11
Nord Sud Boussoles mettant en évidence la présence du champ magnétique généré par l’aimant droit B B B B B B B A- Magnétisme - Le champ magnétique I- Généralités 1°) Notion de champ magnétique a) Champ Un champ est une grandeur physique scalaire ou bien vectorielle qui peut varier en tout point de l’espace et du temps. Si le champ ne varie pas dans l’espace il est dit uniforme Si le champ ne varie pas dans le temps il est dit stationnaire b) Exemples En météorologie : * le champ des températures est un champ scalaire * le champ des pressions est un champ scalaire * le champ des vitesses des vents est un champ vectoriel * La champ magnétique est un champ vectoriel c) Le champ magnétique. Le champ magnétique est un champ vectoriel (noté B ) créé dans l’espace autour des sources de champ magnétique. Ces sources de champ magnétique B sont les aimants permanents et les courants électriques son unité est le Tesla (T) : B : [T] En fait on peut dire que la matière constituant les aimants permanents (matériaux ferromagnétiques « durs ») est parcourue en permanence par des courants « ordonnés » (ce qui n’est pas le cas des matériaux usuels où ces courants dus essentiellement à l’agitation électronique autour des noyaux, sont désordonnées et ne génèrent en moyenne aucun champ magnétique perceptible). Les lignes de champ magnétique sont des lignes en tout point tangentes à B (comme une trajectoire est une ligne en tout point tangente au vecteur vitesse v ) On peut définir un pole nord et un pole sud pour un aimant permanent. A l’extérieur de l’aimant, le champ magnétique créé par celui-ci semble « sortir du pole nord » et entrer « dans le pole sud ». Expérimentalement, on peut mettre en évidence les lignes de champ magnétique en disposant de petites boussoles autour de la source de champ (elles s’orientent alors dans la direction et le sens du champ magnétique régnant à l’endroit où elles ont été disposées). De la limaille de fer peut aussi jouer ce rôle, chaque particule ferreuse se comportant alors comme une petite boussole. La méthode des boussoles est plus intéressante car elle donne la direction mais aussi le sens du champ magnétique (du sud vers le nord de chaque boussole). De plus la limaille subit d’autres efforts (réaction du support : frottement solide, frottements avec les autres grains de limaille) et au niveau des pôles elle est fortement attirée par l’aimant et vient se coller contre lui en formant des amas. Ceci étant, on voit que même avec les boussoles, on obtient la direction, le sens du champ B en tout point de l’espace mais pas son intensité . Limaille de fer

A- Magnétisme - Le champ magnétique€¦ · Nord Sud Boussoles mettant en évidence la présence du champ magnétique généré par l’aimant droit B B B B B B B A- Magnétisme

  • Upload
    vodien

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Nord Sud

Boussoles mettant en évidence la présence du champ magnétique généré par l’aimant droit

B

B

B

B

B

B

B

A- Magnétisme - Le champ magnétique I- Généralités 1°) Notion de champ magnétique a) Champ Un champ est une grandeur physique scalaire ou bien vectorielle qui peut varier en tout point de l’espace et du temps. Si le champ ne varie pas dans l’espace il est dit uniforme Si le champ ne varie pas dans le temps il est dit stationnaire b) Exemples En météorologie : * le champ des températures est un champ scalaire * le champ des pressions est un champ scalaire * le champ des vitesses des vents est un champ vectoriel * La champ magnétique est un champ vectoriel c) Le champ magnétique.

Le champ magnétique est un champ vectoriel (noté B ) créé dans l’espace autour des sources de champ magnétique.

