115

3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!5

GKILJM'INO!PQ!+RMO<RKD

!"#$%&'()*+",-./0+(&12!"#$%&'(()%*(+,-.%&./0(+/1%2-3$"0(304-(%56)%7(-8,-+563(%2659./"/:"-(/;%&"#6599"6#;%56)%<"+"6#%

!-34.5+673-3+8-34.5+.9+4:3S!'T#*)0!=-21B#2!-.#$#2BT!B.1U-.V!WX!AB=-CY!FB2$!3448Z!

Page 2: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!3

GKILJM'INO!PQ!+RMO<RKD

;<.0.5=>?+"@953A+B=9.89

!"#$#%&

!'#$#%&

()!*

+,-#&..-,//0-,&

*12/3*4./156&,7$#&/25869

:;<

=;">

=*?>

=;@>

=;'> =;A>

=*@>

=*A>

=*'>

=*">

1BC/6-/D&D-,E/6,$778# D&D-,E/,&F4&.6/.#%&G4H85I

J%E.8#$H/6-/D&D-,E/$GG,D$JJ85I =*K>

=*L>

,&$GG$6$M477&,

.E.6&D/#-56,-HH&,

J,-#&..-,

(:;</#-,&

=*N>

+$,6/;O/P&$,#%85I-5Q#%8J/7-,/G$6$

+$,6/*O/R-85I-77Q#%8J/7-,/G$6$

<=5=+5-=/9,C-5+9,334C/+9@953A+DC=-4+4C39+/C5+98=>3+6'-'5'+ECC-3F9+G=6'

!7.,+,3-HC-A=/8398=>./0+6.57+-39,3855C+ECC-3F9+G=6

Page 3: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ![

GKILJM'INO!PQ!+RMO<RKD

IC6+<C+J3+KC+;L=953-?M

RS!N.B20B=1#-2!.)\>)01!,B/!C)!*)TB/)*!#2!]>)>)@S!N.B20B=1#-2!.)\>)01!0)21!1-!+),-./!7-21.-TT).7S!N.B20B=1#-2!=-2E).1)*!1-!7-,,B2*!')\>)2=)0

W,B/!C)!\>)>)*ZDS!7-,,B2*^0!')21!1-!DMR+J5S!M)\>#.)0!-2T/!B!!N"!-.J3S!M)\>#.)0!ON"+P+!N"!-.QS DB1B!#0!01B$)*!B1!7-21.-TT).

_DMR+!<B1)2=/`!a!R!b!@!b!7!b!D!b!J!b!Q!b!?

J[S!M)\>#.)0!QOR+P+ON"+P+!N"

L=953-+GC0.8

L=953-+J.-39

L=953-+<ONE+!.-8:.59

@7 D

DMR+

J3^J[

J5

?

R

7cG +),7-21.-TT).

Q

?S!N.B20B=1#-2!0)21!CB=V!1-!7cG

Page 4: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!6

GKILJM'INO!PQ!+RMO<RKD

Q-C5C8C>+;RHH.8.3/8@?

! " # $ % &

'()*+,+#

!>S!>S+T

-./.

-0)

'12

-0)+3456.1785 -0)+39:/6.1785

4!

; < =

2"

4"

2"2"2"2!2!2!2!

-5.2+'>?85

@.?A6/967.?A+45.2:+/9+2BCC545D/+4.DA:

'.D+E5+1.A5+/F5+?>?85:+:1.8854G

Page 5: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!;

GKILJM'INO!PQ!+RMO<RKD

"A=>>3-+!@8>3+U.A3+B:4035M

O.93+U.A3

VW3-97CC5

"355>3+U.A3

Page 6: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!d

GKILJM'INO!PQ!+RMO<RKD

N+".0/=>./0+"@953A

($6$/15($6$/-46

3J-856/;9 3J-856/*9

S,&7

!"#$%&'%%'($)*'$+,- .

/

0

!"#$%&'11+"

23(45'$6)&+47#$'%&

8+4+'9+"

!+"&'$#1("

T/+-4H6-5/1PP00/"UUU/P8I5$H85I/)46-,8$H

1'+U-=/9A.553-X+R/8C439+4=5=+=9+8:--3/5YWC>5=03+>3W3>+

('+U-=/9A.99.C/+G./3X+<3>.W3-+4=5=+H-CA+5-=/9A.553-+5C+

Z'+O383.W3-X+!CA,=-3+=0=./95+-3H3-3/83+5C+3[5-=85+4=5=

2'+U3-A./=5C-X+O3ACW3+9.0/=>+H-CA+>./3*+C/83+573@F-3+

C/5C+573+>./3

-383.W3-

-383.W34$'+!>C8SX+U3>>9+5-=/9A.553-+673/+5C+93/4*+-383.W3-+673/+

5C+9=A,>3+9.0/=>

Page 7: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 1

UNIVERSITY OF MARYLAND

ENEE 359a

Digital Electronics

Interconnects

Prof. Bruce [email protected]

Credit where credit is due

: Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin & Vijay’s CSE477 slides (PSU), Schmit & Strojwas’s 18-322 slides (CMU), Dally’s EE273 slides (Stanford), Wolf’s slides for

Modern VLSI Design

, and/or Rabaey’s slides (UCB).

Page 8: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 2

UNIVERSITY OF MARYLAND

Overview

Wires and their physical properties(MOSFETs, too …)

LC/RC/RLC transmission lines, characteristic impedance, reflections

Dynamic considerations (e.g. skin effect)

The Bottom Line: propagation delay, transistor sizing, inductive (Ldi/dt) noise, capacitive coupling, signal degradation, various rules of thumb for design

Page 9: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 3

UNIVERSITY OF MARYLAND

Metal Layers in ICs

IBM’s 6-layer copper interconnect

Page 10: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 4

UNIVERSITY OF MARYLAND

Some Transmission Lines

Insulating jacketOuter shieldInner dielectricInner conductor

Coaxial Cable

Twisted Pair

dielectricconductor

dielectricconductor

Microstrip

Stripline

Gnd

Gnd

dielectric

dielectric

Gnd

conductor

conductor

Page 11: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 5

UNIVERSITY OF MARYLAND

Cross Section of PCB Board

FR4 DielectricM1 (signal layer)

M2 (Ground plane)

M3 (Power plane)

M4 (signal layer)

FR4 DielectricM1 (signal layer)

M2 (Ground plane)

M5 (Power plane)M6 (signal layer)

M3 (signal layer)M4 (signal layer)

Page 12: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 6

UNIVERSITY OF MARYLAND

Wires in Digital Systems

Physically, wires are

• Stripguides on (and

in

) printed circuit-board cards, layed over & sandwiched between groundplanes

• Stripguides on ICs, layered atop each other• Conductors in cables & cable assemblies• Connectors

