approach to Visual Perception. Boston, Houghton

Mifflin

Gruber, T R 1993a Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. Palo Alto, California, Knowledge Systems Laboratory Technical Report

KSL 93-04

Gruber, T R 1993b A Translation Approach to Portable Ontology Specification. Stanford,

California, Knowledge Systems Laboratory Technical Report KSL 92-71

Guarino, N 1998 Formal Ontology and Information Systems. In Proceedings of Formal

Ontology in Information Systems (FOIS '98). Amsterdam, IOS Press: 3-15

Guarino, N 1999 The Role of Identity Conditions in Ontology Design. In Proceedings of

Spatial Information Theory - Cognitive and Computational Foundations of

Geographic Information Science, International Conference COSIT'99, 3-540-

66365-7. Berlin, Springer-Verlag Lecture Notes in Computer Science 1661: 221-

234

Guarino, N, and C Welty 2000a A Formal Ontology of Properties. In Proceedings of

Knowledge Engineering and Knowledge Management: Methods, Models and

Tools (12th International Conference, EKAW2000), 3-540-41119-4. Berlin,

Springer-Verlag Lecture Notes in Computer Science 1937: 97-112

Guarino, N, and C Welty 2000b Identity, Unity, and Individuation: Towards a Formal

Toolkit for Ontological Analysis. In Proceedings of ECAI-2000: The European

Conference on Artificial Intelligence. Amsterdam, IOS Press: 219-223

Page 108: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

88

Guha, R V 1990 Micro-theories and contexts in Cyc. I. Basic issues. Austin, Texas,

Micro-electronics and Computer Technology Corporation Technical Report ACT-

CYC-129-90

Harvey, F 1997 Improving Multi-Purpose GIS Design: Participative Design. In

Proceedings of Spatial Information Theory: A Theoretical Basis for GIS,

International Conference COSIT'97, ISBN 3-540-63623-4. Berlin, Springer-

Verlag Lecture Notes in Computer Science 1329: 313-328

ISO/TC 211 2001 ISO/DIS 19110 Geographic Information - Feature Cataloguing

Methodology. Geneva, Switzerland, International Organization for

Standardization

ISO/TC 211 2002 ISO/DIS 19109 Geographic Information - Rules for Application

Schema. Geneva, Switzerland, International Organization for Standardization

Kahng, J, and D McLeod 1998 Dynamic Classificational Ontologies: Mediation of

Information Sharing in Cooperative Federated Database Systems, Context and

Ontologies. In M P Papazoglou, and G Schlageter (eds) Cooperative Information

Systems-Trends and Directions. San Diego, CA, Academic Press: 179-203

Kashyap, V, and A Sheth 1996 Semantic and Schematic Similarities Between Database

Objects: A Context-Based Approach. The VLDB Journal, 5: 276-304

Kashyap, V, and A Sheth 1998 Semantic Heterogeneity in Global Information Systems:

the Role of Metadata, Context and Ontologies. In M P Papazoglou, and

G Schlageter (eds) Cooperative Information Systems-Trends and Directions. San

Diego, CA, Academic Press: 139-178

Kettani, D, and B Moulin 1999 A spatial model based on the notions of spatial

conceptual map and of object’s influence areas. In Proceedings of Spatial

Information Theory, Cognitive and Computational Foundations of Geographic

Information Systems, International Conference COSIT'99. Berlin, Springer-

Verlag Lecture Notes in Computer Science 1661: 401-415

Kosslyn, S M 1980 Image in Mind. Cambridge, Massachusetts, Harvard University Press

Kottman, C 1999 The Open GIS Consortium and Progress Toward Interoperability in

GIS. In M Goodchild, M Egenhofer, R Fegeas, and C Kottman (eds)

Page 109: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

89

Interoperating Geographic Information Systems. Boston, Massachusetts, Kluwer

Academic Publisher: 39-54

Krech, D, and R S Crutchfield 1971 Perceiving the World. In W Schramm, and D F

Robert (eds) The Process and Effects of Mass Communication. Champaign-

Urbana, IL, University of Illinois Press: 235-264

Laurini, R 1998 Spatial Multi-Database Topological Continuity and Indexing: a Step

Towards Seamless GIS Data Interoperability. International Journal of

Geographic Information Science, 12(4): 373-402

Lehmann, F 1992 Semantic Networks. Computers and Mathematics with Applications,

23(2-5): 50

Lippmann, W 1971 The World Outside and the Pictures in Our Heads. In W Schramm,

and D F Robert (eds) The Process and Effects of Mass Communication.

Champaign-Urbana, IL, University of Illinois Press: 265-286

Logie, R H, and M Denis (eds) 1991 Mental images in human cognition. Amsterdam,

North-Holland

McKee, L, and K Buehler (eds) 1998 The OpenGIS Guide. Wayland, Massachusetts,

OpenGIS Consortium Inc.

Natural Resources Canada 1996 National Topographic Data Base - Standards and

Specifications. Sherbrooke, Quebec, Centre for Topographic Information-

Sherbrooke

New Brunswick 2000 Guide d’utilisation de la Base de données topographiques

numériques (BDTN) du Nouveau-Brunswick. Fredericton, New Brunswick,

Services Nouveau-Brunswick

OBM 1996 Ontario Digital Topographic Database - 1:10,000, 1:20,000 - A Guide for

User. Toronto, Ontario, Ministry of Natural Resources

Ouksel, A, and C Naiman 1993 Coordinating context build-ing in heterogeneous

information systems. Journal of Intelligent Information Systems, 3: 151–183

Ouksel, A M, and A Sheth 1999 Semantic Interoperability in Global Information

Systems: A Brief Introduction to the Research Area and the Special Section.

Sigmod Record, 28(1): 5-12

Page 110: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

90

Peuquet, D, B Smith, and B Brogaard 1998 The Ontology of Fields. In Proceedings of

Summer Assembly of the University Consortium for Geographic Information

Science

Pylyshyn, Z W 1981 The Imagery Debate: Analogue Media Versus Tacit Knowledge.

Psychological Review, 88(1): 16-45

Québec 2000 Base de données topographiques du Québec (BDTQ) à l’échelle de

1/20 000 - Normes de production (Version 1.0). Québec, Ministère des

Ressources naturelles, Direction générale de l'information géographique, CD

Document

Rodriguez, M A 2000 Assessing Semantic Similarity Among Entity Classes. Ph.D. Thesis,

University of Maine

Schramm, W 1971a How Communication Works. In J A DeVito (ed) Communication:

Concepts and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 12-21

Schramm, W 1971b The Nature of Communication Between Humans. In W Schramm,

and D F Robert (eds) The Process and Effects of Mass Communication.

Champaign-Urbana, IL, University of Illinois Press: 3-53

Sciore, E, M Siegel, and A Rosenthal 1992 Context interchange using metaattributes. In

Proceedings of First International Conference on Information and Knowledge

Management (CIKM): 377-386

Sears, D O, and J L Freedman 1971 Selective Exposure to Information: A Critical

Review. In W Schramm, and D F Robert (eds) The Process and Effects of Mass

Communication. Champaign-Urbana, IL, University of Illinois Press: 209-234

Sheth, A 1999 Changing Focus on Interoperability in Information Systems: From

Systems, Syntax, Structure to Semantics. In M Goodchild, M Egenhofer,

R Fegeas, and C Kottman (eds) Interoperating Geographic Information Systems.

Boston, Massachusetts, Kluwer Academic Publisher: 5-29

Sheth, A, and V Kashyap 1992 So Far (Schematically) Yet So Near (Semantically). In

Proceedings of IFIP WG2.6 Database Semantics Conference on Interoperable

Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 283-312

Page 111: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

91

Simsion, G C 2001 Data Modeling Essentials - Analysis, Design, and Innovation.

Scottsdale, Arizona, Coriolis

Smith, B 1994 Fiat Objects. In Proceedings of Workshop on Parts and Wholes:

Conceptual Part-Whole Relations and Formal Mereology, 11th European

Conference on Artificial Intelligence: 15-23

Smith, B, and D Mark 1999 Ontology with Human Subjects Testing: An Empirical

Investigation of Geographic Categories. American Journal of Economics and

Sociology, 58(2): 245-272

Smith, B, and A C Varzi 2000 Fiat and Bona Fide Boundaries. Philosophy and

Phenomenological Research, 60(2): 401-420

Smith, K 1999 Unpacking the Semantics of Source and Usage to Perform Semantic

Reconciliation in Large-Scale Information Systems. Sigmod Record, 28(1): 6

Sondheim, M, K Gardels, and K Buehler 1999 GIS Interoperability. In P A Longley, M F

Goodchild, D J Maguire, and D W Rhind (eds) Geographical Information

Systems: Principles, Techniques, Applications and Management. New York, John

Wiley and Sons, Inc.: 347-358

Sowa, J F 1984 Chapter 7: Limits of Conceptualisation. In Conceptual Structures:

Information Processing in Mind Machine. Reading, Massachusetts, Addision-

Westley Publishing Company: 339-351

Statistics Canada 1997 Digital Boundary File and Digital Cartographic File 1996

Census (Reference Guide). Ottawa, Minister of Industry

Sycara, K, M Klusch, S Widoff, and J Lu 1999 Dynamic Service Matchmaking Among

Agents in Open Information Environnements. Sigmod Record, 28(1): 47-53

VMap 1995 Vector Map (VMap), Level 1. Bethesda, MD, U.S. National Imagery and

Mapping Agency Mil-V-89033

Weiner, N 1950 The Human Use of Human Beings: Cybernetics and Society. Boston,

Houghton and Mifflin

Wisse, P 2000 Metapattern: Context and Time in Information Models. Reading,

Massachusetts, Addison-Wesley

Page 112: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

CHAPITRE 4

LA PROXIMITÉ GÉOSÉMANTIQUE,

UNE COMPOSANTE DE L’INTEROPÉRABILITÉ

DES DONNÉES GÉOSPATIALES

Geosemantic Proximity for Geospatial Data Interoperability

(J. Brodeur, Y. Bédard, B. Moulin, et G. Edwards)

4.1 Résumé de l’article

Au chapitre précédent, nous avons proposé un cadre conceptuel d’interopérabilité des

données géospatiales qui se fonde sur le processus de communication entre les êtres

humains et les sciences cognitives. Nous y introduisions la notion de proximité

géosémantique en tant que composante d’interopérabilité des données géospatiales. Ce

chapitre présente un article qui expose les aspects théoriques de la proximité

géosémantique. D’abord, il développe les notions de concepts géospatiaux, de

représentations conceptuelles géospatiales et de contexte dans l’esprit du processus de

communication entre les êtres humains et du fonctionnement cognitif des êtres humains.

Puis, il définit la notion de proximité géosémantique. La proximité géosémantique

constitue une approche basée sur le contexte qui évalue qualitativement la similitude

Page 113: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

93

entre un concept géospatial et une représentation conceptuelle géospatiale. Elle s’inspire

de la notion de topologie et adapte la matrice à quatre intersections telle qu’utilisée dans

les données géométriques au contexte sémantique. Enfin, ce chapitre illustre la pertinence

de la proximité géosémantique à l’aide d’exemples à partir de spécifications de données

géospatiales existantes.

4.2 Abstract

Aiming to improve interoperability of geospatial data, recent researches in the field of

geomatics address the issue of semantic interoperability. It has been acknowledged that

the semantics of geospatial data must be considered to achieve complete interoperability

of geospatial data. For instance, how similar or different is marsh/swamp as defined in

the Feature and Attribute Code Catalogue (FACC) of VMap libraries compared to

wetland as defined in the National Topographic Data Base (NTDB) of Canada? Do

they mean the same thing? Do their geometry mean the same thing? Could they be used

interchangeably?

In the previous chapter, we proposed a conceptual framework for geospatial data

interoperability that is essentially based on human communication and cognition

paradigms. We also introduced the notion of geosemantic proximity within the broader

issue of interoperability of geospatial data. In the present chapter, we present a theoretical

account of this notion. We first define the notions of geospatial concept, geospatial

conceptual representation, and context in the perspective of the human communication

and cognition. Then we define the notion of geosemantic proximity, which results from a

context-based approach to qualitatively assess the similarity of a geospatial concept and a

geospatial conceptual representation. The geosemantic proximity is also influenced by

the well-known notion of topology and the 4-intersection matrix as applied to geometric

data. Finally, examples based on existing topographic database specifications illustrate

the interest of using the geosemantic proximity.

Page 114: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

94

4.3 Introduction

Nowadays geographic phenomena are depicted in numerous geospatial databases. These

databases have been set to support specific purposes but are now made available publicly

through Internet and geospatial data infrastructures such as the CGDI in Canada and the

NSDI in the United States. For instance, in Canada, users of geospatial data have access

to databases such as the National Topographic Data Base (NTDB) of the Department of

Natural Resources Canada (Natural Resources Canada, 1996); the Street Network Files,

the Digital Boundary Files, and the Digital Cartographic Files from Statistics Canada

(Statistics Canada, 1997); the VMap libraries (VMap, 1995); the National Atlas of

Canada produced at a smaller scale by the Department of Natural Resources Canada

(Natural Resources Canada, 1996); and also larger scale topographic data produced by

provincial departments (see BC Ministry of Environment Lands and Parks (Geographic

Data BC), 1992; New Brunswick, 2000; OBM, 1996; Québec, 2000). These databases

use different abstractions to represent highly similar phenomena. For example, forest-like

phenomena are depicted interchangeably as vegetations in NTDB, trees in VMap,

wooded areas in Ontario Digital Topographic Data Base, and milieu boisé in the

Base de données topographiques du Québec (N.B. the point, line, and surface pictograms

express the type of geometric representation used to depict the phenomenon

geographically; see (Bédard and Proulx, 2002) for more details). As a result, users have

now to deal with multiple geospatial databases to search, find, get, and integrate data that

correspond to their specific needs. In such operations, users frequently encounter

problems of syntactic, structural, and moreover semantic heterogeneities (Ouksel and

Sheth, 1999; Sheth, 1999) including geometric and temporal heterogeneities (Bishr,

1997; Charron, 1995; Laurini, 1998). Hence, the combined use of geospatial data from

multiple geospatial databases frequently becomes a nightmare.

At the beginning of the 1990s, geospatial data interoperability (McKee and Buehler,

1998) became an important issue in the geospatial information community since it is seen

as a solution for sharing and integrating geospatial data and geoprocessing resources

(Kottman, 1999). The OpenGIS Consortium Inc., ISO/TC 211-Geographic

Page 115: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

95

information/geomatics, the geospatial information industry, and the research community

worked together to build today’s foundation of geospatial data interoperability. Major

advances have been achieved mainly on syntactic and structural heterogeneities

(Rodriguez, 2000) as it can be observed in the documents (ISO/TC 211, 2002a; ISO/TC

211, 2002b; ISO/TC 211, 2003a; ISO/TC 211, 2003b; ISO/TC 211, 2003c; Open GIS

Consortium Inc., 1999a; Open GIS Consortium Inc., 2001), which describe the structure,

the content, and the encoding of geospatial data and metadata. However, according to

(Bishr, 1997) and (Rodriguez, 2000), structural heterogeneity can only be solved for

representations of phenomena that are semantically similar. Therefore, semantic

heterogeneity must also be addressed to acknowledge complete interoperability of

geospatial data (Rodriguez, 2000).

Recently in (Brodeur and Bédard, 2001; Brodeur et al., 2003), we proposed a new

conceptual framework for geospatial data interoperability, which is based on the human

communication process (Schramm, 1971) and cognition. A key element of this

framework, which is used to define the notion of geosemantic proximity (GsP), consists

in the assessment of the semantic proximity between a geospatial concept (hereafter

called geoConcept) and a geospatial conceptual representation (hereafter called

geoConceptRep). The purpose of this chapter is to describe in details this notion of GsP

and to support it with examples.

The remainder of this chapter is structured as follows. The next section reviews notions

related to geospatial data interoperability, which lead to the elaboration of the GsP

notion. Section 4.5 describes our formalisation of geoConcept and geoConceptRep in

relation to the context, which is fundamental in the development of GsP. The following

section develops the notion of GsP. In section 4.7, we introduce a software prototype

(presented in more detail in chapter 5) which serves to validate the GsP approach.

Finally, in section 4.8, we conclude and identify future work.

Page 116: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

96

4.4 Geospatial data interoperability and geosemantic proximity

In (Brodeur and Bédard, 2001; Brodeur et al., 2003), we compare geospatial data

interoperability to an interpersonal communication process where people end up

understanding each other when they are communicating. In this conceptual framework,

like in human communication, geospatial data interoperability happens between two

software agents, which exchange information about geographic phenomena. Typically,

agents maintain geographic information in memory in the form of geoConcepts and

communicate this information using geoConceptReps. More specifically, geoConcepts

consist of abstract, internal, and persistent representations of geographic phenomena that

are maintained for humans in their cognitive model and for computer systems in their

physical memory. They are made of hidden data elements, which are encapsulated by a

simulation function (Barsalou, 1999). This function is a kind of translation function that

produces or recognizes the geoConceptReps which express the geoConcepts in a specific

situation. It corresponds to the main interface of a geoConcept. Thus, geoConceptReps

refer to the set of symbols that are used to communicate geoConcepts. They are transient

representations of geographic phenomena. In our framework, geospatial data

interoperability corresponds to a bi-directional communication process between a user

agent and a data provider agent, which includes a feedback mechanism in both

directions. Based on his/her/its own set of geoConcepts, the user agent sends a request for

information about geographic phenomena using his/her/its own geoConceptReps to the

data provider agent. When the data provider agent receives the request, he/she/it

interprets it to find geoConcepts he/she/it knows that match the received

geoConceptReps. Then, he/she/it gathers the information requested by the user agent

based on the identified geoConcepts, transforms it into new geoConceptReps, and sends

the geoConceptReps to the user agent. Once the user agent gets the answer, he/she/it has

to recognize the received geoConceptReps, that is again to find geoConcepts he/she/it

knows that match the received geoConceptReps. Then, he/she/it compares these

geoConcepts against those of the initial request to validate if they answer accurately to

his/her/its initial request. If so, we can say that interoperability happens. In this

framework, GsP takes place in a geoConcept’s translation function. This translation

Page 117: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

97

function supports both the user agent and the data producer agent in the production and

recognition of geoConceptReps; it evaluates qualitatively the similarity of the

geoConcept with the geoConceptRep.

Frank (2000) described a similar formalization, which involves user and producer agents

communicating with maps. This formalization draws a parallel between facts of real

world situation and beliefs representations (agents’ cognition), which are communicated

using maps. Here, geoConcepts can be compared to beliefs representations, which are

both agents’ representations about facts of reality, and geoConceptReps to maps, which

are both means to communicate geospatial data.

4.4.1 Semantic similarity of geospatial data

The assessment of semantic similarity of geospatial data has also been studied in the

Semantic Formal Data Structure (SFDS) (Bishr, 1997), in the Matching Distance (MD)

model (Rodriguez, 2000), and in the Isis solution (Benslimane, 2001). In SFDS, three

components are involved in the assessment of semantic interoperability: an export

schema, a federated schema, and a proxy context mediator. The export schema defines

conceptual representations that are used to communicate database concepts to users. The

federated schema gathers the definition of domain specific concepts such as

transportation, hydrology, soils, and so on. The proxy context mediator consists in a

common ontology used to map conceptual representations of the export schema and the

concepts of the federated schema. Consequently, the semantic proximity corresponds

here to the fact that the conceptual representation of the export schema and the concept of

the federated schema are both linked to the same concept in the proxy context mediator.

The MD model is a method that measures the semantic proximity between two

geographic concepts. The semantic proximity consists in a conceptual distance computed

by analysing the common and distinguishing components between the two geographic

concepts. This conceptual distance is evaluated by a weighted sum of the semantic

proximity of the parts, functions, and attributes of the two geographic concepts. The

Page 118: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

98

semantic proximity of parts, functions, and attributes respectively relies on the ratio of

their common components (|C1 ∩ C2|) to the sum of their common and distinguishing

components (|C1 ∩ C2|+α|C1 - C2|+(1-α)|C2 – C1|).

The Isis solution is structured in two layers: the data and the mediation layers. The data

layer corresponds to heterogeneous databases and their respective data models. The

mediation layer is made up of the following components: (1) the universe of discourse

(i.e. a subset of reality); (2) a global ontology (i.e. an ontology of generic concepts); (3) a

context of reference (i.e. a domain specific ontology); and (4) the set of database–specific

co-operation contexts (i.e. interpretations of database data models according to a specific

context of reference). A co-operation context consists of a set of classes (called co-

operation classes) that are made of mediation roles, virtual classes and context

transformation functions. Essentially, in this solution, semantic proximity consists in the

mapping of co-operation classes of heterogeneous databases, which is based on the

comparison of their respective mediation roles. It is an asymmetric operation (i.e. the

mapping of C1 to C2 could be different from the mapping of C2 to C1) that qualifies the

semantic proximity between co-operation classes as impossible (or empty), partial, or

complete.

4.4.2 Identity of geographic phenomena

According to our conceptual framework for geospatial data interoperability, many

geoConcepts and geoConceptReps are used for the communication of information about

the same geographic phenomenon, namely geoConcepts of the two agent models

(cognitive or computerized) and geoConceptReps produced by geoConcepts of both

agents. Consequently, geoConcepts and geoConceptReps are not as important as the

phenomenon they designate. In the interoperability of geospatial data, geoConcepts of the

data provider agent should recognize in the received geoConceptReps the same

geographic phenomena as those to which refer the geoConcepts used by the user agent to

produce these geoConceptReps, and reciprocally. Taking this into account, identity of

geographic phenomena appears to be a closely related notion to interoperability of

Page 119: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

99

geospatial data. A geoConcept and a geoConceptRep must refer to the same set of

geographic phenomena in order to be perfectly interoperable and this means that the same

identity of geographic phenomena must be recognized from geoConcepts and

geoConceptReps.

In its Essay Concerning Human Understanding, philosopher John Locke defines identity

as follows:

« When we see anything to be in any place in any instant of time, we are

sure (be it what it will) that it is that thing, and not another which at the

same time exists in an another place, how like and undistinguishable

soever it may be in all other respects: and in this consists identity (…) »

(Locke, 1689).

As such, identity is a meta-property, which allows us to distinguish and individualize

distinct geographic phenomena (Guarino and Welty, 2000a) as well as to recognize

representations corresponding to the same phenomena. Identity is a notion that

acknowledges the oneness character of a phenomenon. The recognition of the same

identity in numerous representations of geographic phenomena leads to identify which

representations are interoperable. This could be done by comparing properties from

which identity of the different representations could be recognized. According to

(Guarino and Welty, 2000a; Guarino and Welty, 2000b), these properties are said to carry

identity condition. The comparison of these properties becomes possible because of the

agents’ common knowledge about real world phenomena, commonly known as

commonness (Schramm, 1971) in communication sciences. As such, recognition of the

same identity between a geoConcept and a geoConceptRep is possible if they have

sufficient commonness. Therefore, we consider identity as a basic notion to assess

interoperability of geospatial data.

In the development of geospatial databases, conceptual data modelers identify and

describe geographic phenomena using their own specific abstractions. Consequently, it is

Page 120: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

100

common that phenomena are abstracted differently in distinct geospatial databases (e.g.

wetland vs. marsh/swamp, vegetation vs. wooded area) because of the specific goal for

which data models are elaborated or because of the experience of data modelers: this is

related to the context. More specifically, the context corresponds to the situation and the

circumstances in which a phenomenon is perceived, abstracted, and used (the notion of

context is detailed further in this section) (Brodeur et al., 2003). Accordingly, the identity

of a geographic phenomenon is depicted differently in the various abstractions of that

geographic phenomenon and, thus, the context contributes to a partial description of the

identity of such a phenomenon (Wisse, 2000). Consequently, the global description of the

identity of a geographic phenomenon consists of the union of all context dependent

descriptions of its identity. For instance, the union of all descriptions of a road segment

taken from the NTDB, the Street Network File, the VMap libraries, and other databases

results in the global description of the identity of this road segment. However, these

descriptions of phenomena might show inconsistencies between them, thus

complexifying the issue of identity. Specifically, we recognize in a geoConcept and a

geoConceptRep the identity of a geographic phenomenon from their built-in properties,

which describe the context in which the phenomenon has been abstracted (Wisse, 2000).

Hence, the similarity between a geoConcept and a geoConceptRep, as it is the case in the

notion of geosemantic proximity, can be assessed by comparing their respective

properties, especially those supporting the recognition of identity (this will be detailed in

section 4.6).

4.4.3 Boundary of geoConcept and geoConceptRep

In geospatial data modelling, conceptual data modelers abstract geographic phenomena

using geoConcepts and geoConceptReps. Accordingly, the definition of a geoConcept or

a geoConceptRep circumscribes all geographic phenomena that are intended by that

abstraction and not others. As such, we can imagine that a geoConcept or a

geoConceptRep is bounded in order to restrict its specific domain. The assessment of

similarities and differences between a geoConcept and a geoConceptRep, as it is the case

in GsP, has to consider the respective extents and boundaries of the geoConcept and the

Page 121: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

101

geoConceptRep. As such, we assume in the GsP notion that a geoConcept and a

geoConceptRep consist of an interior and a boundary, which correspond to intrinsic

properties and extrinsic properties respectively. We call intrinsic properties those

properties providing the literal meaning of a geoConcept or a geoConceptRep (e.g.

identification, attributes, attribute values, geometry, temporality, and domain) whereas

extrinsic properties are those properties providing meaning by their association with other

geoConcepts and geoConceptReps respectively (e.g. semantic, spatial, and temporal

relationships as well as behaviours). The notion of boundary has been studied in (Casati

et al., 1998; Smith, 1994; Smith and Mark, 1999; Smith and Varzi, 2000) who recognize

two types of boundaries: boundaries resulting from genuine or physical object

demarcation (also called bona fide boundaries) and boundary referring to human driven

demarcation which are essentially artificial, imaginary, or virtual (also called fiat

boundaries). According to (Smith, 1994; Smith and Mark, 1999), the boundary of

geoConcepts and geoConceptReps are of the fiat type and our notion of GsP agrees with

the kind of topology associated with fiat boundaries (Casati et al., 1998; Smith and Varzi,

2000).

4.4.4 Geosemantic proximity and topology

Semantic proximity is not a new notion. It has been studied in cognitive science,

psychology, linguistics, and artificial intelligence. It is used to express the similarity

between abstractions of real-world phenomena. As such, it provides a valuable

foundation to further the development of semantic interoperability of geospatial data.

Most of the methods use semantic networks to compute a conceptual distance between

abstractions, which consists in a quantitative assessment of the semantic proximity

(Lehmann, 1992; Rodriguez, 2000). As such, a semantic network constitutes an ontology

of a part of the reality. It is made up of an interconnected node-arc-like structure where

nodes represent abstractions and arcs are links between abstractions. Frame systems,

relational graphs, and hierarchies (e.g. lattices, trees, and acyclic graphs) are types of

structures commonly used to implement semantic networks (Lehmann, 1992; Sowa,

Page 122: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

102

1987). In such structures, the semantic proximity consists of the smallest conceptual

distance between two abstractions that is computed from the network. To do so, a

coefficient is assigned to each arc, which expresses the conceptual distance between

linked abstractions (Frankhauser et al., 1991). For abstractions not linked directly, a

conceptual distance is inferred by traversing the network from one abstraction to the

other. When many paths are possible, the smallest conceptual distance expresses the

semantic proximity.

IS_A and PART_OF relationships are types of links frequently encountered in semantic

networks (Guarino, 1995; Guarino, 1999; Lehmann, 1992; Sowa, 1987) and refer, in

linguistics, to the study of hyponymy and meronymy, respectively. The IS_A relationship

establishes a specificity relationship (Kashyap and Sheth, 1996) between two concepts,

distinguishing the specific from the general concept and, as such, is asymmetric. The

PART_OF relationship distinguishes constituent elements from the whole. It is also an

asymmetric relationship. Rodriguez et al. (1999) recalled seven different uses of the

PART_OF relationship: component-object, member-collection, portion-mass, stuff-

object, feature-activity, place area, and phase-process. These types of relationship details

the specific role played by constituent elements and the whole in a PART_OF relation.

However, concepts may show other types of relations between them. These relationships

hold a semantics different from IS_A and PART_OF (e.g. person::possess::lot,

breakwater::protect::harbour) and are as important as IS_A and PART_OF relationships.

In object-oriented modeling (e.g. UML class diagram), IS_A relationships are

implemented as generalization/specialization relationships and PART_OF relationships

as aggregation and composition associations while other relationships are represented as

generic associations between classes (Object Management Group, 2001). As such, UML-

based repositories provide the necessary elements to develop geospatial ontologies.

Semantic proximity has also been studied in context-based approaches (Kashyap and

Sheth, 1996; Kashyap and Sheth, 1998). Several authors acknowledge that the context

plays a fundamental role in the abstraction of phenomena (Wisse, 2000) as well as in the

assessment of semantic proximity as applied to semantic interoperability (Bishr, 1997;

Page 123: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

103

Harvey et al., 1999; Kashyap and Sheth, 1996; Kashyap and Sheth, 1998; Ouksel and

Sheth, 1999; Rodriguez, 2000). This notion is however perceived differently from one

author to another. As surveyed by Kashyap and Sheth (1996), the context can refer to:

- the needed knowledge to reason about another system;

- the signification, content, organisation and properties of data;

- a well-defined subset of an ontology;

- the association to one or multiple data sources;

- the relationship in which an object class participates;

- the relationship with an export or an external schema;

- a named collection of domains of objects; and

- the situation in which a particular semantic similarity holds between two objects.

The context can also refer to:

- the set of category definitions, class intention definitions, and geometric

descriptions (Bishr, 1997);

- A set of tuples over operations associated with entity arguments (nouns)

(Rodriguez, 2000).

Specifically, the context is associated to the manner in which a phenomenon is abstracted

(Kashyap and Sheth, 1996; Kashyap and Sheth, 1998; Wisse, 2000). It consists of a set of

elements that influence the perception of a phenomenon, that make some properties more

attractive, and that affect the manner in which the abstraction of the phenomenon is used.

A concept resulting from the abstraction of a phenomenon is described according to a

given context and, as such, it is this context that provides the concept its intended

semantics (Bishr, 1997; Ouksel and Sheth, 1999; Wisse, 2000). For instance, in

geospatial conceptual modelling, object classes, properties, geometry, temporality,

behaviours, relationships are identified and defined according to the context in which

phenomena are observed. As such, the context is described by the way of metadata, data

models, and ontologies. In semantic interoperability of geospatial data, an additional

Page 124: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

104

challenge consists in the capability of reasoning about the context, i.e. to compare

geoConcepts with geoConceptReps based on their respective contexts, which accounts

for a context-based approach. A context-based approach expresses the likeness of

abstractions of geographic phenomena qualitatively using a set of semantic proximity

predicates (e.g. semantic resemblance, semantic relevance, semantic relation, semantic

equivalence, and semantic incompatibility (Kashyap and Sheth, 1996)).

Adopting a context-based approach, we believe that semantic proximity of geospatial

data can be thought in terms of topological relationships existing between abstractions.