Ces sources de champ magnétique B sont les aimants permanents et les courants électriques son unité est le

Tesla (T) : B : [T]

En fait on peut dire que la matière constituant les aimants permanents (matériaux ferromagnétiques « durs ») est parcourue en permanence par des courants « ordonnés » (ce qui n’est pas le cas des matériaux usuels où ces courants dus essentiellement à l’agitation électronique autour des noyaux, sont désordonnées et ne génèrent en moyenne aucun champ magnétique perceptible). Les lignes de champ magnétique sont des lignes en

tout point tangentes à B (comme une trajectoire est

une ligne en tout point tangente au vecteur vitesse v ) On peut définir un pole nord et un pole sud pour un aimant permanent. A l’extérieur de l’aimant, le champ magnétique créé par celui-ci semble « sortir du pole nord » et entrer « dans le pole sud ». Expérimentalement, on peut mettre en évidence les lignes de champ magnétique en disposant de petites boussoles autour de la source de champ (elles s’orientent alors dans la direction et le sens du champ magnétique régnant à l’endroit où elles ont été disposées). De la limaille de fer peut aussi jouer ce rôle, chaque particule ferreuse se comportant alors comme une petite boussole. La méthode des boussoles est plus intéressante car elle donne la direction mais aussi le sens du champ magnétique (du sud vers le nord de chaque boussole). De plus la limaille subit d’autres efforts (réaction du support : frottement solide, frottements avec les autres grains de limaille) et au niveau des pôles elle est fortement attirée par l’aimant et vient se coller contre lui en formant des amas.

Ceci étant, on voit que même avec les boussoles, on obtient la direction, le sens du champ B en tout point de l’espace mais pas son intensité.

Limaille de fer

Nord Sud

Zone de « champ fort » Zone de « champ

faible »

Nous admettrons la règle suivante : les zones où les lignes de champ sont resserrées sont des zones de champs intenses les zones où les lignes de champs sont peu resserrées sont des zones de champ faible. Si elles se resserrent le champ augmente si elles s’écartent le champ diminue. Par ailleurs pour les zones où le champ est uniforme, les lignes de champ sont parallèles entre elles, c’est le cas entre les pôles d’un aimant « en U ». * Remarque 1 : Les lignes de champs existent également à l’intérieur de l’aimant bien que ces zones nous soient inaccessibles. A l’intérieur de l’aimant le champ est dirigé du sud vers le nord. A l’extérieur de l’aimant le champ est orienté du nord vers le sud. * Remarque 2 : les lignes de champ magnétique se referment toujours sur elles mêmes. On dit qu’elles forment des boucles de champ (attention souvent on ne voit pas les boucles complètes sur la carte de champ car le champ est rarement représenté à l’intérieur des aimants). * Remarque 3 : à l’extérieur de l’aimant, les zones de champ intense se situent près des pôles, plus on s’éloigne de ceux-ci plus le champ diminue. Le champ est plus fort près des sources. * Remarque 4: on peut appliquer dans l’air au champ magnétique le théorème de superposition : si une source crée individuellement

en M le champ 1B et une autre crée individuellement en M le champ

2B alors en présence des deux sources le champ en M est 21 BB + . d) Rappel sur la force de Lorentz. La force de Lorentz est en quelque sorte une définition du champ magnétique.

Si dans une zone donnée, une charge en mouvement est sensible à la force Bv qFrrr

∧= c’est que règne un champ

magnétique en cette partie de l’espace (en fait la présence d’un champ magnétique est très souvent mise en évidence par des trajectoires circulaires ou hélicoïdales des particules chargées, comme nous l’avons vu dans le chapitre consacré à l’étude mécanique du mouvement des ces dernières)

On sait donc qu’une charge q mobile de vitesse vr

placée dans une région de l’espace où règne un

champ magnétique Br

est soumise à la force : Bv.qFrrr

∧= : force de Lorentz où le module du champ: B= B

s’exprime en Tesla (T). Remarque : 1T correspond à un champ magnétique fort. Exemples

2B

1B 1B 2B M

M M

B

Aimant en U

A l’intérieur d’un aimant en U, le champ est quasi uniforme

B

Bv .eBv .qFrrrrr

∧−=∧=

Impact Impact

Bv .eBvq Frrrrr

∧−=∧=

Canon à électrons

Canon à électrons

Ecran Ecran

Bobine parcourue par un courant continu

Le champ magnétique dévie les électrons.