We tend to treat them as

IDEAL wires

• No delay (equipotential)• No capacitance, inductance, or resistance

They are

NOT

ideal …

To build reliable systems, must understand properties & behavior

Page 13: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 7

UNIVERSITY OF MARYLAND

Metal Layers in ICs

Remember the

RC Constant

ττττ

?

p-tub

poly poly

n+n+

metal 1

metal 3

metal 2

vias

Page 14: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 8

UNIVERSITY OF MARYLAND

Metal Layers & Capacitances

• On-chip wires run in multiple layers with no explicit return planes (ground is used as implicit return)

• Thus, almost all capacitance of on-chip wire is to

other wires

(same plane, different plane, etc.)• Capacitance of MOSFET scales with Vdd

p-tub

poly poly

n+n+

metal 1

metal 3

metal 2

vias

Page 15: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 9

UNIVERSITY OF MARYLAND

Metal Layers & Resistances

• Resistance of conductor proportional to length/width, depends on material (resistivity), causes delay & loss

• Resistance of wire scales with square root of signaling frequency (at high speeds) (“skin effect”)

• Process scaling tends to increase resistance

p-tub

poly poly

n+n+

metal 1

metal 3

metal 2

vias

Page 16: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 10

UNIVERSITY OF MARYLAND

Wire Resistance

R =

ρρρρ

l/A =

ρρρρ

l/(wh) for rectangular wires(on-chip wires & vias, PCB traces)

R =

ρρρρ

l/A =

ρρρρ

l/(

ππππ

r

2

) for circular wires(off-chip, off-PCB)

Material Resistivity

ρρρρ

(

ΩΩΩΩ

-m)

Silver (Ag) 1.6 x 10-8Copper (Cu) 1.7 x 10-8Gold (Au) 2.2 x 10-8Aluminum (Al) 2.7 x 10-8Tungsten (W) 5.5 x 10-8

hw

l l

r

Page 17: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 11

UNIVERSITY OF MARYLAND

Sheet Resistance

R =

ρρρρ

l/(wh) = l/w•

ρρρρ

/h for rectangular wiresSheet resistance R

sq

=

ρρρρ

/h

Material Sheet resistance R

sq

(

ΩΩΩΩ

/sq)

n, p well diffusion 1000 to 1500n+, p+ diffusion 50 to 150polysilicon 150 to 200polysilicon with silicide 4 to 5Aluminum 0.05 to 0.1

Page 18: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 12

UNIVERSITY OF MARYLAND

Wire Capacitance

Common wire cross-sections/permittivities:

• Permittivity

εεεε

=

εεεε

0

εεεε

r

• Permittivity of free space

εεεε

0

= 8.854 x 10

-12

F/m

h

Material

εεεε

r

Air 1Teflon 2Polymide 3SiO

2

3.9

Glass-epoxy (PCB)

4

Alumina 10Silicon 11.7

Page 19: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 13

UNIVERSITY OF MARYLAND

Inductance

When conductors of transmission line are surrounded by uniform dielectric, capacitance & inductance are related:

CL =

εεεε

µ

Inductive effects can be ignored

• if the resistance of the wire is substantial enough (as is the case for long Al wires with small cross section)

• if rise & fall times of applied signals are slow enough

So … inductance must be considered

• for off-chip signals (even power/ground)• for future even-higher-speed on-chip signalling

Page 20: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 16

UNIVERSITY OF MARYLAND

Wires & Models

Example Wires:

In a situation, use a

model

of wires that captures the properties we need:

• ideal, lumped L, R, or C• LC, RC, RLC transmission line• General LRCG transmission line

Appropriate choice of model depends on signaling frequency

Type W R C L

On-chip 0.6 µm 150k

ΩΩΩΩ

/m 200 pf/m 600 nH/mPC Board 150 µm 5

ΩΩΩΩ

/m 100 pf/m 300 nH/m24AWG pair 511 µm 0.08

ΩΩΩΩ

/m 40 pf/m 400 nH/m

f

0

R

2

π

L

----------=

Page 21: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 17

UNIVERSITY OF MARYLAND

General LRCG Model

Model an

infinitesimal

length of wire, dx, withlumped componentsL, R, C, and G

(inductance, resistance,capacitance, and conductance)

x

2

2

V RC t

∂∂

V LCt

2

2

V

+=

x

∂∂

V RI L t

∂∂

I

+=

Drop across R and L

x

∂∂

I GV C t

∂∂

V

+=

Current into C and G

x

2

2

V RGV RC LG

+

( )

t

∂∂

V LCt

2

2

V

+ +=

For G=0:

Page 22: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 18

UNIVERSITY OF MARYLAND

Impedance

• An infinite length of LRCG transmission line has

impedance Z

0

• Driving a line

terminated

into Z

0

is same as driving Z

0

• In general, Z

0

is complex and frequency-dependent• For LC lines (operating at “high” frequencies), Z

0

is real-valued and independent of frequency

s = 2

π

jƒ = j

ω

(typical assumption: G = 0)

Page 23: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 19

UNIVERSITY OF MARYLAND

Cut-off Frequency f

0

R dx L dx

C dx G dx

R dx L dx

C dxC dx

Z

0

=

R +

j

ωωωω

L

G + j

ωωωω

C

1

2

Z

0

“lossless” LC “Low” FreqR >> j

ωωωω

L R << j

ωωωω

L

find f

0

where

R ==

j

ωωωω

L

“High” Freq

- Transmission lines have characteristic frequency f

0

- Below f

0

≈≈≈≈

RC model, Above f

0

≈≈≈≈

LC model

f

0

R

2

π

L

----------=

Z

0

Rj

ω

C

-----------=

Z

0

LC

----=

Page 24: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 20

UNIVERSITY OF MARYLAND

Cut-off Frequency f

0

Frequency

Page 25: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 21

UNIVERSITY OF MARYLAND

Cut-off Frequency f

0

II

Z

0

=

L

C

1

2

0.5 nH

0.1 pF

1

2= ~= 70

ΩΩΩΩ

Example from Poulton 1999 ISSCC Tutorial

L = 0.6 nH/mmC = 73 nF/mmR

dc

= 120

ΩΩΩΩ

/mmf

0

= 32 GHz

L = 0.5 nH/mmC = 104 fF/mmR

dc

= 0.008

ΩΩΩΩ

/mmf

0

= 2.5 MHz

~LC Model for PC Board

FR4 Dielectric

SiO

2

traces~RC Model for on chipinterconnects

0.5

µµµµ

0.5

µµµµ

0.7 mil5 mil

1 mil = 0.001 inch

Page 26: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 22

UNIVERSITY OF MARYLAND

RC Lines (low frequency)

R >> j

ωωωω

L, governed by diffusion equation:

Signal diffuses down line, disperses:

x

2

2

V RGV RC LG

+

( )

t

∂∂

V LCt

2

2

V

+ +=

V

2

x

2

---------

RC V

t

-------=

0mm

2.5mm

5mm

7.5mm

10mm

R increases w/ length dC increases with dDelay & rise time both

increase with RC, thus with d

2

For a typical wire:R = 150K

ΩΩΩΩ

/mC = 200pF/m

ττττ

= RC = 30 µs/m

2

= 30 ps/mm 2

Page 27: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 23

UNIVERSITY OF MARYLAND

LC Lines (high frequency)

R << j

ωωωω

L, governed by wave equation:

Waveform on line is superposition of forward- and reverse-traveling waves:

• Waves travel with velocity v = (LC)

-1/2

• What happens when the wave gets to the end of line?

x

2

2

V RGV RC LG

+

( )

t

∂∂

V LCt

2

2

V

+ +=

V

2

x

2

---------

LC V

2

t

2

---------=

V

i

x t

,

( )

Z

0

Z

0

R

S

+-------------------

V

S

t xv

---–

=

V

f

V

r

Page 28: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 24

UNIVERSITY OF MARYLAND

RLC/G Lines (general case)

Ignoring G, wave propagation equation:

Lossy transmission line, dispersive waves:

x

2

2

V RGV RC LG

+

( )

t

∂∂

V LCt

2

2

V

+ +=

V

2

x

2

---------

RC V

t

-------

LC V

2

t

2

---------+=

Substrate-doping-dependent dispersion of a picosecond-scale pulse in propagation of an on-chip transmission line

Page 29: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 25

UNIVERSITY OF MARYLAND

RC vs. RLC

Output response of inverter with step input:

In reality, we have a non-zero inductance in series with the RC circuit. (Inductors and capacitors both “have memory”)

VDD

?

L

VDD

L

GND

R

n

R

p

C

in

Page 30: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 26

UNIVERSITY OF MARYLAND

RC vs. RLC

Output response of inverter with step input:

Result: slower reponse time, ringing

0

Vdd

V

tl

RC ModelRLC Model

tens of ps

inductor causes slow start-up for switch

Page 31: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 27

UNIVERSITY OF MARYLAND

Impedance and Reflections

Terminating a Transmission Line:

Telegrapher’s Equations:

Reflection coefficient k

r

may be complex for complex impedances Z

T

— i.e., the reflected wave may be phase-shifted from the incident wave. For real-valued Z

T

the reflection coefficient is real, and the phase shift is either 0 (k

r

positive) or

ππππ

(k

r

negative).

V

i

Z

0

Z

T

I

f

I

r

I

T

k

r

I

r

I

i

----

V

r

V

i

------

Z

T

Z

0

Z

T

Z

0

+-------------------= = =

Page 32: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 28

UNIVERSITY OF MARYLAND

Impedance and Reflections

Z

0

Z

0

V

A

V

C

V

B

k

r

I

r

I

i

----

V

r

V

i

------

Z

T

Z

0

Z

T

Z

0

+-------------------= = =

Va

Vb

Vc

Z

0

Va

Vb

Vc

Z

T

=

∞∞∞∞

Z

0

Va

Vb

Vc

Z

T

= 0

Matched Termination, k

r

= 0

Open-Circuit Termination, k

r

= 1

Short-Circuit Termination, k

r

= -1

Page 33: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 29

UNIVERSITY OF MARYLAND

Impedance and Reflections

50

ΩΩΩΩ

, 5ns

1K

ΩΩΩΩ

1V

400

ΩΩΩΩ

RS

Page 34: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 30

UNIVERSITY OF MARYLAND

Impedance and Reflections

Values are typical for 8-mA CMOS driver with 1k

ΩΩΩΩ

pullup

50

ΩΩΩΩ

, 5ns

1K

ΩΩΩΩ

1V

400

ΩΩΩΩ

RS

V

i

Z

0

Z

0

R

S

+-------------------

V

S

5050 400+---------------------

1

V

0.111

V

= = =

k

rR

Z

T

Z

0

Z

T

Z

0

+------------------- 1000 50–

1000 50+------------------------ 0.905= = =

k

rS

Z

T

Z

0

Z

T

Z

0

+------------------- 400 50–

400 50+--------------------- 0.778= = =

Page 35: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 31

UNIVERSITY OF MARYLAND

Impedance and Reflections

Vwave Vline time t

Vi1 0.111 0.111 0Vr1 0.101 0.212 5Vi2 0.078 0.290 10Vr2 0.071 0.361 15Vi3 0.055 0.416 20Vr3 0.050 0.465 25Vi4 0.039 0.504 30Vr4 0.035 0.539 35Vi5 0.027 0.566 40

50

ΩΩΩΩ

, 5ns

1K

ΩΩΩΩ

1V

400

ΩΩΩΩ

RS

Page 36: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 32

UNIVERSITY OF MARYLAND

Impedance and Reflections

50

ΩΩΩΩ

, 5ns

1K

ΩΩΩΩ

1V

400

ΩΩΩΩ

RS

TIME

Vline

Page 37: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 33

UNIVERSITY OF MARYLAND

Reflections, Z

S

< Z

0

Z

L

Z

S

Z

S

= 25

ΩΩΩΩ

Z

0

= 50

ΩΩΩΩ

V

I

V

I

= 0v 2v

Z

0

TD = 250 ps

V

S

V

S

= V

I

V

L

Z

S

Z

S

+ Z

0

= 2 * 50

25 + 50= 1.3333 V

Z

L

= inf

ΩΩΩΩ

k

r (source)

=Z

S

- Z

0

Z

S

+ Z

0

= 25 + 5025 - 50

= - 0.3333

k

r (load)

=Z

L

- Z

0

Z

L

+ Z

0

= inf + 50inf - 50

= 1

Page 38: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 34

UNIVERSITY OF MARYLAND

Reflections, Z

S

< Z

0

Z

L

Z

S

V

I

Z

0

TD = 250 ps

V

S

V

L

Time (ps)

0

V

S

V

L

0 v

250

1.33 v

k

r (source)

= - 0.3333k

r (load)

= 1

1.33 v1.33v

2.66 v-0.443 v

-0.443 v

0.148 v

2.22v

1.77v

500

750

1000

1.92v

Page 39: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 35

UNIVERSITY OF MARYLAND

Reflections, Z

S

< Z

0

Time (ps)

Volts

0 250 500 750 1000 1250 1500

0.5v

1.0v

1.5v

2.0v

2.5v

1750

V

load

V

source

Page 40: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 36

UNIVERSITY OF MARYLAND

Add In Capacitance …

50

ΩΩΩΩ

, 5ns

1V

50

ΩΩΩΩ

RS

TIME

Vline

What if we throw in a capacitor (i.e., reality?)Simple case: matched impedance at source end

Source end

Receiving end

Page 41: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 37

UNIVERSITY OF MARYLAND

Impedance and Reflections

Modern systems have MANY, MANY, MANY potential sources of impedance-mismatch and/or reflections

CPU Mem Contr.