Topological relationships have been extensively studied when it comes to temporal and

spatial information (Allen, 1983; Clementini and Di Felice, 1995; Clementini and Di

Felice, 1996; Egenhofer, 1993; Egenhofer et al., 1994a; Egenhofer and Sharma, 1992;

Egenhofer, 1997; Egenhofer et al., 1994b; Egenhofer and Franzosa, 1995; Egenhofer and

Mark, 1995). Topological relationships describe geometric-like properties existing

between abstractions of phenomena, which are invariant under continuous

transformations (e.g. translation, rotation, and scaling). In geographic information, the 4-

intersection and the 9-intersection models (Egenhofer, 1993; Egenhofer et al., 1994a) as

well as the calculus-based method (Clementini and Di Felice, 1996) have become

standard approaches (ISO/TC 211, 2003a; Open GIS Consortium Inc., 1999a). The

4-intersection model is based on the intersection between interiors and boundaries of two

geometric representations, and the 9-intersection model adds the notion of exterior. The

calculus-based method models the topology of spatial data using 2D geometric data

types, point, line, and area with three boundary operators: (A, b) returning the boundary b

of an area A, (L, f) returning the “from point” boundary f of a line L, and (L, t) returning

the "to point" boundary t of a line L. In these models, authors have produced sets of

mutually exclusive predicates, which qualitatively describe the commonness and the

difference between two spatial representations of a phenomenon (e.g. disjoint, meet,

equal, inside, contains, covered, coveredBy, and overlap). These predicates express the

similarity between two geometric representations. They have been tested with human

subjects and various results show that they are representative of human spatial reasoning

(Mark and Egenhofer, 1994).

Page 125: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

105

We define the GsP (described in section 4.6) in terms of relationships between the

context of a geoConcept and the context of a geoConceptRep in much the same as

topological relationships. Hausdorff defined a concept of topological space based on four

axioms (Weisstein, 1999):

1. To each point x, there corresponds at least one neighbourhood U(x), and U(x)

contains x;

2. If U(x) and V(x) are two neighbourhoods of the same point x, then there exists a

neighbourhood W(x) of x such that W(x) is a subset of the union of U(x) and V(x);

3. If l is a point in U(x), then there exists a neighbourhood U(y) of y such that U(y) is

a subset of U(x);

4. For distinct points x and y, there exists two disjoint neighbourhoods U(x) and

U(y).

We assume in this thesis that the set of properties of a geoConcept or a geoConceptRep

describes an intentional representation of their context and the set of all occurrences of a

geoConcept or a geoConceptRep context consists in their extension. Working with

Hausdorff axioms, if we suppose that (1) x and y are occurrences, and (2) U(x), V(x),

W(x) and U(y) are geoConcept or geoConceptRep contexts, then a geoConcept or a

geoConceptRep context can be considered as a point set and, therefore, as continuous.

Consequently, the notions of interior, boundary, and exterior can be applied to both

geoConcept and geoConceptRep contexts. However, this thesis only addresses the

formalization of interior and boundary. Accordingly, the notion of GsP is developed as a

4-intersection model, which is homomorphic to existing spatial and temporal topological

models. As such, we believe that GsP is best suited when dealing simultaneously with

geometric, temporal, and semantic data, as it is the case for geospatial information.

Page 126: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

106

4.5 Formalisation of geoConcept and geoConceptRep in relation with the context

This section presents the formalization of geoConcept and geoConceptRep, which will be

used to define the GsP.

GeoConcepts and geoConceptReps result from the existence of geographic phenomena,

their perception, and their abstraction (see Figure 18). In the scope of this thesis, we

assume that a geographic phenomenon consists of a fact (i.e. something that exists) or an

event that can be observable through our senses (and their technological extensions such

as satellite sensors) which is associated with a geographic position and a shape.

Typically, the abstraction of a geographic phenomenon occurs within a given context. As

such, the context constitutes an essential element in the perception and the abstraction of

a geographic phenomenon. It governs the way in which a geographic phenomenon is

perceived and abstracted as well as how the resulting abstraction will be used. However,

we must recognize that the context is essentially a fictitious and an imaginary notion that,

in fact, does not exist in reality. It is a meta-concept referring to all circumstances

surrounding the existence of a geographic phenomenon and its abstraction, which

provides the intended semantics to the abstraction (Ouksel and Sheth, 1999).

Consequently, the properties of an abstraction of a geographic phenomenon describe the

context to which this geographic phenomenon is subject to. Therefore, an abstraction of a

geographic phenomenon consists in the representation of that geographic phenomenon,

which holds in a specific context. Thus, each geographic phenomenon abstracted in a

different context instantiates a different abstraction.

GeoConcept and geoConceptRep are two types of abstraction of geographic phenomena.

On the one hand, a geoConcept is a type of abstraction that an agent (e.g. human,

computerized system) persistently maintains in memory. A geoConcept constitutes one

element of the agent’s ontology. The agent’s ontology is the set of its geoConcepts with

their interrelationships.

Page 127: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

107

Let:

K: a geoConcept,

A: the agent,

OA: the agent’s ontology.

Then:

K ∈ OA Equation 9

Referring to Table 3, road is a geoConcept example of an NTDB –based agent’s

ontology. The agent’s ontology also contains other geoConcepts such as

limited access road , waterbody , watercourse , irrigation canal , and so on.

The information that a concept holds is typically hidden and, therefore, not directly

accessible. As such, a geoConcept has a function (called simulate) corresponding to the

simulation function presented in (Barsalou, 1999). This function performs reasoning

procedures in order to produce and to recognize geoConceptReps that are similar to the

geoConcept. It consists of the main interface of a geoConcept.

Figure 18: UML object class diagram of geoConcept and geoConceptRep

Page 128: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

108

On the other hand, a geoConceptRep is a type of abstraction of a geographic

phenomenon, which consists of the representation of a geoConcept with symbols, words,

sounds, etc. A geoConceptRep is used to communicate data about that geographic

phenomenon from one agent to one another. It results from a representation function (r)

over a geoConcept.

Let:

L: a geoConceptRep,

K: a geoConcept,

r: a representation function.

Then:

L = r(K) Equation 10

Pursuing with the road example, an NTDB –based agent could represent the

geoConcept road as a geoConceptRep with the following XML encoding:

<conceptualRepresentation> <intrinsicProperties> <identification> <name>road</name> <definition>a road for the movement of motor vehicles.</definition> </identification> <descriptiveAttribute> <name>surface</name> <attributeValue> <name>hard surface</name> <definition>a surface made of concrete, asphalt, or tar gravel.</definition> </attributeValue> <attributeValue> <name>loose surface</name> <definition>a surface made of other than concrete, asphalt, or tar gravel.</definition> </attributeValue> </descriptiveAttribute> <geometry>1</geometry> </intrinsicProperties> <extrinsicProperties>

Page 129: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

109

<relationMembership> <relation> <name>share</name> <firstMember>road</firstMember> <secondMember>bridge</secondMember> </relation> </relationMembership> </extrinsicProperties> </conceptualRepresentation>

Typically, an agent’s geoConcept produces a geoConceptRep, which is then placed in the

communication channel. When the geoConceptRep reaches a destination, geoConcepts of

the destination agent try to recognize it. Accordingly, a geoConceptRep constitutes a

physical but transient representation of a geographic phenomenon and has a determined

lifetime, i.e. it lasts from the moment it is produced to the moment of its destination.

A set of properties describes an abstraction. Each property depicts one aspect of interest

of a geographic phenomenon according to the context. As such, a property constitutes a

partial description of the context in which the geographic phenomenon has been

observed. Properties are of two types: intrinsic properties and extrinsic properties (Figure

19).

Figure 19: UML object class diagram of property types

Page 130: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

110

Intrinsic properties describe the essential nature of a geographic phenomenon, its

fundamental character. They provide the literal meaning of the abstraction. They are

independent of any external factor. An agent should be able to recognize the identity of a

geographic phenomenon from the set of intrinsic properties of an abstraction (Guarino

and Welty, 2000a). In the scope of this thesis, intrinsic properties are limited to the

following components: identification, characteristic, and abstraction domain (Figure 20).

Identification is the most fundamental property, which consists of the name and the

definition of the abstraction. They both denote what it is intended by that abstraction.

Continuing with the previous road example, the name <road> and the definition <a

road for the movement of motor vehicles> constitute the road ’s identification.

A characteristic is a descriptor of one distinct character of a geographic phenomenon that

holds in a given context. We assume three types of characteristics: descriptive attribute,

geometry, and temporality. A descriptive attribute consists of a name and a definition.

When applicable, a set of attribute values defines the domain of the descriptive attribute

and, when the domain consists of a set of enumerated textual values, each value has a

name and a definition. Geometry is the characteristic that depicts the geographic position

and the shape of the geographic phenomenon whereas temporality is the characteristic

Figure 20: UML object class diagram describing the types of intrinsic properties

Page 131: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

111

that describes a specific moment and the life span associated to the geographic

phenomenon existence and to its other characteristics (descriptive attributes and

geometry). The attribute <surface>, the attribute values <hard surface> and <loose

surface>, and the geometry <1> constitute characteristics of our previous road

example.

An abstraction has also a domain. This domain details the possible combinations of

descriptive attribute values along with the geometry type (e.g. point, line, or surface) and

the temporality type (e.g. punctual and durable time). It sets the extent of the abstraction

of the geographic phenomenon.

Extrinsic properties are elements that provide meaning because of the interaction of the

abstraction with external factors and, conversely, because of the influence of these

external factors on the abstraction. In the scope of this thesis, we limit extrinsic properties

to behaviours and to memberships within a relationship (Figure 21).

A behaviour consists of the set of observable reactions of an abstraction as a response to

a stimulation activated by the abstraction itself or by other abstractions (Merriam-

Webster Inc., 1994; Microsoft Corporation and Liris Interactive, 1996). For example, a

dam could behave as a bridge when roads are connected to both ends of the dam and cars

are allowed to pass on the dam to cross the river. However, we consider as extrinsic

properties only those behaviours that are stimulated by external abstractions.

A relationship expresses the dependency that exists between abstractions. Relationships

can be classified in different manners. Here, we consider IS_A relationships (which take

the form of inheritance and generalization/specialization relationships), PART_OF

relationships (which take the form of aggregation and composition relationships), as well

as other semantic, spatial, and temporal associations. Memberships of an abstraction in a

relationship qualify its dependency with another abstraction and, as such, constitute an

extrinsic property. In the road example, road is member of the relationship between

<road> and <bridge>.

Page 132: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

112

Figure 21: UML object class diagram describing the types of extrinsic properties

Although the different properties are classified intrinsic and extrinsic, the comparison of

a geoConcept with a geoConceptRep analyses each property with their inherent semantics

(including the different types of relationship). For instance, let us consider that a car is a

vehicle, an automobile is a vehicle, and both car and automobile have an IS_A

relationship with vehicle. Car and automobile have therefore a common extrinsic

property.

In this thesis, we formalize the context of an abstraction as the union of all its intrinsic

and extrinsic properties (Equation 11):

Let:

K: an abstraction

CK: the context of K,

CK°: intrinsic properties of K,

∂CK: extrinsic properties of K.

Then:

CK = CK° ∪ ∂CK Equation 11

We represent the context of K by a segment on a semantic axis (Figure 22). In this

metaphor, the intrinsic properties correspond to the interior of the segment whereas the

extrinsic properties correspond to the boundaries of the segment. This type of geometry

was chosen because the point geometry has, by definition, no boundary and the line

Page 133: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

113

Figure 22: The context of an abstraction K

geometry, which is the next level, provides, in a two dimensional space, the necessary

properties for our purposes. The union of intrinsic and extrinsic properties, as defined in

Equation 11, defines the closure of the context of K.

4.6 Geosemantic proximity

As mentioned previously, a geoConcept and a geoConceptRep must refer to the same set

of geographic phenomena in order to be perfectly interoperable. The identity of

geographic phenomena described by a geoConcept must be the same to the identity of

geographic phenomena that are described by a geoConceptRep. In order to evaluate that a

geoConcept and a geoConceptRep refer to the same set of phenomena, we rely on the

similarities that exist between them, i.e. similarities between their intrinsic and extrinsic

properties. For example, a car and an automobile have the same number of wheels and

are engine propelled, i.e. a set of common intrinsic properties. They are both used to

transport people from one place to another and move along roads, i.e. a set of common

extrinsic properties. However, a bicycle and a car have different intrinsic properties

(different number of wheels and propelled systems) but they are both used to transport

people from one place to another along roads or specially arranged passageways. As

such, they have no common intrinsic properties but similar extrinsic properties.

Following these examples, it is therefore possible to develop the different cases of

common intrinsic and extrinsic properties to express the similarity existing between a

geoConcept and a geoConceptRep. This section aims specifically at developing this set of

Page 134: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

114

cases, which are central to the GsP notion. Consequently, GsP takes the form of a

function (g) over the geoConcept and the geoConceptRep, which determine the semantic,

spatial, and temporal similarity of the geoConcept with the geoConceptRep.

Let:

GsP: the semantic, spatial, and temporal similarity of the geoConcept

with the geoConceptRep,

K: a geoConcept,

L: a geoConceptRep,

g: a semantic, spatial, and temporal similarity function.

Then:

GsP = g(K, L) Equation 12

4.6.1 Description of GsP

GsP is an approach that determines qualitatively the similarity of semantic, geometric,

and temporal aspects of a geoConcept and of a geoConceptRep by comparing their

respective intrinsic and extrinsic properties. This approach aims at solving semantic,

geometric and temporal heterogeneities. It essentially relies on the intersection between

the context of a geoConcept (K) and the context of a geoConceptRep (L). Because we

transpose the geoConcept and the geoConceptRep to a geometric-like metaphor (i.e. a

line segment, see Figure 22), this allows us to develop the geosemantic proximity into a

set of topological relations between the geoConcept and the geoConceptRep using the

intersection of their respective context (Figure 23).

Let:

CK: Context of K,

CL: Context of L,

GsP (K,L): Geosemantic proximity between K and L.

Then:

GsP (K,L) = CK ∩ CL Equation 13

Page 135: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

115

Figure 23: Intersection between context of K and context of L

Hence, from Equation 11 and Equation 13, GsP takes the form of a 4-intersection matrix

(Equation 11) between the intrinsic (C°) and extrinsic (∂C) properties of K and L. Each

member of the matrix evaluates the commonalities (semantic, geometric and temporal)

that exist between the context of K and the context of L. More specifically, ∂CK ∩ ∂CL

evaluates if K and L participate in similar relationships (i.e. same semantic, spatial, or

temporal relationship type with same external geoConcept or geoConceptRep) and if both

have similar behaviours stimulated likewise by common external geoConcepts or

geoConceptReps. CK° ∩ CL° evaluates the correspondence of the intrinsic properties

between K and L. This intersection goes beyond the simple comparison between the

identification of K and L, their descriptive attributes, geometry, temporality, and the

comparison of their domains of abstraction, respectively, to include also the comparison

of the identification of K with the descriptive attributes of L with their domains of values

and conversely. CK° ∩ ∂CL evaluates if L has relationships with K or has behaviour

stimulated by K, and reciprocally for ∂CK ∩ CL°. Section 4.6.2 illustrates with real-life

examples how GsP works.

GsP(K,L) =

Equation 11

In the comparison of properties between a geoConcept and a geoConceptRep, each

matrix elements could be evaluated empty (denoted by Ф or f) and non-empty (denoted

Page 136: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

116

by ¬Ф or t) expressing respectively that none or some properties are common. This leads

to the 16 (i.e. 24) possible GsP predicates (Figure 24) that are presented in the form of

“GsP_” followed by a string of 4 “t” or “f” characters in row major form (i.e. row by

row) according to the 4-intersection matrix.

Figure 24 presents a typology of the GsP predicates, which is organized in four distinct

subdivisions influenced by four poles: common intrinsic properties, common extrinsic

Figure 24: GsP predicates

Page 137: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

117

properties, no common intrinsic properties, and no common extrinsic properties. The

GsP predicates are detailed below according to this subdivision and examples follow

thereafter.

The left section of Figure 24 refers to the predicates having common extrinsic properties

but no common intrinsic properties: GsP_tfff (or meet), GsP_tftf, GsP_ttff, and GsP_tttf.

The GsP_tfff (or meet) predicate characterizes that K and L basically refers to different

kinds of phenomena. However, because their similar extrinsic properties with common

external factors, they evoke similar things. As such, only the intersection between

extrinsic properties of K and extrinsic properties of L is not empty.

GsP_tfff(K,L) :=

meet(K,L) :=

∀p [(p ∈ CK°) → (p ∉ CL°) ∧ (p ∉ ∂CL)] ∧

∀q [(q ∈ ∂CK) → (q ∉ CL°)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ ∂CL)]

3

GsP_tftf, GsP_ttff, and GsP_tttf predicates are specializations of the above GsP_tfff

predicate, where K and L, in addition to having common extrinsic properties, also have

extrinsic properties that depend on the other. More specifically, GsP_tftf characterizes

that L's extrinsic properties rely on K's intrinsic properties and, therefore, the intersection

between extrinsic properties of L and intrinsic properties of K is also not empty.

Reciprocally, GsP_ttff characterizes that K's extrinsic properties rely on L's intrinsic

properties and, therefore, the intersection between extrinsic properties of K and intrinsic

properties of L is also not empty. GsP_tttf corresponds to the cases where K's extrinsic

properties rely on L's intrinsic properties and conversely. Therefore in addition to the

intersection between extrinsic properties of K and extrinsic properties of L, the

intersection between extrinsic properties of K and intrinsic properties of L and the

intersection between extrinsic properties of L and intrinsic properties of K are not empty. 3 The spatial metaphor is used only to show the relationship between the geoConcept context and the

geoConceptRep context.

Page 138: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

118

GsP_tftf(K,L) := ∀p [(p ∈ CK°) → (p ∉ CL°)] ∧

∀q [(q ∈ ∂CK) → (q ∉ CL°)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ ∂CL)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ ∂CL)]

GsP_ttff(K,L) := ∀p [(p ∈ CK°) → (p ∉ CL°) ∧ (p ∉ ∂CL)] ∧

∃q [(q ∈ ∂CK) ∧ (p ∈ CL°)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ ∂CL)]

GsP_tttf(K,L) := ∀p [(p ∈ CK°) → (p ∉ CL°)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ ∂CL)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ CL°)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ ∂CL)]

The bottom subdivision of Figure 24 comprises predicates of no common intrinsic

properties and no common extrinsic properties: GsP_fftf, GsP_ftff, GsP_fttf, and GsP_ffff

(or disjoint). GsP_fftf, GsP_ftff, and GsP_fttf are similar to the above three predicates

with the exception that K and L simply rely on each other. So, GsP_fftf characterizes that

L's extrinsic properties rely on K's intrinsic properties and, therefore, only the intersection

between extrinsic properties of L and intrinsic properties of K is not empty. Reciprocally,

GsP_ftff characterizes that K's extrinsic properties rely on L's intrinsic properties and,

therefore, only the intersection between extrinsic properties of K and intrinsic properties

of L is not empty. GsP_fttf corresponds to the cases where K's extrinsic properties rely on

L's intrinsic properties and conversely. Accordingly, the intersection between extrinsic

properties of K and intrinsic properties of L and the intersection between extrinsic

properties of L and intrinsic properties of K are not empty.

Page 139: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

119

GsP_fftf(K,L) := ∀q [(q ∈ ∂CK) → (q ∉ CL°) ∧ (q ∉ ∂CL)] ∧

∀p [(p ∈ CK°) → (p ∉ CL°)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ ∂CL)]

GsP_ftff(K,L) := ∀p [(p ∈ CK°) → (p ∉ CL°) ∧ (p ∉ ∂CL)] ∧

∀q [(q ∈ ∂CK) → (q ∉ ∂CL)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ CL°)]

GsP_fttf(K,L) := ∀p [(p ∈ CK°) → (p ∉ CL°)] ∧

∀q [(q ∈ ∂CK) → (q ∉ ∂CL)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ ∂CL)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ CL°)]

GsP_ffff (or disjoint) characterises that no commonality exists between intrinsic or

extrinsic properties of the geoConcept K (illustrated by a black segment) and the

geoConceptRep L (illustrated by a grey segment). Therefore, all four intersections are

empty.

GsP_ffff(K,L) :=

disjoint(K,L) :=

∀p [(p ∈ CK°) → (p ∉ CL°) ∧ (p ∉ ∂CL)] ∧

∀q [(q ∈ ∂CK) → (q ∉ CL°) ∧ (q ∉ ∂CL)]

The right subdivision of Figure 24 groups the predicates having common intrinsic

properties but no common extrinsic properties: GsP_ffft, GsP_fftt (or contains), GsP_ftft

(or inside), and GsP_fttt (or overlap). The GsP_ffft predicate applies when only

commonalities between intrinsic properties of K and L exist. As such, only the

intersection between intrinsic properties of K and intrinsic properties of L is not empty.

Page 140: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

120

GsP_ffft(K,L) := ∀p [(p ∈ CK°) → (p ∉ ∂CL)] ∧

∀q [(q ∈ ∂CK) → (q ∉ CL°) ∧ (q ∉ ∂CL)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ CL°)]

The GsP_fftt (or contains) predicate is possible when L is more specific than K. This

means that some intrinsic properties of K match all intrinsic properties of L and some are

associated with all L's extrinsic properties. Accordingly, only the intersection between K's

intrinsic properties and L's intrinsic properties and the intersection between K's intrinsic

properties and L's extrinsic properties are non-empty.

GsP_fftt(K,L) :=

contains(K,L) :=

∀q [(q ∈ ∂CK) → (q ∉ CL°) ∧ (q ∉ ∂CL)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ CL°)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ ∂CL °)]

Reciprocally, the GsP_ftft (or inside) predicate is possible when K is more specific than

L. Therefore, all K's intrinsic properties match L's intrinsic properties and all K's extrinsic

properties depend on L's intrinsic properties. Accordingly, only the intersection between

K's extrinsic properties and L's intrinsic properties and the intersection between K's

intrinsic properties and L's intrinsic properties are non-empty.

GsP_ftft(K,L) :=

inside(K,L) :=

∀p [(p ∈ CK°) → (p ∈ CL°)] ∧

∀q [(q ∈ ∂CK) → (q ∈ CL°)]

Page 141: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

121

The GsP_fttt (or overlap) predicate applies when commonalities exist between intrinsic

properties of K and L as well as when extrinsic properties of K refer to intrinsic properties

of L, and conversely. Accordingly, the intersection between K's extrinsic properties and

L's intrinsic properties, the intersection between K's extrinsic properties and L's intrinsic

properties, and the intersection between K's intrinsic properties and L's intrinsic

properties are non-empty.

GsP_fttt(K,L) :=

overlap(K,L) :=

∀q [(q ∈ ∂CK) → (q ∉ ∂CL)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ CL°)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ ∂CL)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ CL°)]

Finally, the top section gathers predicates with both common intrinsic and common

extrinsic properties: GsP_tfft (or equal), GsP_tftt (or covers), GsP_ttft (or coveredBy),

and GsP_tttt. The GsP_tfft (or equal) predicate characterizes that K and L refer exactly to

the same set of phenomena. Therefore, there is a mapping between all K's and L's

intrinsic properties as well as between all K's and L's extrinsic properties. Accordingly,

only the intersection between K's intrinsic properties and L's intrinsic properties and the

intersection between K's extrinsic properties and L's extrinsic properties are non-empty.

GsP_tfft(K,L) :=

equal(K,L) :=

∀p [(p ∈ CK°) → (p ∈ CL°)] ∧

∀q [(q ∈ ∂CK) → (q ∈ ∂CL)]

The GsP_tftt (or covers) predicate is possible when L is more specific than K and both are

related similarly to common external factors. This implies that some of K's intrinsic

properties match all extrinsic properties of L, some are related to L's extrinsic properties,

and K and L have similar extrinsic properties with common external factors. Accordingly,

Page 142: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

122

the intersection between K's extrinsic properties and L's extrinsic properties, the

intersection between K's intrinsic properties and L's extrinsic properties, and the

intersection between K's intrinsic properties and L's intrinsic properties are non-empty.

GsP_tftt(K,L) :=

covers(K,L) :=

∀q [(q ∈ ∂CK) → (q ∉ CL°)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ CL°)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ ∂CL)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ ∂CL)]

Reciprocally, the GsP_ttft (or coveredBy) predicate is possible when K is more specific

than the L and K and L depend similarly on common external factors. Therefore, all K's

intrinsic properties match with L's intrinsic properties, part of K’s extrinsic properties

relies on some of L's intrinsic properties, and K's extrinsic properties are common with

L's extrinsic properties. Accordingly, the intersection between K's extrinsic properties and

L's extrinsic properties, the intersection between K's extrinsic properties and L's intrinsic

properties, and the intersection between K's intrinsic properties and L's intrinsic

properties are non-empty.

GsP_ttft(K,L) :=

coveredBy(K,L) :=

∀p [(p ∈ CK°) → (p ∈ CL°)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ CL°)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ ∂CL)]

The GsP_tttt predicate applies when commonalities exist between intrinsic and extrinsic

properties of K and intrinsic and extrinsic properties of L – i.e. both have common

intrinsic properties, extrinsic properties that rely on each other as well as similar extrinsic

properties that depend on common external factors. Accordingly, all four intersections

are non-empty.

Page 143: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

123

GsP_tttt(K,L) := ∃p [(p ∈ CK°) ∧ (p ∈ CL°)] ∧

∃p [(p ∈ CK°) ∧ (p ∈ ∂CL)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ ∂CL)] ∧

∃q [(q ∈ ∂CK) ∧ (q ∈ CL°)]

As a result, the geosemantic proximity between a geoConcept K and a geoConceptRep L

is not essentially a symmetric relation. This has also been acknowledged by Rodriguez

(2000) and Benslimane (2001). In GsP, predicates for which (∂CK ∩ CL°) is equal to (∂CK

∩ CL°) are symmetric, for instance GsP_ffff (or disjoint), GsP_ffft, GsP_tfft (or equal),

GsP_fttt (or overlap), GsP_tttt, GsP_tfft (or meet), GsP_tttf, and GsP_fttf. The remaining

predicates are non-symmetric: GsP_fftt (or contains), GsP_ftft (or inside), GsP_tftt (or

covers), GsP_ttft (or coveredBy), GsP_tftf, GsP_ttff, GsP_fftf, and GsP_ftff.

It is interesting to note that the GsP notion behaves similarly with other well-known

structures describing relationships between concepts. For Instance, Thesaurus (Meta Data

Coalition, 1999; Milstead, 1998) uses the following relation types between concepts,

which map GsP predicates:

Narrower term: GsP_tftt (covers), GsP_fftt (contains)

Broader term: GsP_ttft (coveredBy), GsP_ftft (inside)

Use/used for: GsP_tfft (equal)

Related term: GsP_tfff (meet), GsP_tftf, GsP_ttff, GsP_tttf, GsP_fftf, GsP_ftff,

GsP_fttf, GsP_ffft, GsP_fttt (overlap), GsP_tttt

Kashyap and Sheth (1996) and Sheth and Kashyap (1992) introduced a taxonomy of

semantic proximity predicates in order to characterize the semantic similarity between

concepts. Here again, GsP predicates map the semantic proximity predicates:

Semantic equivalence: GsP_tfft (equal)

Semantic relationship: GsP_tftt (covers), GsP_fftt (contains), GsP_ttft

(coveredBy), GsP_ftft (inside)

Semantic relevance: GsP_ffft, GsP_fttt (overlap), GsP_tttt

Semantic resemblance: GsP_tfff (meet), GsP_tftf, GsP_ttff, GsP_tttf,

Page 144: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

124

GsP_fftf, GsP_ftff, GsP_fttf

Semantic incompatibility: GsP_ffff (disjoint)

Also, WordNet (Miller et al., 1993) uses another set of relationships expressing the

relatedness between concepts, which can be compared to GsP predicates:

Synonyms: GsP_tfft (equal)

Coordinate terms: GsP_tfff (meet), GsP_tftf, GsP_ttff, GsP_tttf, GsP_tttt

Hypernyms: GsP_tftt (covers), GsP_fftt (contains)

Hyponyms: GsP_ttft (coveredBy), GsP_ftft (inside)

Holonyms/Meronyms: GsP_fftf, GsP_ftff, GsP_fttf

Although GsP predicates behave similarly to the above existing schemes, they provide a

more comprehensive set of predicates to express the semantic similarity between a

geoConcept and a geoConceptRep as we will illustrate below. We find that these

improvements justify the GsP approach, especially as the GsP predicates can be

computed automatically using existing ontologies.

4.6.2 Examples

Examples are outlined below to illustrate the convenience of GsP. They are based on

existing topographical databases and data product specifications that describe geographic

phenomena differently. In these examples, let us assume that an agent refers to a database

with its related data product specification, as its explicit ontology. This agent compares a

geoConcept of its own ontology to recognize a geoConceptRep received from another

agent, which agree with a different ontology, and evaluates the corresponding

geosemantic proximity.

First, let us compare the geoConcept road from (BC Ministry of Environment Lands

and Parks (Geographic Data BC), 1992) to the geoConceptRep vegetation from

(Natural Resources Canada, 1996). In this case, road is defined as “a specially prepared

route on land for the movement of vehicles (other than railway vehicles)” while

vegetation refers “an area covered with shrubs and/or trees.” Obviously, intrinsic and

Page 145: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

125

extrinsic properties of road do not match any properties of vegetation . Therefore, the

geosemantic proximity between road and vegetation is GsP_ffff or disjoint.

Let us examine the case in which the geoConcept road from (Natural Resources

Canada, 1996) is compared to the geoConceptRep rue (street in English) from

(Québec, 2000). On one the hand, road refers to “road for the movement of motor

vehicle.” In road , street is one possible value of the road classification attribute and is

defined as “a public road in a residential or commercial area with buildings on one or

both sides.” On the other hand, rue is defined as “a communication thoroughfare lined

by buildings in a built-up area” (author's translation from the French definition). Rue

has to be connected to other streets or roads of other classifications. In this example,

rue maps the attribute street of the geoConcept road . Like road , it is geometrically

depicted as a linear feature. Moreover, rue has also a relationship with other types of

roads that are already included in road . Consequently, the geosemantic proximity

between road and rue is GsP_fftt or contains. Reciprocally, if we consider rue

being the geoConcept and road , the geoConceptRep, we can say that the geosemantic

proximity between rue and road is GsP_ftft or inside.

The following example compares the geoConcept wetland from (Natural Resources

Canada, 1996) to the geoConceptRep marsh/swamp from (VMap, 1995). On the one

hand, wetland consists in “a water-saturated area, covered intermittently or

permanently with water; the vegetation may either be marsh (reeds, grass, and cattails)

and swamp (shrub and trees)”. It has a relationship with peat cutting that is an area where

peat is cut. On the other hand, marsh/swamp corresponds to “a saturated area, at times

covered with water, supporting vegetation which may include trees”. As wetland , it

also has the same type of relationship with peat. Inasmuch as wetland and

marsh/swamp have essentially the same literal meaning, they are both depicted

geometrically by surface, and they have a nearly identical relationship with peat. We can

then consider that the geosemantic proximity between wetland and marsh/swamp is

GsP_tfft or equal.

Page 146: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

126

In this next example, the geoConcept waterbody from (Natural Resources Canada,

1996) is compared to the geoConceptRep lake from (BC Ministry of Environment

Lands and Parks (Geographic Data BC), 1992). On the one hand, waterbody is simply

defined as “a body of water including rivers” (i.e. those rivers that are large enough to be

shown as surface). It includes all natural water areas and, also, has relationships with

other feature types such as dam, breakwater, and wharf. On the other hand, lake

represents “a body of fresh water that is completely surrounded by land.” It has

relationships with other kinds of water areas notably river/stream as well as with other

kinds of features such as dam, breakwater, and pier/wharf. As we can observe in this

example, the literal meaning of waterbody comprises the meaning of lake . Moreover,

lake can be considered as a specialization of waterbody that has relationships with

other sub-types of waterbody. They are both depicted geometrically by a surface. Also,

lake and waterbody have equivalent relationships with same external abstractions.

