44
Arc Alimentation des plasmas: LABORATOIRE PLASMA ET CONVERSION D’ENERGIE UMR 5213 UNIVERSITE DE TOULOUSE Nofel MERBAHI LAPLACE – Bat. 3R2 – bureau 220 05 61 55 75 90 [email protected]tlse.fr

Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Embed Size (px)

Citation preview

Page 1: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

ArcAlimentation des plasmas:

LABORATOIRE PLASMAET CONVERSION D’ENERGIE

UMR 5213UNIVERSITE DE TOULOUSE

Nofel MERBAHI

LAPLACE – Bat. 3R2 – bureau 22005 61 55 75 90

[email protected]‐tlse.fr

Page 2: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Plasmas chauds (étoiles, plasma de fusion…). La température des ions et des électrons est supérieure à 10 millions de degrés. Le gaz est complètement ionisé (degré de ionisation égale à 1 donc équilibre thermodynamique).

Plasmas thermiques (arc électrique). Les électrons, les ions et les particules neutres ont une température voisine de 10000 à 30000 degrés. Le degré de ionisation est compris entre 10-4 et 10-2 d’où l’équilibre thermique.

Les trois grandes catégories de plasma

ionisation est compris entre 10-4 et 10-2 d’où l’équilibre thermique.

Plasmas froids (décharges électriques dans les gaz)- Les électrons ont une température élevée (entre 11600 K et 116000 K) mais les particules neutres (qui sont 10000 fois plus lourde que les électrons) représentent la quasi-totalité de la densité. Donc le degré de ionisation est inférieur à 10-5 de ce fait le plasma est en équilibre thermique.

Page 3: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Description du phénomène

Principe

Colonne d’arc

T ≈≈≈≈ 5800°CT ≈≈≈≈ 2400°C

T ≈≈≈≈ 3300°C

Cathode-

Anode+

Oi-

G

e-

e-

e-

e-i+

Chute de tension Zone d’espace

Zone d’espace positif

Chute de tension cathodique

Tension d’arc

10-5 cm

10-2 cm

Chute de tension dans l’arc

Chute de tension anodique

Légende :i+ : ion positif O : at. d’oxygènei- : ion négatif G : at. de gaze : électron

négatif

Ve = 100 m/s

Vi = 1 m/s

Page 4: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Description du phénomène

L’arc électrique dépend :

Différence de potentiel entre deux électrodes L’émissivité du matériau La forme de la cathode La forme de la cathode Le potentiel ionisant des gaz

Page 5: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Description du phénomène

Conditions de stabilité de l’arc

Pour une stabilité de l’arc, l’émission électronique doit être favorisée au maximum

• Tension d’amorçage suffisante associée à une chute de tension cathodique importante

• Milieu gazeux adapté, favorisant la production d’ion positif

• Maintien de la cathode à haute température• Maintien de la cathode à haute température

• Intensité suffisante

• Emploi de corps émissifs ou ionisants dans l’enrobage améliore la stabilité de l’arc

Page 6: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Caractéristiques électrique de l’arc

Le comportement électrique de l’arc dépend :

• Des électrodes : nature, forme, dimensions, distance

• De l’atmosphère dans laquelle l’arc jaillit

• Des conditions d’alimentation électrique

Dans le cas du soudage les seules variantes sont :Dans le cas du soudage les seules variantes sont :

• Les conditions d’alimentation

• La distance

Ce qui revient à étudier la fonction

f (U,I,L)f (U,I,L)

Entre la tension, l’intensité et la longueur d’arc

Page 7: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Caractéristiques électrique de l’arc

1.Tension aux bornes

L’étude de la courbe montre que pour une longueur d’arc donnée la tension :

• part d’un maximum• décroît rapidement

L2L3L1

Avec: L1<L2<L3

U

• décroît rapidement • passe par un minimum• puis augmente

Si la longueur d’arc augmente, la courbe se déplace vers les tensions croissantes I

