4
C. R. Acad. Sci. Paris, Ser. I 340 (2005) 301–304 http://france.elsevier.com/direct/CRASS1/ Probability Theory/Mathematical Physics A (one-dimensional) free Brunn–Minkowski inequality Michel Ledoux Institut de mathématiques, université Paul-Sabatier, 31062 Toulouse, France Received 28 October 2004; accepted after revision 17 December 2004 Available online 11 January 2005 Presented by Gilles Pisier Abstract We present a one-dimensional version of the functional form of the geometric Brunn–Minkowski inequality in free (non-commutative) probability theory. The proof relies on matrix approximation as used recently by Biane and Hiai et al. to establish free analogues of the logarithmic Sobolev and transportation cost inequalities for strictly convex potentials, that are recovered here from the Brunn–Minkowski inequality as in the classical case. The method is used to extend to the free setting the Otto–Villani theorem stating that the logarithmic Sobolev inequality implies the transportation cost inequality. To cite this article: M. Ledoux, C. R. Acad. Sci. Paris, Ser. I 340 (2005). 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. Résumé Une inégalité (uni-dimensionnelle) de Brunn–Minkowski libre. Nous présentons une version uni-dimensionnelle de la forme fonctionnelle de l’inégalité géométrique de Brunn–Minkowski en théorie des probabilités libres. L’argument s’appuie sur l’approximation matricielle déjà mise en oeuvre récemment par Biane et Hiai et al. pour établir les analogues libres des inégalités de Sobolev logarithmique et de coût du transport pour des potentiels strictement convexes, qui sont ici déduits de l’inégalité de Brunn–Minkowski comme dans le cas classique. La méthode permet, de la même façon, d’étendre au cadre libre le théorème d’Otto–Villani assurant que l’inégalité de Sobolev logarithmique entraîne l’inégalité de transport. Pour citer cet article : M. Ledoux, C. R. Acad. Sci. Paris, Ser. I 340 (2005). 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. 1. Brunn–Minkowski inequality and random matrix approximation In its functional form (known as the Prékopa–Leindler theorem), the Brunn–Minkowski inequality indicates that whenever θ (0, 1) and u 1 , u 2 , u 3 are non-negative measurable functions on R n such that u 3 ( θx + (1 θ)y ) u 1 (x) θ u 2 (y) 1θ for all x,y R n , E-mail address: [email protected] (M. Ledoux). 1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2004.12.017

A (one-dimensional) free Brunn–Minkowski inequality

Embed Size (px)

Citation preview

Page 1: A (one-dimensional) free Brunn–Minkowski inequality

1/

n freei et al., that aree setting

e la’appuieibres deséduits deadre libre

s that

C. R. Acad. Sci. Paris, Ser. I 340 (2005) 301–304http://france.elsevier.com/direct/CRASS

Probability Theory/Mathematical Physics

A (one-dimensional) free Brunn–Minkowski inequality

Michel Ledoux

Institut de mathématiques, université Paul-Sabatier, 31062 Toulouse, France

Received 28 October 2004; accepted after revision 17 December 2004

Available online 11 January 2005

Presented by Gilles Pisier

Abstract

We present a one-dimensional version of the functional form of the geometric Brunn–Minkowski inequality i(non-commutative) probability theory. The proof relies on matrix approximation as used recently by Biane and Hiato establish free analogues of the logarithmic Sobolev and transportation cost inequalities for strictly convex potentialsrecovered here from the Brunn–Minkowski inequality as in the classical case. The method is used to extend to the frethe Otto–Villani theorem stating that the logarithmic Sobolev inequality implies the transportation cost inequality.To cite thisarticle: M. Ledoux, C. R. Acad. Sci. Paris, Ser. I 340 (2005). 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une inégalité (uni-dimensionnelle) de Brunn–Minkowski libre. Nous présentons une version uni-dimensionnelle dforme fonctionnelle de l’inégalité géométrique de Brunn–Minkowski en théorie des probabilités libres. L’argument ssur l’approximation matricielle déjà mise en œuvre récemment par Biane et Hiai et al. pour établir les analogues linégalités de Sobolev logarithmique et de coût du transport pour des potentiels strictement convexes, qui sont ici dl’inégalité de Brunn–Minkowski comme dans le cas classique. La méthode permet, de la même façon, d’étendre au cle théorème d’Otto–Villani assurant que l’inégalité de Sobolev logarithmique entraîne l’inégalité de transport.Pour citer cetarticle : M. Ledoux, C. R. Acad. Sci. Paris, Ser. I 340 (2005). 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Brunn–Minkowski inequality and random matrix approximation