Therefore, we can conclude that the geosemantic proximity between waterbody and

lake is GsP_tftt or covers. Reciprocally, if lake is considered the geoConcept and

waterbody , the geoConceptRep, then the geosemantic proximity of lake with

waterbody is GsP_ttft or coveredBy.

In this example, we illustrate the geosemantic proximity between the geoConcept hazard

to air navigation and the geoConceptRep bridge both from (Natural Resources

Canada, 1996). On the one hand, hazard to air navigation refers to “area containing a

structure or landform high enough to create a hazard to air navigation.” The attribute type

of hazard to air navigation can take the value bridge, to indicate those hazards that are

bridges of height equal to or greater than 60 metres. On the other hand, bridge

represents a “part of a road or railway built on a raised structure and serving to span an

obstacle, river, another road or railway, etc.” without any height restriction. It has a

relationship with hazard to air navigation as well. As we can note in this example,

hazard to air navigation and bridge have common intrinsic properties as both refers

to bridge as attribute or abstraction. They are also depicted geometrically in the same

manner (e.g. line). Finally, they have a relationship with each other and, as such, extrinsic

properties of one intersect intrinsic properties of the other. Accordingly, we can say that

Page 147: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

127

the geosemantic proximity between hazard to air navigation and bridge is GsP_fttt or

overlaps.

The last example illustrates the geosemantic proximity that exists between the

geoConcept bridge from (Natural Resources Canada, 1996) and geoConceptReps such

as gué (ford in English) from (BC Ministry of Environment Lands and Parks

(Geographic Data BC), 1992), ferryRoute from (BC Ministry of Environment Lands

and Parks (Geographic Data BC), 1992), or even tunnel from (VMap, 1995). Bridge

as defined in the last example refers to “part of a road or railway built on a raised

structure and serving to span an obstacle, river, another road or railway, etc.” Ford is a

“place where it is possible to cross a river by foot” (author's translation from the French

definition) or by vehicle (as ford is a kind of link between some types of road).

FerryRoute correspond to “the water route a ferry follows when transporting vehicles

and/or passengers.” Tunnel refers to “an underground or underwater passage, open at

both ends, and usually containing a road or a railroad.” All of these abstractions refer to

different kinds of phenomena but all have relationships with roads or railroads and, as

such, have a likewise behaviour corresponding to a place or a path to span an obstacle for

people, vehicles, or trains, that links roads or railroads. As such, the geosemantic

proximity between bridge and ford , ferryRoute , and tunnel is GsP_tfff or meets.

In this section, we have described the notion of geosemantic proximity and have

illustrated its use. An approach such as GsP for the assessment of the semantic proximity

of geospatial data seems quite appropriate because it follows the same topological

paradigm than existing spatial and temporal topological theories commonly employed in

geographical information systems (Allen, 1983; Clementini and Di Felice, 1996;

Egenhofer, 1993; Egenhofer and Franzosa, 1991). The manner GsP is developed is also

compatible with the way spatial and temporal information is handled in ISO 19100–

International standards on geographic information/geomatics (ISO/TC 211, 2002a;

ISO/TC 211, 2003a) and in Open GIS Consortium Inc. specifications (Open GIS

Consortium Inc., 1999b).

Page 148: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

128

4.7 Prototype

Although GsP predicates could be used for the development of ontologies to describe the

similarity between geoConcepts a priori, our fundamental intent is to use the GsP

approach to compute automatically the semantic similarity between a geoConcept and a

geoConceptRep based on existing ontologies. The semantic similarity will be expressed

qualitatively with the GsP predicates as it happens for the recognition and the production

of geoConceptReps in interoperability between systems (Brodeur et al., 2003). In our

prototype, interoperability consists in a communication process between a client agent

requesting geospatial information and a provider agent supplying geospatial data (Figure

25). The client agent sends a request about geospatial information based on its own

abstraction of geographic phenomena and vocabulary, i.e. his own ontology, for example

lake, river, and Sherbrooke. The request travels in the communication channel up to the

provider agent. Once the request reaches its destination, the provider agent works to

recognize the message using its own knowledge and vocabulary, i.e. its own set of

geoConcepts, for instance waterbody , watercourse , and Sherbrooke . Once the

message is recognized, the provider agent uses geoConcepts that recognize the

geoConceptReps of the request to retrieve data from its database complying with the

client agent's request. Then, it encodes the data using its own vocabulary into

geoConceptReps, for instance Lac des Nations , Magog river , and St-François

river , and sends it to the client agent. When the client agent receives the data, it has to

recognize the data coming from the provider agent and to evaluate that it fits its request to

complete the interoperability cycle. The prototype called GsP Prototype experiments and

demonstrates the notion of GsP within the framework for geospatial data interoperability

presented in section 2. This section introduces this prototype.

GsP Prototype was carried out using software agents (Nwana, 1996) developed in Java™

and communicating in XML. With, the prototype, we instantiate agents (user and

provider) of identical and different geospatial ontologies to test the geosemantic

Page 149: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

129

Figure 25: Prototype principle

proximity concept. Ontologies were developed in the form of geospatial data repositories

(Brodeur et al., 2000). A geospatial data repository consists of a collection of metadata

that is structured in such a way to provide the meaning (i.e. the semantics) and the

structure of concepts maintained in a geospatial database. It includes a conceptual schema

and a data dictionary of geoConcepts. More specifically, we used Perceptory (Bédard,

1999; Bédard and Proulx, 2002), a spatially-extended UML visual modeling tool, to

compile the ontologies. Ontologies correspond to a network of interconnected

geoConcepts (Figure 26) in which geoConcepts are the nodes and associations between

geoConcepts are the arcs. Here, the ontology compares with an existing local database

schema (Bishr, 1997; Sheth, 1999) that is maintained persistently in the agent’s memory.

Each geoConcept is encapsulated by a set of functions, which provide reasoning

capabilities. These functions allow a geoConcept to recognize and to produce

geoConceptReps, and to assess automatically the GsP of the geoConcept with other

geoConceptReps. Each agent navigates from geoConcept to geoConcept in its ontology

using a network traversal function; we used the Breadth First Traversal algorithm.

Page 150: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

130

Figure 26: Network of geoConcepts

Once an agent receives a query about geoConceptReps, it initiates the recognition of

these geoConceptReps. Accordingly, the set of geoConceptReps are passed to a proxy,

which begins to visit geoConcepts recently used by the agent. Each geoConcept visited

evaluates its GsP with one geoConceptRep at a time. The geoConcept is placed in a list

when its GsP is different of “ffff” (disjoint). If a geoConcept having a GsP “tfft” (equal) is

found, it is then used to answer the request. Otherwise, the proxy begins to visit

geoConcepts of the ontology (i.e. geoConcepts stored in the geospatial data repository)

until a geoConcept estimates its GsP to “tfft” or the ontology is traversed completely. All

geoConcepts with a GsP different of “ffff” (disjoint) are again placed in a list. If a

geoConcept of GsP equal to “tfft” is found, it is used to answer the request. Otherwise,

the found geoConcepts of GsP different of “ffff” are sorted by their respective GsP to

identify the most similar geoConcept, which is used to answer the query. Once, the other

agent receives the answer to its query, it initiate an identical process to recognize the

geoConceptReps it receives.

Agents communicate with others using messages that include geoConceptReps.

GeoConceptReps are essentially transient representations of geographic phenomena. It is

the responsibility of geoConcepts for which information is wanted or those geoConcepts

that are used to answer a query to generate and encode the appropriate geoConceptReps.

Page 151: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

131

In the GsP Prototype, query and answer messages consist of streams of XML data

encoded according to a predefined schema, i.e. an XML Schema, which determines the

semantics and the structure of the message.

We used road and hydrologic network ontologies compiled from five distinct geospatial

data product specifications to test the prototype and more specifically the computer

feasibility of the geosemantic proximity concept:

- Standards and Specifications for the National Topographic Data Base (NTDB) of

Canada (Natural Resources Canada, 1996) (46 geoConcepts),

- Specifications for Digital and Hardcopy Property and Basemap Products of

Province of Prince Edward Island (PEIBP) (P.E.I. Geomatics Information Centre)

(100 geoConcepts),

- Specifications for the “Base de données topographiques du Québec” (BDTQ)

(Québec, 2000) (67 geoConcepts),

- Specifications for the Ontario Digital Topographic Database (ODTDB) (OBM,

1996) (24 geoConcepts), and

- Specifications for the Digital Baseline Mapping at 1:20000 of Province of British

Columbia (DBMBC) (BC Ministry of Environment Lands and Parks (Geographic

Data BC), 1992) (40 geoConcepts).

The experiment demonstrated that it is possible to software agents of identical and

distinct ontologies to communicate each other. With the GsP approach, geoConcepts

assess their geosemantic proximity with geoConceptReps automatically for the

recognition or generation operations in order to send or answer queries. For instance, an

NTDB agent maps properly its geoConcept road with the geoConceptRep street

received as part of a query from a BDTQ agent and, reciprocally, the BDTQ agent maps

properly its street geoConcept with the road generated geoConceptRep received from

the NTDB agent as part of the answer. This was also observed between water

disturbance of NTDB and rapids of PEIBP and in many other cases. The detailed

Page 152: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

132

description of the prototype along with the results of the experiments is presented in more

detail in chapter 5.

4.8 Conclusion

In the present chapter, we proposed a new approach to assess the semantic similarity

between geospatial abstractions (specifically between a geoConcept and a

geoConceptRep) called geosemantic proximity (GsP). It is basically a context-based

approach, which compares the context of a geoConcept to the context of a

geoConceptRep. The context of a geoConcept and of a geoConceptRep is expressed by

the way of intrinsic (i.e. the literal meaning) and extrinsic (i.e. meaning influenced by

external aspects) properties, which globally provide the intended meaning (semantics) of

such abstractions.

More specifically, GsP includes a set of geosemantic predicates, which express the

commonalities between intrinsic and extrinsic properties of a geoConcept with a

geoConceptRep. It is based on the 4-intersection topological model and considers that the

interior of an abstraction corresponds to the set of intrinsic properties and boundaries

correspond to the set of extrinsic properties. As such, GsP follows existing spatial and

temporal approaches (Allen, 1983; Egenhofer, 1993; Egenhofer and Franzosa, 1991) and,

consequently, appears to be a convenient approach in the geospatial information realm.

In practice, geoConcepts assess the geosemantic proximity in order to recognize and to

produce geoConceptReps that are semantically similar to them. As such, GsP plays an

essential role to realize the semantic interoperability of geospatial data.

An experimental prototype is currently under development that will be tested against

existing provincial data sources along with the new Canadian GeoBase definition. The

9-intersection model should also be worked out to take into consideration the difference

or the variability (Rodriguez, 2000) of context in the GsP assessment. The expected

outcomes of this research will provide a new understanding of geospatial data

Page 153: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

133

interoperability itself as well as a new way to achieve semantic interoperability of

geospatial data.

Acknowledgements

The authors wish to acknowledge the contribution of Natural Resources Canada – Centre

for Topographic Information in supporting the first author for this research and of the

GEOIDE Network of Centres of Excellence in geomatics, project DEC#2 (Designing the

Technological Foundations of Spatial Decision-making with the World Wide Web).

4.9 References

Allen, J F 1983 Maintaining Knowledge about Temporal Intervals. Communication of the

ACM, 26(11): 832-843

Barsalou, L W 1999 Perceptual symbol systems. Behavioral and Brain Sciences, 22(4):

577-609

BC Ministry of Environment Lands and Parks (Geographic Data BC) 1992 Digital

Baseline Mapping at 1:20,000. Victoria, Province of British Columbia, BC

Ministry of Environment, Lands and Parks

Bédard, Y 1999 Visual Modelling of Spatial Database Towards Spatial PVL and UML.

Geomatica, 53(2): 169-186

Bédard, Y, and M-J Proulx 2002 Perceptory Web Site. Web Page Document,

http://sirs.scg.ulaval.ca/Perceptory

Benslimane, D 2001 Interopérabilité de SIG : la solution Isis. Revue internationale de

géomatique, 11(1): 7-42

Bishr, Y 1997 Semantics Aspects of Interoperable GIS. Ph.D. Dissertation, ITC

Publication

Brodeur, J, and Y Bédard 2001 Geosemantic Proximity, a Component of Spatial Data

Interoperability. In Proceedings of International Workshop on "Semantics in

Enterprise Integration" (OOPSLA 2001): 6

Page 154: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

134

Brodeur, J, Y Bédard, G Edwards, and B Moulin 2003 Revisiting the Concept of

Geospatial Data Interoperability within the Scope of a Human Communication

Process. Transactions in GIS, 7(2): 243-265

Brodeur, J, Y Bédard, and M J Proulx 2000 Modelling Geospatial Application Databases

using UML-based Repositories Aligned with International Standards in

Geomatics. In Proceedings of Eighth ACM Symposium on Advances in

Geographic Information Systems (ACMGIS) ACM Press: 39-46

Casati, R, B Smith, and A C Varzi 1998 Ontological Tools for Geographic

Representation. In N Guarino (ed) Formal Ontology in Information Systems.

Amsterdam, IOS Press: 77-85

Charron, J 1995 Développement d’un processus de sélection des meilleures sources de

données cartographiques pour leur intégration à une base de données à référence

spatiale. Mémoire de maîtrise, Université Laval

Clementini, E, and P Di Felice 1995 A Comparison of Methods for Representing

Topological Relationships. Information Sciences-Applications: An International

Journal, 3(3): 149-178

Clementini, E, and P Di Felice 1996 A Model for Representing Topological Relationship

Between Complex Geometric Features in Spatial Databases. Information

Sciences, 90(1-4): 121-136

Egenhofer, M 1993 A Model for Detailed Binary Topological Relationships. Geomatica,

47(3 & 4): 261-273

Egenhofer, M, and R D Franzosa 1991 Point-Set Topological Spatial Relations.

International Journal of Geographic Information Science, 5(2): 161-174

Egenhofer, M, D M Mark, and J R Herring 1994a The 9-Intersection: Formalism and Its

Use for Natural-Language Spatial Predicates. Santa Barbara, CA, University of

California, National Center for Geographic Information and Analysis Technical

Report 94-1

Egenhofer, M, and J Sharma 1992 Topological Consistency. In Proceedings of 5th

International Symposium on Spatial Data Handling IGU Commission of GIS:

335-343

Page 155: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

135

Egenhofer, M J 1997 Spatial Relations: Models and Inferences. In Proceedings of

Tutorial 2 - 5th International Symposium on Spatial Databases (SSD'97): 83

Egenhofer, M J, E Clementini, and P Di Felice 1994b Topological relations between

regions with holes. International Journal of Geographic Information Science,

8(2): 129-142

Egenhofer, M J, and R D Franzosa 1995 On the equivalence of topological relations.

International Journal of Geographic Information Science, 9(2): 133-152

Egenhofer, M J, and D M Mark 1995 Modelling conceptual neighbourhoods of

topological line-region relations. International Journal of Geographic

Information Science, 9(5): 555-565

Frank, A U 2000 Spatial Communication with Maps: Defining the Correctness of Maps

Using a Multi-Agent Simulation. In C Freksa, W Brauer, C Habel, and K F

Wender (eds) Spatial Cognition II : Integrating Abstract Theories, Empirical

Studies, Formal Methods, and Practical Applications (International Workshop on

Maps and Diagrammatical Representations of the Environment, Hamburg,

August 1999). Berlin Heidelberg, Springer-Verlag: 80-99

Frankhauser, P, M Kracker, and E Neuhold 1991 Semantic vs. Structural Resemblance of

Classes. SIGMOD Record, 20(4): 59-63

Guarino, N 1995 Formal Ontology, Conceptual Analysis and Knowledge Representation.

International Journal of Human and Computer Studies, 43(5&6): 625-640

Guarino, N 1999 The Role of Identity Conditions in Ontology Design. In Proceedings of

Spatial Information Theory - Cognitive and Computational Foundations of

Geographic Information Science, International Conference COSIT'99, 3-540-

66365-7. Berlin, Springer-Verlag Lecture Notes in Computer Science 1661: 221-

234

Guarino, N, and C Welty 2000a A Formal Ontology of Properties. In Proceedings of

Knowledge Engineering and Knowledge Management: Methods, Models and

Tools (12th International Conference, EKAW2000), 3-540-41119-4. Berlin,

Springer-Verlag Lecture Notes in Computer Science 1937: 97-112

Page 156: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

136

Guarino, N, and C Welty 2000b Identity, Unity, and Individuation: Towards a Formal

Toolkit for Ontological Analysis. In Proceedings of ECAI-2000: The European

Conference on Artificial Intelligence. Amsterdam, IOS Press: 219-223

Harvey, F J, W Kuhn, H Pundt, Y Bishr, and C Riedemann 1999 Semantic

Interoperability: A Central Issue for Sharing Geographic Information. The Annals

of Regional Science, 33(2): 213-233

ISO/TC 211 2002a ISO 19108:2002 Geographic Information - Temporal Schema.

Geneva, Switzerland, International Organization for Standardization

ISO/TC 211 2002b ISO/DIS 19109 Geographic Information - Rules for Application

Schema. Geneva, Switzerland, International Organization for Standardization

ISO/TC 211 2003a ISO 19107:2003 Geographic Information - Spatial Schema. Geneva,

Switzerland, International Organization for Standardization

ISO/TC 211 2003b ISO 19115:2003 Geographic Information - Metadata. Geneva,

Switzerland, International Organization for Standardization

ISO/TC 211 2003c ISO/DIS 19118 Geographic Information - Encoding. Geneva,

Switzerland, International Organization for Standardization

Kashyap, V, and A Sheth 1996 Semantic and Schematic Similarities Between Database

Objects: A Context-Based Approach. The VLDB Journal, 5: 276-304

Kashyap, V, and A Sheth 1998 Semantic Heterogeneity in Global Information Systems:

the Role of Metadata, Context and Ontologies. In M P Papazoglou, and

G Schlageter (eds) Cooperative Information Systems-Trends and Directions. San

Diego, CA, Academic Press: 139-178

Kottman, C 1999 The Open GIS Consortium and Progress Toward Interoperability in

GIS. In M Goodchild, M Egenhofer, R Fegeas, and C Kottman (eds)

Interoperating Geographic Information Systems. Boston, Massachusetts, Kluwer

Academic Publisher: 39-54

Laurini, R 1998 Spatial Multi-Database Topological Continuity and Indexing: a Step

Towards Seamless GIS Data Interoperability. International Journal of

Geographic Information Science, 12(4): 373-402

Lehmann, F 1992 Semantic Networks. Computers and Mathematics with Applications,

23(2-5): 50

Page 157: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

137

Locke, J 1689 An Essay Concerning Human Understanding. Web Page Document,

http://humanum.arts.cuhk.edu.hk/Philosophy/Locke/echu/

Mark, D M, and M Egenhofer 1994 Modeling Spatial Relations Between Lines and

Regions: Combining Formal Mathematical Models and Human Subjects Testing.

In M Egenhofer, D M Mark, and J R Herring (eds) The 9-Intersection: Formalism

and Its Use for Natural-Language Spatial Predicates (Technical Report).

NCGIA: 29-83

McKee, L, and K Buehler (eds) 1998 The OpenGIS Guide. Wayland, Massachusetts,

OpenGIS Consortium Inc.

Merriam-Webster Inc. 1994 Merriam-Webster’s Collegiate Dictionary - Electronic

Edition - Version 1.2. CD Document

Meta Data Coalition 1999 Knowledge Management Model: Knowledge Description.

Microsoft Corporation and Liris Interactive, 1996 Bibliorom Larousse, Version 1.0.

Microsoft Corporation and Liris Interactive, CD Document

Miller, G A, R Beckwith, C Fellbaum, D Gross, and K Miller 1993 Introduction to

WordNet: An On-line Lexical Database. Princeton, Cognitive Science

Laboratory, Princeton University

Milstead, J L 1998 NISO Z39.50: Standard for Structure and Organization of Information

Retrieval Thesauri. In Proceedings of Taxonomic Authority Files Workshop: 9

Natural Resources Canada 1996 National Topographic Data Base - Standards and

Specifications. Sherbrooke, Quebec, Centre for Topographic Information-

Sherbrooke

New Brunswick 2000 Guide d’utilisation de la Base de données topographiques

numériques (BDTN) du Nouveau-Brunswick. Fredericton, New Brunswick,

Services Nouveau-Brunswick

Nwana, H S 1996 Software Agents: An Overview. The Knowledge Engineering Review,

11(2): 205-244

Object Management Group 2001 OMG Unified Modeling Language Specification

(version 1.4). Needham MA, OMG

OBM 1996 Ontario Digital Topographic Database - 1:10,000, 1:20,000 - A Guide for

User. Toronto, Ontario, Ministry of Natural Resources

Page 158: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

138

Open GIS Consortium Inc. 1999a OpenGIS Simple Features Specification for SQL.

Wayland, Massachusetts, OpenGIS Consortium Inc.

Open GIS Consortium Inc. 1999b Topic 1: Feature Geometry. Wayland, Massachusetts,

Open GIS Consortium Inc.

Open GIS Consortium Inc. 2001 Geography Markup Language (GML) 2.0. Wayland,

Massachusetts, Open GIS Consortium Inc.

Ouksel, A M, and A Sheth 1999 Semantic Interoperability in Global Information

Systems: A Brief Introduction to the Research Area and the Special Section.

Sigmod Record, 28(1): 5-12

P.E.I. Geomatics Information Centre User’s Guide to Digital and Hardcopy property and

Basemap Products. Charlottetown, P.E.I., Provincial Treasury - Taxation &

Property Records Division

Québec 2000 Base de données topographiques du Québec (BDTQ) à l’échelle de

1/20 000 - Normes de production (Version 1.0). Québec, Ministère des

Ressources naturelles, Direction générale de l’information géographique, CD

Document

Rodriguez, A, M J Egenhofer, and R D Rugg 1999 Assessing Semantic Similarities

Among Geospatial Feature Class Definition. In Proceedings of Interoperating

Geographic Information Systems (Interop '99). Berlin, Springer-Verlag Lecture

Notes in Computer Science 1580: 189-202

Rodriguez, M A 2000 Assessing Semantic Similarity Among Entity Classes. Ph.D. Thesis,

University of Maine

Schramm, W 1971 How Communication Works. In J A DeVito (ed) Communication:

Concepts and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 12-21

Sheth, A 1999 Changing Focus on Interoperability in Information Systems: From

Systems, Syntax, Structure to Semantics. In M Goodchild, M Egenhofer,

R Fegeas, and C Kottman (eds) Interoperating Geographic Information Systems.

Boston, Massachusetts, Kluwer Academic Publisher: 5-29

Sheth, A, and V Kashyap 1992 So Far (Schematically) Yet So Near (Semantically). In

Proceedings of IFIP WG2.6 Database Semantics Conference on Interoperable

Page 159: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

139

Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 283-312

Smith, B 1994 Fiat Objects. In Proceedings of Workshop on Parts and Wholes:

Conceptual Part-Whole Relations and Formal Mereology, 11th European

Conference on Artificial Intelligence: 15-23

Smith, B, and D Mark 1999 Ontology with Human Subjects Testing: An Empirical

Investigation of Geographic Categories. American Journal of Economics and

Sociology, 58(2): 245-272

Smith, B, and A C Varzi 2000 Fiat and Bona Fide Boundaries. Philosophy and

Phenomenological Research, 60(2): 401-420

Sowa, J F 1987 Semantic Networks. In S C Shapiro (ed) Encyclopedia of Artificial

Intelligence. New York, John Wiley & Sons

Statistics Canada 1997 Digital Boundary File and Digital Cartographic File 1996

Census (Reference Guide). Ottawa, Minister of Industry

VMap 1995 Vector Map (VMap), Level 1. Bethesda, MD, U.S. National Imagery and

Mapping Agency Mil-V-89033

Weisstein, E W 1999 Topological space. Mathworld. wolfram.com, Web page

Document, http://mathworld.wolfram.com/TopologicalSpace.html

Wisse, P 2000 Metapattern: Context and Time in Information Models. Reading,

Massachusetts, Addison-Wesley

WordNet, a lexical database for the English language. Web Page Document,

http://www.cogsci.princeton.edu/~wn/

Page 160: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

CHAPITRE 5

EXPÉRIMENTATION DE L’INTEROPÉRABILITÉ

SÉMANTIQUE DES DONNÉES GÉOSPATIALES

ET DE LA PROXIMITÉ GÉOSÉMANTIQUE :

PRÉSENTATION DU GSP PROTOTYPE

A Geosemantic Proximity -based prototype for the interoperability of geospatial data

(J. Brodeur, Yvan Bédard, Bernard Moulin)

5.1 Résumé de l’article

Les chapitres 3 et 4 ont présenté une nouvelle perspective d’interopérabilité des données

géospatiales qui intPgre le volet sémantique avec un cadre conceptuel d’interopérabilité

basée sur le processus de communication et sur la notion de proximité géosémantique.

Bien que la pertinence de notre cadre conceptuel et de la notion de proximité

géosémantique nous semble acquise jusqu’ici, il devient nécessaire d’expérimenter le tout

pour démontrer le réalisme d’une telle approche. En ce sens, ce chapitre présente un

article sur le développement d’un prototype qui applique notre cadre conceptuel et notre

notion de proximité géosémantique pour réaliser l’interopérabilité des données

géospatiales : le GsP Prototype. D’une part, on y décrit l’architecture et le

fonctionnement du GsP Prototype. C’est un systPme B base d’agents logiciels qui

Page 161: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

141

interagissent entre eux B l’aide de messages XML. Chaque agent possPde sa propre

ontologie qui consiste en un répertoire de données géospatiales. D’autre part, on présente

dans ce chapitre les essais conduites qui vérifient le bon fonctionnement du prototype B

l’aide d’ontologies élaborées B partir des spécifications de données de cinq bases de

données existantes.

5.2 Abstract

The research agenda related to the interoperability of geospatial data is influenced by the

increased accessibility of geospatial databases on the Internet, as well as their sharing and

their integration. Although it is now possible to get and use geospatial data independently

of their syntax and structure, it is still difficult for users to find the exact data they need as

long as they do not know the precise vocabulary used by the organizations supporting

geospatial databases. It is now a necessity to take into consideration the semantics of

geospatial data to enable its full interoperability.

To this end, we designed a new conceptual framework for geospatial data interoperability

and introduced the notion of geosemantic proximity based on human communication and

cognition paradigms. This chapter reviews this framework and the notion of geosemantic

proximity. It also presents the GsP Prototype, which demonstrates the relevance of our

framework and of the notion of geosemantic proximity for geospatial data

interoperability. More specifically, we describe the architecture of the GsP Prototype, its

implementation, and tests conducted so far.

5.3 Introduction

Many geospatial databases have been set up during the last twenty years by different

organizations to establish information bases corresponding to their specific needs. In this

respect, the National Topographic Data Base (NTDB) (Natural Resources Canada, 1996)

was elaborated for national mapping and GIS application purposes in Canada. Also, the

VMap libraries (VMap, 1995) that also include topographic features of Canada were

Page 162: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

142

developed for military purposes. Moreover, Statistics Canada established the Street

Network Files and the Digital Cartographic Files for socio-demographic and enumeration

purposes (Statistics Canada, 1997). Additional topographic data sources produced at

larger scales by provincial departments (e.g. OBM, 1996; Québec, 2000) are also other

Canadian geospatial database examples. Each of these examples describes topographic

features in different manners. To illustrate this, we have observed that forest-like

phenomena are abstracted as vegetation in NTDB, trees in VMap, wooded area

in Ontario Digital Topographic Data Base, and milieu boisé in the Base de données

topographiques du Québec (where the pictograms point out the type of geometry used to

map the feature geometry: point/ , line/ , or polygon/ ; see (Bédard and Proulx, 2002)

for the description of spatial pictograms).

Since these organizations found that their respective databases are of general interest,

they made them available to the public. Today, the Internet, the Web, and geospatial data

infrastructures such as the Canadian Geospatial Data Infrastructure (CGDI)

(GeoConnections, 2002) and the National Spatial Data Infrastructure (NSDI) (FGDC,

2002) facilitate the access to these geospatial databases.

Because users have access to several topographic databases, they expect to find, get and

integrate the exact data they need from various databases according to their own

perception and abstraction of the topographic reality. Hence, such a situation raises

problems of syntactic, structural, semantic, geometric, and temporal heterogeneities

between geospatial databases (Bishr, 1997; Charron, 1995; Laurini, 1998; Ouksel and

Sheth, 1999; Sheth, 1999).

The idea of interoperability of geospatial databases has been promoted in the nineties to

overcome the above mentioned heterogeneity problems and to allow the sharing and the

integration of geospatial data and geospatial resources (Kottman, 1999). The current basis

of geospatial data interoperability has been worked out by organizations such as the Open

GIS Consortium Inc. (OGC), ISO/TC 211, governmental organizations, the geographic

information industry and the geographic information academic community. They have

Page 163: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

143

made considerable progress particularly with regards to syntactic and structural

heterogeneities (Egenhofer, 1999; Ouksel and Sheth, 1999; Rodriguez, 2000). Documents

such as (ISO/TC 211, 2003b; ISO/TC 211, 2003a; Open GIS Consortium Inc., 1999;

Open GIS Consortium Inc., 2001) define the content and the structure of geometric data

as well as the syntactical description of geospatial data. But, to enable complete

interoperability of geospatial data, it is essential to go beyond structural and syntactic

heterogeneities and to address semantic heterogeneities as well as geometric and

temporal heterogeneities (Egenhofer, 1999; Ouksel and Sheth, 1999).

Recently, we proposed a conceptual framework for geospatial data interoperability based

on an analogy with human communication and have also introduced the notion of

geosemantic proximity (GsP) (Brodeur and Bédard, 2001; Brodeur et al., 2003; Brodeur

et al., 2002) as a solution to problems of semantic, spatial, and temporal heterogeneities

of geospatial data. We also developed an experimental prototype, called GsP Prototype,

to validate both our conceptual framework for geospatial data interoperability and the

notion of geosemantic proximity. This chapter specifically aims at presenting this

prototype and the experiments we have conducted so far.

The remaining sections of this chapter are structured as follows. The next section reviews

geospatial data interoperability in the context of the communication process, the notion of

geosemantic proximity, and the notion of a geospatial repository, which serve as the

agent’s application ontologies (Gruber, 1993; Guarino and Welty, 2000) in the prototype.

In section 5.5, we present the GsP Prototype, its architecture, its operation, and tests. We

conclude and present future work in section 5.6.

5.4 Geospatial data interoperability and communication

Because people usually understand each other when communicating, we suggested that

interoperability of geospatial data conforms to a human communication process (Brodeur

et al., 2003). Harvey (2002) and Xhu and Lee (2002) also support this idea. As such, we

developed a conceptual framework for geospatial data interoperability as a human-like

Page 164: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

144

communication process. In this section, we review our conceptual framework for

geospatial data interoperability, which is the foundation of the architecture of the

prototype presented in the next section.