Vaporisation du fer

Page 8: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Caractéristiques électrique de l’arcCaractéristiques électrique de l’arc

2. Point de fonctionnement• Caractéristique de l’arc

U = f(L)

• Caractéristique de la source :U = f(I)

UM1

M2Us

Uo lim U = f(I)

Uo

U = f(I)

Le point de fonctionnement M2 est caractérisé par ses valeurs Us et Is

Le fonctionnement stable de l’arc nécessite :• Une longueur d’arc limite Llim

• Une tension à vide suffisante Uolim

• Une Intensité de court circuit modérée Icc

IIsPoint de

fonctionnement

Uo lim U = f(I)source

Icc

Page 9: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Caractéristiques électrique de l’arc

2. Point de fonctionnement (suite)

Une caractéristique plongeante de l’alimentation entraîne :

• Un courant de court circuit faible

• Une tension à vide élevée• Une longueur d’arc limite

plus grand

U

Us

Uo1

Uo2

M

plus grand

Donc de meilleures condition de fonctionnement IIs

∆∆∆∆I1∆∆∆∆ I2

Icc1 Icc2

3. Caractéristiques d’un postePour une régulation de l’intensité en fonction de la longueur d’arc, un poste doit

comporter :

• favorise la stabilité de l’arc

• facilite l’amorçage

• permet en cas de court circuit le rétablissement de l’arc sans dommage

Une caractéristique plongeante

Une tension à vide, U0, suffisanteUne Intensité court circuit modérée

Page 10: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Circuit électrique ayant stocké de l’énergie et la restituant pendant un temps « court » (compression de l’énergie – W = U.I.t)

Paramètres intervenants sur la restitution de l’énergie :

- caractéristiques électriques des composants du circuit (L, R,C)

Définition d’un système impulsionnel

- caractéristiques électriques de l’impédance de charge (L, R,C)

- conditions initiales (courant, tension dans les selfs et capacités)

- caractéristiques du dispositif de commutation (t, R, L)

Page 11: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

- Tension : kV à qq centaine de kV voire qq MV

- Courant : kA à qq centaine de kA voire qq MA

- Impédance : centaine de mΩ à qq dizaines Ω

- Temps de montée : centaine de ps à qq µs voire qq ms

- Largeur : centaine de ps à qq µs voire qq ms

- Fréquence : Mono coup à qq kHz

Générateur de Haute Tension

- Fréquence : Mono coup à qq kHz

Trois types de tensions conventionnelles :• Tension alternative• Tension continue• Tension de choc

Page 12: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Source de haute tension la plus répandue et la plus utilisée dans la pratique.

Ce sont des transformateurs de faible puissance (de quelques centaines deVA à quelques kVA) dont l’objectif principal est de procurer une haute tension au détriment du courant qui est de l’ordre du milliampère généralement.

Ces transformateurs qui sont destinés

Transformateur Haute Tension

Tension alternative

Ces transformateurs qui sont destinésprincipalement aux laboratoires d’essais, doivent avoir une très bonne isolation car ils sont appelés à supporter les nombreux claquages qui surviennent lors des tests.

La forme de la HT délivrée par un transformateur HT est généralement différente de laforme sinusoïdale, sans toutefois dépasser les tolérances permises. Ces transformateurs possèdent généralement une borne de l’enroulement qui est reliée à la terre.

Pour des tensions supérieures à 750 kV, le coût, le transport et l’encombrement deviennent très gênants; On préfère alors recourir aux transformateurs montés en cascade.

Page 13: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Dans les essais réalisés en haute tension, quelques fois il se produit une explosion del’équipement testé, suite à l’apparition d’une forte surtension générée par résonance électrique.

Tension alternative

Circuit résonnant

Circuit électrique équivalent du transformateur et de l’isolant teste

Considérons un isolant de capacité C alimenté par une Haute Tension délivrée par untransformateur .r1 + jL1ω : impédance de l’enroulement primaire du transformateurr2 + jL2ω : impédance de l’enroulement secondaire du transformateurLω : impédance shunt du transformateur, généralement négligée devant L1ω et L2ω .C : charge capacitive d’impédanceC1ω .