DIMMs

DRAMs

PCB Traces

Package Pins& Connectors

Electrical connectionsover physical contacts

Page 42: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!K8

GLIMJN'IOP!QR!+SNP<SLD

!"#$%&'()*+",*-

!"#$%&'()*)+

!"#$%&'()*),

!"#$%&'()*)-

.(//01$('*&%,1(/$%/"%$2

3'4/,5%,,%(/#%/0*6"4#%$2&0)0/&,*(/,2,$05*7(4'&

8419*%5)0&4/10*&%,1(/$%/"%$2*%,*4*'0:#01$%;0*%/$0':410

Page 43: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!K;

GLIMJN'IOP!QR!+SNP<SLD

!"#$%&'()*+",*--

!"#$% &$%#$%'(

!"#$% &$%#$%')

!"#$% &$%#$%'* &$%#$%'*

&$%#$%')

&$%#$%'(

+&,-',!".!".

/0,.-,'1-/02/&3-,',!4-%!+-

Page 44: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

Memory SystemsArchitecture and

PerformanceAnalysis

Spring 2005

ENEE 759HLecture13.fm

Bruce JacobDavid Wang

University ofMaryland

ECE Dept.

SLIDE 40

UNIVERSITY OF MARYLAND

Capacitive Termination I

ZLZSVI

Z0VS VL

- Capacitors behave like short circuit when

ZL = 0; Short Circuit ρ = 0 - ZS0 + ZS

ρ = -1

ZL = inf; Open Circuit ρ = ZLZL

ρ = 1

not charged. Once charged, behaves likeopen circuit.

Bruce Jacob
k
Bruce Jacob
k
Bruce Jacob
k
Bruce Jacob
k
Page 45: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!65

GKILJM'INO!PQ!+RMO<RKD

!=,=8.5.W3+U3-A./=5.C/+\\

]G]"^\+

]&^"+ ^G+

^G+^G+

^" ^"

#+J73/+;97C-534?*+^"+.9+-3H>38534+6.57+573+9=A3+A=0/.5:43+D=8S+5C6=-4+9C:-83'

#+U73+;A=0/.5:43?+73-3+.9+573+;A=0/.5:43?+

5.A35.A3

#+UC+A./.A._3+0>.587*+>.A.5+9>36+-=53'CH+-.93+5.A3'

Page 46: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

Memory SystemsArchitecture and

PerformanceAnalysis

Spring 2005

ENEE 759HLecture13.fm

Bruce JacobDavid Wang

University ofMaryland

ECE Dept.

SLIDE 42

UNIVERSITY OF MARYLAND

What is a Stub?

Z0 = 50 Ω

GND

5nH

2 pF0.2 pF75Ω50 Ω

trace50Ω

pkg

bondwire

pad& rx

Stub

- Signal path inside of package also significant

trace

terminatingresistor

Page 47: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

Memory SystemsArchitecture and

PerformanceAnalysis

Spring 2005

ENEE 759HLecture13.fm

Bruce JacobDavid Wang

University ofMaryland

ECE Dept.

SLIDE 43

UNIVERSITY OF MARYLAND

Series Stub Terminated Logic

Z0 = 50 Ω

GND

5nH

2 pF0.2 pF

bondwire

pad& rx

seriesresistor

Reflection Coefficient = ρ = ZL - ZSZL + ZS

25 Ω

ρ = 25 - 5025 + 50

= - 0.3333

- Series resistor isolates stub from line- reduces ringing- reduces power

Page 48: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!66

GKILJM'INO!PQ!+RMO<RKD

O=AD:9+".0/=>>./0

'9D/498854

2424.18>C8S5:-/9=-C:/4 ?FB3

2424.1?FB3

2424.1?FB3

/541BD./B9D/541BD./B9D

#+!C/5-C>>3-+93/49+H:>>+73.075+9.0/=>+96./09#+<ONE+87.,9+93/4+7=>H+73.075+9.0/=>+96./09#+O3H>385.C/+CHH+CH+8C/5-C>>3-+4-.W3-+

`C,3/+8.-8:.5 53-A./=534

8-3=539+H:>>+73.075+9.0/=>+96./0

#+!:--3/5+AC43

#+!:--3/5+8C/5-C>+=/4+WC>5=03+9>36-=53+8C/5-C>

Page 49: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!68

GKILJM'INO!PQ!+RMO<RKD

O=AD:9+!7=//3>+#+1)+D.5/

!>C8S

U3-A./=5.C/

!C/5-C>>3-

O\EE

O\EE

"@953A+BC=-4

"@953A+BC=-4

#+O\EE+TZ+4-C,,34+H-CA+9,38+5C+9C>W3+9.0/=>>./0+,-CD>3A9#+a334+!C/5./:.5@+O\EE

Page 50: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!6;

GKILJM'INO!PQ!+RMO<RKD

O=AD:9+!7=//3>+#+Z(Y)2+D.5/

!>C8SU3-A./=5.C/O\EE

"@953A+BC=-4"@953A+BC=-4

!C/5-C>>3-

#+U3-A./=5.C/+D-C:075+C/5C+O\EE#+!C//385C-+./53-H=83+8C:/5+-34:834+H-CA+2+5C+Z#+aC+/334+HC-+9,38.=>+53-A./=534+O\EE+=/4+/C/#53-A./=534+O\EE