According to (Schramm, 1971), a human communication process involves a source, a

message, and a destination. When the source transmits information to the destination,

he/she encodes a message, that is, to identify the information to be communicated and to

transform it into physical signals. At this point, the message is still tied to the source’s

meaning. Afterwards, the source releases the message in the communication channel

towards destination. Then, the message is released from the source’s meaning. The

message plays a mediating role between the source and the destination. When the

message arrives at its destination, the destination begins to decode it. It recognises the

signals that compose it and assigns them a specific meaning. The communication process

is working perfectly when the source’s meaning and the destination’s meaning of the

message are the same. However, a possible source of noise can interfere with message’s

signals in the communication process and affect the transmission of the message. On the

other hand, the communication process includes a feedback mechanism, which acts as a

function to check how well the communication is performed. For instance, feedback may

inform the source whether the destination has understood the message properly. As we

can see, multiple representations of reality take place in the human communication

process, namely the source’s and destination’s cognitive models, and the physical signals

used for the message transmission. In the communication process, by definition the

source and the destination succeed in exchanging information when they interoperate

with each other.

The source’s and destination’s cognitive models result from the direct and the indirect

observation (e.g. through sensors such as Earth observation satellite or aerial digital

camera) of real-world phenomena and intentionally-produced signals received from other

people. Human sensory systems capture signals and form so-called perceptual states

(Barsalou, 1999). From perceptual states, the human selective attention collects the

properties of interest and records them permanently as perceptual symbols, also known as

Page 165: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

145

concepts (Barsalou, 1999). As a cognitive element, a concept can never be accessed

directly by another individual. It must be translated into physical signals, here called

conceptual representations, in order to be communicated. A concept consists therefore of

hidden-like data elements and a translation function that encapsulates these data

elements. This translation function operates in two directions: (1) to generate conceptual

representations when one wants to send a message and (2) to recognize conceptual

representations when one wants to understand a received message.

Based on the human communication process, we developed a conceptual framework for

geospatial data interoperability (Figure 12) (Brodeur et al., 2003). Let us use the

following situation to explain our framework. An individual (shown as a user agent in

Figure 12, Au) wants information about the hydrologic network for flood analysis within a

predefined area of the city of Sherbrooke. He/she encodes a query to have information

about lakes and rivers in the specified area—i.e. the conceptual representations—and

sends the query to a geospatial database (shown as a data provider agent in Figure 12,

Adp). When the database gets the request, it decodes it, that is, to find and assign concepts

of the database that recognise the conceptual representations received, for instance

watercourses and waterbodies in the neighbourhood of Sherbrooke . According to its

interpretation, the database then gathers data, encodes and sends them—i.e. Lac des

Nations , Magog River , and Saint-François River —to the individual, who evaluates

that the received data answers exactly his initial request. In this situation, the individual

and the geospatial database use their respective vocabulary to communicate. They end up

understanding each other because of their common set of conceptual representations and

backgrounds, as well as reasoning capabilities, which enable them to recognize and

generate messages as described in section 3.5.

Our framework, illustrated in more detail in Figure 12, encompasses five different

expressions of the same topographic reality (R, R’, R’’, R’’’, and R’’’’). These

expressions, that we called the five ontological phases of geospatial data interoperability

(Brodeur et al., 2003), are related because of the communication process. First, we have

the topographic reality (R) at a given time about which Au wants information. This

Page 166: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

146

topographic reality is beyond description. Second, we have the Au’s set of properties (R’)

organized into concepts that represents R. R’ refers to the Au’s cognitive model. Third,

we have the set of conceptual representations (R’’) that Au generates to communicate data

about R’. These conceptual representations consist of relevant properties that describe R’

concepts in a given context. They consist of the data employed for interoperability with

Adp. In Figure 12, R’’ is illustrated by “Lakes or Rivers within Sherbrooke.” Fourth, we have

the set of concepts (R’’’), which Adp maintains. When Adp receives R’’ conceptual

representations, it uses R’’’ concepts to recognize and assign a meaning to R’’ conceptual

representations and, afterwards, to collect the information that complies with Au’s initial

request. In Figure 12, these concepts correspond to watercourses , waterbodies , and

Sherbrooke . In turn, Adp uses again R’’’ concepts along with the corresponding

information to encode conceptual representations (R’’’’) to answer Au. These conceptual

representations consist of Lac des Nations , Magog River , and Saint-François River in

Figure 12. Finally, when Au receives R’’’’ conceptual representations, he/she decodes

them, that is again to recognise and assign them a meaning, and validates them against R’

concepts. If R’’’’ conceptual representations correspond to the requested R’ concepts,

then we can say that interoperability happens between Au and Adp. Accordingly,

interoperability is a bi-directional communication process that includes a feedback

mechanism in both directions, to control the proper reception of messages and ensure that

they were understood properly.

As mentioned previously, R, R’, R’’, R’’’, and R’’’’ consist in different facets of the

reality which are concerned about ontology, even if they have similarities. In philosophy,

ontology is a subject matter dealing with:

- the description of the world (Peuquet et al., 1998);

- a model and an abstract theory of the world (Smith and Mark, 1999);

- the science of being (Bittner and Edwards, 2001; Peuquet et al., 1998);

- the science of the type of entities, of the objects, of the properties, of the

categories, and of relationships, which constitute the world (Lehmann, 1992;

Peuquet et al., 1998; Smith and Mark, 1999).

Page 167: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

147

Ontology is also a subject of interest in artificial intelligence and database. It has been

defined by (Gruber, 1993) as “an explicit specification of a conceptualisation”. However,

(Guarino, 1998) refined Gruber’s definition taking into account the philosophical

meaning of ontology and defined ontology as “a logical theory accounting for the

intended meaning of a formal vocabulary.” Hence, in the scope of this thesis, we consider

an ontology as being “a formal representation of phenomena with an underlying

vocabulary and axioms including definitions that make the intended meaning explicit and

describe phenomena and their interrelationships” (Brodeur et al., 2003).

In the database realm, the representation of real-world phenomena is widely developed

using conceptual models (e.g. E-R or UML models) and feature dictionaries. Together,

these two components constitute a comprehensive set of metadata describing the content

and the structure of databases, which are better known as database repositories (Brodeur

et al., 2000; Jones, 1991; Marco, 2000; Moriarty, 1990; Prabandham et al., 1990). A

conceptual model is a tool to capture abstract representations of real-world phenomena

from a data-centered analysis perspective. It is also used to support the development of

databases. It structures and stores features of interest using general categories, object

classes, properties, relationships, generalizations, aggregations, roles, constraints,

behaviours, and more specifically in the context of geospatial databases, geometry and

temporality. The dictionary stores the intended meaning (in other words the semantics) of

all elements that compose the conceptual model. In geographic information, Perceptory

(Bédard and Proulx, 2002) is a tool specially developed to build, manage, and exploit

geospatial data repositories. It consists of a UML-based conceptual modeling tool

enhanced with the Plug-in for Visual Language (PVL) (Bédard, 1999; Bédard and

Proulx, 2002) for spatial and temporal data modeling and an object class dictionary. As

such, geospatial repositories developed with Perceptory can serve as application

ontologies.

Practitioners of different backgrounds and professional experiences typically abstract

identical phenomena and develop geospatial databases with their respective repository

Page 168: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

148

differently. The situation and the circumstances surrounding the perception of geospatial

phenomena guide the manner with which these geospatial phenomena are abstracted.

This refers more specifically to the context. The context is an abstract notion, which

drives the definition of concepts and conceptual representations, and the choice of

properties that are used for their description (Simsion, 2001). It is the context that

provides the inherent semantics to concepts and conceptual representations (Kashyap and

Sheth, 1996). Hence, the same part of the topographic reality is typically represented

differently from one database to another because of their specific context. This causes

interoperability problems when merging data from different geospatial databases.

Notwithstanding this, context is a fundamental element for the assessment of the

semantic, spatial, and temporal interoperability of geospatial data. Accordingly, the

assessment of semantic, spatial, and temporal interoperability of geospatial data needs

reasoning capabilities that take the context into consideration. Keeping this in mind, we

developed the notion of geosemantic proximity following a context-based orientation

(Brodeur et al., 2002).

We mentioned earlier that a concept has a translation function in order to generate and

recognize conceptual representations. Hence, geosemantic proximity (GsP) consists of a

basic component of this translation function, which specifically applies to geospatial

concepts. GsP evaluates qualitatively the semantic similarity (Kashyap and Sheth, 1996;

Sheth and Kashyap, 1992) of a geospatial concept (hereafter called a geoConcept) with a

geospatial conceptual representation (hereafter called a geoConceptRep) by the

comparison of their respective context. In GsP, the context (C) consists of the set of

inherent properties of a geoConcept or a geoConceptRep. These properties are classified

in two types: intrinsic and extrinsic. Intrinsic properties (C°) provide the literal meaning

of the geoConcept or the geoConceptRep. They consist of the identification, attributes,

attribute values, geometries, temporalities, and domain of a geoConcept or a

geoConceptRep. Extrinsic properties (∂C) are properties that are subject to external

factors. They give meaning by the action that these factors exercise on the geoConcept or

the geoConceptRep. Behaviours as well as semantic, spatial, and temporal relationships

are kinds of extrinsic properties. We use a segment (Figure 22), which holds in a

Page 169: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

149

semantic space, to illustrate the context of a geoConcept or geoConceptRep. Intrinsic

properties correspond to the interior of the segment, whereas extrinsic properties

correspond to the boundary of the segment. Hence, the context (C) consists of the union

of intrinsic and extrinsic properties: C = C° ∪ ∂C. Therefore, the GsP of a geoConcept

(K) with a geoConceptRep (L) can now be defined by the intersection of their respective

context, GsP(K,L) = CK ∩ CL , which becomes a 4-intersection matrix when consolidated

with intrinsic (C°) and extrinsic (∂C) properties (Equation 11).

Each component of the matrix can be evaluated empty (denoted by f or false) or not

empty (denoted by t or true). Accordingly, we derived sixteen (24) predicates that are

presented in the matrix row major form (i.e. row by row) with the prefix “GsP_”:

GsP_ffff (or disjoint), GsP_ffft, GsP_fftt (or contains), GsP_tfft (or equal), GsP_ftft (or

inside), GsP_tftt (or covers), GsP_ttft (or coveredBy), GsP_fttt (or overlap), GsP_tttt,

GsP_tfff (or meet), GsP_tftf, GsP_tttf, GsP_ttff, GsP_fttf, GsP_fftf, GsP_ftff (Brodeur et

al., 2002). These predicates are used to qualify the GsP of a geoConcept with a

geoConceptRep.

Let us use the following example to illustrate the relevance of GsP. According to our

conceptual framework, a user agent, which is based on the Base de données

topographiques du Québec (BDTQ) ontology, aims to update its road network

information. It asks a data provider agent, which is based on the National Topographic

Data Base (NTDB), for information about street —i.e. an encoded geoConceptRep.

When the data provider agent receives the request, it looks through the geoConcepts it

knows to find one that is geosemantically (i.e. semantically, spatially and temporally)

similar to street . The data provider agent identifies that its geoConcept road has an

attribute classification, which can take the value street of similar definition to

geoConceptRep street . Also, road and street have the same type of geometry. As

such, they hold common intrinsic properties. As defined in BDTQ, street possesses

relationships with other road classes. But, these road classes are already included in the

road description. As such, street ’s extrinsic properties intersect with road ’s

intrinsic properties. Accordingly, GsP of the road geoConcept when compared to the

Page 170: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

150

street geoConceptRep is GsP_ttff (or contains) and, as such, road can be used to

answer the request of the user agent about street .

As used in (Fowler et al., 1999; Payne et al., 2002; Sycara et al., 1999), software agents

appear well suited to develop user agents and data provider agents as illustrated in our

conceptual framework to experience the GsP notion within a prototype. According to

(Nwana, 1996), a software agent is defined as “a component of a software and/or

hardware which is capable of acting exactingly in order to accomplish tasks on behalf of

its user.” In the specific context of the prototype on semantic, spatial, and temporal

interoperability of geospatial data presented in the following section, user and data

provider agents are deployed as software agents, which own a particular ontology to

interoperate with other agents. However, the description of software agent is beyond the

scope of this thesis and can be obtained in (Nwana, 1996; Nwana and Wooldridge, 1996).

5.5 The GsP Prototype

To evaluate the GsP notion, we built a software prototype, called GsP Prototype, which

agrees to our interoperability conceptual framework illustrated in Figure 12. With the

GsP Prototype, software agents are instantiated and can interoperate with each other.

This section presents successively a high level architecture of the prototype, the way the

prototype operates, and the experimentations conducted so far.

5.5.1 Architecture

The architecture of GsP Prototype illustrated in Figure 27 depicts a communication

process, which takes place between two software agents (Agent A and Agent B)

interacting through a communication channel. It details more specifically one agent’s

internal structure and operations as well as the manner in which agents exchange

information. However, this architecture is not limited to only two agents but can be

expanded to multiple agents interacting in pairs.

Page 171: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

151

In this architecture, all agents have an identical internal structure and operate in the same

manner. They communicate using messages composed of geoConceptReps encoded in

XML streams. When an agent receives a message, it captures the inner XML

geoConceptReps of the message and places them in a transitory internal data structure

containing geoConceptReps. Each geoConceptRep stored in this data structure can be

compared to a human perceptual state.

The geoConceptReps are then passed to a Proxy. The Proxy is a server responsible for

finding geoConcepts that match the geoConceptReps in order to assign them a meaning.

This is the recognition process. The Proxy has to mediate between two geoConcept

storages: geoConMem and geoRep.

GeoConMem is a cache memory limited in size, which stores for a short period the most

recent geoConcepts (the geoConcept structure is detailed further in this section) used by

the agent. It may be compared to the short-term memory of a human being.

GeoRep consists of a geospatial data repository that holds the description of all

geoConcepts that the agent knows; it is a direct access storage. In this case, the geoRep

storage is implemented using Perceptory and consists of a graph representation of

geoConcepts in a UML class diagram along with a dictionary which manages the

description of semantic, spatial, and temporal properties of geoConcepts. GeoRep may be

compared to the long-term memory of a human being.

When processing, the Proxy examines one by one all the geoConceptReps that the agent

received in a message. For each geoConceptRep of the geoConceptReps data structure,

the Proxy looks first in geoConMem to visit the geoConcepts it stores until a geoConcept

that has a GsP of “GsP_tfft” (or equal) with a first geoConceptRep is located. It is the

geoConcept that is responsibile to evaluate its GsP with the geoConceptRep. As such, it

compares all its intrinsic (i.e. identification, attributes, attribute values, geometries,

temporalities, and domain) and extrinsic (i.e. relationships and behaviours) properties to

the geoConceptRep’s intrinsic and extrinsic properties as in the 4-intersection matrix

Page 172: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

152

presented in the previous section. However, if no geoConcept shows a GsP of “GsP_tfft”

(or equal) with the geoConceptRep, then the Proxy continues to search in geoRep to find

the most similar geoConcept to the geoConceptRep, which consists in the geoConcept

that has the highest GsP with the geoConceptRep. To this end, the Proxy visits geoRep’s

geoConcepts to compute their respective GsP with the geoConceptRep. As such, it uses a

graph traversal algorithm and begins with the geoConcept of the geoConMem cache

memory that has the highest GsP with the geoConceptRep. GeoRep provides

geoConcepts to the Proxy using a geoConcept data structure. When the Proxy gets a

geoConcept from geoRep, it evaluates its GsP with the geoConceptRep and stores it. This

process continues until a geoConcept that has a GsP of “GsP_tfft” (or equal) with the

geoConceptRep is found or all concepts are visited. When the process is completed,

geoConcepts having a GsP different from “GsP_ffff” (or disjoint) with the

geoConceptRep are then sorted from the highest to the lowest GsP. The geoConcept with

the highest GsP constitutes the most similar geoConcept to the geoConceptRep, which is

then used to assign a meaning to the geoConceptRep.

It might happen that no geoConcept is found similar to the geoConceptRep and,

accordingly, no meaning can be assigned to the geoConceptRep. Therefore, the agent will

not be able to answer to the orher agent on this geoConceptRep. The resulting set of

geoConcepts matching the geoConceptReps of the message are then used by the agent to

reply to the other agent. As such, the geoConcepts generate geoConceptReps that are then

encoded in an XML stream and sent through the communication channel to the other

agent.

Similarly to concepts that compose human cognitive models, geoConcepts obtained from

either geoConMem or geoRep consist here of non-visible data elements (or private as in

Java or C++), which are obviously inaccessible to other agents. These data elements are

encapsulated by three functions: recognize, generate, and gspRelate (Figure 28). The

recognition and generate functions serve as the main geoConcept interfaces, which are

supported by gspRelate that evaluates the GsP.

Page 173: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

153

Figure 27: Architecture of the GsP Prototype (from Brodeur and Bédard, 2002)

Figure 28: Object structure of a concept (from Brodeur and Bédard, 2002)

Figure 29 draws a more detailed description of the geoConcept object structure in a UML

class diagram. In this diagram, geoConcepts conform to the class GEOCONCEPT, which

inherits its data structure from the class GEOABSTRACTION. GEOABSTRACTION aims

at defining the properties used to identify and describe a geospatial phenomenon. These

properties are divided into two types: intrinsic and extrinsic.

On the one hand, the class INTRINSICPROPS accounts for intrinsic properties and

captures the identification, descriptiveAtts (i.e. descriptive attributes), geometries,

temporalities, and the domainComponents (i.e. various component of the domain) of a

Page 174: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

154

GEOABSTRACTION. Essentially, the identification refers to the name and the definition

given to the GEOABSTRACTION. The descriptiveAtts report on the inherent

characteristics of a phenomenon. A name, a definition, and a domain of values

distinguish each descriptive attribute from another. Geometries refer to the various types

of geometry such as simple geometry (e.g. point, line, or surface), geometric aggregate,

complex geometry, and alternate geometry (Bédard, 1999) that are used to depict the

phenomenon spatially along with its inherent semantics (e.g. building basement

footprint). Similarly to geometries, temporalities refer to the various types of temporality

such as instant, period, temporal aggregate, and alternate temporality (Bédard, 1999) that

are used to depict the phenomenon temporally along with its inherent semantics (e.g. date

when the building construction is completed). The domain consists of the numerous

combinations of attribute values, geometry, and temporality that the GEOABSTRACTION

can take where each combination refers to one domainComponent.

On the other hand, the class EXTRINSICPROPS provides the details of the extrinsic

properties. Extrinsic properties are described in terms of behaviours and memberships in

relationships (relationMembership). A behaviour refers to an operation that a

phenomenon can accomplish. A name, a definition, a list of parameters, and a return type

differentiate each behaviour of a phenomenon. A membership in a relationship expresses

the participation of the phenomenon in a relationship with another phenomenon. It

identifies the relationship (name of the relationship and the list of members), the role

played by the GEOABSTRACTION and its minimum and maximum cardinalities.

The class GEOCONCEPT has the three functions mentioned above (recognize, generate,

and gspRelate). The function recognize takes a geoConceptRep as an input. It identifies

geoConcepts that are similar to one geoConceptRep prioritized by their GsP. The

function gspRelate assists the function recognize by computing the GsP of the

geoConcept with the geoConceptRep. It evaluates to what extent the geoConcept matches

the geoConceptRep. The function gspRelate assists the function recognize by computing

the GsP of the geoConcept with the geoConceptRep. Finally, the generate function

produces a geoConceptRep of this geoConcept, which holds in a specific context. Again,

Page 175: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

155

the gspRelate function assists the generate function to ensure that the generated

geoConceptRep is similar to the geoConcept.

Figure 29: UML class diagram of GEOABSTRACTION, GEOCONCEPT, and

GEOCONCEPTREP

Being a subtype of the class GEOABSTRACTION, GEOCONCEPTREP inherits also the

data structure of GEOABSTRACTION (Figure 29). Accordingly, GEOCONCEPTREP’s

data structure and GEOCONCEPT’s data structure are identical. Because a

geoConceptRep is essentially encoded data of a geoConcept, the class

GEOCONCEPTREP does not possess any function. When an agent releases

geoConceptReps in the communication channel, it transforms them in an XML stream

and sends this XML stream to its destination. Accordingly, the XML encoding of

geoConceptReps adheres to a predefined definition described either in a Document Type

Definition (DTD) or an XML Schema. For the purpose of the prototype, the XML

encoding of geoConceptReps satisfies the following DTD:

Page 176: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

156

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XML Spy v4.0.1 U (http://www.xmlspy.com) by Jean Brodeur

(Natural Resources Canada) -->

<!ELEMENT GsPmessage (conceptualRepresentation*)>

<!ATTLIST GsPmessage

type CDATA #REQUIRED

recognition (true | false) "true">

<!ELEMENT conceptualRepresentation (intrinsicProperties, extrinsicProperties?)>

<!ELEMENT intrinsicProperties (identification, descriptiveAttribute*, geometry*,

temporality*, domainElement*)>

<!ELEMENT identification (name, definition?)>

<!ELEMENT descriptiveAttribute (name, definition?, attributeValue*)>

<!ELEMENT attributeValue (name, definition?)>

<!ELEMENT geometry (#PCDATA)>

<!ELEMENT temporality (#PCDATA)>

<!ELEMENT domainElement (attValue+, geometry?, temporality?)>

<!ELEMENT attValue (descriptiveAttribute, attributeValue)><!ELEMENT

extrinsicProperties (relationMembership*, behaviour*)>

<!ELEMENT relationMembership (relation, role?, cardMin?, cardMax?)>

<!ELEMENT relation (name, firstMember, secondMember?)>

<!ELEMENT behaviour (name, definition, parameter+, returnType)>

<!ELEMENT parameter (conceptualRepresentationName, defaultValue?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT definition (#PCDATA)>

<!ELEMENT role (#PCDATA)>

<!ELEMENT cardMin (#PCDATA)>

<!ELEMENT cardMax (#PCDATA)>

<!ELEMENT firstMember (#PCDATA)>

<!ELEMENT secondMember (#PCDATA)>

<!ELEMENT conceptualRepresentationName (#PCDATA)>

Page 177: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

157

<!ELEMENT defaultValue (#PCDATA)>

<!ELEMENT returnType (#PCDATA)>

5.5.2 Implementation

Based on the above architecture, GsP Prototype was implemented with Java™ and XML

technologies in combination with Perceptory–based geospatial repositories. The reasons

supporting this choice of technologies are:

1. XML is by far a widely recognized technology for the communication of

information;

2. availability of Java libraries to process XML documents (namely the Java API for

XML Processing (JAXP) (Sun Microsystems Inc., 2002) that includes the Xalan

(The Appache Sofware Foundation, 2002) and the Xerces (The Appache Sofware

Foundation, 2002) libraries for parsing and manipulating XML documents);

3. portability of the development on the Web; and

4. Perceptory is a technology very well suited to develop geospatial repositories

agreeing to ISO19103 Geographic information - Conceptual schema language

(ISO/TC 211, 2001b) and ISO19110 Geographic information - Methodology for

feature cataloguing (ISO/TC 211, 2001a), which can then serve as agent’s

ontologies.

This section presents in detail the implementation of the prototype and the way it

operates.

The GsP Prototype uses interfaces of two kinds: software agent interfaces and an Agent

Manager interface. A software agent appears as a window (Figure 30). The window’s

title bar identifies the agent’s name along with its ontology source name (e.g.

agent1 (NTDB_RN)). The remaining part of the window is divided into two sections: the

Console and the Communication Monitor.

Page 178: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

158

The Console section consists of three components. The first component is a drop-down

menu, which presents the list of geoConcepts that compose the agent’s ontology. Each

geoConcept is identified by a unique name. The next item is the Send Query button.

When clicked, this button initiates a query about the geoConcept selected from the drop-

down menu towards an external agent. The external agent is identified by filling its name

in the External Agent field of the Communication Monitor section. The last Console’s

component is a field in which the agent displays messages.

The Communication Monitor section shows the different steps of the communication

process that are accomplished. When an agent receives a message from an external agent,

the name of the external agent appears in the External Agent field. Following this, the

agent extracts the geoConceptReps from the message and displays the name of the

geoConceptRep being processed in the Processing geoConceptRep (R’’/R’’’’) field one

by one. Then, the agent initiates the recognition process of the geoConceptRep and, as

such, visits the geoConcepts of the ontology until one is found similar to the

geoConceptRep. Once a geoConcept is identified, its name is displayed in the

geoConcept (R’\R’’’) field. When a reply is expected by the external agent (e.g. answer

to a query), the corresponding geoConcept generates a geoConceptRep of itself and the

name of the transmitted geoConceptRep is displayed in the Transmitting

geoConceptRep (R’’/R’’’’) field.

Figure 30: The agent window

Page 179: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

159

The Agent Manager interface (Figure 31) is used to instantiate software agents and

displays one agent’s state upon user request. The instantiation of an agent requires two

elements: its identification and the name of an ontology source. The agent’s identification

is a unique identifier. The ontology source name consists of the source name of a

geospatial data repository. In our case, it corresponds to an ODBC data source name,

which refers to the database containing the geospatial data repository. Once the name

field and the ontology field are filled in, the agent is instantiated by clicking the New

button. At this time, the agent is alive but not active. It becomes active by clicking the

Start button. The agent’s state can be set inactive (or sleeping) but still alive by clicking

the Stop button. This is needed for management purposes. Even if the agent is inactive, it

keeps all its properties and when it is re-started (by clicking the Start button again), it

becomes active again. Finally, an agent is completely eliminated by clicking the Kill

button. At any time, it is possible to look at an agent’s state simply by filling in the

agent’s name in the name field and by pressing “return”. The agent’s state can be one of

the following:

- Null: the agent does not exist;

- Operating: the agent is alive and active;

- Sleeping: the agent is alive but not active.

Figure 31: The Agent Manager interface

Page 180: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

160

Figure 32 illustrates the way the prototype operates. In this Figure, agent2 (BDTQ_RN)

sends a query to agent1 (NTDB_RN) for information about street. As such, it uses its

geoConcept street to generate a geoConceptRep of the same name (i.e. street), encodes it

as in the XML document presented in annex 1 (where the attribute type of the

gspMessage element is set to “query”), and sends the document to agent1.

When agent1 receives the XML document, it identifies its source and displays the name

in the External Agent field—i.e. agent2. Following this, it extracts the message type—

i.e. query—and the included geoConceptReps—i.e. street. Then, it processes the

geoConceptReps one by one. In this example, there is only the geoConceptRep street to

process. As such, Agent1 displays the name street in the Processing geoConceptRep

(R’’/R’’’’) field.

To process the geoConceptRep street, agent1 looks first for geoConcepts in its short-term

memory. If no geoConcept has a GsP of GsP_tfft (or equal) to street, then it goes on

searching its long-term memory until a geoConcept showing a GsP of GsP_tfft (or equal)

with street is found or until all geoConcepts have been visited. As we can see in Figure

32, agent1 visited all geoConcepts. The computation of the GsP of a geoConcept with

street takes into consideration their identification, their descriptive, geometric, and

temporal properties (i.e. the intrinsic properties) as well as their behaviours and their

memberships to relationships (i.e. the extrinsic properties), respectively. As the

geoConcept road shows common intrinsic properties with street and has the most

significant GsP—i.e. GsP_ffft—, agent1 displays its name in the geoConcept (R’/R’’’)

field and as such uses it to assign a meaning to the geoConceptRep street. Now with the

geoConcept road, agent2 can answer agent1’s request. It produces a geoConceptRep of

the same name, displays the name in the Transmitting geoConceptRep (R’’/R’’’’) field

(e.g. road), encodes the geoConceptRep, and sends it to agent1 using the XML document

shown in annex 2.

In turn, when agent2 receives the XML document, it initiates a similar process as agent1

did. It identifies the message originator and displays its name in the External Agent

Page 181: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

161

field—i.e. agent1—, extracts the message type—i.e. answer—and the geoConceptRep—

i.e. road—, and processes it. Then, agent2 displays the name road in the field Processing

geoConceptRep (R’’/R’’’’) and computes that its geoConcept street is similar (e.g.

GsP_ffft) to the geoConceptRep road. As such, agent2 displays the name street in the

geoConcept (R’/R’’’) field. Therefore, agent2 acknowledges that road answers its initial

query and thus interoperability happens. Because the message is an answer, no further

action is required and the process stops at this point.

Figure 32: Example of the prototype operation

Page 182: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

162

5.5.3 Experimentation

Using the above software agent –based prototype, we conducted experimentations on

road and hydrographic networks to assess the strength of our approach. These two themes

were been chosen because they are both candidates of the essential content and the

desirable content, respectively, of the Canadian GeoBase (GeoBase, 2001), which is

currently being developed. Briefly, GeoBase consists of “the fundamental geographic

information that describes Canadian landmass above and below water” (CCOG -

Working Group on “Base Data Quality Issue”, 2001) that is established in co-operation

with Canadian federal, provincial, and territorial mapping agencies. The experimentation

aimed at assessing computer feasibility and strength of the GsP approach a priori. Tests

were limited to the interaction of software agents using on the one hand identical

ontologies and on the other hand different ontologies.

As such, we built UML-based geospatial data repositories on road and hydrographic

networks with Perceptory using the following topographic data product specifications:

a) National Topographic Data Base – Standards and Specifications of Canada

(Natural Resources Canada, 1996) (NTDB);

b) User's Guide to Digital and Hardcopy property and Basemap Products of Prince

Edward Island (P.E.I. Geomatics Information Centre) (PEIBP);

c) Quebec Topographic Data Base 1:20 000 – Production Standards (Québec, 2000)

(QTDB);

d) Ontario Digital Topographic Database – 1:10,000, 1:20,000– A Guide for User

(OBM, 1996) (ODTDB);

e) Digital Baseline Mapping at 1:20,000 of the province of British Columbia (BC

Ministry of Environment Lands and Parks (Geographic Data BC), 1992)

(BCDBM).

Figures 34 and 35 show UML class diagrams corresponding to both themes of these data

product specifications.

Page 183: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

163

Each object class and relationship is documented in a data dictionary, which provides its

semantics and their inherent properties as shown in Figure 33 for the class road of the

NTDB road network (Figure 34a).

Figure 33: Extract of the class road of the data dictionary

of the NTDB road network (made with Perceptory)

Page 184: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

164

Figure 34a: NTDB Road network class diagram

Page 185: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

165

Figure 34b: PEIBP Road network class diagram

Page 186: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

166

Figure 34c: QTDB Road network class diagram

Page 187: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

167

Figure 34d: ODTDB Road network class diagram

Figure 34e: BCDBM Road network class diagram

Figure 34: Road network UML class diagrams (aNTDB, bPEIBP, cQTDB, dODTDB, and eBCDBM)

Page 188: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

168

Figure 35a: NTDB Hydrographic network class diagram

Page 189: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

169

Figure 35b: PEIBP Hydrographic network class diagram

Page 190: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

170

Figure 35c: QTDB Hydrographic network class diagram

Page 191: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

171

Figure 35d: ODTDB Hydrographic network class diagram

Page 192: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

172

Figure 35e: BCDBM Hydrographic network class diagram

Figure 35: Hydrographic network UML class diagrams (aNTDB, bPEIBP, cQTDB, dODTDB, and eBCDBM)

Page 193: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

173

Software agents were instantiated using the above geospatial data repositories, which

served as as application ontologies. We used ten different software agents, one for each

ontologies, and 46 road network related geoConcepts distributed among the five different

road network ontologies and also 44 hydrographic network related geoConcepts

distributed among the five different hydrographic network ontologies. We placed road

network agents in interaction between themselves using the road network related

geoConcepts, and did the same thing the hydrographic network agents. The results

presented hereafter show the success rate where a data provider agent answered

adequately to a query from a user agent. The data provider agent either answered it had

not understood the query with its own ontology or used a similar geoConcept, which was

recognised as such by the user agent, to answer the query. In the case where interacting

software agents were of the same ontology, we observed that agents used in all cases the

same geoConcept to generate and recognize the geoConceptRep of the message, which

results in a success rate of 100% for both road and hydrographic networks (Figure 36 and

37). For example, the message receives by an NTDB road network –based agent

including a geoConceptRep generated from the geoConcept Highway exit of another

NTDB road network –based agent was always recognized by the geoConcept Highway

exit with a GsP of GsP_tfft (or equal) with the geoConceptRep.