B

N

S

B Aimant permanent B

v v

Sources de champ magnétique

Comme on le voit dans les exemples précédents, les sources de champs sont bien les aimants permanents et les courants électriques. Remarque : un solénoïde long produit un champ magnétique comparable à celui d’un aimant droit Ici on a accès au champ à l’intérieur de la source (intérieur du solénoïde) ce qui n’est pas le cas avec un aimant permanent. Comme cela a déjà été dit, en réalité un aimant permanent est le siège de courants microscopiques ordonnés. 2°) Notions sur les aimants et sur le magnétisme de la matière en général a) Les comportements des différents matériaux vis à vis du champ magnétique . En l’absence de tout circuit électrique certains matériaux génèrent donc naturellement des champs magnétiques, ce sont les aimants permanents. D’autres types de matériaux peuvent être sensibles au champ magnétique ambiant sans générer eux mêmes de champ réellement perceptible, d’autres types de matériaux enfin, sont insensibles au magnétisme. b) Cas des aimants permanent ou matériaux magnétiques « durs ». ♦ Les matériaux ferromagnétiques « durs » sont donc les matériaux constituant les aimants permanents (alliages Aluminium -Nickel - Cobalt ou Néodyme-Fer-Bore). Ils génèrent des champs magnétiques et sont sensibles aux champs magnétiques extérieurs. On a vu que l’on peut définir un pole nord et un pole sud pour un aimant permanent. *Si l’on casse l’aimant on ne sépare pas le pôle nord du pôle sud, on crée deux aimants. * Lorsque l’on met deux aimants permanents en présence l’un de l’autre, ils ont tendance à pivoter puis à s’attirer, un pole nord de l’un vers un pole sud de l’autre. c) Cas des matériaux magnétique « doux ». Les matériaux ferromagnétiques « doux » ne sont a priori pas des aimants mais ils peuvent s’aimanter faiblement lorsqu’ils sont soumis à un champ magnétique extérieur (fer, cobalt, nickel et quelques alliages métalliques). Ils sont attirés par les aimants permanents et réciproquement les attirent. d) Cas des autres matériaux Les matériaux diamagnétiques et paramagnétiques constituent la majorité de la matière sont quasi insensibles aux champs magnétiques, ils ne sont pas des aimants permanents, ils ne sont pas influencés par les aimants permanents (ou seulement de manière imperceptible).

B

N

S

B

On casse un aimant permanent

B

N S

B

Aimant permanent « coupé » en deux, on obtient deux aimants.

S

N

N

S

N

S

N S

N

S

fil fil fil

fil

Courant i

B

B

B

B

S N

B

B

i (pouce) i

lignes de champ magnétique

Main droite

Courant i Courant i

N

S

B

B B

B

i

B

Règle du tire-bouchon

Pour le champ créé par un fil infini, les lignes de champ sont des cercles dans des plans ⊥ au fil

3°) Le magnétisme et les circuits électriques

a) Champ créé par un fil « infini » ♦ L’expérience montre qu’un fil parcouru par un courant continu dévie une boussole placée à proximité. Le fil parcouru par un courant génère un champ magnétique dans l’espace environnant.

♦ Lorsque l’on change le sens du courant i, on change le sens du champ magnétique B en tout point de l’espace. ♦ La direction et le sens du champ magnétique créés sont compatibles avec le sens du courant par la règle du tire bouchon ou encore la règle de la main droite.

Les lignes de champ magnétique « s’enroulent » autour de leurs sources (les fils parcourus par des courants).

axe de révolution de la spire Δ

Δ

Courant i

S Pôle sud

N Pôle nord

Il y a toujours compatibilité entre les sens de

B et de i via la règle du tire bouchon

♦ Expression du champ magnétique créé par un fil infini en un point quelconque de l’espace :

θπµ= e.

r.2

i.B 0 en coordonnées cylindriques

r = NM distance du point M au fil

µ0 : perméabilité magnétique du vide (ou constante magnétique) µ0 = 4π.10-7 H.m-1(en fait la perméabilité magnétique de l’air est quasiment égale à celle du vide)

B = B est directement proportionnel au courant i qui le crée.

C’est une propriété générale des champs magnétiques créés par des courants. Remarque : Le champ B ne tend pas vers l’infini quand r → 0 car l’expression du champ à l’intérieur du fil est différente de celle qui a été donnée ci dessus Application numérique : Calculer la valeur du champ magnétique régnant à 1cm du fil si ce dernier est parcouru par un courant de 1A.