O\EE

Page 51: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!6d

GKILJM'INO!PQ!+RMO<RKD

V<UX+V/+<.3+U3-A./=5.C/^44b ^44b

^99b ^99b

<ONE+./,:5D:HH3-

"J1

"J1 "J(

"J(

OW=>1

OW=>1 OW=>(

OW=>(

<ONE<c+./,:5,./

#+N85.W3*+4@/=A.8+53-A./=5.C/*+43,3/4./0+C/+OYJ*+=/4/:AD3-+CH+>C=49+C/+3>385-.8=>+D:9

#+!=/+D3+5:-/34+C/YCHH+./+(+8@8>39*+CHH+./+('$+8@8>39#+<39.0/34+./5C+<<O+\\

Page 52: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!6e

GKILJM'INO!PQ!+RMO<RKD

\/,:5+B:HH3-./0+#+O3H3-3/839+\

^C:5^./

Z'ZZ'&

('&

1'&

('&1'& Z'& Z'Z./,:5+WC>5=03

^./+>C6+d+&'e^ ^./+7.07+d+('&^

^C:5+7.07+d+('2^

^C:5+>C6+d+&'2^

G^UUG

C:5,:5WC>5=03

./W3-53-

".A,>3+\/W3-53-

./,:5WC>5=03

C:5,:5WC>5=03

^C:5^./

('$

('&

1'&

('&1'& ('$./,:5+WC>5=03

^./+>C6+d+

^C:5+>C6+d+&'ZfZ^

""UG#(C:5,:5WC>5=03 ./W3-53-

^-3H+#+&'1$W^./+I.07+d+^-3H+P+&'1$W

gH:>>+8:--3/5+4-.W3h

^C:5+>C6+d+^44b+#+&'ZfZ^gH:>>+8:--3/5+4-.W3h

./,:5WC>5=03

C:5,:5WC>5=03

W-3H

Page 53: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!69

GKILJM'INO!PQ!+RMO<RKD

\/,:5+B:HH3-./0+#+O3H3-3/839+\\

W-3H

^88

K/4

WC:5W./

#+GC8=>+C-+-3AC53+-3H3-3/83M#+\/W3-53-9+=-3/F5+W3-@+0CC4+HC-+7.07+H-3b:3/8@+9.0/=>>./0

W./& W&W./1

W./(W./Z

W1

W(

WZ

Page 54: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!84

GKILJM'INO!PQ!+RMO<RKD

<.HH3-3/5.=>+".0/=>>./0

#+U73+8CA,>3A3/5+9.0/=>+,=57+.9+573+8:--3/5+-35:-/+,=57#+"3/4+573+9.0/=>+=/4+.59+8CA,>3A3/5

W./&+P W&W./1+P

W./(+PW./Z+P

W1

W(

WZ

W./&+#

W./1+#

W./(+#W./Z+#

#+".0/=>+,=.-9+A:95+D3+-C:534+8>C93>@+5C03573-#+".0/=>>./0+9873A3+8=/+-3i385+8CAAC/+AC43+/C.93b:.53+63>>

Page 55: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 46

UNIVERSITY OF MARYLAND

Inductive Noise

L di/dt noise (ground bounce):

VDD

IDEAL

Current flow changes directionwhen input (thus output) values change

VDD

REALISTIC

L

(

0)

L

(

0)

Magnitude of current change is diThe time to switch directions is dtThe voltage-drop induced on this wireat time of switching is L di/dt

Page 56: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 10+11

Interconnects

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 47

UNIVERSITY OF MARYLAND

Inductive Noise

L di/dt noise (ground bounce):

VDD

L

(

0)

L

(

0)

∆∆∆∆

V = L di/dt = voltage-drop

∆∆∆∆

V

∆∆∆∆

V

induced on this wire

VDD

“1” Another inverter, elsewhere.What comes out here?

I/O Driver:

Page 57: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!8

GKILJM'INO!PQ!+RMO<RKD

O3=>+W9+\43=>+JC->4

jUC97.D=+Q-393/5=5.C/*+<3/=>.+E3A!C/+(&&(

Page 58: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!K

GLIMJN'IOP!QR!+SNP<SLD

!"#$%&'($&%"#)*+,-

!"#"$%&!"#"$'(#

)*'+&#$,- )*'+&#$.-

/012

!"#$%&'%%'($)*'$+,- .

/

0

!"#$%&'11+"

23(45'$6)&+47#$'%&

8+4+'9+"

!+"&'$#1("

3$4'(5#'&$%6677$8999$6+:&"5+&:$;(#'0+"5

./"01'&*-$++,12"3&456,*"6'+'"'*"4711,&+895(+'%,"(,9,("

:/"01'&*-$**$5&";$&,2"<,($9,1"6'+'"=15-"+1'&*-$++,1"+5"

>/"?,4,$9,12"@5-A'1,"'%'$&*+"1,=,1,&4,"+5",B+1'4+"6'+'

C/"0,1-$&'+512"?,-59,"*$%&'("=15-"($&,D"5&4,"+E,)F1,"

5&+5"+E,"($&,

1,4,$9,1

1,4,$9,6G/"@(54H2"0,((*"+1'&*-$++,1"IE,&"+5"*,&6D"1,4,$9,1"IE,&"

+5"*'-A(,"*$%&'(

Page 59: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!54

GKILJM'INO!PQ!+RMO<RKD

U.A./0+B:4035+^.9:=>._34($6$/15

($6$/-46

3J-856/;9 3J-856/*9

S,&7

!"#$%&'%%'($)*'$+,- .

/

0

!"#$%&'11+"

23(45'$6)&+47#$'%&

8+4+'9+"

!+"&'$#1("

Page 60: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 12

UNIVERSITY OF MARYLAND

Definitions:

Skew

SubChannel 1

SubChannel 2

- Static timing displacement from ideal design

clock - clock skew

- Caused by differences in signal path characteristics - Total timing budget must take data-data skew,

data-clock skew as well as clock-clock skew intocycle budget consideration

data - data skew

Page 61: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!5K

GLIMJN'IOP!QR!+SNP<SLD

!"#$%&'()#$%*+,,'-'(#+".

!"#$%&#''(&

)*%+,-.)*%+,-/

)*%+,-0

123,456$*',/123,456$*',0

7$%(&8#92'(,"#$$(:%#&3

1

Page 62: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 13

UNIVERSITY OF MARYLAND

Definitions:

Jitter

- Dynamic timing displacement from nominal timingcharacteristics

- Magnitude and offset of timing displacement could depend on: previous signal state(s), current signal state(s), supply voltage level(s), crosstalk, variationsin thermal characteristics. Perhaps even phases of the moon (not proven).

Page 63: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!56

GKILJM'INO!PQ!+RMO<RKD

!"#$%&'("&)*++*,'-

./012'""$3*4

./012'""$3*5

67%8&*1'8$89$:*7;*<12'"*4*=12'"*5>

67%8&*1'8$89$:*7;*12'"*4*

67%8&*1'8$89$:*7;*12'"*5

67%8&*#'8$*89$:*?/8&*0$*#7"8(-$%$-*("*8)8&$?*&(?("@

137#9*.9$:

Page 64: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 53

UNIVERSITY OF MARYLAND

Global Clock I

D Q

Clock

DataD Q

Transmitter Receiver

1

2 3

4

50

0

1

4

2

3

5

0: Assume data is stable for setup time before clock edge1: Rising edge of transmitter clock2: Transmitter begins to drive data (perhaps through logic)3: Signal reaches input of receiver.4: Rising edge of receiver clock5: Receiver latches data and drives internal signal lines

Page 65: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 54

UNIVERSITY OF MARYLAND

Global Clock II: Parallel Data

D QData

D Q

Transmitter Receiver

2” 3” 5”0”

0’ & 0“

1’ & 1”

2’ & 2”

3’ & 3”

D Q

ClockData

D Q

1’

2’ 3’

4’

5’0’

5’ & 5”

4”1”

transmitter input

transmitter clock

transmitter output

receiver input

receiver output

4’ & 4”receiver clock

- Skew and jitter eats into timing budget- Luckily, uncertainty does not accumulate beyond latches

Page 66: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 3

UNIVERSITY OF MARYLAND

What Needs To Be Done?