When software agents of different ontologies but related to the same network (road or

hydrographic) were interacting, a geoConcept of the destination agent succeeds in

recognizing the geoConceptRep generated by the source agent when common intrinsic

and extrinsic properties have been identified. We observed that software agents

succeeded in recognizing messages received from another software agent of a different

ontology in a success rate ranging from 30% to 100% depending on ontologies with a

mean of 59% for the road network and 61% for the hydrographic network (Figure 36 and

37). The difference between these results and 100% is explained because we used an

artificial root geoConcept to link the sub-networks composing an ontology in order to use

a graph traversal algorithm to navigate from one geoConcept to another within the

ontology. This artificial root geoConcept has caused undesirable situations for instance

Page 194: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

174

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NTDB PEIBP BDTQ ODTDB BCDBM

NTDBPEIBPBDTQODTDBBCDBM

Figure 36: Observed success rates – Road Network

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NTDB PEIBP BDTQ ODTDB BCDBM

NTDBPEIBPBDTQODTDBBCDBM

Figure 37: Observed success rates – Hydrographic Network

Page 195: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

175

when a geoConcept and a geoConceptRep had both a relationship with this root

geoConcept, they showed a false geosemantic proximity. Table 4 illustrates a few

examples of software agent’s geoConcepts that automatically recognize

geoConceptsReps encoded by another software agent where both agents were using

different ontologies.

Table 4: Examples of geoConcepts recognizing geoConceptReps, both of different

ontologies.

Agent Agent

geoConcept Ontology

Recognizes (with the corresponding

GsP) geoConceptRep Ontology

Road NTDB GsP_tfft (equal) Road PEIBP

Road NTDB GsP_ffft Street QTDB

Trail ODTDB GsP_ffft Trail NTDB

Lake BCDBM GsP_tfft (equal) Lake PEIBP

Coastline PEIBP GsP_tfft (equal) Coastline BCDBM

Rocky Ledge/Reef PEIBP GsP_ffft Rocky

Ledge/Reef NTDB

Water disturbance NTDB GsP_ffft Rapids PEIBP

Disappearing stream NTDB GsP_ffft Sinkhole PEIBP

In all these examples, even if the geosemantic proximity between the geoConcept and the

geoConceptRep seems obvious in certain cases (e.g. trail or coastline) because they

appear to be identical abstractions, they are essentially different but similar because of all

their inherent properties. It is because of their similarity that the geoConcept can be used

to assign a meaning to the geoConceptRep.

Page 196: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

176

However, it is still possible that an agent’s geoConcept may not recognize a

geoConceptRep encoded and transmitted by another agent. The agent’s ability to

recognize a geoConceptRep resides in the richness of its ontology in terms of the

geoConcepts it knows and the relationships between geoConcepts.

These results demonstrate that interoperability is possible between software agents of

different ontologies although their respective data product specifications have not been

developed explicitly for that purpose. To increase the level of interoperability of

geospatial data, organizations involved in geospatial data acquisition, management, and

dissemination should consider the development with meaningful geoConcepts in terms of

content and relationships between each other, regardless the manner they are

implemented in geospatial databases. The integration of software agents of domain and

global ontologies in the prototype would also be an important improvement for geospatial

data interoperability. Finally, the extraction of semantic information from definitions of

geoConcepts, attributes, and attribute values typically stored in natural language in

geospatial data repositories would further enhance the evaluation of GsP.

5.6 Conclusion

In this chapter, we reviewed our conceptual framework for geospatial data

interoperability, which has been derived from human communication and cognition

theories. In this framework, user and data provider agents maintain in memory a set of

geoConcepts, which constitute their respective ontologies. Agents communicate

geoConcepts to others by generating and transmitting representations of the

geoConcepts—i.e. geoConceptReps. When receiving a message, an agent goes through

its geoConcepts to find those that recognise the message’s geoConceptReps and then to

give them a meaning. The notion of geosemantic proximity is here in support of these

geoConcept’s capabilities—i.e. to generate and recognize geoConceptReps. By the

geosemantic proximity, a geoConcept assesses its semantic, spatial, and temporal

similarity with a geoConceptRep. More specifically, the geoConcept evaluates the

Page 197: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

177

correspondence of its intrinsic and extrinsic properties with those of the geoConceptRep

and expresses it in a 4-intersection matrix.

Also, we presented the GsP Prototype that was developed to test the notion of

geosemantic proximity within our framework. The GsP Prototype consists of software

agents that communicate with each other by sending queries and replies. A software

agent possesses its own ontology, which consists of a geospatial data repository. This

agent accomplishes tasks on behalf of a user when it communicates with a data provider,

and conversely, it accomplishes tasks on behalf of a data provider when it communicates

with a user. As such, an agent communicates geoConcepts by generating and transmitting

geoConceptReps in XML. An agent recognizes and assigns a meaning to a

geoConceptRep by using the geoConcept of its ontology that has the most significant

geosemantic proximity with the geoConceptRep. The GsP Prototype has been tested

against agents using identical ontologies and agents using different ontologies. For this

purpose, geospatial data repositories have been worked out to serve as agent’s application

ontologies from five different geospatial data product specifications. In the

experimentation conducted, agents using identical ontologies always ended up

understanding each other where the geoConcept that recognizes the geoConceptRep was

always identical to the one that produces that geoConceptRep. Agents using different

ontologies end up understanding each other when geoConcepts and geoConceptReps

show sufficient commonalities. Limitations between agents of different ontologies come

from the poverty of ontologies in terms of amount of geoConcepts and inherent structure

as well as the difficulty to handle definitions in natural language.

Although we consider the prototype and the experimentation to be successful, a number

of issues still need to be addressed, notably in (1) the development of more rigorous

ontologies, (2) the extraction of intrinsic and extrinsic properties from natural language

definitions of geoConcepts, attributes, attribute values, etc., (3) the integration of

application, domain, and global ontologies and their interactions. Finally, we believe that

this research takes a step forward in the achievement of the complete interoperability of

geospatial data.

Page 198: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

178

Acknowledgements

The authors wish to acknowledge the contribution of Natural Resources Canada – Centre

for Topographic Information in supporting the first author for this research and of the

GEOIDE Network of Centres of Excellence in geomatics, project DEC#2 (Designing the

Technological Foundations of Spatial Decision-making with the World Wide Web).

5.7 References

Barsalou, L W 1999 Perceptual symbol systems. Behavioral and Brain Sciences, 22(4):

577-609

BC Ministry of Environment Lands and Parks (Geographic Data BC) 1992 Digital

Baseline Mapping at 1:20,000. Victoria, Province of British Columbia, BC

Ministry of Environment, Lands and Parks

Bédard, Y 1999 Visual Modelling of Spatial Database Towards Spatial PVL and UML.

Geomatica, 53(2): 169-186

Bédard, Y, and M-J Proulx 2002 Perceptory Web Site. Web Page Document,

http://sirs.scg.ulaval.ca/Perceptory

Bishr, Y 1997 Semantics Aspects of Interoperable GIS. Ph.D. Dissertation, ITC

Publication

Bittner, T, and G Edwards 2001 Toward an Ontology for Geomatics. Geomatica, 55(4):

475-490

Brodeur, J, and Y Bédard 2001 Geosemantic Proximity, a Component of Spatial Data

Interoperability. In Proceedings of International Workshop on “Semantics in

Enterprise Integration” (OOPSLA 2001): 6

Brodeur, J, and Y Bédard 2002 Extending Geospatial Repositories with Geosemantic

Proximity Functionalities to Facilitate the Interoperability of Geospatial Data. In

Proceedings of ISPRS, SDH2002 and CIG Joint International Symposium on

Geospatial Theory, Processing and Application: 6

Page 199: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

179

Brodeur, J, Y Bédard, G Edwards, and B Moulin 2003 Revisiting the Concept of

Geospatial Data Interoperability within the Scope of a Human Communication

Process. Transactions in GIS, 7(2): 243-265

Brodeur, J, Y Bédard, B Moulin, and G Edwards 2002 Geosemantic Proximity for

Geospatial Data Interoperability. (Manuscrit)

Brodeur, J, Y Bédard, and M J Proulx 2000 Modelling Geospatial Application Databases

using UML-based Repositories Aligned with International Standards in

Geomatics. In Proceedings of Eighth ACM Symposium on Advances in

Geographic Information Systems (ACMGIS) ACM Press: 39-46

CCOG - Working Group on “Base Data Quality Issue” 2001 A New Vision for Quality

Base Geographic Information in Canada – “GeoBase”.

Charron, J 1995 Développement d’un processus de sélection des meilleures sources de

données cartographiques pour leur intégration à une base de données à référence

spatiale. Mémoire de maîtrise, Université Laval

Egenhofer, M J 1999 Introduction: Theory and Concepts. In M Goodchild, M Egenhofer,

R Fegeas, and C Kottman (eds) Interoperating Geographic Information Systems.

Boston, Massachusetts, Kluwer Academic Publisher: 1-4

FGDC 2002 NSDI. USGS, Web Page Document, http://www.fgdc.gov/nsdi/nsdi.html

Fowler, J, B Perry, M Nodine, and B Bargmeyer 1999 Agent-Based Semantic

Interoperability in InfoSleuth. Sigmod Record, 28(1): 8

GeoBase 2001 National GeoBase Definition.

GeoConnections 2002 Canadian Geospatial Data Infrastructure (CGDI) architecture.

Electronic Document, http://www.geoconnections.org/architecture/index_e.html

Gruber, T R 1993 Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. Palo Alto, California, Knowledge Systems Laboratory Technical Report

KSL 93-04

Guarino, N 1998 Formal Ontology and Information Systems. In Proceedings of Formal

Ontology in Information Systems (FOIS '98). Amsterdam, IOS Press: 3-15

Guarino, N, and C Welty 2000 A Formal Ontology of Properties. In Proceedings of

Knowledge Engineering and Knowledge Management: Methods, Models and

Page 200: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

180

Tools (12th International Conference, EKAW2000), 3-540-41119-4. Berlin,

Springer-Verlag Lecture Notes in Computer Science 1937: 97-112

Harvey, F J 2002 Semantic Interoperability and Citizen/Government Interaction. In

Proceedings of Spatial Data Handling 2002: Joint International Symposium on

Geospatial Theory, Processing, and Applications: 13

ISO/TC 211 2001a ISO/DIS 19110 Geographic Information - Feature Cataloguing

Methodology. Geneva, Switzerland, International Organization for

Standardization

ISO/TC 211 2001b ISO/PDTS 19103 Geographic Information - Conceptual Schema

Language. Geneva, Switzerland, International Organization for Standardization

ISO/TC 211 2003a ISO 19107:2003 Geographic Information - Spatial Schema. Geneva,

Switzerland, International Organization for Standardization

ISO/TC 211 2003b ISO 19115:2003 Geographic Information - Metadata. Geneva,

Switzerland, International Organization for Standardization

Jones, M 1991 Brave New World: A Vision of IRDS. Database Programming and

Design: 43-49

Kashyap, V, and A Sheth 1996 Semantic and Schematic Similarities Between Database

Objects: A Context-Based Approach. The VLDB Journal, 5: 276-304

Kottman, C 1999 The Open GIS Consortium and Progress Toward Interoperability in

GIS. In M Goodchild, M Egenhofer, R Fegeas, and C Kottman (eds)

Interoperating Geographic Information Systems. Boston, Massachusetts, Kluwer

Academic Publisher: 39-54

Laurini, R 1998 Spatial Multi-Database Topological Continuity and Indexing: a Step

Towards Seamless GIS Data Interoperability. International Journal of

Geographic Information Science, 12(4): 373-402

Lehmann, F 1992 Semantic Networks. Computers and Mathematics with Applications,

23(2-5): 50

Marco, D 2000 Building and Managing the Meta Data Repository. Wiley

Moriarty, T 1990 Are You Ready for a Repository? Database Programming and Design:

62-71

Page 201: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

181

Natural Resources Canada 1996 National Topographic Data Base - Standards and

Specifications. Sherbrooke, Quebec, Centre for Topographic Information-

Sherbrooke

Nwana, H S 1996 Software Agents: An Overview. The Knowledge Engineering Review,

11(2): 205-244

Nwana, H S, and M Wooldridge 1996 Software Agent Technologies. BT Technology

Journal, 14(4): 68-78

OBM 1996 Ontario Digital Topographic Database - 1:10,000, 1:20,000 - A Guide for

User. Toronto, Ontario, Ministry of Natural Resources

Open GIS Consortium Inc. 1999 OpenGIS Simple Features Specification for SQL.

Wayland, Massachusetts, OpenGIS Consortium Inc.

Open GIS Consortium Inc. 2001 Geography Markup Language (GML) 2.0. Wayland,

Massachusetts, Open GIS Consortium Inc.

Ouksel, A M, and A Sheth 1999 Semantic Interoperability in Global Information

Systems: A Brief Introduction to the Research Area and the Special Section.

Sigmod Record, 28(1): 5-12

P.E.I. Geomatics Information Centre User’s Guide to Digital and Hardcopy property and

Basemap Products. Charlottetown, P.E.I., Provincial Treasury - Taxation &

Property Records Division

Payne, T R, M Paolucci, R Singh, and K Sycara 2002 Communicating Agents in Open

Agent Systems. In Proceedings of First GSFC/JPL Workshop on Radical Agent

Concepts (WRAC): 10

Peuquet, D, B Smith, and B Brogaard 1998 The Ontology of Fields. In Proceedings of

Summer Assembly of the University Consortium for Geographic Information

Science

Prabandham, M, W J Selfridge, and D D Mann 1990 The Role of IRDS. Database

Programming and Design: 41-48

Québec 2000 Base de données topographiques du Québec (BDTQ) à l’échelle de

1/20 000 - Normes de production (Version 1.0). Québec, Ministère des

Ressources naturelles, Direction générale de l’information géographique, CD

Document

Page 202: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

182

Rodriguez, M A 2000 Assessing Semantic Similarity Among Entity Classes. Ph.D. Thesis,

University of Maine

Schramm, W 1971 The Nature of Communication Between Humans. In W Schramm, and

D F Robert (eds) The Process and Effects of Mass Communication. Champaign-

Urbana, IL, University of Illinois Press: 3-53

Sheth, A 1999 Changing Focus on Interoperability in Information Systems: From

Systems, Syntax, Structure to Semantics. In M Goodchild, M Egenhofer,

R Fegeas, and C Kottman (eds) Interoperating Geographic Information Systems.

Boston, Massachusetts, Kluwer Academic Publisher: 5-29

Sheth, A, and V Kashyap 1992 So Far (Schematically) Yet So Near (Semantically). In

Proceedings of IFIP WG2.6 Database Semantics Conference on Interoperable

Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 283-312

Simsion, G C 2001 Data Modeling Essentials - Analysis, Design, and Innovation.

Scottsdale, Arizona, Coriolis

Smith, B, and D Mark 1999 Ontology with Human Subjects Testing: An Empirical

Investigation of Geographic Categories. American Journal of Economics and

Sociology, 58(2): 245-272

Statistics Canada 1997 Digital Boundary File and Digital Cartographic File 1996

Census (Reference Guide). Ottawa, Minister of Industry

Sun Microsystems Inc. 2002 Java™ API for XML Processing (JAXP). Sun

Microsystems Inc., Web Page Document, http://java.sun.com/xml/jaxp/index.html

Sycara, K, M Klusch, S Widoff, and J Lu 1999 Dynamic Service Matchmaking Among

Agents in Open Information Environnements. Sigmod Record, 28(1): 47-53

The Appache Sofware Foundation 2002 Xalan-Java version 2.4.0. The Appache Sofware

Foundation, Web Page Document, http://xml.apache.org/xalan-j/

VMap 1995 Vector Map (VMap), Level 1. Bethesda, MD, U.S. National Imagery and

Mapping Agency Mil-V-89033

Xhu, Z, and Y C Lee 2002 Semantic Heterogeneity of Geodata. In Proceedings of ISPRS

Commission IV Symposium 2002: Joint International Symposium on Geospatial

Theory, Processing, and Applications: 6

Page 203: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

CHAPITRE 6

CONCLUSION

Cette thèse s’intéresse au problème d’interopérabilité sémantique, spatiale et temporelle

des données géospatiales. Comme nous avons pu le constater, les bases de données

géospatiales représentent habituellement les mêmes phénomènes géographiques de

manières semblables, mais non-identiques; chaque représentation ayant une signification

qui lui est spécifique. Alors que les bases de données géospatiales sont maintenant

accessibles sur Internet, les différences observées dans les représentations des

phénomènes géographiques causent des problèmes quant à la recherche d’information qui

répond aux besoins exacts des utilisateurs et à l’intégration des données géospatiales.

6.1 Sommaire

Le chapitre 1 présente le problème que cette thèse aborde, soit de repérer et d’obtenir des

données géospatiales qui répondent aux besoins exacts des utilisateurs. Plus précisément,

nous cherchons à élucider, identifier et définir les éléments de la proximité sémantique,

spatiale et temporelle qui interviennent dans le repérage des données géospatiales

répondant au besoin particulier d’un utilisateur, dans le cadre de l’interopérabilité des

données géospatiales.

Page 204: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

184

Au chapitre 2, nous avons revu les notions que nous considérons étroitement liées à

l’interopérabilité sémantique, spatiale et temporelle des données géospatiales. Nous

avons premièrement reconsidéré le processus de communication entre les systèmes. Le

processus de communication entre les êtres humains apparaît un modèle

d’interopérabilité remarquable puisque les êtres humains réussissent à communiquer

ensemble et à échanger un grand volume d’information de manière interopérable. Le

processus de communication nous a amenés à examiner le fonctionnement cognitif de

l’être humain pour comprendre pourquoi l’être humain est en mesure de reconnaître un

ensemble de signaux et leur attribuer une signification. Nous avons ensuite revu la notion

d’ontologie qui est intimement liée à la connaissance et à la description des phénomènes

de la réalité. Puis, nous avons revu les différents types d’hétérogénéité des données

géospatiales pour comprendre comment évaluer la similitude entre les données

géospatiales. Nous avons complété ce chapitre en repassant certaines solutions sur

l’hétérogénéité des données géospatiales et certaines méthodes d’évaluation de la

similitude sémantique.

Nous nous sommes intéressés au chapitre 3 au problème global de l’interopérabilité des

données géospatiales. Nous avons proposé un cadre conceptuel qui est basé sur le

processus de communication et sur les sciences cognitives. Ce cadre conceptuel est

assorti d’une ontologie de l’interopérabilité des données géospatiales qui se présente sur

deux dimensions. La première dimension réfère aux cinq phases ontologiques de

l’interopérabilité des données géospatiales qui caractérisent les diverses représentations

de phénomènes impliquées dans le processus de communication : les phénomènes

géospatiaux en soi, les représentations cognitives des phénomènes ou concepts

géospatiaux de la source et de la destination, et les signaux utilisés pour communiquer les

concepts géospatiaux ou représentations conceptuelles géospatiales. La seconde

dimension distingue les niveaux de granularité que nous retrouvons dans la représentation

des phénomènes : ontologie globale, ontologie de domaine et ontologie d’application. Les

concepts géospatiaux, étant des représentations cognitives, ne peuvent pas être accédés

directement. Par conséquent, ils sont encapsulés par une fonction de simulation

Page 205: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

185

(Barsalou, 1999) qui leur sert d’interface. Cette fonction du concept géospatial génère et

reconnaît des représentations conceptuelles géospatiales.

Au chapitre 4, nous avons proposé la notion de proximité géosémantique pour évaluer la

similitude sémantique, spatiale et temporelle entre un concept géospatial et une

représentation conceptuelle géospatiale. C’est une approche qui se fonde sur la

comparaison du contexte d’un concept géospatial et du contexte d’une représentation

conceptuelle géospatiale. Le contexte d’un concept géospatial et d’une représentation

conceptuelle géospatiale est essentiellement représenté par l’ensemble de leurs propriétés

intrinsèques et extrinsèques. Les propriétés intrinsèques décrivent la nature spécifique et

la signification inhérente d’un concept géospatial ou d’une représentation conceptuelle

géospatiale de manière indépendante des facteurs extérieurs. Les propriétés extrinsèques

fournissent une signification d’un concept géospatial ou d’une représentation

conceptuelle géospatiale en fonction de l’influence que des facteurs externes (c.-à-d.

d’autres concepts géospatiaux ou représentations conceptuelles géospatiales) exercent sur

le concept géospatial ou la représentation conceptuelle géospatiale. On compare le

contexte d’un concept géospatial ou d’une représentation conceptuelle géospatiale à un

segment sur un axe sémantique où les propriétés intrinsèques correspondent à l’intérieur

du segment et les propriétés extrinsèques, à ses limites. La proximité géosémantique

s’exprime alors sous la forme d’une matrice à quatre intersections, chaque intersection est

évaluée vide ou non-vide. De cette matrice, seize prédicats de proximité géosémantique

sont dérivés pour exprimer la similitude entre un concept géospatial et une représentation

conceptuelle géospatiale. La proximité géosémantique constitue une méthode qui soutient

le raisonnement qualitatif d’un concept géospatial pour générer et reconnaître des

représentations conceptuelles géospatiales.

Enfin, nous avons décrit au chapitre 5 le GsP Prototype. Ce prototype valide la faisabilité

informatique de la notion de proximité géosémantique. Il est fait d’agents logiciels qui

communiquent ensemble et échangent de l’information géospatiale. Chaque agent

possède sa propre ontologie formée d’un ensemble de concepts géospatiaux interreliés

entre eux. Un répertoire de données géospatiales développé avec Perceptory (Bédard et

Page 206: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

186

Proulx, 2002) constitue chaque ontologie utilisée dans le prototype. Trois fonctions

encapsulent chaque concept géospatial :

- une fonction qui génère des représentations conceptuelles géospatiales,

- une fonction qui reconnaît des représentations conceptuelles géospatiales, et

- une fonction qui calcule la proximité géosématique (gspRelate) entre le concept

géospatial et une représentation conceptuelle géospatiale.

Les agents communiquent entre eux en échangeant des représentations conceptuelles

géospatiales codées en XML. Nous avons validé le prototype avec des ontologies sur le

réseau routier et le réseau hydrographique construites à l’aide des spécifications de

données géospatiales de la Base nationale de données topographiques (Ressources

naturelles Canada, 1996), du guide des utilisateurs de données cartographiques

numériques de l’Île-du-Prince-Édouard (P.E.I. Geomatics Information Centre), des

normes de production de la Base de données topographiques du Québec (Québec, 2000),

du guide des utilisateurs de la Base de données topographiques de l’Ontario (OBM, 1996)

et des normes cartographiques numériques de la Colombie-Britannique (BC Ministry of

Environment Lands and Parks (Geographic Data BC), 1992). À l’aide de ces ontologies,

nous avons observé que :

- deux agents ayant la même ontologie réussissent toujours à se comprendre en

utilisant les mêmes concepts géospatiaux;

- deux agents, chacun ayant une ontologie distincte de l’autre, se comprennent en

autant que les concepts de leur ontologie respective présentent suffisamment de

propriétés intrinsèques et extrinsèques communes.

6.2 Discussion

Cette thèse apporte une vision renouvelée de l’interopérabilité des données géospatiales

basée sur le processus de communication entre les êtres humains et le fonctionnement

cognitif des êtres humains. Elle intègre aussi une approche novatrice pour retrouver

l’information géospatiale qui permet aux utilisateurs de données de communiquer avec

Page 207: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

187

les fournisseurs de données (i.e. serveurs de bases de données) dans leur propre

vocabulaire (i.e. ontologie). Les utilisateurs et les fournisseurs de données reconnaissent,

c’est-à-dire interprètent, automatiquement le contenu des messages qu’ils reçoivent grâce

à leur base de connaissances (i.e. ontologie) et à la capacité de raisonnement des concepts

géospatiaux pour qualifier leur similitude sémantique, spatiale et temporelle avec les

représentations conceptuelles géospatiales. Les fournisseurs de données répondent de

façon plus précise aux requêtes reçues dans un vocabulaire qui n’est pas le leur. En ce

sens, nous croyons que notre hypothèse de départ qui était que « la proximité

géosémantique contribuerait à repérer des concepts géospatiaux qui répondent aux

besoins spécifiques d’un utilisateur » est vérifiée (1) par la définition d’un cadre

conceptuel d’interopérabilité qui situe la notion de proximité géosémantique, (2) par le

développement de cette notion en tenant compte de la signification des concepts

géospatiaux et des représentations conceptuelles géospatiales incluant leurs

représentations spatiales et temporelles, et (3) par l’élaboration d’un prototype validant la

faisabilité informatique. On remarque que les ontologies, les processus de raisonnement

des agents utilisateurs et fournisseurs incluant les prédicats de proximité géosémantique

et les messages que les agents se transmettent sont autant d’éléments qui influencent le

repérage de données géospatiales spécifiques à un besoin. Toutefois, l’approche de

proximité géosémantique se limite à l’évaluation de la similitude qui existe entre les

concepts géospatiaux et les représentations conceptuelles géospatiales sans considérer

leurs différences. L’étude de la différence ajouterait une composante significative dans

l’analyse de proximité géosémantique.

Les résultats de cette thèse permettent d’entrevoir le développement de serveurs de

données plus intelligents accessibles sur le Web pouvant comprendre les requêtes des

utilisateurs nonobstant le vocabulaire utilisé pour les formuler. Nous croyons que

l’approche proposée dans cette thèse augmentera l’efficience et l’efficacité de

l’interaction entre les utilisateurs et les serveurs de données géospatiales. Nous estimons

que les résultats de cette recherche auront des effets dans plusieurs projets. Plus

spécifiquement, on pense aux applications Web utilisant une connexion Internet sans fils

(wireless connection) où les serveurs de données qui intègreront notre approche saisiront

Page 208: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

188

mieux le sens des requêtes et y répondront plus précisément. Ceci aura pour effet de

minimiser la quantité de données qui voyagent dans le réseau et de diminuer le temps

d’interaction avec les serveurs de données ainsi que les coûts qui y sont associés. On

pense aussi aux applications associées aux systèmes d’aide à la décision qui favorisent la

prise de décision efficace. Dans ce contexte, notre approche aiderait à l’intégration de

connaissances provenant de sources multiples habituellement décrites de manière

distincte tant au niveau schématique, sémantique, spatial que temporel.

6.3 Conclusions

À la lumière des résultats de cette thèse et plus spécifiquement par la démonstration faite

avec le GsP Prototype, nous concluons ce qui suit :

- le cadre conceptuel proposé représente d’une manière réaliste l’interaction qui

existe entre deux systèmes dans un contexte d’interopérabilité sémantique,

spatiale et temporelle des données géospatiales;

- les concepts géospatiaux qui constituent l’ontologie d’un système décrivent la

signification donnée aux phénomènes géographiques ainsi qu’aux signaux utilisés

pour les représenter. Le concept et sa description, c’est la sémantique!

- les concepts géospatiaux ne sont pas communiqués directement. Les

représentations conceptuelles géospatiales, qui sont des signaux physiques,

servent à communiquer les concepts géospatiaux entre les systèmes;

- les représentations conceptuelles géospatiales sont adaptées au contexte

spécifique puisqu’elles expriment le besoin précis d’information géographique

d’un utilisateur et véhiculent les données spécifiques qui répondent au besoin de

l’utilisateur;

- la notion de proximité géosémantique supporte les fonctions de reconnaissance et

de génération de représentations conceptuelles géospatiales intégrées aux

concepts géospatiaux en qualifiant la similitude sémantique, spatiale et temporelle

d’un concept géospatial avec une représentation conceptuelle géospatiale;

Page 209: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

189

- le modèle à quatre intersections utilisé pour évaluer la proximité géosémantique

qualifie efficacement la similitude entre un concept géospatial et une

représentation conceptuelle géospatiale en comparant l’ensemble de leurs

propriétés intrinsèques et leurs propriétés extrinsèques;

- le modèle à quatre intersections ne tient compte que de la ressemblance d’un

concept géospatial avec une représentation conceptuelle géospatiale et gagnerait à

considérer leurs différences;

- la qualification vide/non vide de chacune des quatre intersections entre les

propriétés intrinsèques et extrinsèques mérite aussi d’être enrichie pour décrire de

manière plus précise l’état de chaque intersection;

- l’approche de proximité géosémantique s’intègre très bien à l’ensemble des

méthodes de raisonnement appliquées aux données géospatiales puisqu’elle

s’inspire des approches topologiques couramment utilisées avec les données

spatiales et temporelles (Allen, 1983; Egenhofer, 1993; Egenhofer et Franzosa,

1991);

- des ontologies riches en contenu et en structure favorisent une meilleure

interopérabilité avec les bases de données géospatiales puisqu’elles offrent un

plus grand éventail de concepts géospatiaux, de propriétés intrinsèques et de

propriétés extrinsèquement;

- un répertoire de données géospatiales composé d’un modèle UML et d’un

dictionnaire de données constitue un outil adéquat pour réaliser une ontologie

d’application puisqu’il permet de décrire chaque concept de manière détaillée

avec ses caractéristiques descriptives, spatiales et temporelles ainsi que ses

comportements, et permet d’établir les relations qui existent entre chaque concept

ainsi que le rôle que joue chaque concept dans cette relation.

6.4 Perspectives de recherche

Le cadre conceptuel d’interopérabilité des données géospatiales ainsi que la notion de

proximité géosémantique présentés dans cette thèse démontrent des progrès substantiels

pour l’interopérabilité des données géospatiales. Toutefois, l’étude de plusieurs questions

Page 210: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

190

et problèmes doit être poursuivie pour accroître l’interopérabilité des données

géospatiales, notamment :

- la comparaison de résultats obtenus par l’approche de proximité géosémantique

avec ceux obtenus de sujets humains;

- l’analyse des définitions en langage naturel associées aux propriétés intrinsèques

et extrinsèques (incluant la sémantique de la géométrie et de la temporalité) des

concepts géospatiaux et de représentations conceptuelles géospatiales pour faire

ressortir des propriétés non explicitement décrites; les graphes conceptuels

présentent une avenue intéressante;

- l’analyse de la différence entre un concept géospatial et une représentation

conceptuelle géospatiale d’un point de vue qualitative qui permettrait d’enrichir la

notion de proximité géosémantique; le modèle à neuf intersections semble offrir

les caractéristiques pour considérer l’analyse de la différence;

- la qualification plus précise de l’état de chaque intersection dans la matrice à

quatre intersections et éventuellement dans la matrice à neuf intersections pour

caractériser si certaines ou toutes les propriétés du concept géospatial

correspondent à certaines ou toutes les propriétés de la représentation

conceptuelle géospatiale;

- la mise à jour dynamique et automatique de l’ontologie d’un agent à partir de la

reconnaissance de représentations conceptuelles géospatiales pour accroître sa

capacité de génération et de reconnaissance de représentations conceptuelles

géospatiales;

- l’interaction entre des agents d’ontologie d’application, d’ontologie de domaine et

d’ontologie globale pour augmenter l’interopérabilité des données géospatiales;

- l’élaboration d’un ensemble de règles quant à l’élaboration de modèles

conceptuels de données géospatiales et à l’utilisation du formalisme UML pour le

développement d’ontologies géospatiales; les modèles actuels des bases de

données géospatiales sont habituellement présentés au niveau logique voire au

niveau physique et, conséquemment, n’offrent pas toute la connaissance utile pour

supporter l’interopérabilité sémantique, spatiale et temporelle;

Page 211: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

191

- l’évaluation, l’adaptation et l’expérimentation du geography markup language

(GML), du resource description framework (RDF) et du Web ontology language

(OWL) pour la communication de représentations conceptuelles géospatiales

telles qu’utilisées dans le GsP Prototype; GML est une spécification de

l’OpenGIS Consortium Inc. utilisée pour l’échange de données géospatiales; RDF

et OWL sont des spécifications du World Wide Web Consortium Inc. pour

développer le SemanticWeb.

