43
A Semidefinite Programming A Semidefinite Programming Formulation of Quantum and Formulation of Quantum and Classical Oracle Problems Classical Oracle Problems Mike Mullan and Emanuel Mike Mullan and Emanuel Knill Knill University of Colorado at Boulder and the University of Colorado at Boulder and the National Institute of Standards and Technology National Institute of Standards and Technology

A Semidefinite Programming Formulation of Quantum and

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

A S

em

ide

fin

ite P

rog

ram

min

g

A S

em

ide

fin

ite P

rog

ram

min

g

Fo

rmu

lati

on

of

Qu

an

tum

an

d

Fo

rmu

lati

on

of

Qu

an

tum

an

d

Cla

ssic

al

Ora

cle

Pro

ble

ms

Cla

ssic

al

Ora

cle

Pro

ble

ms

Mik

e M

ulla

n a

nd E

manuel

Mik

e M

ulla

n a

nd E

manuel K

nill

Knill

Univ

ers

ity o

f C

olo

rado a

t B

ould

er

and the

Univ

ers

ity o

f C

olo

rado a

t B

ould

er

and the

National In

stitu

te o

f S

tandard

s a

nd T

echnolo

gy

National In

stitu

te o

f S

tandard

s a

nd T

echnolo

gy

Ou

tlin

eO

utl

ine

1.

1.

Se

mid

efin

ite

Pro

gra

mm

ing

Fo

rmu

latio

n o

f Q

ua

ntu

m

Se

mid

efin

ite

Pro

gra

mm

ing

Fo

rmu

latio

n o

f Q

ua

ntu

m

Co

mp

uta

tio

n

Co

mp

uta

tio

n [

2,3

][2

,3]

••C

an c

alc

ula

te

Ca

n c

alc

ula

te e

xact

exact

err

or

pro

bab

ilities f

or

a q

ua

ntu

m

err

or

pro

bab

ilities f

or

a q

ua

ntu

m

com

pute

r optim

ally

so

lvin

g a

rbitra

ry q

uantu

m o

racle

com

pute

r optim

ally

so

lvin

g a

rbitra

ry q

uantu

m o

racle

pro

ble

ms

pro

ble

ms

2.

2.

Re

mo

te S

tate

Pre

pa

ratio

n,

an

d a

Ge

ne

raliz

ed

R

em

ote

Sta

te P

rep

ara

tio

n,

an

d a

Ge

ne

raliz

ed

O

bje

ctive

Ob

jective

3.

3.

Re

str

icte

d C

om

pu

tatio

nR

estr

icte

d C

om

pu

tatio

n

••D

ecoh

ere

nce a

nd a

na

lyzin

g a

co

mputa

tion s

ubje

ct

to

Decoh

ere

nce a

nd a

na

lyzin

g a

co

mputa

tion s

ubje

ct

to

no

ise

no

ise

••O

ptim

al alg

orith

ms u

sin

g r

educed

quantu

m r

esourc

es

Optim

al alg

orith

ms u

sin

g r

educed

quantu

m r

esourc

es

(briefly)

(briefly)

4.

4.

Qu

an

tum

Clo

cks

Qu

an

tum

Clo

cks

Qu

an

tum

Alg

ori

thm

s, G

en

eri

cally

Qu

an

tum

Alg

ori

thm

s, G

en

eri

cally

Qu

an

tum

Qu

ery

Alg

ori

thm

:A

rbitra

ry u

nitary

opera

tors

inte

rspers

ed w

ith o

racle

opera

tors

acting o

n s

om

e in

itia

l

sta

te, fo

llow

ed b

y a

measure

men

t

Sem

idefi

nit

e P

rog

ram

min

g:

Lin

ear

pro

gra

mm

ing w

ith

sem

idefin

ite c

onstr

ain

ts

| ψ(t)〉=UtΩUt−1Ω...ΩU0| ψ(0)〉

Go

al: M

inim

ize t

he n

um

ber

of

queri

es o

f a q

ua

ntu

m q

uery

alg

ori

thm

via

a g

en

era

lizatio

n o

f A

mba

inis

’advers

ary

meth

od

[1]

(and r

ecent

pro

gre

ss g

iven

in [

8])

Try

to e

xpre

ss a

quan

tum

query

alg

ori

thm

as a

sem

idefin

ite

pro

gra

m (

SD

P) :

Gro

ver

Gro

ver ’’

s A

lgo

rith

ms A

lgo

rith

m

0000

1100

U=

Invers

ion a

bo

ut

the M

ean

1.

2.

3.

4.

5.|ψ(0)〉=|0〉

U0|ψ(0)〉=1 2(|0〉+

|1〉+

|2〉+

|3〉)

U1ΩU0|ψ(0)〉=|1〉

Ω3

Ω0Ω1Ω2

ΩU0|ψ(0) 〉=1 2( |0〉−

|1〉+

|2〉+

|3〉)

ΩU0|ψ(0) 〉=1 2

( (−1)Ω

0|0〉+

( −1)Ω

1|1〉+

( −1)Ω2|2〉+

( −1)Ω3|3〉)

ai→

−ai+2∗〈a〉

Go

al: S

earc

h –

Fin

d the m

ark

ed e

lem

ent

Ω|ψ(t)〉=∑ i

aiΩ|i〉→∑ i

ai(−1)Ωi|i〉

Oth

er

Ora

cle

s A

re P

ossib

leO

ther

Ora

cle

s A

re P

ossib

le

0000

0011

0000

1100

We c

an a

lso h

ave

: 1100

0000

0011

0000

Assum

e e

ach o

racle

can b

e g

ive

n t

o o

ur

com

pute

r w

ith s

om

e p

roba

bili

ty

New

Go

al: F

ind t

he m

ark

ed e

lem

ent

Identify

the a

pplie

d o

racle

Ω(0)

Ω(1)

Ω(2)

Ω(3)