Page 14: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Si par hasard : ω( L1+ L2)≈ 1/C ω , une résonance accidentelle se produit, le courant devient tellement grand que la surtension aux bornes de la charge atteint jusqu’à 20 à 50 la tension appliquée et peut provoquer une explosion de la charge.

Tension alternative

Le phénomène de résonance est mis à profit pour produire de très hautes tensions ; une impédance de réglage variable insérée en série avec la circuit du transformateur permet de régler et d’augmenter la tension à des valeurs très grandes (jusqu’à 600 kV). Le régulateur, alimenté par une source BT alternative, règle la tension en ajustant la valeur totale de l’impédance réactive.

Circuit résonnant

L’avantage spécifique est que la tension délivrée est pratiquement sinusoïdale et qu’une compensation de l’énergie réactive s’en suit (résonance série).

Page 15: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Générateur de Tension continue

C : capacité de lissage du redresseur + capacités parasites.R : résistance du gaz

Redresseur a simple alternance

Page 16: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Contrairement au redresseur a simple alternance, l’alternance négative est également redressée.

Générateur de Tension continueRedresseur double alternance (pont de Graetz)

Il n’y a pas de très grande différence entre les montages redresseurs a simple et a double alternance, en présence d’une capacité de lissage

Page 17: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Doubleur de Schenkel :Pendant l’alternance négative le condensateur C1 se charge a la tension Vmax, a l’alternancesuivante cette tension qui s’ajoute a la tension du transformateur donne une tension aux bornes de C égale à 2 Vmax. La tension a vide obtenue a la sortie est donc Uc = 2Vmax

Générateur de Tension continueDoubleur de tension

Page 18: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Générateur de Tension continue

Appelée cascade de Greinacher ou de Cockcroft-walton, est constituée par une piles de doubleurs de type Schenkel.

Comme chaque étage délivre une tension a vide égale a max 2V , la tension obtenue (a vide) est Uc = 2nVmax.avec n : nombre d’étages.

Redresseur en cascade

Page 19: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Générateur de Tension continueRedresseur en cascade

Page 20: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Circuit électrique ayant stocké de l’énergie et la restituant pendant un temps « court » (compression de l’énergie – W = U.I.t)

Définition d’un système impulsionnel

La tension impulsionnelle (ou de choc) est une très haute tension unidirectionnelle,appliquée pendant un temps très bref (min l’ordre de quelques Ps). C’est un courant ou

une tension qui croît rapidement jusqu’à une valeur crête, puis décroît jusqu’à zéro.

Paramètres intervenants sur la restitution de l’énergie :

- caractéristiques électriques des composants du circuit (L, R,C)

- caractéristiques électriques de l’impédance de charge (L, R,C)

- conditions initiales (courant, tension dans les selfs et capacités)

- caractéristiques du dispositif de commutation (t, R, L)

Page 21: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Stockage capacitif : Capacités + commutateur à fermeture (V)

Stocker l’énergie avant de la restituer

Tension de chocCircuits élémentaires

Stockage inductif: Inductances + commutateur à ouverture (V)

+ commutateur à fermeture (I)

Page 22: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Stockage capacitif

Comparaison Circuit R, L, C et Décharge de ligne

Tout circuit est un enchevêtrement de lignes de transmission !!

Page 23: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Principe : Faire parcourir une inductance par un courantForcer ce courant à traverser à un instant donné une impédance

Nécessite un commutateur àouverture brutale !!