6.5 Références

Allen, J F 1983 Maintaining Knowledge about Temporal Intervals. Communication of the

ACM, 26(11): 832-843

Barsalou, L W 1999 Perceptual symbol systems. Behavioral and Brain Sciences, 22(4):

577-609

BC Ministry of Environment Lands and Parks (Geographic Data BC) 1992 Digital

Baseline Mapping at 1:20,000. Victoria, Province of British Columbia, BC

Ministry of Environment, Lands and Parks

Bédard, Y, et M-J Proulx 2002 Perceptory Web Site. Web Page Document,

http://sirs.scg.ulaval.ca/Perceptory

Egenhofer, M 1993 A Model for Detailed Binary Topological Relationships. Geomatica,

47(3 & 4): 261-273

Egenhofer, M, et R D Franzosa 1991 Point-Set Topological Spatial Relations.

International Journal of Geographic Information Science, 5(2): 161-174

OBM 1996 Ontario Digital Topographic Database - 1:10,000, 1:20,000 - A Guide for

User. Toronto, Ontario, Ministry of Natural Resources

P.E.I. Geomatics Information Centre User’s Guide to Digital and Hardcopy property and

Basemap Products. Charlottetown, P.E.I., Provincial Treasury - Taxation &

Property Records Division

Québec 2000 Base de données topographiques du Québec (BDTQ) à l’échelle de

1/20 000 - Normes de production (Version 1.0). Québec, Ministère des

Page 212: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

192

Ressources naturelles, Direction générale de l’information géographique, CD

Document

Ressources naturelles Canada 1996 Base nationale de données topographiques - normes

et spécifications. Sherbrooke, Québec, Centre d’information topographique –

Sherbrooke

Page 213: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

ANNEX A

QUERY ABOUT THE STREET GEOCONCEPT

ENCODED IN AN XML DOCUMENT

<?xml version="1.0" encoding="UTF-8"?>

<GsPmessage type="query">

<conceptualRepresentation>

<intrinsicProperties>

<identification>

<name>street</name>

<definition>rue : voie de communication généralement

bordée de bâtiments dans une agglomération.</definition>

</identification>

<geometry>1</geometry>

</intrinsicProperties>

<extrinsicProperties>

<relationMembership>

<relation>

<name>Inheritance</name>

<firstMember>street</firstMember>

<secondMember>communication route</secondMember>

Page 214: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

194

</relation>

<role>subtype</role>

</relationMembership>

<relationMembership>

<relation>

<name>Inheritance</name>

<firstMember>street</firstMember>

<secondMember>street paved</secondMember>

</relation>

<role>supertype</role>

</relationMembership>

<relationMembership>

<relation>

<name>Inheritance</name>

<firstMember>street</firstMember>

<secondMember>street unpaved</secondMember>

</relation>

<role>supertype</role>

</relationMembership>

</extrinsicProperties>

</conceptualRepresentation>

</GsPmessage>

Page 215: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

ANNEX B

ANSWER WITH THE ROAD GEOCONCEPTREP

ENCODED IN AN XML DOCUMENT

<?xml version="1.0" encoding="UTF-8"?>

<GsPmessage type="answer?street">

<conceptualRepresentation>

<intrinsicProperties>

<identification>

<name>road</name>

<definition>a road for the movement of motor vehicles.</definition>

</identification>

<descriptiveAttribute>

<name>classification</name>

<attributeValue>

<name>highway</name>

<definition>a road for motor vehicules designed for high-speed travel,

usually lacking rail or road intersections. each roadway of a highway is

an entity occurrence.</definition>

</attributeValue>

<attributeValue>

Page 216: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

196

<name>main</name>

<definition>a numbered thoroughfare. access road may not be

numbered. </definition>

</attributeValue>

<attributeValue>

<name>secondary</name>

<definition>a local or rural road not assigned a number. </definition>

</attributeValue>

<attributeValue>

<name>street</name>

<definition>a public road in a residential or commercial area with

buildings on one or both sides.</definition>

</attributeValue>

<attributeValue>

<name>rapid transit</name>

<definition>a road restricted to vehicles of the public

transportation.</definition>

</attributeValue>

<attributeValue>

<name>unknown</name>

<definition>not possible to determine the road classification from the

data source.</definition>

</attributeValue>

</descriptiveAttribute>

<descriptiveAttribute>

<name>support</name>

<attributeValue>

<name>ground level</name>

<definition>a road built directly on ground level.</definition>

</attributeValue>

<attributeValue>

Page 217: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

197

<name>other</name>

<definition>all road support known other than those listed for this

attribute (e.g. bridge, tunnel, or dam).</definition>

</attributeValue>

<attributeValue>

<name>unknown</name>

<definition>not possible to determine the road support from the data

source.</definition>

</attributeValue>

</descriptiveAttribute>

<descriptiveAttribute>

<name>surface</name>

<attributeValue>

<name>hard surface</name>

<definition>a surface made of concrete, asphalt, or tar

gravel.</definition>

</attributeValue>

<attributeValue>

<name>loose surface</name>

<definition>a surface made of other than concrete, asphalt, or tar

gravel.</definition>

</attributeValue>

<attributeValue>

<name>unknown</name>

<definition>not possible to determine the road surface from the data

source. </definition>

</attributeValue>

</descriptiveAttribute>

<descriptiveAttribute>

<name>status</name>

<attributeValue>

Page 218: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

198

<name>under construction</name>

<definition>a road in the preliminary stages of construction, which

would include activities such as grading and/or building embankments

for a bridge, and on which traffic is prohibited for an extended period

of time.</definition>

</attributeValue>

<attributeValue>

<name>unknown</name>

<definition>not possible to determine the road status from the data

source. </definition>

</attributeValue>

<attributeValue>

<name>operational</name>

<definition>road that can be used or is in full operation.</definition>

</attributeValue>

</descriptiveAttribute>

<descriptiveAttribute>

<name>number of lanes</name>

</descriptiveAttribute>

<descriptiveAttribute>

<name>number</name>

</descriptiveAttribute>

<geometry>1</geometry>

</intrinsicProperties>

<extrinsicProperties>

<relationMembership>

<relation>

<name/>

<firstMember>road</firstMember>

<secondMember>root</secondMember>

</relation>

Page 219: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

199

</relationMembership>

<relationMembership>

<relation>

<name>connect</name>

<firstMember>barrier/gate</firstMember>

<secondMember>road</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>connect</name>

<firstMember>highway exit</firstMember>

<secondMember>road</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>connect</name>

<firstMember>ferry route</firstMember>

<secondMember>road</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>connect</name>

<firstMember>road</firstMember>

<secondMember>road</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

Page 220: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

200

<name>connect</name>

<firstMember>road</firstMember>

<secondMember>limited- use road</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>connect</name>

<firstMember>railway</firstMember>

<secondMember>road</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>share</name>

<firstMember>railway</firstMember>

<secondMember>road</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>connect</name>

<firstMember>road</firstMember>

<secondMember>built-up area</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>share</name>

<firstMember>road</firstMember>

<secondMember>built-up area</secondMember>

Page 221: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

201

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>connect</name>

<firstMember>road</firstMember>

<secondMember>dam</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>share</name>

<firstMember>road</firstMember>

<secondMember>dam</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>connect</name>

<firstMember>road</firstMember>

<secondMember>ford</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>connect</name>

<firstMember>road</firstMember>

<secondMember>trail</secondMember>

</relation>

</relationMembership>

<relationMembership>

Page 222: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

202

<relation>

<name>share</name>

<firstMember>road</firstMember>

<secondMember>bridge</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>share</name>

<firstMember>dyke/levee</firstMember>

<secondMember>road</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>share</name>

<firstMember>tunnel</firstMember>

<secondMember>road</secondMember>

</relation>

</relationMembership>

<relationMembership>

<relation>

<name>share</name>

<firstMember>road</firstMember>

<secondMember>snowshed</secondMember>

</relation>

</relationMembership>

</extrinsicProperties>

</conceptualRepresentation>

</GsPmessage>

Page 223: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

ANNEX C

LA PROXIMITÉ GÉOSÉMANTIQUE

AU SERVICE DE LA DÉCOUVERTE

D’INFORMATION GÉOSPATIALE

DANS UN ENVIRONNEMENT SANS FILS

Geosemantic Proximity to Improve Geospatial

Information Discovery in a Wireless Environment

(J. Brodeur, Y. Bédard et B. Moulin)

C.1 Résumé de l’article

Les chapitres 3 à 5 inclusivement de cette thèse élaborent essentiellement

l’interopérabilité et la notion de proximité géosémantique. Cette annexe propose la notion

de proximité géosémantique comme un élément qui minimise l’interaction avec les

sources de données géospatiales accessibles sur le Web et qui accroît l’efficience des

engins de recherche d’information géospatiale. Ces sources de données géospatiales

élaborées pour des besoins particuliers selon différentes ontologies peuvent maintenant

être accédées à l’aide d’ordinateurs de poche ou d’assistants numériques personnels

(PDA) branchés sur Internet à l’aide de connexions sans fils et de fureteurs Web sur des

téléphones cellulaires qui utilisent le protocole WAP. L’étroitesse de la largeur de bande

Page 224: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

204

actuellement disponible sur Internet pour des connexions sans fils exige en ce sens des

engins de recherche de données géospatiales plus efficients pour l’interaction entre

l’utilisateur et le serveur de données. Plus spécifiquement, cette annexe reprend le cadre

conceptuel d’interopérabilité des données géospatiales présenté au chapitre 3 et la notion

de proximité géosémantique présentés au chapitre 4 pour interagir avec des bases de

données qui peuvent être utilisées dans un environnement sans fils. Des exemples

illustrent la pertinence de cette notion qui appuie la recherche efficiente de données

géospatiales sur le Web, spécialement dans un environnement sans fils. Finalement, nous

présentons succinctement des résultats obtenus à l’aide de notre prototype.

C.2 Abstract

Today, more and more geospatial data sources, which have been created for specific

purposes using different ontologies may be searched using Pocket PC or Palm PDA with

wireless connection to the Internet as well as WAP-based Web browsers on cell phones.

In this annexe, we propose a solution to increase the efficiency of search engines when

looking for geospatial data. More specifically, we describe a framework for geospatial

data interoperability and the notion of geosemantic proximity to interact with geospatial

databases that could be used in a wireless environment. Examples illustrate the suitability

of this notion to support efficient searching for geospatial data over the Web, especially

in a wireless environment. Finally, we briefly address preliminary results obtained with

our prototype.

C.3 Introduction

It is well known that topographic elements are depicted differently in various geospatial

data sources. For instance, the National Topographic Data Base (NTDB) provided by

Natural Resources Canada, the Street Network Files by Statistics Canada, and the VMap

libraries for military purposes depict Canada differently. There are also several other

topographic data sources produced by provincial departments that depict parts of

Canadian topographic elements, e.g. BC Digital Base Line Mapping (Geographic Data

Page 225: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

205

BC) and the Base de données topographiques du Québec (BDTQ). Typically, these data

sources provide different abstractions of the topographic reality, resulting in data sharing

and integration problems when users try to merge data from two or more sources. For

example, a water area is represented as a waterbody in the NTDB, a lake/pond in

VMap libraries, a lake in BC Digital Base Line Mapping, and a “lac ” in Base de

données topographiques du Québec (N.B. = point, = line, and = surface pictograms

symbolize the kind of geometry used to describe the phenomenon geographically

(Bédard, 1999)). Increasingly such geospatial data sources are becoming readily available

on the Web. Selecting the most appropriate data source for someone using either a Pocket

PC or Palm Personal Digital Assistant (PDA) with wireless connection to the Internet as

well as WAP-based Web browsers on cell phones requires tedious keying of several

queries before getting the best answer and results in unnecessary and costly data transfer.

Wireless technologies require highly efficient search engines that can identify very

precisely the desired geospatial data sources in order to minimize both the data keying on

these type-unfriendly devices and the cost of data transfer. These facts lead us to develop

new approaches to better interoperate with geospatial data sources on the Web.

Interoperability of geospatial data is considered a solution for various problems, such as

for sharing and integrating geospatial data on the fly. It provides the means to solve

syntactic, structural, semantic, geometric, and temporal heterogeneities (Bishr, 1997;

Charron, 1995). Standardization organizations, such as the Open GIS Consortium Inc.

(OGC) and ISO/TC 211-Geographic information/Geomatics, as well as the research

community have built solid foundations of geospatial data interoperability regarding

syntactic and structural heterogeneities (e.g. ISO/TC 211, 2003a; ISO/TC 211, 2003b;

Open GIS Consortium Inc., 1999; Open GIS Consortium Inc., 2001 that give content,

structure, and syntactical descriptions of geospatial data). However, as structural

heterogeneities can only be solved for semantically similar representations of phenomena

(Bishr, 1997), assessing the semantic proximity of geospatial data becomes an important

issue for geospatial data interoperability.

Page 226: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

206

However, accessing available geospatial data sources on the World Wide Web in an

interoperable mode is still an unresolved issue that becomes especially important with

technologies such as PDA and wireless applications. When interacting with geospatial

data sources, people using PDA or WAP-enabled cell phones are usually not aware of the

data specifications of these sources, their data dictionaries, or their technical thesaurus to

get exactly the information they need. Also considering the actual Internet bandwidth for

such technologies, searching geospatial information on the Web using different keywords

could result in fastidious and expensive operations.

In this annexe, we present a framework for geospatial data interoperability and, more

particularly, the new approach of geosemantic proximity, which takes simultaneously into

consideration geometric and semantic characteristics of an object and plays an important

role in the framework. Geosemantic proximity is seen here as an approach that facilitates

the search for geospatial information on the Web, based on the user’s vocabulary, which

results in both time and cost savings.

The remainder of this annexe is structured as follows. The next section reviews basic

elements upon which our framework and the notion of geosemantic proximity have been

delineated. The section C.5 presents our framework of geospatial data interoperability.

Section C.6 describes the approach of geosemantic proximity. In section C.7, we mention

a prototype developed recently and preliminary results. We conclude and present future

works in section C.8.

C.4 Background

The framework of geospatial data interoperability and the approach of geosemantic

proximity presented in the following sections are based on studies on human

communication, cognition, database modeling, artificial intelligence (AI), and

geographical information; especially those related to ontology, context, semantic

proximity, topology, mapping specifications, and semantic interoperability. We consider

the human communication process (Schramm, 1971; Weiner, 1950) to be a powerful

Page 227: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

207

representation of interoperability. Human communication corresponds to the process

involving an individual who transmits to someone else something that he has in mind and

that describes phenomena of a given reality. It is essentially composed of a human

source, signals, a communication channel, a human destination, possible noise, and a

feedback component. Cognitive models of the source and the destination refer to signals

(raw and transmitted) that reach their sensory systems and generate perceptual states

(Barsalou, 1999), also called percepts. The human attention selects and records only

properties that appear pertinent and structures them into concepts, or perceptual symbols

(Barsalou, 1999). Concepts are composed of both hidden data-like elements and a

translation process that (1) converts data elements into conceptual representations and (2)

recognizes conceptual representations. Conceptual representations are the physical

symbols used to convey the concept in specific situations.

When communicating, humans deal with multiple representations of real-world

phenomena. The description of real-world phenomena has been studied by people

working in AI (ontology (Gruber, 1993)) and database modeling. Conceptual database

modeling consists of abstraction of parts of reality from a data-centered perspective

(Simsion, 2001), used to convey information about it. Multiple conceptual models could

describe the same portion of reality differently according to the needs of different

systems or users, leading to interoperability problems when integrating the data. In such

cases, an ontology could provide means to facilitate the integration of such data since it

provides linkage elements such as identity (described later in this section), which allow

interoperability.

The context influences the abstraction of real-world phenomena. Context is here defined

as the situation or the circumstances in which phenomena are observed, which drive the

selection of distinctive intrinsic and extrinsic properties, and provide the intended

semantics (Kashyap and Sheth, 1996; Ouksel and Sheth, 1999; Wisse, 2000). When

dealing with geospatial data interoperability, it becomes essential to take the context into

account. Semantic proximity in a context-based perspective is an approach well defined

in the litterature (Kashyap and Sheth, 1996; Ouksel and Sheth, 1999; Sheth and Kashyap,

Page 228: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

208

1992) that supports reasoning functionalities and expresses the semantic relationships

between conceptual representations using qualitative predicates such as semantic

resemblance, semantic relevance, semantic relation, semantic equivalence, and semantic

incompatibility.

As mentioned above, conceptual representations are physical symbols used to convey

details about concepts. However, concepts and conceptual representations have to refer to

the same set of phenomena to be interoperable. Therefore, they are not as important as

the phenomena to which they refer. As such, the notion of identity of phenomena appears

to be significantly related to geospatial data interoperability in the sense that concepts and

conceptual representations involved in a communication process should refer to the same

phenomena. In other words, the identity of phenomena must be recognized from source

and destination concepts as well as from the conceptual representation. Identity is then

defined as a meta-property that allows us to distinguish and individualize geographic

phenomena (Guarino and Welty, 2000) as well as to recognize representations that refer

to the same phenomenon.

We can envision that a concept and a conceptual representation are made of intrinsic

properties providing literal meaning and bounded by extrinsic properties restricting the

scope of the concept or the conceptual representation. A concept and a conceptual

representation can be associated to a segment on a semantic axis. The interior of the

segment corresponds to the set of intrinsic properties of the concept or the conceptual

representation whereas the boundary of the segment corresponds to the set of extrinsic

properties. In this regard, the notion of topology as studied in geospatial information by

authors such as (Clementini and Di Felice, 1994; Egenhofer, 1993; Egenhofer and

Franzosa, 1991; Egenhofer et al., 1994) is here extended for the purpose of semantic

interoperability within the approach of geosemantic proximity.

Let’s take the example of road to clarify the above notions of intrinsic and extrinsic

properties of a concept and a conceptual representation and the associated notions of

interior and exterior. On the one hand, a road can be described by its classification type

Page 229: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

209

(e.g. highway, main, secondary, and so on), its surface type (e.g. paved or unpaved), its

road number or road name, and its geometric representation (e.g. a line). These represent

intrinsic properties and, as such, the interior of the road concept. On the other hand, a

road can have relationships with other features such as built-up areas, railways, bridges,

ferry routes, and other roads. The memberships of a road in these relationships represent

extrinsic properties and, as such, are boundaries of the road concept.

C.5 Geospatial Data Interoperability on the Web

In Figure C1, we illustrate geospatial data interoperability as an interpersonal

communication-like process. For example, this process corresponds to a user agent (Au),

which could be an individual using a pocket PC with a wireless link to the Internet, who

wants information about the road network within the area of Sherbrooke and queries a

geospatial data source, i.e. a data provider agent (Adp), which could be a geospatial

database on a server also connected to the Internet, about streets within the Sherbrooke

area. As soon as Adp gets the request and interprets it using its personal knowledge (e.g.

road and Sherbrooke ), it first locates the information corresponding to Au’s request,

then translates it into a form that is understandable by Au (e.g. King Street , Portland

Blvd , and so on), and sends it to Au. Au evaluates the answer he has received and

determines if it corresponds exactly to his request. The two agents can understand each

other because they share a common background and a set of symbols that they use.

Hence, in order to develop our framework for geospatial data interoperability, we use five

expressions of the topographic reality, R, R’ R’’, R’’’ and R’’’’, each representing a

separate ontology, which is related to the others thanks to the communication process.

Together, they form what we call the five ontological phases of geospatial data

interoperability. R corresponds to the topographic reality as it appears to Au at a given

instant and for which Au wants information. R cannot be directly described. R’ refers to

Au’s abstraction of R, which consists of a set of selected properties structured in concepts

in order to form Au’s cognitive model. R’ is called Au’s affordances of R (Gibson, 1979).

R’’ joins together the conceptual representations that Au generates to translate the

significant properties of Au’s concepts in a given situation. These conceptual

Page 230: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

210

representations are physical signals that use a vocabulary to depict the concepts partly or

wholly and to specify the intended meaning. These signals transit through the

communication channel to reach Adp. R’’’ consists of the set of Adp’s concepts. These

concepts are used to decode and recognize the R’’ ’s conceptual representations and grant

them a specific semantics. In an ideal situation, Adp’s concepts have a meaning closely

similar to Au’s initial concepts. R’’’’ designates the conceptual representations sent back

to Au. They are retrieved from Adp’s knowledge base and encoded before being

transmitted.

Since the encoding and decoding translation processes are typically viewed as

middleware components, they are tied into our framework to concepts that appear in R’

and R’’’. These processes generate and recognize the conceptual representations that

match the concepts. They also take into account the respective contexts of the concept

and the conceptual representation.

As illustrated in this framework, geospatial data interoperability is a bi-directional

process that also includes feedback in both directions in order to ensure that messages

have reached the destination and are understood properly. We think that this is an

important issue when considering semantic interoperability of geospatial data.

Figure C1: A Framework for Geospatial Data Interoperability

Page 231: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

211

This communication process is typical on the Web. People surf the Web to find

geospatial information using their respective knowledge and vocabulary. They also use

their knowledge and vocabulary to recognize answers they get and to evaluate them

against their queries. However, as geospatial data sources are not able to recognize

messages encoded in other vocabularies than theirs, people have to know in advance the

exact vocabulary or must have access to the metadata repositories describing the

geospatial data (i.e. to have access to data sources’ ontologies) to query the geospatial

data sources. This makes the interaction with geospatial data sources arduous on the

Web. As a result, semantic interoperability with geospatial data sources available on the

Web is still a problem and automatic solutions are more and more needed. Hence, we

propose the notion of geosemantic proximity to resolve this issue.

C.6 Geosemantic Proximity and the Web

As illustrated in Figure C1, agents exchange personal knowledge by communicating

conceptual representations. On the Web, user agents’ concepts and data provider agents’

concepts (as illustrated in Figure C1) must be able to recognize conceptual

representations in the incoming signals and to generate conceptual representations

translating part of their own knowledge. When considering spatial information, an

important aspect is the assessment of geosemantic proximity between a concept and a

conceptual representation. This section presents this new notion of geosemantic

proximity, which takes the context into consideration.

The context is thought of as a meta-concept omnipresent when abstracting phenomena. It

governs the way phenomena are perceived and is typically described by intrinsic

properties (i.e. properties of literal meaning, such as identification, attributes, attribute

values, geometries, temporalities, domain) and extrinsic properties (i.e. properties

providing meaning because of their association with other abstractions, such as semantic,

spatial, and temporal relationships as well as behaviours). Figure C2 illustrates the

Page 232: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

212

relationships that exist between phenomenon, context, abstraction, concept, conceptual

representation, property, intrinsic property, and extrinsic property in a UML class

diagram.

Figure C2: UML Class Diagram Describing Phenomenon,

Abstraction, Context, Properties, and their Relationships

We view the context of a concept K (CK) (just as for the context of a conceptual

representation) as consisting of the union of the intrinsic properties (CK°) and the

extrinsic properties (∂CK) of CK (Equation C1).

CK = CK° ∪ ∂CK (Equation C1)

Where:

CK = Context of concept K

CK° = Intrinsic properties of CK

∂CK = Extrinsic properties of CK

Page 233: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

213

We present the intrinsic properties as the interior of a segment on a semantic axis and the

extrinsic properties as the boundaries of that segment. We use this representation in order

to exploit the topological relationships between the context of a concept and the context

of a conceptual representation.

Geosemantic proximity (GsP) is a context-based approach, which compares intrinsic and

extrinsic properties of a spatial concept to those of a spatial conceptual representation in

order to express their similarity qualitatively. It is used by the translation process tied to

the concept and determines how a given conceptual representation matches this concept.

It consists of the intersection of the concept K’s context and the conceptual representation

L’s context (Equation C2 and Figure C3).

GsP (K,L) = CK ∩ CL (Equation C2)

Where:

CK = Context of concept K

CL = Context of conceptual representation L

GsP (K,L) = Geosemantic proximity between K and L

Figure C3: Intersection between context of K and context of L

We expand GsP into a four-intersection matrix (as used for spatial topological

relationships (Egenhofer, 1993)), which develops the four distinct intersections between

the respective intrinsic and extrinsic properties of the concept K’s context and the

conceptual representation L’s context (Equation C3). Each member of the matrix can be

evaluated empty, denoted Ф or f (false), or non-empty, denoted ¬Ф or t (true).

Page 234: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

214

GsP (K,L) = ∂CK ∩ ∂CL ∂CK ∩ CL°

CK° ∩ ∂CL CK° ∩ CL°

(Equation C3)

(N.B. the notation used in equation 3 is the same as the one used by Egenhofer for spatial

relationships (Egenhofer, 1993))

Hence sixteen (24) different predicates are derived. According to the four-intersection

matrix, they are presented by the intersection values listed row by row. As shown in

Figure C4, the predicates are gathered into four groups:

- the upper subdivision shows the predicates characterized by common intrinsic and

extrinsic properties (GsP_tfft/equal, GsP_ttft/coveredBy, GsP_tftt/covers, and

GsP_tttt);

- the right subdivision shows predicates characterized by common intrinsic

properties and no common extrinsic properties (GsP_ffft, GsP_fftt/contains,

GsP_ftft/inside, and GsP_fttt/overlap);

- the bottom subdivision shows the predicates characterized by no common

intrinsic properties and no common extrinsic properties (GsP_fttf, GsP_ftff,

GsP_fftf, and GsP_ffff/disjoint); and

- the left subdivision shows the predicates characterized by common extrinsic

properties and no common intrinsic properties (GsP_tttf, GsP_tftf, GsP_ttff, and

GsP_tfff/ meet).

C.6.1 Examples

Let us look at some examples to illustrate how the GsP predicates can be used. In these

examples, we assume an agent is associated with a predefined ontology, which describes

a set of concepts using explicit intrinsic and extrinsic properties. This agent compares

concepts of its associated ontology with conceptual representations it receives as part of a

message from another agent in order to recognize these conceptual representations. These

Page 235: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

215

conceptual representations were typically encoded using the ontology of the agent

transmitting the message. So, when the agent’s concept road as described in (BC

Ministry of Environment Lands and Parks (Geographic Data BC), 1992) is compared to

the conceptual representation vegetation as described in (Natural Resources Canada,

1996), road shows no explicit common intrinsic properties nor explicit common

Figure C4: The Sixteen Predicates of Geosemantic Proximity Relationships

Page 236: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

216

extrinsic properties with vegetation . Thus the geosemantic proximity of road with

vegetation is GsP_ffff (or disjoint). (N.B. such assessment makes no assumption with

regard to the spatial relationships that exist between road and vegetation instances.)

However, the comparison of the agent’s concept road defined in (Natural Resources

Canada, 1996) with the conceptual representation street (from the French rue as

defined in (Québec, 2000)) reveals that road has an attribute street and also both have

the same type of geometric representation. As a result they have common intrinsic

properties. Also as part of its description, the conceptual representation street has

relationships with other kinds of roads that are included in the concept road ,

consequently street extrinsic properties are related to road intrinsic properties.

Therefore, we can say that the geosemantic proximity of road with street is GsP_fftt

(or contains). Inversely, if we consider street as the concept and road as the

conceptual representation, the geosemantic proximity of street with road is GsP_ftft

(or inside). As another example, when comparing the agent’s concept hazard to air

navigation with the conceptual representation bridge , both described in (Natural

Resources Canada, 1996), on the one hand one can see that hazard to air navigation

has a specific attribute that includes high bridges. On the other hand, they have one

common geometric representation (line in this case). As such, hazard to air

navigation has common intrinsic properties with bridge . Also, hazard to air

navigation and bridge both have relationships with each other, as such intrinsic

properties of one are related to extrinsic properties of the other. Accordingly, we can say

that the geosemantic proximity of hazard to air navigation with bridge are GsP_fttt

(or overlap).

C.7 Experiments

An experimental prototype was developed recently to validate the GsP approach within

the proposed framework. It was developed in Java and XML, and makes use of geospatial

repositories elaborated with Perceptory (Bédard and Proulx, 2002), a UML-based case

tool that supports geographic information standards of the ISO 19100 series. The

prototype computes automatically the geosemantic proximity of a geoConcept when this

Page 237: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

217

geoConcept is compared to a geoConceptRep. As a result, it simplifies and reduces the

time-consuming task of mapping geoConcepts with geoConceptReps, while minimizing

subjective interpretations and possible mapping errors. Experiments are currently being

conducted using ontologies on road networks and hydrographic networks using product

specifications such as (1) Standards and Specifications for the National Topographic Data

Base (NTDB) of Canada, (2) Specifications for the Digital Baseline Mapping at 1:20000

of Province of British Columbia (DBMBC), (3) Specifications for the Ontario Digital

Topographic Database (ODTDB), (4) Specifications for the “Base de données

topographiques du Québec” (BDTQ), and (5) Specifications for Digital and Hardcopy

Property and Basemap Products of Province of Prince Edward Island (PEIBP).

Preliminary results of the experiment are promising. For example, using geospatial data

repositories that developed with the above product specification, the prototype maps

automatically the geoConcept road from NTDB with the geoConceptRep street from

BDTQ with a geosemantic proximity of GsP_ffft and the geoConcept water

disturbance from NTDB with the geoConceptRep rapids from PEIBP with a

geosemantic proximity of GsP_ffft. Description of the prototype is addressed in detail in

the chapter 5 of this thesis.

C.8 Conclusion

In this annexe, we recognized that it is essential to take the semantics of geospatial data

into consideration to facilitate and improve the search for geospatial data on the Web,

especially in PDA and WAP-based wireless environments where keying queries is

tedious and data transfer is costly. As such, we have presented a conceptual framework

for the semantic interoperability of geospatial data, as a solution, resulting from a bi-

directional communication process (Figure C1) involving a user agent and a data provider

agent. In this framework, geosemantic proximity plays a major role for geospatial data

interoperability. It expresses, qualitatively, the semantic similarity of a geospatial concept

with a geospatial conceptual representation based on comparison of their intrinsic and

extrinsic properties, which is developed using a four-intersection matrix. Examples have

been presented to demonstrate the suitability of such an approach. A prototype was

Page 238: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

218

developed recently and experiments are presently being carried out to assess the strengths

and the weaknesses of the approach.