T10.210.2

1.10.4

r.2

i.B 5

2

70 −

π=π

µ=

Remarque : 1A est un fort courant électrique, pourtant le champ créé ne vaut que 2.10-5T. Pour créer des champs non négligeables, il est préférable de réaliser des bobinages.

b) Champ créé par une spire Comme le champ décroit lorsque l’on s’éloigne du fil, il est intéressant de créer une zone « toujours près du fil » en réalisant dans un premier temps une spire (elle est parcourue par un courant i mais la source électrique n’est pas représentée). Remarques : ♦ Pour orienter correctement les lignes de champ magnétique sur le dessin ci-contre il suffit de comprendre que lorsque l’on se rapproche du fil on doit retrouver les lignes de champ créées par un fil infini. ♦ Comme pour un aimant permanent, on peut définir un pole nord et un pole sud magnétiques pour la spire. Pôles : moyen mnémotechnique ♦ Remarque : on voit que les lignes de champ enlacent les courants qui les ont créées de façon toujours compatible avec la règle du tire-bouchon. ♦ Expression du champ sur l’axe :

)e,u( z=α ; z = OM

( ) z2

30

z

30 e.

²z²R2

²R.i.e.

R2

sin.i.B

+

µ=αµ=

Formule valable pour tous les z (qu’ils soient ≥ 0 ou bien ≤ 0)

B

r

R : rayon du fil

R.2

i.)R(B 0

πµ=

Pôle Nord Pôle Sud

x

y

z

O xe

ye

ze

M

re

θe ze

θ

N

H

r

z

courant i

r

re

θe ze )M(B

M

R

i

O

Avant

Arrière

ze

u

α

P

α

PM

PMu =

sin α = ²z²R

R

+

)M(B

I

I

l

l

R B

B

B

B B B

i i

♦ Application numérique : On considère une spire de rayon 2cm parcourue par un courant de 1A. Calculer le champ magnétique au centre O de la spire.

( )T10.14,310.

10.2.2

10..4

R2

i.

²R2

²R.i.B)O(B 55

2

70

23

00z

−−−

= =π=π=µ=µ== → T10.14,3B 5−= au centre de la spire

Champ faible malgré un fort courant (1A). ♦ Remarque : spire et règle de la main droite : le courant sort du bout de l’index, le champ magnétique est dans le sens du pouce. c) Cas de la bobine plate Pour renforcer encore le champ magnétique, il est intéressant d’associer plusieurs spires et donc de réaliser un bobinage. Ainsi au centre de la spire on est proche de l’ensemble des fils et le champ est « important ». La bobine est dite plate si l <<< R (voir figure ci-contre). ♦Expression du champ sur l’axe de symétrie : La bobine étant plate, on peut dire que tout se passe quasiment comme si toutes les spires étaient centrées en O, alors le théorème de superposition nous permet d’affirmer que le champ en M a pour expression:

( ) z2

30 e.

²z²R2

²R.i..NB

+

µ= avec z = OM

♦ Application numérique: On considère une bobine plate constitué de 500 spires de rayon 2cm chacune, parcourue par un courant de 1A. Calculer le champ magnétique au centre O de la bobine plate.

mT7,15T10.57,110.50010.2.2

1.10..4.500

R2

i..NB)O(B 25

2

70

0z ==π=π=µ== −−−

= → mT7,15)O(B =

Ce champ magnétique est déjà plus significatif. Pour obtenir des champs magnétiques non négligeables il faut donc réaliser des bobinages. d) Cas du solénoïde

Si pour une « bobine non plate », la longueur l n’est pas faible devant le rayon R des spires, on parle alors de solénoïde. Les spires ne peuvent plus être considérées comme toutes centrées sur un même point O. ♦ Lignes de champ magnétique du solénoïde

R

O M

)M(B

B

i

Fer doux feuilleté de perméabilité magnétique relative µr

♦ Champ sur l’axe de symétrie du solénoïde

( ) z210 e.coscos.2

i.N.B α−αµ=

l champ magnétique sur l’axe du solénoïde

♦ Cas du solénoïde « infini » Si l >>> R on peut alors parler de solénoïde « infini » (il s’agit bien sûr, d’un modèle). ♦ Expression du champ sur l’axe du solénoïde « infini » : Dans ce cas α1 = 0 et α2 = π, on obtient alors

( ) ( ) z0

z0 e.)1(1.