ρO=∑ x,y

√px√py|x〉〈y|

Q: Q

uerier

syste

m

ρQ=∑ i,j

ai,j|i〉〈j|

O: O

racle

syste

m

Pure

sta

te o

ver

possib

le o

racle

s

Th

e C

om

pu

ter

Th

e C

om

pu

ter

A:

Ancill

a

ρO=∑ x,y

√px√py|x〉〈y|

Q: Q

uerier

syste

m

ρQ=∑ i,j

ai,j|i〉〈j|

O: O

racle

syste

m

ΩOQ=∑ x

|x〉〈x|ΩQ(x)

Pure

sta

te o

ver

possib

le o

racle

s

Th

e C

om

pu

ter

Th

e C

om

pu

ter

A:

Ancill

a

ρO=∑ x,y

√px√py|x〉〈y|

Q: Q

uerier

syste

m

ρQ=∑ i,j

ai,j|i〉〈j|

O: O

racle

syste

m

ΩOQ=∑ x

|x〉〈x|ΩQ(x)

Pure

sta

te o

ver

possib

le o

racle

s

Th

e C

om

pu

ter

Th

e C

om

pu

ter

A:

Ancill

a

ΩOQ(|x〉O⊗|ψ〉Q)→(|x〉O⊗ΩQ(x)|ψ〉Q)

Th

e In

itia

l Jo

int

Den

sit

y M

atr

ixT

he In

itia

l Jo

int

Den

sit

y M

atr

ix

ρOQ(0)=∑ x,y

∑ i,j

√px√py|x〉〈y|⊗

ai,j|i〉〈j|

ρOQ(0)=

√p0√p0

(a0,0

a0,1

a1,0

. ..

)√p0√p1

(a0,0

a0,1

a1,0

. ..

)

√p1√p0

(a0,0

a0,1

a1,0

. ..

). ..

ρQ(0)

Th

e In

itia

l Jo

int

Den

sit

y M

atr

ixT

he In

itia

l Jo

int

Den

sit

y M

atr

ix

ρOQ=

√p0√p0Ω(0)†

(a0,0

a0,1

a1,0

. ..

)

Ω(0)

√p0√p1Ω(0)†

(a0,0

a0,1

a1,0

. ..

)

Ω(1)

√p1√p0Ω(1)†

(a0,0

a0,1

a1,0

. ..

)

Ω(0)†

. ..

ρOQ(0)=∑ x,y

∑ i,j

√px√py|x〉〈y|⊗

ai,j|i〉〈j|

ρOQ(0)=

√p0√p0

(a0,0

a0,1

a1,0

. ..

)√p0√p1

(a0,0

a0,1

a1,0

. ..

)

√p1√p0

(a0,0

a0,1

a1,0

. ..

). ..

Ω†ρOQ(0)Ω→∑ x,y

∑ i,j

√px√py| x〉〈y|⊗Ω(x)†ai,j| i〉〈 j| Ω(y)

ρQ(0)

Qu

an

tum

Alg

ori

thm

Q

uan

tum

Alg

ori

thm

→→S

DP

(1)

SD

P (

1)

ρOQ

Ne

ed b

oth

an o

bje

ctive a

nd a

set

of lin

ear

constr

ain

ts o

ver

(Str

aig

htf

orw

ard

) C

on

str

ain

ts

ρOQ(t)≥0,

ρO(t)≥0

ρO(t)=trQ(ρOQ(t))

ρO(0)=ρ0

t∈0...tf

Qu

an

tum

Alg

ori

thm

Q

uan

tum

Alg

ori

thm

→→S

DP

(2)

SD

P (

2)

|ψ(t)〉=UtΩUt−1Ω...ΩU0|ψ(0)〉

ρO(t)=trQA(U

†QA

tΩ†OQρOQA(t−1)ΩOQUQA

t)

Qu

an

tum

Alg

ori

thm

Q

uan

tum

Alg

ori

thm

→→S

DP

(2)

SD

P (

2)

|ψ(t)〉=UtΩUt−1Ω...ΩU0|ψ(0)〉

ρO(t)=trQA(U

QA

tU†QA

tΩ†OQρOQA(t−1)Ω

OQ)

ρO(t)=trQA(U

†QA

tΩ†OQρOQA(t−1)ΩOQUQA

t)

Qu

an

tum

Alg

ori

thm

Q

uan

tum

Alg

ori

thm

→→S

DP

(2)

SD

P (

2)

|ψ(t)〉=UtΩUt−1Ω...ΩU0|ψ(0)〉

ρO(t)=trQ(Ω

†OQρOQ(t−1)ΩOQ)

ρO(t)=trQA(U

QA

tU†QA

tΩ†OQρOQA(t−1)Ω

OQ)

ρO(t)=trQA(U

†QA

tΩ†OQρOQA(t−1)ΩOQUQA

t)

Qu

an

tum

Alg

ori

thm

Q

uan

tum

Alg

ori

thm

→→S

DP

(2)

SD

P (

2)

Lea

ds t

o the S

DP

SE,corr

espond

ing

to the a

pplic

ation o

f

ora

cle

and u

nitary

opera

tors

as a

bove

|ψ(t)〉=UtΩUt−1Ω...ΩU0|ψ(0)〉

SE=

ρOQ(t)≥0,ρO(t)≥0

ρO(t)=trQ(ρOQ(t))

ρO(t)=trQ(Ω

†OQρOQ(t−1)Ω

OQ)

ρO(0)=ρ0

t∈0...tf

ρO(t)=trQ(Ω

†OQρOQ(t−1)ΩOQ)

ρO(t)=trQA(U

QA

tU†QA

tΩ†OQρOQA(t−1)Ω

OQ)

ρO(t)=trQA(U

†QA

tΩ†OQρOQA(t−1)ΩOQUQA

t)

Measu

rem

en

t an

d R

em

ote

Sta

te P

rep

ara

tio

nM

easu

rem

en

t an

d R

em

ote

Sta

te P

rep

ara

tio

n

The f

ollo

win

g p

roto

co

l describes t

he m

easure

ment

pro

cess a

t th

e e

nd o

f th

e c

om

puta

tion a

t tim

e t

f. [6

]

1.