By the way: “global” clock scheme

ClkSRC

Page 67: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 4

UNIVERSITY OF MARYLAND

Background: Elmore Delays

ClkSRC

R

1

C

1

R

2

C

2

R

4

C

4

R

3

C

3

τ

Di

C

k

R

ikk

1=

N

=

N

1

N

2

N

4

N

3

Page 68: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 5

UNIVERSITY OF MARYLAND

Background: Elmore Delays

ClkSRC

1 1

1 1

1 1

1

1

τ

Di

C

k

R

ikk

1=

N

=

ττττ

D1

= 4

ττττ

D2

= 5

ττττ

D3

= 6

ττττ

D4

= 7

C

1

+C

2

+C

3

+C

4

C

1

+2C

2

+C

3

+C

4

C

1

+C

2

+2C

3

+2C

4

C

1

+C

2

+2C

3

+3C

4

Page 69: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 6

UNIVERSITY OF MARYLAND

End Result:

Clock Skew

In general, even nearby clocks not in synch

ClkSRC

1 time unit

Page 70: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 59

UNIVERSITY OF MARYLAND

Clock Tree I

• Every branch sees same wire length and capacitance• The clock skew is theoretically zero• The sub-blocks should be small enough s.t. the skew

within the block is tolerable• Essential to consider clock distribution

early

in the design process

Clock distributionis a

major

design problem!

Page 71: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 60

UNIVERSITY OF MARYLAND

Clock Tree I

An on-chip clock tree

Page 72: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 61

UNIVERSITY OF MARYLAND

Clock Tree II (I with buffers)

- Large synchronous systems require all components (chips or registers) to be driven by clock signal.

- Clock signal paths and buffers could introduce both skew and jitter at each stage

- Jitter and skew are additive with larger systems. More buffering, more skew and jitter.

buffer chipscould have +/-xx% tolerance

Page 73: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 62

UNIVERSITY OF MARYLAND

DEC Alpha 21164

9.3 M Transistors, 4 metal layers, 0.55µmClock Freq: 300 MHz Clock Load: 3.75 nF Power in Clock = 20W (out of 50W) Two Level Clock Distribution:• Single 6-stage driver at center• Secondary buffers drive left and right sideMax clock skew less than 100psec• Routing the clock in the opposite direction• Proper timing

Page 74: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 63

UNIVERSITY OF MARYLAND

Clock Skew in Alpha

Page 75: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 65

UNIVERSITY OF MARYLAND

Phase Locked Loop

- Given a data signal, recover the frequency and phase of

φφφφ

out

VCO

D

Freq/Phase

LoopFilter

the data signal, generate local reference clock

φφφφ

out

- Local reference clock may be frequency multiple of input clock

- PLL depends on data input to provide “enough” signal transitions to lock onto, else PLL could lose coherency.

- Modern processors utilize PLL’s for frequency multiplication

Page 76: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 66

UNIVERSITY OF MARYLAND

Voltage Controlled Oscillator

Ring Oscillator

- VCO may be designed from ring oscillator where voltage controls the number of (odd) stages of inverters in the feedback ring

LC Oscillator (conceptual illustration)

- VCO may be designed from resonant oscillator where voltage controls capacitance in LC circuit.

C(v)

L

Page 77: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 67

UNIVERSITY OF MARYLAND

Delay Locked Loop

- Given a data signal and reference clock, compare

φφφφ

out

D

PhaseComp

LoopFilter

and adjust phase of local clock signal by

∆∆∆∆φφφφ

- Unlike PLL, requires reference clock

- Modern DRAM with dual edged clocking utilizes

φφφφ

r

∆∆∆∆φφφφ

DLL’s for phase compensation. (gets you 90 degrees)

- Hence, no need to “recover” clock signal with VCO

Page 78: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 68

UNIVERSITY OF MARYLAND

Zero-Skew Clock Distribution

PLL

or

DLL

Page 79: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 69

UNIVERSITY OF MARYLAND

DLL in DDR SDRAM

DRAMArray

CK

EXT

DQ

EXT

This represents a delay

D

of the clock signal

Data

from clock input pad to data output drivers

D

Additional delaythrough DQ drivers

READ

Ideally, these two edgeswould be aligned

DRAMArray

DQ

EXT

This represents a delay

D

of the clock signal

Data

from clock input pad to data output drivers

Delay

PhaseComp

Filte

r

The Phase Comparison, Loop Filter, and Variable Delay components constitute a DLL

CK

INT

CK

EXT

CK

INT

The DLL delays the internal clock (CK

INT

) so that

Delay

DLL

+ D

D

Additional delaythrough DQ drivers

READ

These two edgesnow more closely aligned

CK Buffers

CK Buffers

Delay

DLL

the total delay equals one full clock cycle, and thusCK

INT

is now in sync with CK

EXT

… thus, DQ

EXT

is also (roughly) in sync with CK

EXT

Delay introduced by DLL

CK

EXT

CK

INT

CMD

DQ

EXT

CK

EXT

CK

INT

CMD

DQ

EXT

Page 80: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!K

GLIMJN'IOP!QR!+SNP<SLD

!"#$%&'($&%"#)*+,-

!"#"$%&!"#"$'(#

)*'+&#$,- )*'+&#$.-

/012

!"#$%&'%%'($)*'$+,- .

/

0

!"#$%&'11+"

23(45'$6)&+47#$'%&

8+4+'9+"

!+"&'$#1("

3$4'(5#'&$%6677$8999$6+:&"5+&:$;(#'0+"5

./"01'&*-$++,12"3&456,*"6'+'"'*"4711,&+895(+'%,"(,9,("

:/"01'&*-$**$5&";$&,2"<,($9,1"6'+'"=15-"+1'&*-$++,1"+5"

>/"?,4,$9,12"@5-A'1,"'%'$&*+"1,=,1,&4,"+5",B+1'4+"6'+'

C/"0,1-$&'+512"?,-59,"*$%&'("=15-"($&,D"5&4,"+E,)F1,"

5&+5"+E,"($&,

1,4,$9,1

1,4,$9,6G/"@(54H2"0,((*"+1'&*-$++,1"IE,&"+5"*,&6D"1,4,$9,1"IE,&"

+5"*'-A(,"*$%&'(

Page 81: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 7

UNIVERSITY OF MARYLAND

Idea: Detect “0” vs. “1”

This is a “1”

D Q

Clock

DataD Q

t

bit

V

0

V

1

This is a “0”t

bit

V

0

V

1

EYE: spacet

eye

V

0

V

1

between 1 & 0V

eye

Page 82: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 8

UNIVERSITY OF MARYLAND

Basic Problem: Voltage Noise

Voltage noise reduces operating margins

t

eye

V

eye

Data signal with

Clock signal with

voltage noise

voltage noise

D Q

Clock

DataD Q

Page 83: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 9

UNIVERSITY OF MARYLAND

Basic Problem: Timing Noise

Timing noise reduces operating frequency

t

eye

V

eye

D Q

Clock

DataD Q

Clock signal with timing noise

Data signal with timing noise

Page 84: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 10

UNIVERSITY OF MARYLAND

Basic Problem: Both

Note: Clock signal is just another signal subject to same constraints of voltage noise, skew and jitter as data signals

D Q

Clock

DataD Q

Clock signal with both noise sources

Data signal with both noise sources

t

eye

V

eye

Page 85: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 11

UNIVERSITY OF MARYLAND

Eye Diagram

Yes, there really is that much voltage noise; Yes, there really is that much timing noise …

Life sucks; deal with it.