Stockage Inductif

à t = 0 Fermeture de S: I(t) tend vers V / Rs

à t = t1 Ouverture brutale de S: I(t1) traverse RL VRLcrête = RL . I(t1)

Page 24: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Principe : Faire parcourir une inductance par un courant Puis forcer ce courant à traverser une impédance de faible valeur

Stockage Inductif Circuit R, L, C

Nécessite un commutateur à fermeture au zéro de tension: Rl < 2 (L/C)1/2

à t = 0 Fermeture de S1

à t = t1 (Vc=0) Fermeture de S2

Page 25: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

- Gaz : éclateurs pressurisés, éclateurs sous-vide, Plasma Opening Switch,

thyratrons à hydrogène, ignitrons à mercure

- Semi-conducteur : Thyristors, GTO, IGBT, MOSFET, Diodes, Diodes SRD

- Solides : fusibles, armatures explosées

Principaux dispositifs de commutation

Commutateurs à fermeture

Eclateurs pressurisés, sous-vide

Thyratrons à hydrogène, ignitrons à mercure

Thyristors, IGBT, MOSFET, Diodes

Commutateurs à ouverture

Plasma Opening Switch, GTO

Thyristors, IGBT, MOSFET, SRD

Fusibles, armatures explosées

Page 26: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Principaux dispositifs de commutation

Page 27: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Générateurs d’impulsion à un étage

C1 : capacité de choc (réservoir d’énergie)C2 : capacité de l’objet en essai ;C1 = (10…20) C2

R1 : résistance de front d’onde (série) ;R2 : resistance de queue d’onde (parallele) ;

Page 28: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Dispositifs Multiplicateur de Tension (Générateurs de Marx)

Le condensateur C1 se charge par l’intermédiaire d’un transformateur HT associé à une diode. La résistance d’amortissement Ra empêche une charge trop rapide. La constante de temps lors du processus de charge τ = Ra C1.Lorsque la tension disruptive U0 de l’éclateur E est atteinte, C1 se décharge brusquement dans C2 à travers la résistance de front R1. la résistance de queue d’onde R2 étant beaucoup plus grande que R1, les capacités C1 et C2 vont se décharger ensuite plus lentement dans cette résistance R2.

Les résistances R1 et R2 servent à contrôler les constantes de temps respectivement de frontet de queue de l’onde. Ainsi, un temps de front bref requiert une charge rapide du condensateur C2 ,et un temps de queue long nécessite une décharge plus lente ; ceci est réalisé en choisissant une résistance R2 très grande par rapport à R1.

Quand R 2 ⟩⟩R 1 , au moment de l’amorçage de l’éclateur, toute la tension U est pratiquementappliquée à R1 et C2 en série. La charge du condensateur C2 est d’autant plus rapide que le produit R1C2 est petit.

Page 29: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Dispositifs Multiplicateur de Tension (Générateurs de Marx)

Page 30: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Principe - Erwin Marx (1893 - 1980)Générer une haute-tension en chargeant des condensateursen parallèle à bas niveau et en les déchargeant en série.

Dispositifs Multiplicateur de Tension (Générateurs de Marx)

Vc : tension de chargeVd : tension de déclenchementVs : tension de sortien :nombre d'étagesR : impédance de charge

S : commutateur à fermeture(éclateurs, thyristors)C :capacité d'un étageRc : impédances assurant la charge des capacités

Page 31: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Dispositifs Multiplicateur de Tension (Générateurs de Marx)

Des tensions continues plus élevées sont obtenues avec le générateur de Marx, c’est unensemble de générateurs de choc à un étage, montés en cascade. Les tensions obtenues sont de l’ordre du MV (maximum réalisé env. 6 MV).

Dans une première phase, le sectionneur I fermé permet la charge en parallèle des ncondensateurs C à travers de grandes résistances de charge Rch ; l’alimentation étant assurée par une source continue de tension U0 (comprise entre 50 et 200 kV).assurée par une source continue de tension U0 (comprise entre 50 et 200 kV).

Ensuite, dans une deuxième phase, le sectionneur est ouvert et l’amorçage de tous leséclateurs Ei est commandé presque simultanément (la tension de claquage des éclateurs à sphères étant ajustée légèrement au-dessus de U0); à ce moment précis les condensateurs C se trouvent en série et constituent une source de tension égale à nU0.