Q m

akes a

measure

ment

with a

ny c

om

ple

te P

OV

MP

QA

i i

Measu

rem

en

t an

d R

em

ote

Sta

te P

rep

ara

tio

nM

easu

rem

en

t an

d R

em

ote

Sta

te P

rep

ara

tio

n

The f

ollo

win

g p

roto

co

l describes t

he m

easure

ment

pro

cess a

t th

e e

nd o

f th

e c

om

puta

tion a

t tim

e t

f. [6

]

1.

Q m

akes a

measure

ment

with a

ny c

om

ple

te P

OV

M

2.

Co

nd

itio

na

l on m

easure

ment

outc

om

e i, th

e o

racle

syste

m s

tate

is (

up t

o n

orm

aliz

ation)

PQA

i i

σi=trQA(P

QA

iρOQA(tf))

Measu

rem

en

t an

d R

em

ote

Sta

te P

rep

ara

tio

nM

easu

rem

en

t an

d R

em

ote

Sta

te P

rep

ara

tio

n

The f

ollo

win

g p

roto

co

l describes t

he m

easure

ment

pro

cess a

t th

e e

nd o

f th

e c

om

puta

tion a

t tim

e t

f. [6

]

1.

Q m

akes a

measure

ment

with a

ny c

om

ple

te P

OV

M

2.

Co

nd

itio

na

l on m

easure

ment

outc

om

e i, th

e o

racle

syste

m s

tate

is (

up t

o n

orm

aliz

ation)

3. W

e m

easure

a c

ost fu

nction A

ion t

his

rem

ote

ly

pre

pare

d s

tate

, w

hic

h ind

icate

s h

ow

successfu

l our

alg

ori

thm

was

PQA

i i

σi=trQA(P

QA

iρOQA(tf))

Measu

rem

en

t an

d R

em

ote

Sta

te P

rep

ara

tio

nM

easu

rem

en

t an

d R

em

ote

Sta

te P

rep

ara

tio

n

The f

ollo

win

g p

roto

co

l describes t

he m

easure

ment

pro

cess a

t th

e e

nd o

f th

e c

om

puta

tion a

t tim

e t

f. [6

]

1.

Q m

akes a

measure

ment

with a

ny c

om

ple

te P

OV

M

2.

Co

nd

itio

na

l on m

easure

ment

outc

om

e i, th

e o

racle

syste

m s

tate

is (

up t

o n

orm

aliz

ation)

3. W

e m

easure

a c

ost fu

nction A

ion t

his

rem

ote

ly

pre

pare

d s

tate

, w

hic

h ind

icate

s h

ow

successfu

l our

alg

ori

thm

was

Q’s

PO

VM

is u

nco

nstr

ain

ed,

but th

e s

et

of sta

tes t

hat can b

e

pre

pare

d o

n O

is r

estr

icte

d b

y:

PQA

i i

σi=trQA(P

QA

iρOQA(tf))

∑iσO i=ρO(tf)

Th

e C

om

ple

te S

DP

Th

e C

om

ple

te S

DP

S=SM∪SE

SE=

ρOQ(t)≥0,ρO(t)≥0

ρO(t)=trQ(ρOQ(t))

ρO(t)=trQ(Ω

†OQρOQ(t−1)Ω

OQ)

ρO(0)=ρ0

t∈0...tf

SM=

Minimize∑ i

tr(σiA

i)subjectto:

∀ iσi≥0

∑ i

σO i=ρO(tf)

Co

nven

tio

nal C

ost

Fu

ncti

on

Co

nven

tio

nal C

ost

Fu

ncti

on

E

ach m

easure

ment

outc

om

e

Each m

easure

ment

outc

om

e ii

corr

espon

ds to t

he

corr

espon

ds to t

he

queri

er

queri

er ’’

ssguess o

f w

hic

h o

racle

was a

pp

lied

guess o

f w

hic

h o

racle

was a

pp

lied

S

earc

h:

Searc

h:

i =

2i =

2––

The m

ark

ed e

lem

ent is

in p

ositio

n

The m

ark

ed e

lem

ent is

in p

ositio

n 22

A

vera

ge P

roba

bili

ty o

f E

rror:

Pro

bab

ility

that you h

ad

Avera

ge P

roba

bili

ty o

f E

rror:

Pro

bab

ility

that you h

ad

ora

cle

ora

cle

xx, m

easure

d o

utc

om

e

, m

easure

d o

utc

om

e ii, and t

hat you s

hou

ldn

, and t

hat you s

hou

ldn

’’ t t

measure

outc

om

e

measure

outc

om

e ii

on o

racle

on o

racle

xx

Searc

h:

Searc

h:

x =

1000, i =

2

x =

1000, i =

2

T

his

err

or

pro

bab

ility

will

be

This

err

or

pro

bab

ility

will

be e

xa

ct

exa

ct .

Q

is fre

e to c

hoose

. Q

is fre

e to c

hoose

the P

OV

M w

hic

h o

ptim

izes t

he c

ost fu

nction

, and t

he

the P

OV

M w

hic

h o

ptim

izes t

he c

ost fu

nction

, and t

he

SD

P w

ill f

ind t

his

optim

um

subje

ct to

its

constr

ain

ts.

SD

P w

ill f

ind t

his

optim

um

subje

ct to

its

constr

ain

ts.