In its functional form (known as the Prékopa–Leindler theorem), the Brunn–Minkowski inequality indicatewheneverθ ∈ (0,1) andu1, u2, u3 are non-negative measurable functions onR

n such that

u3(θx + (1− θ)y

)� u1(x)θu2(y)1−θ for all x, y ∈ R

n,

E-mail address: [email protected] (M. Ledoux).

1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.doi:10.1016/j.crma.2004.12.017

Page 2: A (one-dimensional) free Brunn–Minkowski inequality

302 M. Ledoux / C. R. Acad. Sci. Paris, Ser. I 340 (2005) 301–304

es for10,15]).11]. The, using8]. Weandomnction

he

ality

covered

then ∫u3 dx �

(∫u1 dx

)θ(∫u2 dx

)1−θ

.

The Brunn–Minkowski inequality has been used recently in the investigation of functional inequalitistrictly log-concave densities such as logarithmic Sobolev or transportation cost inequalities (cf. e.g. [The pertinence of Hamilton–Jacobi equations in this investigation has been particularly emphasized in [5,aim of this Note is to proceed to a similar scheme in the context of one-dimensional free probability theoryrandom matrix approximation following the recent investigations by Biane [2] and Hiai, Petz and Ueda [7,rely specifically on the large deviation asymptotics of spectral measures of unitary invariant Hermitian rmatrices put forward by Voiculescu [16] and Ben Arous and Guionnet [1] (cf. [6]). Given a continuous fuQ :R → R such that lim|x|→∞ |x|e−εQ(x) = 0 for everyε > 0, set

Z̃N (Q) =∫A

∆N(x)2 e−N∑N

k=1 Q(xk) dx

whereA = {x1 < x2 < · · · < xN } ⊂ RN and∆N(x) = ∏

1�k<��N(x� − xk) is the Vandermonde determinant. Tlarge deviation theorem of [16] and [1] (see also [9]) indicates that

limN→∞

1

N2logZ̃N (Q) = EQ(νQ) (1)

where, for every probability measureν on R,

EQ(ν) =∫∫

log|x − y|dν(x)dν(y) −∫

Q(x)dν(x)

is the weighted energy integral with extremal (compactly supported) measureνQ maximizingEQ (cf. [13,6]). (For

the choice ofQ(x) = x2

2 , νQ is the semicircle law.)Let U1, U2, U3 be real-valued continuous functions onR such that, for everyε > 0, lim|x|→∞ |x|e−εUi(x) = 0,

i = 1,2,3. Set

ui(x) = ∆N(x)2 e−N∑N

k=1 Ui(xk)1A(x), x ∈ RN, i = 1,2,3.

Since − log∆N is convex on the convex setA, assuming that, for someθ ∈ (0,1) and all x, y ∈ R,U3(θx + (1 − θ)y) � θU1(x) + (1 − θ)U2(y), the Brunn–Minkowski theorem applies tou1, u2, u3 on R

N toyield

Z̃N (U3) � Z̃N (U1)θ Z̃N(U2)

1−θ .

Taking the limit (1) immediately yields the following free analogue of the functional Brunn–Minkowski inequon R.

Theorem. Let U1, U2, U3 be real-valued continuous functions on R such that, for every ε > 0,lim|x|→∞ |x|e−εUi(x) = 0, i = 1,2,3. Assume that for some θ ∈ (0,1) and all x, y ∈ R,

U3(θx + (1− θ)y

)� θU1(x) + (1− θ)U2(y).

Then

EU3(νU3) � θEU1(νU1) + (1− θ)EU2(νU2).

The free analogue of Shannon’s entropy power inequality due to Szarek and Voiculescu [14] may be realong the same lines.