Although our framework for geospatial data interoperability, the notion of geosemantic

proximity, and the preliminary results of our prototype appear promising to access

geospatial data sources in an interoperable manner, experiments that are presently

conducted need to be finalized, documented, and discussed. Other issues need to be

investigated further, notably the development of ontologies in the context of semantic

interoperability of geospatial databases and the analysis of natural language definitions in

order to extract more intrinsic and extrinsic properties of geospatial concepts and

geospatial conceptual representations.

Acknowledgements

The authors wish to acknowledge the contribution of Natural Resources Canada – Centre

for Topographic Information, which supports the first author for this research; the

GEOIDE Network of Centres of Excellence in geomatics, project DEC#2 (Designing the

Technological Foundations of Spatial Decision making on the World Wide Web); the

Geomatics Information Centre of Prince Edward Island, Transportation and Public

Works, which have provided information about their geospatial data; as well as the

contribution of Mike Major for the English revision.

C.9 References

Barsalou, L W 1999 Perceptual symbol systems. Behavioral and Brain Sciences, 22(4):

577-609

BC Ministry of Environment Lands and Parks (Geographic Data BC) 1992 Digital

Baseline Mapping at 1:20,000. Victoria, Province of British Columbia, BC

Ministry of Environment, Lands and Parks

Bédard, Y 1999 Visual Modelling of Spatial Database Towards Spatial PVL and UML.

Geomatica, 53(2): 169-186

Page 239: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

219

Bédard, Y, and M-J Proulx 2002 Perceptory Web Site. Web Page Document,

http://sirs.scg.ulaval.ca/Perceptory

Bishr, Y 1997 Semantics Aspects of Interoperable GIS. Ph.D. Dissertation, ITC

Publication

Charron, J 1995 Développement d’un processus de sélection des meilleures sources de

données cartographiques pour leur intégration à une base de données à référence

spatiale. Mémoire de maîtrise, Université Laval

Clementini, E, and P Di Felice 1995 A Comparison of Methods for Representing

Topological Relationships. Information Sciences-Applications: An International

Journal, 3(3): 149-178

Egenhofer, M 1993 A Model for Detailed Binary Topological Relationships. Geomatica,

47(3 & 4): 261-273

Egenhofer, M, and R D Franzosa 1991 Point-Set Topological Spatial Relations.

International Journal of Geographic Information Science, 5(2): 161-174

Egenhofer, M, D M Mark, and J R Herring 1994 The 9-Intersection: Formalism and Its

Use for Natural-Language Spatial Predicates. Santa Barbara, CA, University of

California, National Center for Geographic Information and Analysis Technical

Report 94-1

Gibson, J J 1979 The Ecological Approach to Visual Perception. Boston, Houghton

Mifflin

Gruber, T R 1993 A Translation Approach to Portable Ontology Specification. Stanford,

California, Knowledge Systems Laboratory Technical Report KSL 92-71

Guarino, N, and C Welty 2000 A Formal Ontology of Properties. In Proceedings of

Knowledge Engineering and Knowledge Management: Methods, Models and

Tools (12th International Conference, EKAW2000), Juan-les-Pins, France. Berlin,

Springer-Verlag Lecture Notes in Computer Science 1937: 97-112

ISO/TC 211 2003a ISO 19107:2003 Geographic Information - Spatial Schema. Geneva,

Switzerland, International Organization for Standardization

ISO/TC 211 2003b ISO 19115:2003 Geographic Information - Metadata. Geneva,

Switzerland, International Organization for Standardization

Page 240: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

220

Kashyap, V, and A Sheth 1996 Semantic and Schematic Similarities Between Database

Objects: A Context-Based Approach. The VLDB Journal, 5: 276-304

Natural Resources Canada 1996 National Topographic Data Base - Standards and

Specifications. Sherbrooke, Quebec, Centre for Topographic Information –

Sherbrooke

Open GIS Consortium Inc. 1999 Topic 1: Feature Geometry. Wayland, Massachusetts,

Open GIS Consortium Inc.

Open GIS Consortium Inc. 2001 Geography Markup Language (GML) 2.0. Wayland,

Massachusetts, Open GIS Consortium Inc.

Ouksel, A M, and A Sheth 1999 Semantic Interoperability in Global Information

Systems: A Brief Introduction to the Research Area and the Special Section.

Sigmod Record, 28(1): 5-12

Québec 2000 Base de données topographiques du Québec (BDTQ) à l’échelle de

1/20 000 - Normes de production (Version 1.0). Québec, Ministère des

Ressources naturelles, Direction générale de l’information géographique, CD

Document

Schramm, W 1971 How Communication Works. In J A DeVito (ed) Communication:

Concepts and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 12-21

Sheth, A, and V Kashyap 1992 So Far (Schematically) Yet So Near (Semantically). In

Proceedings of IFIP WG2.6 Database Semantics Conference on Interoperable

Database Systems (DS-5)/IFIP Transaction (A-25), Lorne, Victoria, Australia.

Elsevier Science Publishers B.V.: 283-312

Simsion, G C 2001 Data Modeling Essentials - Analysis, Design, and Innovation.

Scottsdale, Arizona, Coriolis

Weiner, N 1950 The Human Use of Human Beings: Cybernetics and Society. Boston,

Houghton and Mifflin

Wisse, P 2000 Metapattern: Context and Time in Information Models. Reading,

Massachusetts, Addison-Wesley

Page 241: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

BIBLIOGRAPHIE

Abel, D J, B C Ooi, K L Tan, and S H Tan 1998 Towards Integrated Geographical

Information Processing. International Journal of Geographic Information

Science, 12(4): 334-371 {§1}

Albrecht, J 1999 Towards interoperable geo-information standards: A comparison of

reference models for geo-spatial information. The Annals of Regional Sciences,

33: 151-169

Allen, J F 1981 An interval-based representation of temporal knowledge. In Proceedings

of International Joint Conference on Artificial Intelligence: 221-226

Allen, J F 1983 Maintaining Knowledge about Temporal Intervals. Communication of the

ACM, 26(11): 832-843 {§3, §4, §6}

Allen, J F 1984 Towards a general theory of action and time. Artificial Intelligence, 23:

123-154

Allen, J F, and P J Hayes 1985 A common-sense theory of time. In Proceedings of 9th

International Joint Conference on Artificial Intelligence: 528-531

Arctur, D, D Hair, G Timson, E P Martin, and R Feagas 1998 Issues and Prospects for the

Next Generation of the Spatial Data Transfer Standard (SDTS). International

Journal of Geographic Information Science, 12(4): 403-425 {§1}

Barsalou, L W 1999 Perceptual symbol systems. Behavioral and Brain Sciences, 22(4):

577-609 {§1, §2, §3, §4, §5, §6, §C}

Bateson, G 2002 Mind and Nature : A Necessary Unity. Cresskill, New Jersey, Hampton

Press

Page 242: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

222

BC Ministry of Environment Lands and Parks (Geographic Data BC) 1992 Digital

Baseline Mapping at 1:20,000. Victoria, Province of British Columbia, BC

Ministry of Environment, Lands and Parks {§1, §3, §4, §5, §6, §C}

Beckwith, R, G A Miller, and R Tengi 1993 Design and Implementation of the WordNet

Lexical Database and Searching Software (Five Papers on Wordnet). Princeton,

Cognitive Science Laboratory, Princeton University

Bédard, Y 1986 A Study of the Nature of Data Using a Communication-based

Conceptual Framework of Land Information. Ph.D. Dissertation, University of

Maine {§2, §3}

Bédard, Y 1998 Analyse et conception de systèmes d’information à référence spatiale.

Notes de cours sur l’interopérabilité, Québec, Département des sciences

géomatiques, Université Laval {§1}

Bédard, Y 1999a Principles of Spatial Database Analysis and Design. In P A Longley,

M F Goodchild, D J Maguire, and D W Rhind (eds) Geographical Information

Systems: Principles, Techniques, Applications and Management. New York, John

Wiley and Sons, Inc.: 413-424 {§2, §3}

Bédard, Y 1999b Visual Modelling of Spatial Database Towards Spatial PVL and UML.

Geomatica, 53(2): 169-186 {§2, §3, §4, §5, §C}

Bédard, Y, and M-J Proulx 2002 Perceptory Web Site. Web Page Document,

http://sirs.scg.ulaval.ca/Perceptory {§1, §4, §5, §6, §C}

Behrens, C, L Shklar, C Basu, N Yeager, and E Au 1999 The Geospatial Interoperability

Problem: Lessons Learned from Building the Geolens Prototype. In M Goodchild,

M Egenhofer, R Fegeas, and C Kottman (eds) Interoperating Geographic

Information Systems. Boston, Massachusetts, Kluwer Academic Publisher: 249-

266

Bennett, D A, G A Wade, and R Sengupta 1999 Geographical Modeling in Heterogenous

Computing Environments. In M Goodchild, M Egenhofer, R Fegeas, and C

Kottman (eds) Interoperating Geographic Information Systems. Boston,

Massachusetts, Kluwer Academic Publisher: 149-164

Benslimane, D 2001 Interopérabilité de SIG : la solution Isis. Revue internationale de

géomatique, 11(1): 7-42 {§3, §4}

Page 243: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

223

Berendt, B 1996 The utility of mental images: How to construct stable mental models in

an unstable image medium. In Proceedings of First European Workshop on

Cognitive Modeling. Berlin, Technische Universität Berlin, Fachbereich

Informatik Report No. 96-39: 97-103

Bergamaschi, S, S Castano, and M Vincini 1999 Semantic Integration of Semistructured

and Structured Data Sources. Sigmod Record, 28(1): 54-60 {§3}

Bettini, C, S Jajodia, and S Wang 2000 Time Granulatities in Databases, Data Mining

and Temporal Reasoning. Berlin, Springer-Verlag

Bishr, Y 1996 A Mechanism for Object Identification and Transfer in a Heterogeneous

Distributed GIS. In Proceedings of 7th International Symposium on Spatial Data

Handling: A.1-A.13

Bishr, Y 1997 Semantics Aspects of Interoperable GIS. Ph.D. Dissertation, ITC

Publication {§1, §3, §5, §C}

Bishr, Y 1998 Overcoming the Semantic and Other Barriers to GIS Interoperability.

International Journal of Geographic Information Science, 12(4): 299-314 {§1}

Bishr, Y 1999a Draft White Paper for the Creation of Semantic SIG. OpenGIS

Consortium Inc. 99-053

Bishr, Y 1999b A Global Unique Persistent Object ID for Geospatial Information

Sharing. In Proceedings of Interoperating Geographic Information Systems

(Interop '99). Berlin, Springer-Verlag Lecture Notes in Computer Science 1580:

55-64

Bishr, Y, H Pundt, W Kuhn, and M Radwan 1999a Probing the Concept of Information

Communities-A First Step Toward Semantic Interoperability. In M Goodchild,

M Egenhofer, R Fegeas, and C Kottman (eds) Interoperating Geographic

Information Systems. Boston, Massachusetts, Kluwer Academic Publisher: 55-69

Bishr, Y, H Pundt, and C Ruther 1999b Preceeding on the Road of Semantic

Interoperability - Design of a Semantic Mapper Based on a Case Study from

Transportation. In Proceedings of Interoperating Geographic Information

Systems (Interop '99). Berlin, Springer-Verlag Lecture Notes in Computer

Science 1580: 203-215

Page 244: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

224

Bittner, T, and G Edwards 2001 Toward an Ontology for Geomatics. Geomatica, 55(4):

475-490 {§3, §5}

Blake, R H, and E O Haroldsen 1975 A Taxonomy of Concepts in Communication. New

York, Hastings House Publishers {§3}

Bolduc, P 1994 Projet de levés intégrés : Némésis. Québec, Département des sciences

géomatiques, Université Laval

Borgo, S, N Guarino, C Masolo, and G Vetere 1997 Using a Large Linguistic Ontology

for Internet-Based Retrieval of Object-Oriented Components. In Proceedings of

9th International Conference on Software Engineering and Knowledge

Engineering (SEKE 97): 528-534

Brodeur, J 2001 Interopérabilité des données géospatiales : Élaboration du concept de

proximité sémantique, spatiale et temporelle. Québec, Département des sciences

géomatiques, Université Laval {§1}

Brodeur, J, and Y Bédard 2001 Geosemantic Proximity, a Component of Spatial Data

Interoperability. In Proceedings of International Workshop on "Semantics in

Enterprise Integration" (OOPSLA 2001): 6 {§4, §5}

Brodeur, J, and Y Bédard 2002 Extending Geospatial Repositories with Geosemantic

Proximity Functionalities to Facilitate the Interoperability of Geospatial Data. In

Proceedings of ISPRS, SDH2002 and CIG Joint International Symposium on

Geospatial Theory, Processing and Application: 6 {§5}

Brodeur, J, Y Bédard, G Edwards, and B Moulin 2003a Revisiting the Concept of

Geospatial Data Interoperability within the Scope of a Human Communication

Process. Transactions in GIS, 7(2): 243-265 {§4, §5}

Brodeur, J, Y Bédard, and B Moulin 2002a A Geosemantic Proximity -Based Prototype

for Interoperability of Geospatial Data. (Manuscrit)

Brodeur, J, Y Bédard, and B Moulin 2003b Geosemantic Proximity to Improve

Geospatial Information Discovery in a Wireless Environment. Geomatica, 57(1):

341-350

Brodeur, J, Y Bédard, B Moulin, and G Edwards 2001 Geosemantics Proximity and Data

Fusion. Présentation lors de l’atelier GeoSpatial information Revision and Fusion

Page 245: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

225

Brodeur, J, Y Bédard, B Moulin, and G Edwards 2002b Geosemantic Proximity for

Geospatial Data Interoperability. (Manuscrit)

Brodeur, J, Y Bédard, and M J Proulx 2000 Modelling Geospatial Application Databases

using UML-based Repositories Aligned with International Standards in

Geomatics. In Proceedings of Eighth ACM Symposium on Advances in

Geographic Information Systems (ACMGIS) ACM Press: 39-46 {§2, §3, §4, §5}

Brodeur, J, and F Massé 2001 Standardization in Geomatics in Canada and in ISO/TC

211. Geomatica, 55(1): 91-106

Brodie, M L 1992 The Promise of Distributed Computing and the Challenges of Legacy

Information Systems. In Proceedings of IFIP WG2.6 Database Semantics

Conference on Interoperable Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 1-30

Brunig, M, A B Cremers, H J Götze, S Schmidt, S Shumilov, and A Siehl 1999 First

Steps Towards an Interoperable GIS - an Example from Southern Lower Saxony.

Physics and Chemistry of the Earth Part A - Solid Earth and Geodesy, 24(3): 179-

189

Calvo Garzon, F 2000 State space semantics and conceptual similarity: Reply to

Churchlands. Philosophical Psychology, 13(1): 77-95

Câmara, G, R Thomé, U Freitas, and A Monteiro 1999 Interoperability in Practice:

Problems in Semantic Conversion from Current Technology to OpenGIS. In

Proceedings of Interoperating Geographic Information Systems (Interop '99).

Berlin, Springer-Verlag Lecture Notes in Computer Science 1580: 129-138

Campbell, J 1982 Grammatical Man: Information, Entropy, Language, and Life. New

York, Simon and Schuster {§1, §2, §3}

Canadian Council on Surveying and Mapping 1984 National Standards for the Exchange

of Digital Topographic Data: Topographic Codes and Dictionary of Topographic

Features. Ottawa, Topographical Survey Division, Surveys and Mapping Branch,

Energy, Mines and Resources Canada {§2, §3}

Casati, R, B Smith, and A C Varzi 1998 Ontological Tools for Geographic

Representation. In N Guarino (ed) Formal Ontology in Information Systems.

Amsterdam, IOS Press: 77-85 {§2, §3, §4}

Page 246: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

226

CCOG - Working Group on “Base Data Quality Issue” 2001 A New Vision for Quality

Base Geographic Information in Canada – “GeoBase”. {§5}

Charron, J 1995 Développement d’un processus de sélection des meilleures sources de

données cartographiques pour leur intégration à une base de données à référence

spatiale. Mémoire de maîtrise, Université Laval {§1, §2, §3, §4, §5, §C}

Cherry, C 1978 On Human Communication: a Review, a Survey, and a Criticism.

Cambridge, Massachusetts, The MIT Press {§1, §2, §3}

Clément, G, C Larouche, P Morin, and D Gouin 1999 Interoperating Geographic

Information Systems Using the Open Geospatial Datastore Interface (OGDI). In

M Goodchild, M Egenhofer, R Fegeas, and C Kottman (eds) Interoperating

Geographic Information Systems. Boston, Massachusetts, Kluwer Academic

Publisher: 283-300

Clementini, E, and P Di Felice 1995 A Comparison of Methods for Representing

Topological Relationships. Information Sciences-Applications: An International

Journal, 3(3): 149-178 {§4, §C}

Clementini, E, and P Di Felice 1996 A Model for Representing Topological Relationship

Between Complex Geometric Features in Spatial Databases. Information

Sciences, 90(1-4): 121-136 {§3, §4}

Cohen, P 1982 Model of Cognition: Overview. In P R Cohen, and E A Feigenbaum (eds)

The Handbook of Artificial Intelligence. HeirisTech Press: 1-10 {§3}

Collongues, A, J Hugues, and B Laroche 1987 Merise - Méthode de conception. Paris,

Bordas {§2, §3}

Coppock, J T, and D W Rhind 1991 The History of GIS. In D J Maguire, M F Goodchild,

and D W Rhind (eds) Geographical Information Systems. New York, Longman

Scientific and Technical: 21-43 {§1}

Costanza, P 2001 Transmigration of Object Identity: The programming Language

GILGUL. In Proceedings of Conference on Object-Oriented Programming,

Systems, Languages and Applications (OOPSLA 2001), Doctoral Symposium, 1-

58113-441-X Association for Computing and Machinery Inc. Companion: 5-6

Page 247: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

227

Daconta, M C, L J Obrst, and K T Smith 2003 The Semantic Web: A Guide to the Future

of XML, Web Services, and Knowledge Management. Indianapolis, Indiana, Wiley

Publishing, Inc. {§2}

Darnell, D K 1971 Information Theorie. In J A DeVito (ed) Communication: Concepts

and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 37-45 {§1, §2,

§3}

Denes, P B, and E N Pinson 1971 The Speech Chain. In J A DeVito (ed)

Communication: Concepts and Processes. Englewood Cliffs, New Jersey,

Prentice-Hall Inc: 3-11 {§1, §3}

Denis, M 1994 Image et Cognition. Paris, Presses Universitaires de France {§3}

Devogele, T, C Parent, and S Spaccapietra 1998 On Spatial Database Integration.

International Journal of Geographic Information Science, 12(4): 335-352

Dong, G, and K Ramamohanarao 1992 Representation and Translation of Queries in

Heterogenous Databases with Schematic Discrepencies. In Proceedings of IFIP

WG2.6 Database Semantics Conference on Interoperable Database Systems (DS-

5)/IFIP Transaction (A-25) Elsevier Science Publishers B.V.: 177-189

Doyle, A, D Dietrick, J Ebbinghaus, and P Ladstatter 1999 Building a Prototype

OpenGIS Demonstration from Interoperable GIS Components. In Proceedings of

Interoperating Geographic Information Systems (Interop '99). Berlin, Springer-

Verlag Lecture Notes in Computer Science 1580: 139-149

Eco, U 1988a Le signe. Bruxelles, Éditions Labor {§2}

Eco, U 1988b Sémiotique et philosophie du langage. France, Presses Universitaires de

France {§2}

Edmond, D, and M P Papazoglou 1998 Reflexion Is the Essence of Cooperation. In M P

Papazoglou, and G Schlageter (eds) Cooperative Information Systems-Trends and

Directions. San Diego, CA, Academic Press: 233-260

Egenhofer, M 1993 A Model for Detailed Binary Topological Relationships. Geomatica,

47(3 & 4): 261-273 {§1, §3, §4, §6, §C}

Egenhofer, M, and R D Franzosa 1991 Point-Set Topological Spatial Relations.

International Journal of Geographic Information Science, 5(2): 161-174 {§1, §4,

§6, §C}

Page 248: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

228

Egenhofer, M, D M Mark, and J R Herring 1994a The 9-Intersection: Formalism and Its

Use for Natural-Language Spatial Predicates. Santa Barbara, CA, University of

California, National Center for Geographic Information and Analysis Technical

Report 94-1 {§3, §4, §C}

Egenhofer, M, and M A Rodriguez 1999 Relation Algebras over Containers and

Surfaces: An Ontological Study of a Room Space. Journal of Spatial Cognition

and Computation, 1: 23

Egenhofer, M, and J Sharma 1992 Topological Consistency. In Proceedings of 5th

International Symposium on Spatial Data Handling IGU Commission of GIS:

335-343 {§4}

Egenhofer, M J 1997 Spatial Relations: Models and Inferences. In Proceedings of

Tutorial 2 - 5th International Symposium on Spatial Databases (SSD'97): 83 {§4}

Egenhofer, M J 1999 Introduction: Theory and Concepts. In M Goodchild, M Egenhofer,

R Fegeas, and C Kottman (eds) Interoperating Geographic Information Systems.

Boston, Massachusetts, Kluwer Academic Publisher: 1-4 {§3, §5}

Egenhofer, M J, E Clementini, and P Di Felice 1994b Topological relations between

regions with holes. International Journal of Geographic Information Science,

8(2): 129-142 {§4}

Egenhofer, M J, and R D Franzosa 1995 On the equivalence of topological relations.

International Journal of Geographic Information Science, 9(2): 133-152

Egenhofer, M J, J Glasgow, O Günther, J R Herring, and D J Peuquet 1999 Progress in

Computational Methods for Representing Geographical Concept. International

Journal of Geographic Information Science, 13(8): 775-796 {§1}

Egenhofer, M J, and D M Mark 1995 Modelling conceptual neighbourhoods of

topological line-region relations. International Journal of Geographic

Information Science, 9(5): 555-565 {§4}

Ekenberg, L, and P Johannesson 1995 Conflicfreeness as a Basis for Schema Integration.

In Proceedings of CISMOD: 1-13

Evans, J D 1999 Organizational and Technological Interoperability for Geographic

Information Infrastructures. In M Goodchild, M Egenhofer, R Fegeas, and

Page 249: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

229

C Kottman (eds) Interoperating Geographic Information Systems. Boston,

Massachusetts, Kluwer Academic Publisher: 401-414

Fellbaum, C 1993 English Verbs as a Semantic Net. Princeton, Cognitive Science

Laboratory, Princeton University

Fellbaum, C, D Gross, and K Miller 1993 Adjectives in WordNet. Princeton, Cognitive

Science Laboratory, Princeton University

FGDC 2002 NSDI. USGS, Web Page Document, http://www.fgdc.gov/nsdi/nsdi.html

{§1, §5}

Fodor, F F, and Z W Pylyshyn unknown Conectionism and Cognitive Architecture: A

Critical Analysis.Document, http://ruccs.rutgers.edu/pub/papers/jaf.pdf

Fonseca, F, and C A Davis, Jr. 1999 Using the Internet to Access Geographic

Information: An Open GIS Prototype. In M Goodchild, M Egenhofer, R Fegeas,

and C Kottman (eds) Interoperating Geographic Information Systems. Boston,

Massachusetts, Kluwer Academic Publisher: 313-324

Fonseca, F, and M Egenhofer 1999 Ontology-Driven Geographic Information Systems.

In Proceedings of 7th International Symposium on Advances in Geographic

Information Systems (ACMGIS) ACM Press: 14-19

Fonseca, F, M Egenhofer, D Clodoveu, and G Câmara in press Semantic Granularity in

Ontology-Driven Geographic Information Systems. Annals of Mathematics and

Artificial Intelligence

Fonseca, F T, M Egenhofer, A D Clodoveu, Jr., and K A V Borges 1999 Ontologies and

Knowledge Sharing in Urban GIS. Computer Environment and Urban Systems (in

press): 19

Forte, E, F Haenni, K Warkentyne, E Duval, K Cardinaels, E Varvaet, K Hendrikx, M W

Forte, and F Simillion 1999 Semantic and Pedagogic Interoperability Mechanisms

in the ARIADNE Educational Repository. Sigmod Record, 28(1): 6

Fowler, J, B Perry, M Nodine, and B Bargmeyer 1999 Agent-Based Semantic

Interoperability in InfoSleuth. Sigmod Record, 28(1): 8 {§3, §5}

Frank, A U 2000 Spatial Communication with Maps: Defining the Correctness of Maps

Using a Multi-Agent Simulation. In C Freksa, W Brauer, C Habel, and K F

Wender (eds) Spatial Cognition II : Integrating Abstract Theories, Empirical

Page 250: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

230

Studies, Formal Methods, and Practical Applications (International Workshop on

Maps and Diagrammatical Representations of the Environment, Hamburg,

August 1999). Berlin Heidelberg, Springer-Verlag: 80-99 {§4}

Frank, A U 2001 Tiers of ontology and Consistency Constraints in Geographic

Information Systems. International Journal of Geographic Information Science,

15(7): 667-678 {§3}

Frank, A U, and W Kuhn 1999 A Specification Language for Interoperable GIS. In

M Goodchild, M Egenhofer, R Fegeas, and C Kottman (eds) Interoperating

Geographic Information Systems. Boston, Massachusetts, Kluwer Academic

Publisher: 123-132

Frankhauser, P, M Kracker, and E Neuhold 1991 Semantic vs. Structural Resemblance of

Classes. SIGMOD Record, 20(4): 59-63 {§1, §2, §3, §4}

Frankhauser, P, and E J Neuhold 1992 Knowledge Based Integration of Heterogenous

Databases. In Proceedings of IFIP WG2.6 Database Semantics Conference on

Interoperable Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 155-175 {§1, §2, §3}

Fuller, G W 1999 A Vision for a Global Geospatial Information Network (GGIN).

Photogrammetric Engineering & Remote Sensing, 65(5): 524-538 {§1}

Gahegan, M 1995 Proximity Operators for Qualitative Spatial Reasoning. In Proceedings

of Spatial Information Theory: a Theoretical Basis for GIS, International

Conference COSIT'95, 3-540-60392-1. Berlin, Springer-Verlag Lecture Notes in

Computer Science 988: 31-44

Gahegan, M N 1999 Characterizing the Semantic Content of Geographic Data, Models,

and Systems. In M Goodchild, M Egenhofer, R Fegeas, and C Kottman (eds)

Interoperating Geographic Information Systems. Boston, Massachusetts, Kluwer

Academic Publisher: 71-83

Gal, A 1999 Semantic Interoperability in Information Services: Experience with

CoopWARE. Sigmod Record, 28(1): 8 {§2}

Geller, J, Y Perl, and E J Neuhold 1991 Structure and Semantic in OODB Class

Specifications. SIGMOD Record, 20(4): 40-43

GeoBase 2001 National GeoBase Definition. {§5}

Page 251: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

231

GeoConnections 2002a Canadian Geospatial Data Infrastructure (CGDI) architecture.

Electronic Document, http://www.geoconnections.org/architecture/index_e.html

{§1, §5}

GeoConnections 2002b Geoconnections. Web Page Document, http://geoconnexions.org

GeoConnections Framework Data Node CGDI Framework Data Definition. Electronic

Document,

http://www.geoconnections.org/english/rfp/announcements/moreinfo/RFP_SD_de

finition.pdf

Getta, J R 1992 Translation of Extended Entity-Relationship Database Model into

Object-Oriented Database Model. In Proceedings of IFIP WG2.6 Database

Semantics Conference on Interoperable Database Systems (DS-5)/IFIP

Transaction (A-25) Elsevier Science Publishers B.V.: 87-100

Gibson, J J 1979 The Ecological Approach to Visual Perception. Boston, Houghton

Mifflin {§3, §C}

Goodchild, M 1995 Attribute Accuracy. In S C Guptill, and J L Morrison (eds) Element

of Spatial Data Quality. Pergamon: 59-79 {§1}

Green, P, and M Rosemann 2000 Integrated Process Modeling: An Ontological

Evaluation. Information Systems, 25(2): 73-87

Gruber, T R 1993a Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. Palo Alto, California, Knowledge Systems Laboratory Technical Report

KSL 93-04 {§3, §5}

Gruber, T R 1993b A Translation Approach to Portable Ontology Specification. Stanford,

California, Knowledge Systems Laboratory Technical Report KSL 92-71 {§1, §2,

§3, §C}

Guarino, N 1995 Formal Ontology, Conceptual Analysis and Knowledge Representation.