(σi)x,x=P(measuredi∩oracle=x)

ǫ=∑i

∑x:x =i(σi)x,x

〈x|Ai|x〉=

1−δ(i,x)

Restr

icte

d C

om

pu

tati

on

Restr

icte

d C

om

pu

tati

on

A

ll e

xp

eri

me

nta

lly a

va

ilab

le q

ua

ntu

m

All

exp

eri

me

nta

lly a

va

ilab

le q

ua

ntu

m

co

mp

ute

rs a

re s

ub

ject

to n

ois

e

co

mp

ute

rs a

re s

ub

ject

to n

ois

e

D

eco

he

ren

ce

ca

n r

ed

uce

or

elim

ina

te a

ny

De

co

he

ren

ce

ca

n r

ed

uce

or

elim

ina

te a

ny

qu

an

tum

ad

va

nta

ge

.q

ua

ntu

m a

dva

nta

ge

.

A

ll cu

rre

nt,

ge

ne

ral q

ua

ntu

m lo

we

r b

ou

nd

A

ll cu

rre

nt,

ge

ne

ral q

ua

ntu

m lo

we

r b

ou

nd

me

tho

ds a

ssu

me

pe

rfe

ct

qua

ntu

m

me

tho

ds a

ssu

me

pe

rfe

ct

qua

ntu

m

co

mp

uta

tio

n.

co

mp

uta

tio

n.

W

e w

ou

ld lik

e a

wa

y t

o c

ha

racte

rize

ho

w

We

wo

uld

lik

e a

wa

y t

o c

ha

racte

rize

ho

w

““ qu

an

tum

qu

an

tum

””o

ur

de

vic

e is

ou

r d

evic

e is

Deco

here

nce

Deco

here

nce

Aft

er

each q

uery

, th

e e

nvironm

ent

will

inte

ract

with

the c

om

pute

r and w

ill d

eco

here

the q

ueri

er

[11]

Po

st

Un

itary

, P

re-Q

uery

|ψ(0)〉OQE=∑ x,i

ax x,i|x〉O|i〉Q|ǫ 0〉E

1

Deco

here

nce

Deco

here

nce

Aft

er

each q

uery

, th

e e

nvironm

ent

will

inte

ract

with

the c

om

pute

r and w

ill d

eco

here

the q

ueri

er

[11]

Po

st

Un

itary

, P

re-Q

uery

Po

st

Qu

ery

The s

ize o

f th

e e

nviro

nm

ent

gro

ws w

ith e

very

query

,

so a

t tim

e t:

|ψ(0)〉OQE=∑ x,i

ax x,i|x〉O|i〉Q|ǫ 0〉E

1

|ψ(1)〉OQE=∑ x,i

ax i,a|x〉O(−1)Ω(x) i|i〉Q|ǫ i〉E

1|ǫ 0〉E

2

E(t)≡E=E1⊗E2...⊗Et

Ad

din

g t

he E

nvir

on

men

t A

dd

ing

th

e E

nvir

on

men

t

Q: Q

uerier

syste

mA

: A

ncill

a

O:

Ora

cle

Syste

mE

1E

t2

E:

The e

nviro

nm

ent

is p

art

of th

e o

racle

syste

m that th

e q

ueri

er

has n

o a

ccess t

o,

but

acts

on the q

ueri

er

during e

ach q

uery

.

Th

e E

xte

nd

ed

SD

PT

he E

xte

nd

ed

SD

P

Minimizetr(∑

iσiA

i)subjectto:

∀ iσOE

i≥0

ρOQE(t)≥0,ρOE(t)≥0

∑ i

σOE

i=ρOE(T)

ρOE(t)=trQ(ρOQE(t))

ρOE(t)=trQ(D

†QEtΩ†OQρOQE(t−1)⊗|ǫ 0〉E

t

Et〈ǫ0|ΩOQDQEt)

ρOE(0)=ρ0

t∈0...tf

Qu

an

tum

/Cla

ssic

al In

terp

ola

tio

nQ

uan

tum

/Cla

ssic

al In

terp

ola

tio

n

One o

r m

ore

qubits m

ay d

ecohere

independently w

ith p

robabili

ty p

Red:

One q

ub

it

decoh

ere

nce

Gre

en:

Tw

o q

ubit

decoh

ere

nce

|x〉O|i〉Q|ǫ 0〉E→√1−p|x〉O(−1)Ω(x) i|i〉Q|ǫ 0〉E+√p|x〉O(−1)Ω(x) i|i〉Q|ǫ(i)〉E

Co

mm

en

tsC

om

men

ts

T

he s

ize o

f th

e S

DP

gro

ws r

apid

ly, part

icula

rly w

he

n

The s

ize o

f th

e S

DP

gro

ws r

apid

ly, part

icula

rly w

he

n

mode

ling

mode

ling d

ecoh

ere

nce

decoh

ere

nce

. (

< 1

0 q

ub

its )

. (

< 1

0 q

ub

its )

S

ince t

he S

DP

outp

uts

the o

ptim

al density m

atr

ix a

t S

ince t

he S

DP

outp

uts

the o

ptim

al density m

atr

ix a

t every

tim

e s

tep,

we c

an r

econstr

uct th

e inte

revery

tim

e s

tep,

we c

an r

econstr

uct th

e inte

r --query

query

un

itaries

un

itaries,

and h

ence the o

ptim

al alg

ori

thm

, and h

ence the o

ptim

al alg

ori

thm

W

e h

ave r

ecently e

xp

lore

d t

hese issu

es f

rom

an

We h

ave r

ecently e

xp

lore

d t

hese issu

es f

rom

an

altern

ate

ang

le b

y a

skin

g:

altern

ate

ang

le b

y a

skin

g:

Is there

an e

qu

ally

optim

al

Is there

an e

qu

ally

optim

al

alg

ori

thm

that

uses f

ew

er

qua

ntu

m r

eso

urc

es?

alg

ori

thm

that

uses f

ew

er

qua

ntu

m r

eso

urc

es?