2

i.N.e.cos0cos.

2

i.N.B −−µ=π−µ=

ll → z

0 e.i.N.

Bl

µ=

ou encore z0 e.i.n.B µ= où l

Nn = est le nombre de spires par unité de longueur

♦ Expression du champ en tout point de l’espace pour un solénoïde « infini » : En fait on peut démontrer qu’à l’intérieur d’un solénoïde infini le champ magnétique est uniforme. Son expression égale partout égale à l’expression du champ sur l’axe :

z0 e.

i.N.B

l

µ= ou encore z0 e.i.n.B µ= où l

Nn = en tout point à l’intérieur d’un solénoïde infini.

On peut aussi démontrer que le champ est nul à l’extérieur d’un solénoïde infini. Soit en repérant le point M où l’on veut exprimer le champ en coordonnées cylindriques d’axe Oz :

Solénoïde infini : z0 e.

i.N.B

l

µ= pour r < R et 0B = pour r > R

Remarque : un solénoïde infini n’existe pas mais si R << l on admet que l’on peut utiliser la formule du solénoïde infini

Solénoïde vérifiant R << l : z0 e.

i.N.B

l

µ≈ pour r < R et 0B ≈ pour r > R

♦ Application numérique: On considère un solénoïde long assimilable à un solénoïde infini constitué de 1000 spires de rayon 2cm chacune, de longueur l = 0,5 m parcouru par un courant de 1A. Calculer le champ magnétique à l’intérieur du solénoïde. R << l on admet que l’on peut utiliser la formule du solénoïde infini

mT5,2T10.810.800010.50

1.10..4.1000i..NBB 47

2

70

0z =π=π=π=µ== −−−

=l

partout à l’intérieur du solénoïde.

♦ Remarque : ajout d’un noyau de fer doux

En ajoutant un noyau de fer on augment la valeur de B

On a alors à l’intérieur zr0 e.

i.N..B

l

µµ≈ où µr est la perméabilité magnétique relative du noyau de fer

♦ Remarque : * règle de ma main droite (le courant sort du bout des doigts, le champ magnétique est dans le sens du pouce) *règle du tire bouchon : compatibilité des sens de

I et de B .

R

x

z

O

α1 α2

y

I

y

H

r

θ

N re

θe

ϕe O

x

z

ϕ

R

I

I I

ze

lignes de champ dans tout plan φ = constante

P )P(B

θ

r

e) Champ créé en tout point de l’espace par une spire Pour une simple spire de rayon R parcourue par un courant I, nous avons donné le champ sur l’axe de symétrie. On peut aussi exprimer le champ en tout point de l’espace. Il est intéressant pour cela de se placer en coordonnées sphériques. Cette expression est complexe mais on a une expression approchée « assez simple » dès que l’on s’éloigne de la spire. Soit P (r, θ, φ) un point quelconque de l’espace, alors l’expression du champ loin de la spire s’écrit :

θθ+θ= e.sin.r.4

²R.I.µe.cos.

r.2

²R.I.µ)P(B

30

r30 (en sphériques, valable pour r >> R, spire dans la plan Oxy)

Remarque : Par symétrie il est logique que )P(B n’ait pas de composante sur ϕe . II- Moment magnétique associé à une source de champ magnétique

1°) Moment magnétique associé à un circuit filiforme

a) Vecteur surface associé à un contour Soit un circuit plan (contour Γ), parcouru par un courant i. On oriente Γ dans le sens du courant i. La surface définie par le contour Γ est notée Σ

On nomme S le vecteur surface associé à Γ.

Sest perpendiculaire au plan contenant Γ, orienté dans un sens compatible avec l’orientation de Γ.

La norme du vecteur surface est égale à la surface Σ → Σ=S .

b) Moment magnétique associé à un circuit Si Γ est un circuit parcouru par un courant I (Γ orienté dans le sens du courant),

alors S.IM = est le moment magnétique associé au circuit Γ.