Page 32: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Dispositifs Multiplicateur de Tension (Générateurs de Marx)

Schéma équivalent lors de la mise en série des capacités

Si R>2 (L/C)1/2

Ce : capacité équivalente ( C/n)R.Ce : décrit la décroissance du signal

L : self équivalenteR/L : décrit le temps de montée

Si R>2 (L/C)1/2

Page 33: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Exemple: Générateurs de Marx

GREC CEA DAM

Vcharge : 65 kVVsortie : 8 MVt : 40 ns

Page 34: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Le terme de « bobine de Tesla » apparaît dans un ensemble d’inventions dues à Nikola Tesla (1856-1943) et destinées principalement à la production de champs électriques intenses et de phénomènes spectaculaires associés.

Etude d’alimentation « Bobines de Tesla »

Page 35: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Principe de fonctionnement

Le principe général repose sur la résonance d’un transformateur élévateur constitué de deux bobines coaxiales sans noyau magnétique ; pour éviter l’amortissement qui causeraient les pertes fer.

En substance, le très mauvais couplage dû à l’absence de circuit magnétique est compensé par la résonance de l’ensemble à une certaine fréquence et de très fortes tensions sont finalement obtenues au secondaire, tout simplement par « effet transformateur ».finalement obtenues au secondaire, tout simplement par « effet transformateur ».

Le « primaire » est simplement matérialisé par quelques spires enroulées à bonne distance du secondaire constitué de quelques milliers de tours, ce qui revient à un rapport de transformation important.

Un éloignement progressif des deux bobinages est nécessaire afin d’éviter des amorçages entre ces deux circuits.

Page 36: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Alimentation «en lâché » et modèle électrique

Page 37: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Plusieurs étapes permettent d'atteindre des tensions de plusieurs KV.

Etape 1 : la charge du condensateur. Au départ l'éclateur est ouvert, ce qui permet à l'alimentation de

charger le condensateur. La charge est asservie à la tension de l'alimentation (50Hz pour la France).

Etape 2 : décharge du condensateur. L'éclateur se ferme et court circuite l'alimentation. Le condensateur

peut alors se décharger dans la bobine primaire et rentrer en oscillation (circuit RLC série).

Etape 3 : transfert d'énergie dans la bobine secondaire. Le champ magnétique de la bobine primaire

produit un champ induit dans la bobine secondaire. Ce qui fait rentrer en oscillation le circuit secondaire.

Comme la fréquence du primaire est égale à celle du secondaire, il y a résonance. Comme le nombre de

Alimentation «en lâché » et modèle électrique

Comme la fréquence du primaire est égale à celle du secondaire, il y a résonance. Comme le nombre de

spires du secondaire est beaucoup plus grand que dans la bobine primaire il y a en plus amplification de la

tension (rapport de transformation).

Etape 4 : formation de l'arc électrique. A chaque oscillation du condensateur primaire, la tension au

niveau du tore augmente et devient supérieure à la tension de claquage de l'air, d'où la formation d'un arc

électrique ce qui ferme le circuit secondaire.

Etape 5 : ouverture de l'éclateur. L'éclateur s'ouvre alors, et permet de recharger le condensateur

primaire.

Et ainsi de suite…

Page 38: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

En terme de modélisation:

Le primaire est représenté par: Un condensateur,La bobine primaire

formant un couple L-C résonant à la fréquence f1 = 1/(2Π(L1C1) 1/2)

Alimentation «en lâché » et modèle électrique

Le secondaire est représenté par:Une inductance couplée par une mutuelle M au primaire, Une résistance (qui modélise l’arc) Un condensateur C2 (représente la capacité équivalente existant entre l’électrode et la masse)

Il existe ainsi une seconde fréquence de résonance à considérer f2 = 1/(2Π(L2C2) 1/2)

Page 39: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

On montre alors que, si f2= f1 , la tension secondaire crête est maximale et égale à la tension de charge du condensateur C1 multipliée par le rapport de transformation m= L .