U

se a

n a

ltern

ate

SD

P w

hic

h tries to s

plit

the o

ptim

al alg

orith

m

Use a

n a

ltern

ate

SD

P w

hic

h tries to s

plit

the o

ptim

al alg

orith

m

into

tw

o o

r m

ore

part

s that can b

e c

lassic

ally

com

bin

ed

into

tw

o o

r m

ore

part

s that can b

e c

lassic

ally

com

bin

ed

U

se the V

on N

eum

ann e

ntr

opy to q

uantify

the q

uantu

m

Use the V

on N

eum

ann e

ntr

opy to q

uantify

the q

uantu

m

resourc

es n

eeded in e

ach b

ranch

resourc

es n

eeded in e

ach b

ranch

S

ee s

lides a

t end o

f ta

lk f

or

deta

ilsS

ee s

lides a

t end o

f ta

lk f

or

deta

ils

Clo

cks

Clo

cks

O

ur

SD

P f

orm

ula

tio

n is h

igh

ly g

en

era

l, a

nd

ca

n

Ou

r S

DP

fo

rmu

latio

n is h

igh

ly g

en

era

l, a

nd

ca

n

de

scri

be

qu

an

tum

d

escri

be

qu

an

tum

pro

ce

ss

es

pro

ce

ss

es

as w

ell

as q

ua

ntu

m

as w

ell

as q

ua

ntu

m

qu

ery

alg

ori

thm

sq

ue

ry a

lgo

rith

ms

S

pe

cific

ally

, if a

n e

lem

en

t d

raw

n f

rom

a c

on

tin

uo

us

Sp

ecific

ally

, if a

n e

lem

en

t d

raw

n f

rom

a c

on

tin

uo

us

se

t o

f u

nita

ry o

pe

rato

rs,

ind

exe

d b

y s

om

e

se

t o

f u

nita

ry o

pe

rato

rs,

ind

exe

d b

y s

om

e

pa

ram

ete

r, a

cts

on a

sta

te, o

ur

form

ula

tio

n c

an

be

p

ara

me

ter,

acts

on a

sta

te, o

ur

form

ula

tio

n c

an

be

u

se

d t

o o

ptim

ally

estim

ate

the

va

lue

of

this

u

se

d t

o o

ptim

ally

estim

ate

the

va

lue

of

this

p

ara

me

ter

pa

ram

ete

r

W

e w

ill u

se

th

is ide

a t

o o

ptim

ize

th

e a

ccu

racy o

f W

e w

ill u

se

th

is ide

a t

o o

ptim

ize

th

e a

ccu

racy o

f q

ua

ntu

m c

locks

qu

an

tum

clo

cks

G

oa

lG

oa

l : E

xp

ress t

he o

pe

ratio

n o

f th

e a

qu

an

tum

:

Exp

ress t

he o

pe

ratio

n o

f th

e a

qu

an

tum

clo

ck a

s a

bla

ck b

ox o

racle

pro

ble

m.

clo

ck a

s a

bla

ck b

ox o

racle

pro

ble

m.

Ato

mic

Clo

ck B

asic

sA

tom

ic C

lock B

asic

s

C

ount

the tic

ks o

f som

e

Co

unt

the tic

ks o

f som

e

peri

od

ic s

yste

m a

nd inte

rpre

t peri

od

ic s

yste

m a

nd inte

rpre

t as t

ime.

as t

ime.

A

tom

s h

ave a

dis

cre

te s

et

of

Ato

ms h

ave a

dis

cre

te s

et

of

energ

y levels

an

d c

an

energ

y levels

an

d c

an

transitio

n b

etw

ee

n t

hem

by

transitio

n b

etw

ee

n t

hem

by

absorb

ing o

r em

itting p

hoto

ns.

absorb

ing o

r em

itting p

hoto

ns.

(

E =

(

E =

hf

hf

))

A

tom

ic c

locks c

ount th

e

Ato

mic

clo

cks c

ount th

e

oscill

ations o

f a laser

wh

ose

oscill

ations o

f a laser

wh

ose

frequency is s

tabili

ze

d to s

om

e

frequency is s

tabili

ze

d to s

om

e

ato

mic

tra

nsitio

nato

mic

tra

nsitio

n

1 s

econd

1 s

econd ªª

9,1

92,6

31,7

70

9,1

92,6

31,7

70

cycle

s o

f th

e r

adia

tion

cycle

s o

f th

e r

adia

tion

corr

espo

nd

ing t

o a

hyperf

ine

corr

espo

nd

ing t

o a

hyperf

ine

transitio

n in C

esiu

mtr

ansitio

n in C

esiu

mN

IST

F1

Sp

ectr

osco

py

Sp

ectr

osco

py

•T

his

acts

as o

ur

bla

ck b

ox/o

racle

opera

tion

.

Go

al:

Phase E

stim

atio

n

•C

onsid

er

a s

et

of N

ions a

nd t

he s

et

of sta

tes labe

led

by

wh

ich h

ave

kio

ns in t

he e

xcited s

tate

and N

-k

ions in t

he

gro

un

d s

tate

. (

Dic

ke

sta

tes)

•O

ver

tim

e, our

laser/

cla

ssic

al o

scill

ato

r w

ill d

rift fro

m the

ato

mic

resona

nce.

We n

eed t

o m

easure

and c

orr

ect th

is

detu

nin

g.

•A

fter

an in

terr

ogation p

eri

od o

f le

ngth

T w

ith a

laser

tuned n

ear

resona

nce [

7]

| k〉

|k〉→

e−ik(f−f0)T|k〉

Fre

qu

en

cy P

rio

rs a

nd

th

e C

lock O

racle

Fre

qu

en

cy P

rio

rs a

nd

th

e C

lock O

racle

Giv

en f

-f 0

we k

now

that:

We d

on’t k

no

w f -

f 0, but

we c

an c

onstr

uct

a p

rior

pro

ba

bili

ty

dis

trib

utio

n o

ver

f -

f 0. Lik

ew

ise,

befo

re,

we d

idn’t k

no

w w

hic

h

ora

cle

our

alg

ori

thm

wo

uld

be g

iven,

so w

e a

ssig

ned

each a

pro

bab

ility

.

|k〉→

e−ik(f−f0)T|k〉

T. R

osenband, N

IST

Clo

ck S

DP

Clo

ck S

DP

Aft

er

on

e q

ue

ry

Ω=∑ x

|x〉〈x|e−

i∆fxσzT/2

ρO=∑ x,y

√px√py|x〉〈y|

Ω†ρOQΩ→∑ x,y

∑ k,l

ax,y,k,l|x〉〈y|⊗

ei∆fxkT|k〉〈l|e

−i∆fylT

ρQ=∑ k,l

ak|k〉〈l |

Go

als

:

1.