M s’exprime donc en Ampère par mètre carré [A.m²]

2°) Champ magnétique à grande distance d’un circuit a) Cas de la spire

On considère une spire de centre O et d’axe de symétrie (O, ze )

Ici nous avons : ze.I².R.M π= or, nous avons vu qu’en un point P(r,θ, φ) de l’espace :

θθ+θ= e.sin.r.4

²R.I.µe.cos.

r.2

²R.I.µ)P(B

30

r30 on peut donc écrire : θθ

π+θ

π= e.sin.

r..4

M.µe.cos.

r..2

M.µ)P(B

30

r30

Br = θπ

=θπ

=θ cos.r..4

M.2.µcos.

r..2

M.µcos.

r.2

²R.I.µ3

03

03

0 en notant M = M [A.m²]

Bθ = θπ

=θ sin.r..4

M.µsin.

r.4

²R.I.µ3

0

3

0 → θθπ

+θπ

= e.sin.r..4

M.µe.cos.

r..2

M.µ)P(B

30

r30 Expression valable en P, loin de la source, en

coordonnées sphériques avec ze.MM = moment magnétique du circuit.

Contour Γ Σ

S.IM = ze

I

ze..IS.IM Σ==

I

Σ

ze

Contour Γ

S

Contour Γ

Σ

S

Contour Γ

N géographique

S géographique

I

M

N géographique

S géographique

N

N

S

S

b) Cas du solénoïde On peut dire ici que chaque spire a un moment magnétique

ze.I².R.M π= et appliquer le théorème de superposition

(le moment magnétique du solénoïde est la somme vectorielle des moments magnétiques associés à chaque spire). Si la bobine longue comprend N spires, nous obtenons

ze.I².R..NM π=

On a alors en P, loin du solénoïde :

θθπ

+θπ

= e.sin.r..4

M.µe.cos.

r..2

M.µ)P(B

30

r30

Expression valable loin de la source, en coordonnées

sphériques avec ze.MM = .

c) Cas général

Le résultat: θθπ

+θπ

= e.sin.r..4

M.µe.cos.

r..2

M.µ)P(B

30

r30

se généralise à un tout circuit formant des boucles et dont

le moment magnétique total est M . Pour connaître la valeur du champ à grande distance, il suffit de calculer

M (puis M = M).

Attention la direction de M est malgré tout importante car c’est elle qui dicte les caractéristiques de la base sphérique et donc les sens et les directions des lignes de champ. Ainsi, loin des sources, le champ magnétique et les lignes de champ prennent les mêmes formes quel que soit le circuit. Remarque : nous avons cette situation pour tous les circuits formant des boucles de courant et de moment magnétique non nul. Ce n’est pas le cas par exemple, du fil infini pour qui le moment magnétique ne peut pas être défini. La topographie de son champ est alors bien différente : d) Cas de la terre La terre est composée d’un noyau de fer liquide dans lequel des mouvements de charges créent le champ magnétique terrestre. On peut modéliser ce champ en considérant un moment magnétique associé à la terre. On peut aussi assimiler la terre à un aimant équivalent. Attention, le pôle nord magnétique est proche du pôle sud géographique et le pôle sud magnétique est proche du pôle nord géographique

Champs magnétiques créés par une bobine plate et par un solénoïde

Sens des courants et des moments magnétiques de ces circuits

M M

i i

R

ze².R..I.NS.I.NM π== I

I

M M

Origine O de la base sphérique : au centre de la source

Axe O ze la base sphérique://à M et de même sens que M

N S S N

3°) Moment magnétique associé à un aimant permanent. a) Notion d’aimantation Tout comme on associe un moment magnétique à un circuit parcouru par un courant,

on peut définir le moment magnétique d’un aimant. Ce vecteur M s’exprimera aussi en A.m² et sera dirigé du pôle sud de l’aimant vers son pôle nord. Pour le déterminer, il faut connaitre l’aimantation A de cet aimant ainsi que son volume V.