International Journal of Human and Computer Studies, 43(5&6): 625-640 {§4}

Guarino, N 1997 Semantic Matching: Formal Ontological Distinctions for Information

Organization, Extraction, and Integration. In M T Pazienza (ed) Information

Extraction: A Multidisciplinary Approach to an Emerging Information

Technology. Berlin, Springer-Verlag: 139-170

Page 252: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

232

Guarino, N 1998 Formal Ontology and Information Systems. In Proceedings of Formal

Ontology in Information Systems (FOIS '98). Amsterdam, IOS Press: 3-15 {§1,

§2, §3, §5}

Guarino, N 1999 The Role of Identity Conditions in Ontology Design. In Proceedings of

Spatial Information Theory - Cognitive and Computational Foundations of

Geographic Information Science, International Conference COSIT'99, 3-540-

66365-7. Berlin, Springer-Verlag Lecture Notes in Computer Science 1661: 221-

234 {§3, §4}

Guarino, N, and C Welty 2000a A Formal Ontology of Properties. In Proceedings of

Knowledge Engineering and Knowledge Management: Methods, Models and

Tools (12th International Conference, EKAW2000), 3-540-41119-4. Berlin,

Springer-Verlag Lecture Notes in Computer Science 1937: 97-112 {§3, §4, §5,

§C}

Guarino, N, and C Welty 2000b Identity, Unity, and Individuation: Towards a Formal

Toolkit for Ontological Analysis. In Proceedings of ECAI-2000: The European

Conference on Artificial Intelligence. Amsterdam, IOS Press: 219-223 {§3, §4}

Guarino, N, and C Welty 2000c Ontological Analysis of Taxonomic Relationships. In

A Laender, and V Storey (eds) 19th International Conference on Conceptual

Modeling (ER-2000). Salt Lake City, Utah, Berlin, Springer-Verlag: 210-224

Guarino, N, and C Welty 2000d Towards a methodology for ontology based model

engineering. In Proceedings of ECOOP-2000 Workshop on Model Engineering

Guha, R V 1990 Micro-theories and contexts in Cyc. I. Basic issues. Austin, Texas,

Micro-electronics and Computer Technology Corporation Technical Report ACT-

CYC-129-90 {§2, §3}

Güting, R H 1994 An Introduction to Spatial Database Systems. VLDB Journal, 3(4):

357-399

Hakimpour, F, and S Timpf 2001 Using Ontologies for Resolution of Semantic

Heterogeneity in GIS. In Proceedings of 4th Agile Conference on Geographic

Information Science

Han, J, R T Ng, Y Fu, and S K Dao 1998 Dealing with Semantic Heterogeneity by

Generalization-Based Data Mining Techniques. In M P Papazoglou, and

Page 253: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

233

G Schlageter (eds) Cooperative Information Systems-Trends and Directions. San

Diego, CA, Academic Press: 207-231

Härder, T, S Günter, and J Thomas 1999 The Intrinsic Problems of Structural

Heterogeneity and an Approach to Their Solution. The VLDB Journal, 8: 25-43

Harrison, R P 1971 Other Ways of Packaging Information. In J A DeVito (ed)

Communication: Concepts and Processes. Englewood Cliffs, New Jersey,

Prentice-Hall Inc: 88-103 {§2}

Härtig, M, and K R Dittrich 1992 An Object-Oriented Integration Framework for

Building Heterogenous Database Systems. In Proceedings of IFIP WG2.6

Database Semantics Conference on Interoperable Database Systems (DS-5)/IFIP

Transaction (A-25) Elsevier Science Publishers B.V.: 33-53

Harvey, F 1997 Improving Multi-Purpose GIS Design: Participative Design. In

Proceedings of Spatial Information Theory: A Theoretical Basis for GIS,

International Conference COSIT'97, ISBN 3-540-63623-4. Berlin, Springer-

Verlag Lecture Notes in Computer Science 1329: 313-328 {§3}

Harvey, F J 1999 Designing for Interoperability: Overcoming Semantic Differences. In

M Goodchild, M Egenhofer, R Fegeas, and C Kottman (eds) Interoperating

Geographic Information Systems. Boston, Massachusetts, Kluwer Academic

Publisher: 85-97

Harvey, F J 2002 Semantic Interoperability and Citizen/Government Interaction. In

Proceedings of Spatial Data Handling 2002: Joint International Symposium on

Geospatial Theory, Processing, and Applications: 13 {§5}

Harvey, F J, W Kuhn, H Pundt, Y Bishr, and C Riedemann 1999 Semantic

Interoperability: A Central Issue for Sharing Geographic Information. The Annals

of Regional Science, 33(2): 213-233 {§4}

Hernandez, D, E Clementini, and P Di Felice 1995 Qualitative Distances. In Proceedings

of Spatial Information Theory: a Theoretical Basis for GIS, International

Conference COSIT'95, 3-540-60392-1. Berlin, Springer-Verlag Lecture Notes in

Computer Science 988: 45-57

Herring, J R 1999 The OpenGIS Data Model. Photogrammetric Engineering & Remote

Sensing, 65(5): 585-588 {§1}

Page 254: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

234

Hofmann, C 1999 A Multi Tier Framework for Accessing Distributed Heterogenous

Spatial Data in Federation Based EIS. In Proceedings of 7th International

Symposium on Advances in geographic Information Systems (ACMGIS) ACM

Press: 140-145

Hsiao, D K 1992a Federated Databases and Systems: Part I - A Tutorial on Their Data

Sharing. VLDB Journal, 1(1): 127-179

Hsiao, D K 1992b Federated Databases and Systems: Part II - A Tutorial on Their

Resource Consolidation. VLDB Journal, 1(2): 285-310

ISO/TC 211 1999 CD.2 19102 Geographic Information - Overview (N723). Geneva,

Switzerland, International Organization for Standardization

ISO/TC 211 2001a DTS 19103 Geographic Information - Conceptual Schema Language

(N1082). Geneva, Switzerland, International Organization for Standardization

{§5}

ISO/TC 211 2001c ISO/DIS 19110 Geographic Information - Feature Cataloguing

Methodology. Geneva, Switzerland, International Organization for

Standardization {§3, §5}

ISO/TC 211 2001d ISO/PDTS 19103 Geographic Information - Conceptual Schema

Language. Geneva, Switzerland, International Organization for Standardization

{§5}

ISO/TC 211 2002a Geographic information/Geomatics. Web Page Document,

http://www.statkart.no/isotc211/ {§1}

ISO/TC 211 2002b ISO 19101:2002 Geographic Information - Reference Model.

Geneva, Switzerland, International Organization for Standardization

ISO/TC 211 2002c ISO 19108:2002 Geographic Information - Temporal Schema.

Geneva, Switzerland, International Organization for Standardization {§4}

ISO/TC 211 2002d ISO 19111:2002 Geographic Information - Spatial Referencing by

Coordinates. Geneva, Switzerland, International Organization for Standardization

ISO/TC 211 2002e ISO/DIS 19109 Geographic Information - Rules for Application

Schema. Geneva, Switzerland, International Organization for Standardization {§3,

§4}

Page 255: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

235

ISO/TC 211 2002f ISO/DIS 19119 Geographic Information - Services. Geneva,

Switzerland, International Organization for Standardization

ISO/TC 211 2003a ISO 19107:2003 Geographic Information - Spatial Schema. Geneva,

Switzerland, International Organization for Standardization {§2, §4, §5, §C}

ISO/TC 211 2003b ISO 19112:2003 Geographic Information - Spatial Referencing by

Geographic Identifier. Geneva, Switzerland, International Organization for

Standardization

ISO/TC 211 2003c ISO 19115:2003 Geographic Information - Metadata. Geneva,

Switzerland, International Organization for Standardization {§4, §5, §C}

ISO/TC 211 2003d ISO/DIS 19118 Geographic Information - Encoding. Geneva,

Switzerland, International Organization for Standardization {§4}

ISO/TC 211 2003e WD 19136 Geographic Information - Geography markup language.

Geneva, Switzerland, International Organization for Standardization {§2}

Johnson, W 1971 The Fateful Process of Mr. A Talking to Mr. B. In J A DeVito (ed)

Communication: Concepts and Processes. Englewood Cliffs, New Jersey,

Prentice-Hall Inc: 22-35

Jones, M 1991 Brave New World: A Vision of IRDS. Database Programming and

Design: 43-49 {§5}

Kahng, J, and D McLeod 1998 Dynamic Classificational Ontologies: Mediation of

Information Sharing in Cooperative Federated Database Systems, Context and

Ontologies. In M P Papazoglou, and G Schlageter (eds) Cooperative Information

Systems-Trends and Directions. San Diego, CA, Academic Press: 179-203 {§2,

§3}

Kashyap, V, and A Sheth 1996 Semantic and Schematic Similarities Between Database

Objects: A Context-Based Approach. The VLDB Journal, 5: 276-304 {§1, §2, §3,

§4, §5, §C}

Kashyap, V, and A Sheth 1998 Semantic Heterogeneity in Global Information Systems:

the Role of Metadata, Context and Ontologies. In M P Papazoglou, and

G Schlageter (eds) Cooperative Information Systems-Trends and Directions. San

Diego, CA, Academic Press: 139-178 {§1, §2, §3, §4}

Page 256: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

236

Kaski, S 1997 Data Exploration Using Self-Organizing Maps. Ph. D. Thesis, Helsinski

University of Technology

Kemp, K K, and A Vckovsky 1998 Towards an Ontology of Fields. In Proceedings of

3rd International Conference on GeoComputation

Kettani, D 1999 Conception et implantation d’un modèle spatial qualitatif qui s’inspire

du raisonnement spatial de l’être humain. Thèse de doctorat (Ph.D.), Université

Laval

Kettani, D, and B Moulin 1999 A spatial model based on the notions of spatial

conceptual map and of object’s influence areas. In Proceedings of Spatial

Information Theory, Cognitive and Computational Foundations of Geographic

Information Systems, International Conference COSIT'99. Berlin, Springer-

Verlag Lecture Notes in Computer Science 1661: 401-415 {§3}

Kim, T J 1999 Metadata for geo-spatial data sharing: A comparative analysis. The Annals

of Regional Sciences, 33: 171-181

Kosslyn, S M 1980 Image in Mind. Cambridge, Massachusetts, Harvard University Press

{§1, §2, §3}

Kosslyn, S M 1981 The Medium and the Message in Mental Imagery: A Theory.

Psychological Review, 88(1): 46-66 {§2}

Kottman, C 1999 The Open GIS Consortium and Progress Toward Interoperability in

GIS. In M Goodchild, M Egenhofer, R Fegeas, and C Kottman (eds)

Interoperating Geographic Information Systems. Boston, Massachusetts, Kluwer

Academic Publisher: 39-54 {§3, §4, §5}

Krech, D, and R S Crutchfield 1971 Perceiving the World. In W Schramm, and D F

Robert (eds) The Process and Effects of Mass Communication. Champaign-

Urbana, IL, University of Illinois Press: 235-264 {§3}

Kuhn, W 2001 Ontologies in support of activities in geographical space. International

Journal of Geographic Information Science, 15(7): 613-631

Kuhn, W 2002 Modeling The Semantics of Geographic Categories through Conceptual

Integration. In Proceedings of Geographic Information Science, Second

International Conference, GIScience 2002, 3-540-44253-7. Berlin, Springer-

Verlag Lecture Notes in Computer Science 2478: 108-118

Page 257: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

237

Kuipers, B 2000 The Spatial Semantic Hierarchy. Artificial Intelligence, 119: 191-233

Laakso, A, and G Cottrell 2000 Content and Cluster Analysis: Assessing

Representational Similarity in Neural Systems. Physical Psychology, 13(1): 47-76

{§2}

Lakoff, G 1987 Women, Fire, and Dangerous Things - What Categories Reveal about the

Mind. Chicago, The University of Chicago Press {§1}

Lasswell, H D 1971 The Structure and Function of Communication in Society. In W

Schramm, and D F Robert (eds) The Process and Effects of Mass Communication.

Champaign-Urbana, IL, University of Illinois Press: 83-99

Laurini, R 1998 Spatial Multi-Database Topological Continuity and Indexing: a Step

Towards Seamless GIS Data Interoperability. International Journal of

Geographic Information Science, 12(4): 373-402 {§1, §3, §4, §5}

Lehmann, F 1992 Semantic Networks. Computers and Mathematics with Applications,

23(2-5): 50 {§1, §2, §3, §4, §5}

Lippmann, W 1971 The World Outside and the Pictures in Our Heads. In W Schramm,

and D F Robert (eds) The Process and Effects of Mass Communication.

Champaign-Urbana, IL, University of Illinois Press: 265-286 {§3}

Locke, J 1689 An Essay Concerning Human Understanding. Web Page Document

Document, http://humanum.arts.cuhk.edu.hk/Philosophy/Locke/echu/ {§4}

Logie, R H, and M Denis (eds) 1991 Mental images in human cognition. Amsterdam,

North-Holland {§3}

Mackay, D S 1999 Semantic Integration of Environmental Models for Application to

Global Information Systems and Decision Making. Sigmod Record, 28(1): 7 {§2}

Marco, D 2000 Building and Managing the Meta Data Repository. Wiley {§5}

Mark, D M, and M Egenhofer 1994 Modeling Spatial Relations Between Lines and

Regions: Combining Formal Mathematical Models and Human Subjects Testing.

In M Egenhofer, D M Mark, and J R Herring (eds) The 9-Intersection: Formalism

and Its Use for Natural-Language Spatial Predicates (Technical Report).

NCGIA: 29-83 {§4}

Page 258: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

238

Mark, D M, C Freksa, S C Hirtle, R Lloyd, and B Tversky 1999 Cognitive Models of

Geographical Space. International Journal of Geographic Information Science,

13(8): 747-774

Martel, C 1999 Développement d’un cadre théorique pour la gestion des représentations

multiples dans la base de données spatiales. Mémoire de maîtrise, Université

Laval

McGranagham, M 1997 Spatial data models in current commercial RDBMS. In

Proceedings of Auto-Carto 13 ACSM/ASPRS 5: 136-144

McKee, L 1999 The Impact of Interoperable Geoprocessing. Photogrammetric

Engineering & Remote Sensing, 65(5): 565-566 {§1}

McKee, L, and K Buehler (eds) 1998 The OpenGIS Guide. Wayland, Massachusetts,

OpenGIS Consortium Inc. {§1, §3, §4}

Meijler, T D, and O Nierstrasz 1998 Beyond Objects: Components. In M P Papazoglou,

and G Schlageter (eds) Cooperative Information Systems-Trends and Directions.

San Diego, CA, Academic Press: 49-78

Mennis, J L, D J Peuquet, and L Qian 2000 A Conceptual Framework for Incorporating

Cognitive Principles into Geographical Database Representation. International

Journal of Geographic Information Science, 14(6): 501-520

Merriam-Webster Inc. 1994 Merriam-Webster’s Collegiate Dictionary - Electronic

Edition - Version 1.2. CD Document {§4}

Meta Data Coalition 1999 Knowledge Management Model: Knowledge Description. {§2,

§4}

Microsoft Corporation and Liris Interactive 1996 Bibliorom Larousse, Version 1.0.

Microsoft Corporation and Liris Interactive, CD Document {§4}

Miller, G A 1993 Nouns in WordNet: A Lexical Inheritance System. Princeton,

Cognitive Science Laboratory, Princeton University {§4}

Miller, G A, R Beckwith, C Fellbaum, D Gross, and K Miller 1993 Introduction to

WordNet: An On-line Lexical Database. Princeton, Cognitive Science

Laboratory, Princeton University

Page 259: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

239

Milstead, J L 1998 NISO Z39.50: Standard for Structure and Organization of Information

Retrieval Thesauri. In Proceedings of Taxonomic Authority Files Workshop: 9

{§2, §4}

Moriarty, T 1990 Are You Ready for a Repository? Database Programming and Design:

62-71 {§5}

Navarro, D J, and M D Lee 2001 Clustering Using the Contrast Model. In Proceedings of

Twenty-Third Annual Conference of the Cognitive Science Society, 0-8058-4152-

0 Lawrence Erlbaum Associates, Publishers: 684-689

Navarro, D J, and M D Lee 2002 Commonalities and Distinctions in Featural Stimulus

Representations. In Proceedings of Twenty-Fourth Annual Conference of the

Cognitive Science Society: 685-690

Nebert, D 1999 Interoperable Spatial Data Catalogs. Photogrammetric Engineering &

Remote Sensing, 65(5): 573-575 {§1}

Nouveau-Brunswick 1991 Normes concernant l’information sur les terres et les eaux

pour la province du Nouveau-Brunswick. Corporation d’information

géographique

Nouveau-Brunswick 2000 Guide d’utilisation de la Base de données topographiques

numériques (BDTN) du Nouveau-Brunswick. Services Nouveau-Brunswick {§1,

§3, §4}

Nwana, H S 1996 Software Agents: An Overview. The Knowledge Engineering Review,

11(2): 205-244 {§4, §5}

Nwana, H S, and M Wooldridge 1996 Software Agent Technologies. BT Technology

Journal, 14(4): 68-78 {§5}

Object Management Group 2001 OMG Unified Modeling Language Specification

(version 1.4). Needham MA, OMG {§4}

OBM 1996 Ontario Digital Topographic Database - 1:10,000, 1:20,000 - A Guide for

User. Toronto, Ontario, Ministry of Natural Resources {§1, §3, §4, §5, §6}

Open GIS Consortium Inc. 1999a OpenGIS Simple Features Specification for SQL.

Wayland, Massachusetts, OpenGIS Consortium Inc. {§4, §5}

Open GIS Consortium Inc. 1999b Topic 0: Abstract Specification Overview. Wayland,

Massachusetts, Open GIS Consortium Inc.

Page 260: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

240

Open GIS Consortium Inc. 1999c Topic 1: Feature Geometry. Wayland, Massachusetts,

Open GIS Consortium Inc. {§4, §C}

Open GIS Consortium Inc. 1999d Topic 5: Features. Wayland, Massachusetts, Open GIS

Consortium Inc.

Open GIS Consortium Inc. 1999e Topic 8: Relationship Between Features. Wayland,

Massachusetts, Open GIS Consortium Inc.

Open GIS Consortium Inc. 1999f Topic 10: Feature Collections. Wayland,

Massachusetts, Open GIS Consortium Inc.

Open GIS Consortium Inc. 1999g Topic 11: Metadata. Wayland, Massachusetts, Open

GIS Consortium Inc.

Open GIS Consortium Inc. 1999h Topic 14: Semantic and Information Communities.

Wayland, Massachusetts, Open GIS Consortium Inc.

Open GIS Consortium Inc. 2001a Geography Markup Language (GML) 2.0. Wayland,

Massachusetts, Open GIS Consortium Inc. {§2, §4, §5, §C}

Open GIS Consortium Inc. 2001b Open GIS Consortium -Spatial connectivity for a

changing world.Document, http://www.opensgis.org

Open GIS Consortium Inc. 2002 OpenGIS Specifications. Open GIS Consortium Inc.,

Web Page Document, http://www.opengis.org/ogcSpecs.htm {§1}

Ouksel, A, and C Naiman 1993 Coordinating context build-ing in heterogeneous

information systems. Journal of Intelligent Information Systems, 3: 151–183 {§2,

§3}

Ouksel, A M, and A Sheth 1999 Semantic Interoperability in Global Information

Systems: A Brief Introduction to the Research Area and the Special Section.

Sigmod Record, 28(1): 5-12 {§1, §2, §3, §4, §5, §C}

P.E.I. Geomatics Information Centre User’s Guide to Digital and Hardcopy property and

Basemap Products. Charlottetown, P.E.I., Provincial Treasury - Taxation &

Property Records Division {§1, §4, §5, §6}

Papazoglou, M P, and J Hoppenbrouwers 1999 Contextualizing the Information Space in

Federated Digital Libraries. Sigmod Record, 28(1): 7

Parent, C, and S Spaccapietra 1998 Issues and approaches of database integration.

Communications of the ACM, 41(5): 166-178

Page 261: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

241

Patel, K C 2001 The Difference Between Reading and Understanding and the Impact on

Scalability and Performance (Part 3) Semantics and Context. XML Journal, 2(2):

36-39

Payne, T R, M Paolucci, R Singh, and K Sycara 2002 Communicating Agents in Open

Agent Systems. In Proceedings of First GSFC/JPL Workshop on Radical Agent

Concepts (WRAC): 10 {§5}

Peuquet, D, B Smith, and B Brogaard 1998 The Ontology of Fields. In Proceedings of

Summer Assembly of the University Consortium for Geographic Information

Science {§2, §3, §5}

Plewe, B S, and S R Johnson 1999 Automated Metadata Interpretation to Assist in the

Use of Unfamiliar GIS Data Sources. In M Goodchild, M Egenhofer, R Fegeas,

and C Kottman (eds) Interoperating Geographic Information Systems. Boston,

Massachusetts, Kluwer Academic Publisher: 203-214

Ploux, S 1997 Modélisation et traitement informatique de la synonymie. Lisguisticæ

Investigationes, XXI(1): 1-28

Ploux, S, and B Victorri 1998 Construction d’espaces sémantiques à l’aide de

dictionnaires de synonymes. T.A.L., 39(1): 161-182

Prabandham, M, W J Selfridge, and D D Mann 1990 The Role of IRDS. Database

Programming and Design: 41-48 {§5}

Priest, G 1999 Semantic Closure, Descriptions and Non-Triviality. Journal of

Philosophical Logic, 28(6): 549-558

Pylyshyn, Z W 1981 The Imagery Debate: Analogue Media Versus Tacit Knowledge.

Psychological Review, 88(1): 16-45 {§1, §2, §3}

Pylyshyn, Z W 1999 What is in your Mind? (Manuscrit)

Pylyshyn, Z W In Press Mental Imagery: In search of a theory. Behavior and Brain

Sciences: 53 {§2}

Québec 2000 Base de données topographiques du Québec (BDTQ) à l’échelle de

1/20 000 - Normes de production (Version 1.0). Québec, Ministère des

Ressources naturelles, Direction générale de l’information géographique, CD

Document {§1, §3, §4, §5, §6, §C}

Page 262: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

242

Québec-Office de la langue française 2000 Le grand dictionnaire terminologique. Web

Page Document, www.granddictionnaire.com

RBMS Bibliographic Standards Committee XIII. Thesaurus Construction and

Maintenance Guidelines.

Ressources naturelles Canada 1996 Base nationale de données topographiques - normes

et spécifications. Sherbrooke, Québec, Centre d’information topographique –

Sherbrooke {§1, §2, §3, §4, §5, §6, §C}

Ressources naturelles Canada 2002 L’Atlas national du Canada en ligne. Web Page

Document, http://atlas.gc.ca

Riedemann, C, and W Kuhn 1999 What are Sports Grounds? (Or: Why Semantics

Requires Interoperability). In Proceedings of Interoperating Geographic

Information Systems (Interop '99). Berlin, Springer-Verlag Lecture Notes in

Computer Science 1580: 217-229

Rips, L, J Shoben, and E Smith 19973 Semantic Distance and the Verification of

Semantic Relations. Journal of Verbal Learning and Verbal Behavior, 12: 1-20

{§2}

Rishe, N, W Sun, D Barton, Y Deng, C Orji, M Alexopoulos, L Loureiro, C Ordonez, M

Sanchez, and A Sphaposhnikov 1995 Florida International University High

Performance Database Research Center. SIGMOD Record, 24(3): 71-76

Rodriguez, A, M J Egenhofer, and R D Rugg 1999 Assessing Semantic Similarities

Among Geospatial Feature Class Definition. In Proceedings of Interoperating

Geographic Information Systems (Interop '99). Berlin, Springer-Verlag Lecture

Notes in Computer Science 1580: 189-202 {§1, §4}

Rodriguez, M A 2000 Assessing Semantic Similarity Among Entity Classes. Ph.D. Thesis,

University of Maine {§1, §2, §3, §4, §5}

Rugg, R D, M Egenhofer, and W Kuhn 1997 Formalizing Behavior of Geographic

Feature Types. Geographical Systems, 4(2): 8

Salgé, F 1995 Semantic Accuracy. In S C Guptill, and J L Morrison (eds) Element of

Spatial Data Quality. Pergamon: 139-151

Saltor, F, G Castellanos, and M Garcia-Solaco 1992 Overcoming Schematic

Discrepancies in Interoperable Databases. In Proceedings of IFIP WG2.6

Page 263: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

243

Database Semantics Conference on Interoperable Database Systems (DS-5)/IFIP

Transaction (A-25) Elsevier Science Publishers B.V.: 191-205

Saltor, F, M G Castellanos, and M Garcia-Solaco 1991 Suitability of Data Models as

Canonical Models for Federated Databases. SIGMOD Record, 20(4): 44-48

Sargent, P 1999 Feature Identities, Descriptors and Handles. In Proceedings of

Interoperating Geographic Information Systems (Interop '99). Berlin, Springer-

Verlag Lecture Notes in Computer Science 1580: 41-53

Schramm, W 1971a How Communication Works. In J A DeVito (ed) Communication:

Concepts and Processes. Englewood Cliffs, New Jersey, Prentice-Hall Inc: 12-21

{§2, §3, §4}

Schramm, W 1971b The Nature of Communication Between Humans. In W Schramm,

and D F Robert (eds) The Process and Effects of Mass Communication.

Champaign-Urbana, IL, University of Illinois Press: 3-53 {§1, §2, §3, §5, §C}

Sciore, E, M Siegel, and A Rosenthal 1992 Context interchange using metaattributes. In

Proceedings of First International Conference on Information and Knowledge

Management (CIKM): 377-386 {§2, §3}

Sears, D O, and J L Freedman 1971 Selective Exposure to Information: A Critical

Review. In W Schramm, and D F Robert (eds) The Process and Effects of Mass

Communication. Champaign-Urbana, IL, University of Illinois Press: 209-234

{§3}

Sester, M 2000 Knowledge Acquisition for the Automatic Interpretation of Spatial Data.

International Journal of Geographic Information Science, 14(1): 1-24

Shannon, C E 1948 A Mathematical Theory of Communication. The Bell System

Technical Journal, 27: 379-423, 623-656 {§2}

Sheth, A 1999 Changing Focus on Interoperability in Information Systems: From

Systems, Syntax, Structure to Semantics. In M Goodchild, M Egenhofer,

R Fegeas, and C Kottman (eds) Interoperating Geographic Information Systems.

Boston, Massachusetts, Kluwer Academic Publisher: 5-29 {§1, §2, §3, §4, §5}

Sheth, A, and V Kashyap 1992 So Far (Schematically) Yet So Near (Semantically). In

Proceedings of IFIP WG2.6 Database Semantics Conference on Interoperable

Page 264: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

244

Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 283-312 {§1, §2, §3, §4, §5, §C}

Sheth, A P, and J A Larson 1990 Federated Database Systems for Managing Distributed,

Heterogenous, and Autonomous Databases. ACM Computing Surveys, 22(3): 183-

236 {§2}

Simsion, G C 2001 Data Modeling Essentials - Analysis, Design, and Innovation.

Scottsdale, Arizona, Coriolis {§2, §3, §5, §C}

Smith, B 1994 Fiat Objects. In Proceedings of Workshop on Parts and Wholes:

Conceptual Part-Whole Relations and Formal Mereology, 11th European

Conference on Artificial Intelligence: 15-23 {§2, §3, §4}

Smith, B, and D Mark 1999 Ontology with Human Subjects Testing: An Empirical

Investigation of Geographic Categories. American Journal of Economics and

Sociology, 58(2): 245-272 {§2, §3, §4, §5}

Smith, B, and A C Varzi 2000 Fiat and Bona Fide Boundaries. Philosophy and

Phenomenological Research, 60(2): 401-420 {§2, §3, §4}

Smith, H, and K Poulter 1999 The Role of Shared Ontology in XML-Based Trading

Architecture. Web Page Document, http://www.ontology.org/main/papers/cacm-

agents99.html

Smith, K 1999 Unpacking the Semantics of Source and Usage to Perform Semantic

Reconciliation in Large-Scale Information Systems. Sigmod Record, 28(1): 6

{§3}

Sondheim, M, K Gardels, and K Buehler 1999 GIS Interoperability. In P A Longley, M F

Goodchild, D J Maguire, and D W Rhind (eds) Geographical Information

Systems: Principles, Techniques, Applications and Management. New York, John

Wiley and Sons, Inc.: 347-358 {§3}

Sowa, J F 1984 Chapter 7: Limits of Conceptualisation. In Conceptual Structures:

Information Processing in Mind Machine. Reading, Massachusetts, Addision-

Westley Publishing Company: 339-351 {§1, §3, §4}

Sowa, J F 1987 Semantic Networks. In S C Shapiro (ed) Encyclopedia of Artificial

Intelligence. New York, John Wiley & Sons {§1, §2}

Page 265: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

245

Spaccapietra, S, and C Parent 1990 Intégration de vues et relativisme sémantique. In

Proceedings of Vièmes Journées Base de Données Avancées: 17

Spaccapietra, S, C Parent, and Y Dupont 1991 Automating Heterogeneous Schema

Integration. École polytechnique féderale de Lausane, Laboratoire de bases de

données, Département d’informatique

Spaccapietra, S, C Parent, and Y Dupont 1992 Model Independent Assertions for

Integration of Heterogenous Schemas. VLDB Journal, 1(1): 81-126

Statistique Canada 1997 Fichiers numériques des limites et fichiers numériques

cartographiques, Recensement de 1996 (guide de référence). Ottawa, Ministère

de l’Industrie {§1, §3, §4, §5}

Stock, K, and D Pullar 1999 Identifying Semantically Similar Elements in Heterogenous

Spatial Databases Using Predicate Logic Expressions. In Proceedings of

Interoperating Geographic Information Systems (Interop '99). Berlin, Springer-

Verlag Lecture Notes in Computer Science 1580: 231-252

Storey, V C 1993 Understanding Semantic Relationships. VLDB Journal, 2(4): 455-488

Sui, D Z 1998 GIS-Based Urban Modelling: Practices, Problems, and Prospects.

International Journal of Geographic Information Science, 12(7): 651-671

Sun Microsystems Inc. 2002 Java™ API for XML Processing (JAXP). Sun

Microsystems Inc., Web Page Document, http://java.sun.com/xml/jaxp/index.html

{§5}

Sycara, K, M Klusch, S Widoff, and J Lu 1999 Dynamic Service Matchmaking Among

Agents in Open Information Environnements. Sigmod Record, 28(1): 47-53 {§3,

§5}

Tari, Z 1992 Interoperability Between Database Models. In Proceedings of IFIP WG2.6

Database Semantics Conference on Interoperable Database Systems (DS-5)/IFIP

Transaction (A-25) Elsevier Science Publishers B.V.: 101-119 {§2}

Taylor, M 1999 Zthes: a Z39.50 Profile for Thesaurus Navigation. Web Page Document,

http://lcweb.loc.gov/z3950/agency/profiles/zthes-02.html

The Appache Sofware Foundation 2002a Xalan-Java version 2.4.0. The Appache

Sofware Foundation, Web Page Document, http://xml.apache.org/xalan-j/ {§5}

Page 266: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

246

The Appache Sofware Foundation 2002b Xerces-Java Java Parser Readme. The Appache

Sofware Foundation, Web Page Document, http://xml.apache.org/xalan-j/

Tversky, A 1977 Features of similarity. Psychological Review, 84(4): 327-352 {§2}

Urban, S D, and J Wu 1991 Resolving Semantic Heterogeneity Trough the Explicit

Representation of Data Models Semantics. SIGMOD Record, 20(4): 55-58

Vckovski, A 1999 Interoperability and Spatial Information Theory. In M Goodchild,

M Egenhofer, R Fegeas, and C Kottman (eds) Interoperating Geographic

Information Systems. Boston, Massachusetts, Kluwer Academic Publisher: 31-37

Vckovski, A, K Brassel, and H J Schek (eds) 1999 Interoperating Geographic

Information Systems (Interop '99). Berlin, Springer-Verlag {§1}

Ventrone, V, and S Heiler 1991 Semantic Heterogeneity as a Result of Domain

Evolution. SIGMOD Record, 20(4): 16-20

VMap 1995 Vector Map (VMap), Level 1. Bethesda, MD, U.S. National Imagery and

Mapping Agency Mil-V-89033 {§1, §3, §4, §5}

Voisard, A, and H Schweppe 1998 Abstraction and Decomposition in Interoperable GIS.

International Journal of Geographic Information Science, 12(4): 315-333 {§1}

Waterson, A, and A Preece 1999 Verifying Ontological Commitment in Knowledge-

Based Systems. Knowledge-Based systems, 12(1-2): 45-54

Weiner, N 1950 The Human Use of Human Beings: Cybernetics and Society. Boston,

Houghton and Mifflin {§1, §2, §3, §C}

Weisstein, E W 1999 Topological space. Mathworld. wolfram.com, Web page

Document, http://mathworld.wolfram.com/TopologicalSpace.html {§4}

Wiederhold, G 1999 Mediation to Deal with Heterogenous Data Sources. In Proceedings

of Interoperating Geographic Information Systems (Interop '99). Berlin, Springer-

Verlag Lecture Notes in Computer Science 1580: 1-16

Wisse, P 2000 Metapattern: Context and Time in Information Models. Reading,

Massachusetts, Addison-Wesley {§3, §4, §C}

WordNet, a lexical database for the English language. Web Page Document,

http://www.cogsci.princeton.edu/~wn/ {§4}

Wurm, L H 2000 The Adaptative Value of Lexical Connotation in Speech Perception.

Cognition and Emotion, 14(2): 177-191

Page 267: À mon Ami, François… - Université Lavalyvanbedard.scg.ulaval.ca/wp-content/documents/... · géospatiale d’un message. Dans le processus de communication, un concept similaire

247

Xhu, Z, and Y C Lee 2002 Semantic Heterogeneity of Geodata. In Proceedings of ISPRS

Commission IV Symposium 2002: Joint International Symposium on Geospatial

Theory, Processing, and Applications: 6 {§5}

Yan, L, and T Ling 1992 Translating Relational Schema With Constraints Into OODB

Schema. In Proceedings of IFIP WG2.6 Database Semantics Conference on

Interoperable Database Systems (DS-5)/IFIP Transaction (A-25)

Elsevier Science Publishers B.V.: 69-85