Dete

rmin

e o

ptim

al

initia

l sta

te o

f Q

2.

Dete

rmin

e

optim

al m

easure

me

nt

Clo

ck C

ost

Fu

ncti

on

Clo

ck C

ost

Fu

ncti

on

M

easure

with a

dis

cre

te,

com

ple

te P

OV

M

Measure

with a

dis

cre

te,

com

ple

te P

OV

M

whose e

lem

ents

each c

orr

espond t

o a

fre

que

ncy g

uess,

whose e

lem

ents

each c

orr

espond t

o a

fre

que

ncy g

uess,

∆∆ff ii

R

em

ote

Sta

te P

repara

tion:

Rem

ote

Sta

te P

repara

tion:

P

en

aliz

e g

uesses f

ar

from

the tru

e f

requency

Pen

aliz

e g

uesses f

ar

from

the tru

e f

requency

F

rom

the fin

al density m

atr

ix a

nd t

he r

em

ote

ly p

repare

d

Fro

m the fin

al density m

atr

ix a

nd t

he r

em

ote

ly p

repare

d

mix

ed s

tate

s, w

e c

an r

econstr

uct th

is o

ptim

al P

OV

M

mix

ed s

tate

s, w

e c

an r

econstr

uct th

is o

ptim

al P

OV

M

σi=trQ(P

Q iρOQ)

(σi)x,x=P(measured∆fi∩frequency

=∆fx)

PQ i i.

〈 ∆fx| Ai| ∆fx〉 =

(∆fi−∆fx)2

Dis

cu

ssio

nD

iscu

ssio

n

P

rio

r w

ork

ha

s a

ssu

me

d a

un

ifo

rm p

rob

ab

ility

P

rio

r w

ork

ha

s a

ssu

me

d a

un

ifo

rm p

rob

ab

ility

dis

trib

utio

n o

ve

r clo

ck o

racle

s.

dis

trib

utio

n o

ve

r clo

ck o

racle

s.

[4]

[4]

T

his

te

ch

niq

ue

is s

ub

ject

to

Th

is t

ech

niq

ue

is s

ub

ject

to d

iscre

tizatio

nd

iscre

tizatio

ne

rro

re

rro

r

W

ork

ing

on

bo

un

ds

Wo

rkin

g o

n b

ou

nd

s ––

err

or

ap

pe

ars

sm

all

err

or

ap

pe

ars

sm

all

A

lA

l++C

lock a

t N

IST

is a

na

tura

l a

pp

lica

tio

n o

f th

is

Clo

ck a

t N

IST

is a

na

tura

l a

pp

lica

tio

n o

f th

is

tech

niq

ue

. U

se

s o

nly

1te

ch

niq

ue

. U

se

s o

nly

1-- 2

io

ns a

nd

is th

e m

ost

2 io

ns a

nd

is th

e m

ost

accu

rate

clo

ck in

th

e w

orl

d (

8.6

x 1

0a

ccu

rate

clo

ck in

th

e w

orl

d (

8.6

x 1

0-- 1

818

) ) [5

,9]

[5,9

]

Resu

lts

Resu

lts

•O

ptim

al in

itia

l sta

tes h

ave e

qua

l am

plit

ud

es for

kio

ns in t

he

excited s

tate

and N

–k

in t

he g

round s

tate

. e

.g. fo

r N

= 3

:

•O

ne q

uery

on 2

ions is e

quiv

ale

nt to

2 q

ueri

es o

n o

ne ion.

Not

necessari

ly t

rue w

ith m

ore

ion

s a

nd m

ore

querie

s.

|ψ0〉=

a0(|0〉+

|3〉)+a1(|1〉+

|2〉)

A n

arr

ow

er

poste

rior

corr

espo

nd

s to a

n incre

ase

in k

no

wle

dge.

Gre

en:

Priors

Re

d:

Poste

riors

P(∆f|∆fi=0)

Co

nclu

sio

ns

Co

nclu

sio

ns

T

his

SD

P f

orm

ula

tio

n is a

po

we

rfu

l a

nd

hig

hly

T

his

SD

P f

orm

ula

tio

n is a

po

we

rfu

l a

nd

hig

hly

ge

ne

ral w

ay o

f d

escri

bin

g q

ua

ntu

m a

lgo

rith

ms a

nd

g

en

era

l w

ay o

f d

escri

bin

g q

ua

ntu

m a

lgo

rith

ms a

nd

qu

an

tum

pro

ce

sse

sq

ua

ntu

m p

roce

sse

s

T

he

siz

e o

f th

e S

DP

gro

ws q

uic

kly

, bu

t th

is

Th

e s

ize

of

the

SD

P g

row

s q

uic

kly

, bu

t th

is

tech

niq

ue

re

ma

ins a

pp

lica

ble

to

ma

ny in

tere

stin

g

tech

niq

ue

re

ma

ins a

pp

lica

ble

to

ma

ny in

tere

stin

g

pro

ble

ms.

pro

ble

ms.