Page 86: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 64

UNIVERSITY OF MARYLAND

Dual Edge Clocking

- Both edges of clock used to latch in data

Data

Clock

- Duty cycle & rise/fall times of clock must be even- Clock signal must be phase shifted by 90 degrees

Data

Clock

- Only one edge of clock latches data- Duty cycle of clock signal is not relevent

relative to phase of data signal

- Clock signal operating at 2X switching rate of data

- How do you get 90 degrees ??

- Always a clock edge where you need one

Page 87: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 14

UNIVERSITY OF MARYLAND

Cycle Budget

t

cycle

t

eye

t

skew

t

tran

t

skew

= max(skew) + max(jitter) t

tran

= Edge transition time = max(rise_time, fall_time)

t

eye

≤≤≤≤

t

cycle

– t

tran

– t

skew

Page 88: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

!"#$%&'())*+),-./!'/01),0

'(.#2$!3456

7'&894:3;<)=1>.)!?

@.>=)!AB=-CDBE#*!FB2$

G2#E).0#1/-H!7.)1)

'<IDJ!58

GKILJM'INO!PQ!+RMO<RKD

!"#$%&'()*+,-$&).)"/$012/#3&).)"/$4+5+.#3#56 (77S-=T!'T)U!-2!N.B20,#1!'#*) 544'#S#=-2!-2!N.B20,#1!0#*) 5V444F#.#2$!&!*.#E)!1-!=%#(!(B*V!*.#E)!,-*>S)V!=B.*!W64=,XV!.)=)#E).!,-*>S)V!=%#(!(B*!1-!.)=)#E).:

YV444

'#S#=-2!-2!M)=)#E)!'#*) 5V4447S-=T!'T)U!-2!M)=)#E)!'#*) 5447->(S#2$V!A#11).V!M)HS)=1#-20 Z44[<<!&!<-2$!1).,!\#11). 384&83+, 9:;<=

>48?#5@$7'"*A58"816$B+C#$4)(#,)"#2$D"3#5E+*#$45#6#"3+3)8":$F83*A)(6$GHH

Page 89: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 15

UNIVERSITY OF MARYLAND

Timing: Clock

∩∩∩∩

Data

Define

when

a value is present on a line …

How many 1’s? How many 0’s?

Need convention to distinguish where one ‘1’ ends and next ‘1’ begins … conventions typically mark boundaries w/

TRANSITIONS

• of the signal itself• of an associated

clock

signal(original definition of “synchronous”)

Uncertainty in timing limits operating speed

Page 90: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 16

UNIVERSITY OF MARYLAND

Timing Conventions

Apply to both inter-

and

intra-chip signaling

Page 91: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 17

UNIVERSITY OF MARYLAND

Setup Time

Required time for input to be stableBEFORE CLOCK EDGE

Page 92: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 18

UNIVERSITY OF MARYLAND

Setup Time Fix

Page 93: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 19

UNIVERSITY OF MARYLAND

Setup Time Fix II

Page 94: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 20

UNIVERSITY OF MARYLAND

Hold Time

Required time for input to be stableAFTER CLOCK EDGE

Page 95: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 21

UNIVERSITY OF MARYLAND

Hold Time Violations

Page 96: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 23

UNIVERSITY OF MARYLAND

A Tale of Two (or more) Timing Conventions

Synchronous: global clock

Synchronous: source-synchronous I

(“open-loop” meaning no control loop)

Synchronous: source-synchronous II

(“closed loop” meaning feedback control)

Asynchronous: self-timed

Bruce Jacob
Page 97: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 24

UNIVERSITY OF MARYLAND

System Building Blocks

DELAY ELEMENTS

Nominal delay

Timing uncertainty, skew, jitter

COMBINATIONAL LOGIC

Contamination delay

Propagation delay

CLOCKED STORAGE ELEMENTS

Align signal to a clock

Signal waits to be sampled by clock

Output held steady until next clock

Page 98: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 25

UNIVERSITY OF MARYLAND

Edge-Triggered Register

Samples data on rising edge of CLK

Data must remain valid during an

aperture

of time during sampling

Output held steady until next CLK edge

Output is held until a

contamination delay

following CLK edge

Output has a correct value after a

propagation delay

following CLK edge

TcontaminationTpropagation

Page 99: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 26

UNIVERSITY OF MARYLAND

Other Storage Elements

LEVEL-SENSITIVE LATCH

Passes data through when enable (clock) is high

Holds data stable when enable (clock) is low

DUAL-EDGE-TRIGGERED FLIP-FLOP/REGISTER

Samples data at both edges of the clock

Internally two interleaved flip-flops(1 posedge FF + 1 negedge FF)

Allows CLK to run at same speed as data

Page 100: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 27

UNIVERSITY OF MARYLAND

Eye Diagram, Redux

MAXIMUM OPERATING RATE (i.e., signaling speed)LIMITED BY THREE FACTORS:

Tr — Transition time (rise/fall time)

Tu — Timing uncertainty, skew, jitter

Ta — Aperture time

Tbit

≥≥≥≥

Tr + Tu + Ta

(but not that simple …)

t

bit

Page 101: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 28

UNIVERSITY OF MARYLAND

Synchronous Timing I

GLOBAL CLOCK (Conventional) EXAMPLE

Parameter Symbol Nominal Skew Jitter

Bit Cell (data period)

Tbit 2.5 ns

Transmitter Rise Time

Tr 1.0 ns

Cable Delay

Twire 6.25 ns 100 ps

Receiver Aperture

Ta 300 ps 100 ps 50 ps

Transmitter Delay

500 ps 150 ps 50 ps

Buffer Stage Delay

B# 250 ps 100 ps 50 ps

6.25ns ± 0.1ns8 data linesTx Rx

B1 B4

B1 B4

400MHzMatched Lines ± 0.1ns (1.5cm)

Page 102: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 29

UNIVERSITY OF MARYLAND

Synchronous Timing I

Sources of uncertainty:

Skew (across multiple lines) of line delay

Jitter of Tx, Rx, and line delay

Skew and jitter of global clock (usually large due to high fan-out)

For best performance, center sampling edge on data eye

Gross timing margin = 1/2 [ Tbit - Tr - Ta] = ± 600ps

= 1/2 Tu?

6.25ns ± 0.1ns8 data linesTx Rx

B1 B4

B1 B4

400MHzMatched Lines ± 0.1ns (1.5cm)

Tbit = 2.5ns

Tbit - Tr = 1.5ns

Ta = 300psMargin = 600ps

Page 103: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 30

UNIVERSITY OF MARYLAND

An Aside …

Why do we simply add up the uncertainties?And why does each effectively count twice?