On a alors V.MM A== L’aimantation A dépend du matériau constituant l’aimant.

b) Champ créé par un aimant permanent Une fois connu le moment magnétique de l’aimant, on peut obtenir le champ « loin » de celui-ci grâce à la formule déjà utilisée pour les circuits parcourus par des courants :

Le résultat: θθπ

+θπ

= e.sin.r..4

M.µe.cos.

r..2

M.µ)M(B

30

r30 se généralise aux aimants permanents dont le moment

magnétique total est M . Expression valable loin de la source (aimant ici), en coordonnées sphériques avec ze.MM = .

c) Application * Donner l’unité de A. Nous avons M = A.V avec M [A.m²] → A : [A.m-1] * On considère un aimant constitué de l’alliage Néodyme Fer Bore. On mesure Donner la valeur du moment magnétique de l’aimant de section carrée (coté a = 1cm) et de longueur l =3 cm.

Sachant que l’on mesure un champ de 0,05 T à 10cm de la face nord de l’aimant sur l’axe Oze (point P)

En déduire la valeur du moment magnétique de cet aimant en alliage Néodyme Fer Bore puis celle de son aimantation A. On utilise la formule

θθπ

+θπ

= e.sin.r..4

M.µe.cos.

r..2

M.µ)P(B

30

r30 . EN P, nous avons θ = 0 donc r3

0 e.r..2

M.µ)P(B

π= (cosθ = 1 et sinθ = 0)

mais en P : zr ee = → z30 e.

r..2

M.µ)P(B

π= →

30

r..2

M.µ)P(B

π= → ²m.A500

10.4

1,0..2.1,0

µ

r..2).P(BM

7

3

0

3

π=π= −

²m.A500M = . A = 8

22210.67,1

10.3.10.10

500

V

M == −−− → A 18 m.A10.67,1 −=

O

P

ze

N

S

M

Aimant permanent

Exemple du fil « infini »

* Avec un aimant de même géométrie constitué de magnétite, on mesure un champ de 0,015T. Donner la valeur numérique du moment magnétique et de l’aimantation de la magnétite.

On obtient ²m.A150M = → A 17 m.A10.5 −=

* On considère une bobine carrée plate comprenant N = 1000 spires et de côté a = 1cm centrée sur O. Quelle doit être l’intensité i du courant électrique qui la parcourt pour qu’elle produise le même champ que l’aimant permanent en alliage Néodyme Fer Bore au point P situé à 10 cm du centre de la spire ? On veut M = 500 A.m² or nous avons M = i.S.N où S est la section de la spire → M = i.a².N →

A5001000².01,0

500

N².a

Mi === → i = 500A courant très fort !!!

Les aimants permanents créent de manière générale des champs magnétiques plus grands que les circuits. En revanche un champ créé par un circuit peut être facilement « commandé ». Par exemple : pour annuler le champ on annule le courant, pour inverser le champ, on inverse le courant. Ce ne sera pas le cas des champs créés par des aimants permanents. III- Invariances - Ordres de grandeurs des champs usuels 1°) Invariances de la source de champ

a) Source invariante par rotation Nous n’avons jusqu’ici présenté que des cartes de champs magnétiques bidimensionnelle. Notons donc que si la source de champ possède une invariance par symétrie autour d’un axe, la carte de champ possède également cette invariance. Les cartes de champ sont donc identiques dans tous les plans contenant l’axe de symétrie de la source.

b) Source invariante par translation Si la source du champ magnétique est invariante par translation le long d’un axe alors les cartes de champ possèdent également cette invariance par translation. 2°) Ordres de grandeurs à connaitre Champ à 5 cm d’un fil ∞ parcouru par un courant de 1A

4.10-6 T

Champ au centre d’une spire circulaire de rayon 5cm parcourue par un courant de 1A

10-5T

Champ magnétique terrestre

5.10-5T

Champ à la surface de l’aiguille aimantée d’une boussole

10-4T

Champ sur l’axe de solénoïde de 1000 spires, de longueur 10cm, de courant 1A

10-2T

Champ à la surface d’un aimant de bonne qualité

0,1T à 1T

Champ au voisinage d’un électroaimant (solénoïde + noyau de fer doux)

1 à 10 T

Champ créé pour réaliser une IRM

0,1T a 20T (aimant supraconducteur)

Plan 2 Plan 1

Exemple de la spire

P O

ze