H

ere

we

an

aly

ze

d q

ua

ntu

m c

om

pu

ters

su

bje

ct to

H

ere

we

an

aly

ze

d q

ua

ntu

m c

om

pu

ters

su

bje

ct to

de

co

he

ren

ce

de

co

he

ren

ce

, a

nd

de

ve

lop

ed

a t

ech

niq

ue

to

,

an

d d

eve

lop

ed

a t

ech

niq

ue

to

exa

min

e t

he

e

xa

min

e t

he

““q

ua

ntu

mn

ess

qu

an

tum

ne

ss””

of

a d

evic

e.

of

a d

evic

e.

T

he

ap

plic

atio

n o

f o

ur

SD

P t

o q

ua

ntu

m c

locks

Th

e a

pp

lica

tio

n o

f o

ur

SD

P t

o q

ua

ntu

m c

locks

ind

ica

tes th

at

it lik

ely

ha

s m

an

y o

the

r a

pp

lica

tio

ns

ind

ica

tes th

at

it lik

ely

ha

s m

an

y o

the

r a

pp

lica

tio

ns

Refe

ren

ces

Refe

ren

ces

1.

1.

A.

A.

Am

bain

isA

mbain

is, , Q

uantu

m low

er

bounds b

y q

uantu

m a

rgum

ents

Quantu

m low

er

bounds b

y q

uantu

m a

rgum

ents

2.

2.

H. B

arn

um

, M

. S

aks, and M

. H

. B

arn

um

, M

. S

aks, and M

. S

zegedy

Szegedy, , Q

uantu

m q

uery

com

ple

xity

Quantu

m q

uery

com

ple

xity

and s

em

idefinite p

rogra

mm

ing

and s

em

idefinite p

rogra

mm

ing

3.

3.

H. B

arn

um

, H

. B

arn

um

, S

em

idefinite p

rogra

mm

ing c

hara

cte

rization a

nd s

pectr

al

Sem

idefinite p

rogra

mm

ing c

hara

cte

rization a

nd s

pectr

al

advers

ary

meth

od for

quantu

m c

om

ple

xity w

ith

advers

ary

meth

od for

quantu

m c

om

ple

xity w

ith n

oncom

muting

noncom

muting

unitary

queries

unitary

queries

4.

4.

V.

V.

Buzek

Buzek, R

. , R

. D

erk

aD

erk

a, and S

. , and S

. M

assar

Massar ,

, O

ptim

al quantu

m c

locks

Op

tim

al quantu

m c

locks

5.

5.

C.W

. C

hou, et. a

l.,

C.W

. C

hou, et. a

l.,

Fre

quency c

om

parison o

f tw

o h

igh

Fre

quency c

om

parison o

f tw

o h

igh

-- accura

cy A

laccura

cy A

l++

optical clo

cks

optical clo

cks

6.

6.

L.

L.

Hughsto

nH

ughsto

n, R

. , R

. Jozsa

Jozsa

, and W

. , and W

. W

oote

rsW

oote

rs, , A

com

ple

te c

lassific

ation o

f A

com

ple

te c

lassific

ation o

f quantu

m e

nsem

ble

s h

avin

g a

giv

en d

ensity m

atr

ixquantu

m e

nsem

ble

s h

avin

g a

giv

en d

ensity m

atr

ix

7.

7.

N.F

. R

am

sey,

N.F

. R

am

sey,

Mole

cula

r B

eam

sM

ole

cula

r B

eam

s

8.

8.

B.

B.

Reic

hard

tR

eic

hard

t , R

eflections for

quantu

m q

uery

com

ple

xity:

, R

eflections for

quantu

m q

uery

com

ple

xity:

The g

enera

l T

he g

enera

l advers

ary

bound is tig

ht fo

r every

advers

ary

bound is tig

ht fo

r every

boole

an

boole

an

function

function

9.

9.

P.O

. S

chm

idt, e

t. a

l.,

P.O

. S

chm

idt, e

t. a

l.,

Spectr

oscopy u

sin

g q

uantu

m logic

Spectr

oscopy u

sin

g q

uantu

m logic

10

.1

0.

B. S

chum

acher,

B

. S

chum

acher,

Quantu

m c

odin

gQ

uantu

m c

odin

g

11

.1

1.

W.

W.

Zure

kZ

ure

k, , D

ecohere

nce,

Decohere

nce,

ein

sele

ction

ein

sele

ction

and the q

uantu

m o

rigin

s o

f th

e

and the q

uantu

m o

rigin

s o

f th

e

cla

ssic

al

cla

ssic

al

Alg

ori

thm

Reco

nstr

ucti

on

Alg

ori

thm

Reco

nstr

ucti

on

•S

DP

outp

uts

a d

ensity m

atr

ix c

orr

espon

din

g t

o the s

tate

of

the c

om

pute

r at every

tim

este

p

•P

urify

the follo

win

g p

airs o

f sta

tes into

A, w

here

|A

| =

|O

||Q

|E|

•S

ince w

e k

no

w t

hat

we c

an s

olv

e f

or

the inte

r-query

un

itaries.

Sin

ce t

he S

DP

yie

lds t

he s

olu

tio

n w

ith

the o

ptim

al pro

ba

bili

ty o

f success, th

is

reconstr

ucts

an o

ptim

al a

lgorith

m. (q

uantu

m o

r cla

ssic

al)

D†QEtΩ†QOρOQE(t)Ω

QODQEt→ρ′OQEA(t)

ρOQE(t+1)→ρOQEA(t+1)

ρOQEA(t+1)=U(t)†QAρ′ OQEA(t)U(t)QA

Measu

rin

g Q

uan

tum

Reso

urc

es

Measu

rin

g Q

uan

tum

Reso

urc

es

O

ur

SD

P f

orm

ula

tio

n w

ill y

ield

th

e a

lgo

rith

m w

ith

O

ur

SD

P f

orm

ula

tio

n w

ill y

ield

th

e a

lgo

rith

m w

ith

the

op

tim

al p

rob

ab

ility

of succe

ss.

the

op

tim

al p

rob

ab

ility

of succe

ss.