DATA w/ no skew/jitter

CLOCK w/ no skew/jitter

DATA

early

by 1 time unit

CLOCK

late

by 1 time unit

1 time unit1 time unit

2 time units

Page 104: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 31

UNIVERSITY OF MARYLAND

Synchronous Timing I

TIMING ANALYSIS

Clock Skew: 100ps lines + 100ps B1 + 400ps B4

Clock Jitter: 50ps B1 + 200ps B4[CLKs times 2: one for xmit, one for recv]

Transmitter: 150ps skew, 50ps jitter

Receiver: 100ps skew, 50ps jitter

Data Cable: 100ps skew

TOTAL: 1550ps skew, 600ps jitter (BAD)

6.25ns ± 0.1ns8 data linesTx Rx

B1 B4

B1 B4

400MHzMatched Lines ± 0.1ns (1.5cm)

Page 105: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 32

UNIVERSITY OF MARYLAND

Synchronous Timing I

LIMITS TO LINE DELAY & DATA FREQUENCY

Conventional Wisdom: Line Delay Must Be ODD NUMBER of HALF-BITS … WHY?

For fixed line length and tight margins, this limits the bus speeds that can be used

6.25ns ± 0.1ns8 data linesTx Rx

B1 B4

B1 B4

400MHzMatched Lines ± 0.1ns (1.5cm)

0half-bits

1 2 3 4 5 6 7 8

Page 106: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 33

UNIVERSITY OF MARYLAND

Synchronous Timing I

SUMMARY

GLOBALLY SYNCHRONOUS DESIGN:

For long wires and high speeds, only a handful of frequencies work

Impractical to control uncertainties

Cannot switch frequencies

6.25ns ± 0.1ns8 data linesTx Rx

B1 B4

B1 B4

400MHzMatched Lines ± 0.1ns (1.5cm)

Page 107: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 34

UNIVERSITY OF MARYLAND

Synchronous Timing II

PIPELINED TIMING: BASIC IDEA

Delay the clock by the same amount as data … PLUS half a bit-cell

System will work from DC to maximum theoretical frequency 1/(Tr + Tu + Ta)

Defines new clock domain at receiving end

Page 108: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 35

UNIVERSITY OF MARYLAND

Synchronous Timing II

SOURCES OF UNCERTAINTY

SKEW:

Between CLK & Data line

Fixed differences in FF, Tx, Rx delays

Different CLK delays to different FFs

Aperture offset in Rx FF

Extra offset in the delayed CLK line

JITTER:

In Tx clock

In FF, Tx, Rx delays

Page 109: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 36

UNIVERSITY OF MARYLAND

Synchronous Timing II

OPEN-LOOP PIPELINED EXAMPLE

6.25ns ± 0.1nsRClk

Tx Rx

B1 B4

200MHz

6.25ns ± 0.1ns8 data linesData In

Toggle

Sync

90°

B1Lines need notbe matched

B4

Internal Clock Network

Page 110: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 37

UNIVERSITY OF MARYLAND

Synchronous Timing II

TIMING ANALYSIS

Xmit data: 150ps skew, 50ps jitter

Xmit toggle: 150ps skew, 50ps jitter

Receiver: 100ps skew, 50ps jitter

Data cable: 100ps skew

Toggle clock cable: 100ps skew

TOTAL: 600ps skew, 150ps jitter (BETTER)

6.25ns ± 0.1nsRClk

Tx Rx

B1 B4

200MHz

6.25ns ± 0.1ns8 data linesData In

Toggle

Sync

90°

B1Lines need notbe matched

B4

Internal Clock Network

Page 111: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 38

UNIVERSITY OF MARYLAND

Synchronous Timing III

CLOSED-LOOP PIPELINED EXAMPLE

Variable delay line can cancel ALL SKEW

6.25ns ± 0.1nsRClk

Tx Rx

B1 B4

B1

200MHzLines need not

6.25ns ± 0.1ns8 data linesData In

Toggle

be matchedB4

FSM

90˚

Sync

To rest of receive chip

Bruce Jacob
(almost)
Bruce Jacob
^
Page 112: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 39

UNIVERSITY OF MARYLAND

Synchronous Timing III

COMPONENTS of CONTROL LOOP (DLL)

Rx

FSM

90˚

Sync

PhaseCompare

LoopFilter

VariableRef.Clock

Ref.Data/CK

DelayedClock(Output)

delay line

(Input)

(Input)

(control)

D QB

A

Y

Y

PHASE

AB

0˚ 90˚ 180˚ 270˚ 360˚

DFF as a Phase Comparator

Page 113: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 40

UNIVERSITY OF MARYLAND

Synchronous Timing III

TIMING ANALYSIS

Xmit data: 50ps jitter

Recv data: 50ps jitter

Xmit toggle: 30ps skew data/toggle (0?), 50ps jitter

Recv toggle: 20ps skew (0?), 50ps jitter

Data cable: 100ps skew

Toggle clock cable: 100ps skew

TOTAL: 250ps skew, 200ps jitter (GOOD!)

6.25ns ± 0.1nsRClk

Tx Rx

B1 B4

B1

200MHzLines need not

6.25ns ± 0.1ns8 data linesData In

Toggle

be matchedB4

FSM

90˚

Sync

To rest of receive chip

Page 114: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

ENEE 359aLecture/s 16-19

System Timing

Bruce Jacob

University ofMaryland

ECE Dept.

SLIDE 41

UNIVERSITY OF MARYLAND

Synchronous Timing II & III

LIMITS TO LINE DELAY & DATA FREQUENCY

None.

Only limiter to bus frequency is the rate at which you can successfully transmit & receive data (e.g. Taperture + Tuncertainty + Ttransmit)

6.25ns ± 0.1nsRClk

Tx Rx

B1 B4

B1

200MHzLines need not

6.25ns ± 0.1ns8 data linesData In

Toggle

be matchedB4

FSM

90˚

Sync

To rest of receive chip

6.25ns ± 0.1nsRClk

Tx Rx

B1 B4

200MHz

6.25ns ± 0.1ns8 data linesData In

Toggle

Sync

90°

B1Lines need notbe matched

B4

Internal Clock Network

Page 115: 3456 3; &./0(+/1%blj/CS-590.26/lectures/LectureG.pdf · 0 3456 3;? c 2$ 1/) 3 kd 953a+b=9.89!" &!’ & * & 9 < =;"> =*?> =;@> =;’> =;a> =*a> i-/, i =*k>

CK

Clock domains: CK DQS

Memory Controller

DRAM A DRAM B DRAM C

Time

CMD

DATA A

DATA B

DATA C

Data from A:

Data from B:

Data from C:

Delay through each DRAM equals quarter of an hour on clock

CMD Bus

DATA Bus

Bruce Jacob
Example from the other day (re: question — why doesDDR need a turnaround time but Rambus does not?)