Le rôle de l’électrode posée sur la bobine est ainsi crucial par le fait qu’elle impose la valeur de la capacité C2 .

Une électrode présentant une grande surface est alors nécessaire afin de permettre à f2 de n’être pas trop importante (inférieure à quelques 100 kHz) ; ceci autorisant des courants pas trop atténués par les réactances en série.

Alimentation «en lâché » et modèle électrique

pas trop atténués par les réactances en série.

Le coefficient de couplage ( k=M/ (L1.L2)1/2 ) modifie profondément l’allure des tensions obtenues et donc l’échange des puissances.

En pratique, une fois le condensateur C1 chargé, la fermeture du circuit est opérée soit par un éclateur autonome soit par des contacts à répétition souvent réalisés par un éclateur rotatif

Page 40: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Alimentation «en lâché »

Page 41: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Exemples « Bobines de Tesla »

Page 42: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Alimentation Poste à souder

La création d’un arc électrique nécessite plusieurs dizaines d’ampères. Mais, les alimentations domestiques ne peuvent pas dépasser 16A.

L’utilisation d’un transformateur élévateur de courant nous permet d’obtenir cet ampérage nécessaire. Mais un transformateur fonctionnant à une fréquence de 50 Hz a un encombrement conséquent.

Or nous connaissons sa tension qui est donnée par la relation deBoucherot:Veff = 4,44 * Bmax * f * S * N

avec: Bmax: valeur max admissible de l’induction dans le circuit magnétique,f: fréquence de fonctionnement du transformateur,f: fréquence de fonctionnement du transformateur,S: section du circuit magnétique,N: nombre de spires de l’enroulement considéré.

Donc pour diminuer le terme S * N (encombrement), on augmente la fréquence. On utilise une alimentation à découpage qui travaille à hautes fréquences et qui a l’avantage d’avoir un meilleur rendement que les alimentations linéaires.

Le flyback n’est pas utilisé ici car son fonctionnement repose sur le stockage d’énergie. Or, la puissance du poste à souder est trop élevée pour pouvoir utiliser ce type d’alimentation. De ce fait, on a utilisé un forward à demie pont asymétrique (3000 VA) .

Page 43: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Alimentation Poste à souder

Les transistors K1 et K2 sont commandés en synchronisme.

Pendant la conduction de K1 et K2 (temps tf), l’énergie est envoyée au secondaire à travers

le transformateur et D3. La tension au primaire est égale à E. Le courant magnétisant croît

avec une pente :

Le blocage de K1 et K2 (temps t0) provoque l’inversion de la tension au primaire et au

secondaire (blocage de D3). Le courant de l’inductance iL se referme par D4. Un troisième

enroulement du transformateur est inutile, car le courant magnétisant trouve un chemin, du

côté primaire, à travers les diodes D1 et D2. L’énergie magnétisante est récupérée par la

source E. Lorsque D1 et D2 s’amorcent, la tension au primaire devient – E et le courant

magnétisant décroît, à travers D1 et D2, avec une pente égale à :

Lorsque le courant magnétisant s’annule, ce qui correspond au temps mort tm (courant nul

au primaire), les diodes cessent de conduire ; la tension aux bornes des transistors est E/2.

forward à demie pont asymétrique

Page 44: Alimentation des plasmas: Arc - ekladata.comekladata.com/gD1Lz42UUT4ZttxlBmHyOot8eQw.pdf · Circuit électrique équivalent du transformateur et de l’isolant teste Considérons

Les allures des courants et des tensions, de même que la tension de sortie, sont les mêmes que pour le forward classique, à l’exceptionde la tension aux bornes des transistors qui

Alimentation Poste à souder

de la tension aux bornes des transistors qui est divisée par deux ( VCE= E pendant la démagnétisation, puis E /2).