B

ut

ca

n w

e f

ind

an

B

ut

ca

n w

e f

ind

an

““a

lte

rna

tea

lte

rna

te””

alg

ori

thm

with

th

e

alg

ori

thm

with

th

e

sa

me

pro

ba

bili

ty o

f su

cce

ss th

at

use

s fe

we

r sa

me

pro

ba

bili

ty o

f su

cce

ss th

at

use

s fe

we

r

qu

an

tum

re

so

urc

es?

qu

an

tum

re

so

urc

es?

Q

ua

ntify

qu

an

tum

re

so

urc

es v

ia V

on N

eu

ma

nn

Q

ua

ntify

qu

an

tum

re

so

urc

es v

ia V

on N

eu

ma

nn

en

tro

py

en

tro

py

B

y S

ch

um

ach

er

By S

ch

um

ach

er ’’

s q

ua

ntu

m c

od

ing

, w

e k

no

w t

his

s q

ua

ntu

m c

od

ing

, w

e k

no

w t

his

is t

he

min

imu

m n

um

be

r o

f q

ub

its n

ee

de

d t

o

is t

he

min

imu

m n

um

be

r o

f q

ub

its n

ee

de

d t

o

rep

rese

nt

a q

ua

ntu

m s

tate

re

pre

se

nt

a q

ua

ntu

m s

tate

[10]

[10]

S(ρ)≡tr(ρlg(ρ))

Sep

ara

te C

om

pu

tati

on

al P

ath

sS

ep

ara

te C

om

pu

tati

on

al P

ath

s

L

et

the

op

tim

al a

lgo

rith

m r

un

no

rma

lly u

ntil tim

e

Le

t th

e o

ptim

al a

lgo

rith

m r

un

no

rma

lly u

ntil tim

e

tt ss, th

en

me

asu

re, th

en

me

asu

re

Q

ua

ntify

th

e q

ua

ntu

m r

eso

urc

es n

ee

de

d t

o r

ea

ch

Q

ua

ntify

th

e q

ua

ntu

m r

eso

urc

es n

ee

de

d t

o r

ea

ch

tim

este

ptim

este

ptt ss

+ 1

+ 1

T

ry to e

xpre

ss a

s the inco

here

nt

sum

of

Try

to e

xpre

ss a

s the inco

here

nt

sum

of

T

hese ind

epen

de

nt

com

puta

tion

al path

s c

an b

e

These ind

epen

de

nt

com

puta

tion

al path

s c

an b

e

cla

ssic

ally

com

bin

ed.

cla

ssic

ally

com

bin

ed.

C

alc

ula

te e

ntr

opy a

s:

Ca

lcu

late

entr

opy a

s:

S

ince t

he full

de

nsity m

atr

ix is p

ure

:S

ince t

he full

de

nsity m

atr

ix is p

ure

:

ρO(ts)

ρO 1(ts),ρO 2(ts)...ρO n(ts)

ST=tr(ρO 1)S

(ρO 1

tr(ρO 1)

)+tr(ρO 2)S

(ρO 2

tr(ρO 2)

)+...

S(ρO)=S(ρQA)

Sp

litt

ing

SD

PS

plitt

ing

SD

P

A

dd t

he f

ollo

win

g c

onstr

ain

ts to a

ne

w S

DP

Add t

he f

ollo

win

g c

onstr

ain

ts to a

ne

w S

DP

A

dd a

n o

bje

ctive w

hic

h m

axim

ize

s the d

ista

nce b

etw

ee

n

Add a

n o

bje

ctive w

hic

h m

axim

ize

s the d

ista

nce b

etw

ee

n

the t

wo s

ubpart

s o

f th

e o

racle

de

nsity m

atr

ix.

the t

wo s

ubpart

s o

f th

e o

racle

de

nsity m

atr

ix.

T

his

will

be

a n

onlin

ea

r obje

ctive s

o w

e u

se a

n ite

rative

T

his

will

be

a n

onlin

ea

r obje

ctive s

o w

e u

se a

n ite

rative

str

ate

gy

str

ate

gy

with t

he u

sua

l sets

of constr

ain

ts o

n t

hese n

ew

de

nsity

with t

he u

sua

l sets

of constr

ain

ts o

n t

hese n

ew

de

nsity

matr

ices. H

ere

, th

e o

racle

de

nsity m

atr

ix is t

he o

ptim

al

matr

ices. H

ere

, th

e o

racle

de

nsity m

atr

ix is t

he o

ptim

al

solu

tio

n t

o o

ur

orig

ina

l S

DP

.solu

tio

n t

o o

ur

orig

ina

l S

DP

.

trQ(ρOQ

1(t))=ρO 1(t)

trQ(ρOQ

2(t))=ρO 2(t)

ρO opt(t)=ρO 1(t)+ρO 2(t)

t≥t s

Sp

litt

ing

Resu

lts

Sp

litt

ing

Resu

lts

R

ecu

rsiv

ely

pe

rfo

rm t

his

sp

littin

g,

ca

lcu

latin

g th

e

Re

cu

rsiv

ely

pe

rfo

rm t

his

sp

littin

g,

ca

lcu

latin

g th

e

en

tro

py a

t e

ach

ite

ratio

n.

en

tro

py a

t e

ach

ite

ratio

n.

P

ari

ty lo

oks c

lassic

al in

th

e

Pa

rity

lo

oks c

lassic

al in

th

e H

ad

am

ard

Ha

da

ma

rdb

asis

.

ba

sis

.

E

ntr

op

y is a

ba

sis

in

de

pe

nd

en

t q

ua

ntity

.E

ntr

op

y is a

ba

sis

in

de

pe

nd

en

t q

ua

ntity

.

8 E

lem

en

t S

earc

h/O

R:

0. 2

.056

2. 2

.0096

4. 2

.0093

8. 2

.0093

4 E

lem

en

t P

AR

ITY

0. 2

2. 1

4. 0

8. 0