Page 3: A (one-dimensional) free Brunn–Minkowski inequality

M. Ledoux / C. R. Acad. Sci. Paris, Ser. I 340 (2005) 301–304 303

l case,] andl strictly

sm,,

dual

onvex

samerly to

als (cf.

n

ly

e

2. Free logarithmic Sobolev and transportation cost inequalities

We next show how the preceding free Brunn–Minkowski inequality may be used, following the classicato recapture both the free logarithmic Sobolev inequality of Voiculescu [17] (in the form put forward in [3extended in [2]) and the free quadratic transportation cost inequality of [4,8] for quadratic and more generaconvex potentialsQ.

Let Q be a real-valued continuous function onR such that lim|x|→∞ |x|e−εQ(x) = 0 for everyε > 0. For ν,probability measure onR, define the free entropy ofν (with respect toνQ) [17,3,2] as

Σ̃(ν | νQ) = EQ(νQ) − EQ(ν) (� 0).

If ϕ :R → R is bounded and continuous, it is convenient to set belowjQ(ϕ) = EQ−ϕ(νQ−ϕ) − EQ(νQ). For everyprobability measureν on R,

jQ(ϕ) �∫

ϕ dν + EQ(ν) − EQ(νQ) =∫

ϕ dν − Σ̃(ν | νQ)

with equality forν = νQ−ϕ . In particularjQ(ϕ) �∫

ϕ dνQ.Assume now that (Q is C1 and such that)Q(x) − c

2x2 is convex for somec > 0. For bounded continuoufunctionsf,g :R → R such thatg(x) � f (y) + c

2|x − y|2, we may apply the free Brunn–Minkowski theoreas in the classical case (cf. [11]), toU1 = Q − (1 − θ)g, U2 = Q + θf and U3 = Q. Thus, by the theoremjQ((1− θ)g) + 1−θ

θjQ(−θf ) � 0. Asθ → 0, it follows that for every probability measureν,∫

g dν −∫

f dνQ � Σ̃(ν | νQ)

(in other wordsjQ(g) �∫f dνQ). By the Monge–Kantorovitch–Rubinstein theorem (cf. e.g. [15]), this is the

form of the free quadratic transportation cost inequality

W2(ν, νQ)2 � 1

cΣ̃(ν | νQ) (2)

recently put forward in [4] for the semicircle law associated to the quadratic potential, and in [8] for strictly cpotentials (whereW2(ν, νQ) is the Wasserstein distance betweenν andνQ).

The free logarithmic Sobolev inequality of [17], extended to strictly convex potentials in [2], follows in theway from the free Brunn–Minkowski theorem. We follow [2] where the matrix approximation is used similathis task. Fix a probability measureν with compact support and smooth densityp on R. Define aC1 functionR on R such thatR(x) = 2

∫log|x − y|dν(y) on supp(ν), R(x) = Q(x) for |x| large, and such thatR(x) �

2∫

log|x − y|dν(y) everywhere. By the uniqueness theorem of extremal measures of weighted potenti[13]), it is easily seen that the energy functionalER is maximized at the unique pointνR = ν. Define thenf , withcompact support, byf = Q−R +C where the constantC (= EQ(νQ)−ER(νR)) is chosen so thatjQ(f ) = 0. Letgt (x) = infy∈R[f (y)+ 1

2t(x −y)2], t > 0,x ∈ R, be the infimum-convolution off with the quadratic cost, solutio

of the Hamilton–Jacobi equation∂tgt + 12g′

t2 = 0 with initial conditionf . As in the classical case (cf. [11]), app

the Brunn–Minkowski theorem toU1 = Q − 1θgt , t = 1−θ

cθ, U2 = Q, U3 = Q − f , to get thatjQ((1 + ct)gt ) �

jQ(f ) = 0 for everyt > 0. In particular therefore,∫(1 + ct)gt dν � Σ̃(ν | νQ), and, sinceν = νR = νQ−f , as

t → 0,

Σ̃(ν | νQ) =∫

f dν � 1

2c

∫f ′2 dν.

Now, f ′ = Q′ − Hp whereHp(x) = p.v.∫ 2p(y)

x−ydy is the Hilbert transform (up to a multiplicative factor) of th

(smooth) densityp of ν. Hence the preceding amounts to the free logarithmic Sobolev inequality

Σ̃(ν | νQ) � 1∫

[Hp − Q′]2 dν = 1I(ν | νQ) (3)

2c 2c

Page 4: A (one-dimensional) free Brunn–Minkowski inequality

304 M. Ledoux / C. R. Acad. Sci. Paris, Ser. I 340 (2005) 301–304

the Otto–

ys

d as

gh.

Related

11 (2001)

athemat-

30 (2004)

ety, 2001.nd Scaling

al. 173

n. Math.

hys. 155

Hilbert

as established in [2], where I(ν | νQ) is known as the free Fisher information ofν with respect toνQ [17,3]. Carefulapproximation arguments to reach arbitrary probability measuresν (with density in L3(R)) are described in [7].

The Hamilton–Jacobi approach may be used to prove, as in the classical case, the free analogue ofVillani theorem [12] (cf. [15,5,11]) stating that, for a given probability measure dµ = e−Q dx on R (with a C1

potentialQ such that lim|x|→∞ |x|e−εQ(x) = 0 for everyε > 0), the free logarithmic Sobolev inequality (3) alwaimplies the free transportation cost inequality (2). To this task, given a compactly supportedC1 functionf on R

and a ∈ R, set jt = jQ((a + ct)gt ) and ft = (a + ct)gt − jt so thatjQ(ft ) = 0. Denote for simplicity byνt

the extremal measure for the potentialQ − ft . Then the logarithmic Sobolev inequality (3) can be expresse∫ft dνt � 1

2c

∫f ′

t2 dνt . In other words,

c(a + ct)

∫gt dνt − cjt � −(a + ct)2

∫∂tgt dνt .

On the support ofνt (cf. [13]),

2∫

log|x − y|dνt (y) = Q − ft + Ct

where Ct = ∫∫log|x − y|dνt dνt + EQ−ft (νt ). Since jQ(ft ) = EQ−ft (νt ) − EQ(νQ) = 0, it follows that∫

∂tft dνt = 0. Therefore,cjt � (a + ct)∂t jt and hence(a + ct)−1jt is non-increasing int . In particular,1

a+1j1/c � 1aj0 which for a = 0 amounts tojQ(g) �

∫f dνQ, that is the dual form of (2). This approach throu

the Hamilton–Jacobi equations has some similarities with the use of the (complex) Burgers equation in [4]

Acknowledgements

I thank Philippe Biane for useful comments and references.

References

[1] G. Ben Arous, A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s noncommutative entropy, Probab. TheoryFields 108 (1997) 517–542.

[2] P. Biane, Logarithmic Sobolev inequalities, matrix models and free entropy, Acta Math. Sinica 19 (2003) 1–11.[3] P. Biane, R. Speicher, Free diffusions, free entropy and free Fisher information, Ann. Inst. H. Poincaré 37 (2001) 581–606.[4] P. Biane, D. Voiculescu, A free probability analogue of the Wasserstein distance on the trace-state space, Geom. Funct. Anal.

1125–1138.[5] S. Bobkov, I. Gentil, M. Ledoux, Hypercontractivity of Hamilton–Jacobi equations, J. Math. Pures Appl. 80 (2001) 669–696.[6] F. Hiai, D. Petz, The Semicircle Law, Free Random Variables and Entropy, Math. Surveys and Monographs, vol. 77, American M

ical Society, 2000.[7] F. Hiai, D. Petz, Y. Ueda, Inequalities related to free entropy derived from random matrix approximation (2003).[8] F. Hiai, D. Petz, Y. Ueda, Free transportation cost inequalities via random matrix approximation, Probab. Theory Related Fields 1

199–221.[9] K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J. 91 (1998) 151–204.

[10] M. Ledoux, The Concentration of Measure Phenomenon, Math. Surveys and Monographs, vol. 89, American Mathematical Soci[11] M. Ledoux, Measure concentration, transportation cost, and functional inequalities, Summer School on Singular Phenomena a

in Mathematical Models, Bonn, 2003.[12] F. Otto, C. Villani, Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality, J. Funct. An

(2000) 361–400.[13] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., vol. 316, Springer, 1997.[14] S. Szarek, D. Voiculescu, Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality, Commu

Phys. 178 (1996) 563–570.[15] C. Villani, Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, American Mathematical Society, 2003.[16] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory, I, Commun. Math. P

(1993) 71–92.[17] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory, V. Noncommutative

transforms, Invent. Math. 132 (1998) 189–227.