Box Jenkins (1)

Embed Size (px)

Citation preview

  • 8/2/2019 Box Jenkins (1)

    1/109

    La Mthodologie de Box-Jenkins

    Michel Tenenhaus

  • 8/2/2019 Box Jenkins (1)

    2/109

    2

    1. Les donnes

    Une srie chronologique assez longue

    (n 50).

    Exemple : Ventes danti-inflammatoires en

    France de janvier 1978 juillet 1982. Objectif : Prvoir les ventes daot

    dcembre 1982.

    1( ,..., ,..., )t nz z z

  • 8/2/2019 Box Jenkins (1)

    3/109

    3

    date ventes date ventes date ventes

    JAN 1978 3 741 JAN 1980 4 687 JAN 1982 4 764

    FEB 1978 3 608 FEB 1980 4 704 FEB 1982 4 726

    MAR 1978 3 735 MAR 1980 4 579 MAR 1982 5 080

    APR 1978 3 695 APR 1980 4 800 APR 1982 4 952

    MAY 1978 3 810 MAY 1980 4 485 MAY 1982 4 633

    JUN 1978 3 819 JUN 1980 4 617 JUN 1982 4 830

    JUL 1978 3 291 JUL 1980 4 491 JUL 1982 4 460

    AUG 1978 3 053 AUG 1980 3 832

    SEP 1978 3 908 SEP 1980 4 669

    OCT 1978 4 035 OCT 1980 5 193

    NOV 1978 3 933 NOV 1980 4 544DEC 1978 4 004 DEC 1980 4 676

    JAN 1979 3 961 JAN 1981 4 709

    FEB 1979 4 025 FEB 1981 4 705

    MAR 1979 4 336 MAR 1981 4 677

    APR 1979 4 335 APR 1981 4 627

    MAY 1979 4 412 MAY 1981 4 555

    JUN 1979 4 268 JUN 1981 4 570

    JUL 1979 3 968 JUL 1981 4 457

    AUG 1979 3 505 AUG 1981 3 589

    SEP 1979 4 434 SEP 1981 4 636

    OCT 1979 4 854 OCT 1981 5 077

    NOV 1979 4 592 NOV 1981 4 623

    DEC 1979 4 264 DEC 1981 4 591

    March totaldes anti-inflammatoires

  • 8/2/2019 Box Jenkins (1)

    4/109

    4

    March total des anti-inflammatoires

  • 8/2/2019 Box Jenkins (1)

    5/109

    5

    2. Stabiliser la srie

    Il faut TRANSFORMER la srie observe

    de manire - enlever la tendance,

    - enlever la saisonnalit,

    - stabiliser la variance.

  • 8/2/2019 Box Jenkins (1)

    6/109

    6

    Pour enlever la tendance

    Faire des diffrences rgulires dordre d:

    1 (1 )t t tz z B z 1o t tBz z

    d= 2 21(1 ) (1 ) (1 )t t tB z B z B z

    d= 1

    Diffrence rgulire dordre d:

    (1 )dt tw B z

    Dans la pratiqued= 0,1, rarement 2

  • 8/2/2019 Box Jenkins (1)

    7/109

    7

    March total des anti-inflammatoires :Diffrence rgulire dordre d = 1

  • 8/2/2019 Box Jenkins (1)

    8/109

    8

    Dans la pratiqueD = 0,1,trs trs rarement 2

    Pour enlever la saisonnalit

    Faire des diffrences saisonnires dordreD :

    (1 )s

    t t s t z z B z

    D = 2 2(1 ) (1 ) (1 )s s st t s t B z B z B z

    D = 1

    Diffrence saisonnire dordreD :

    (1 )s Dt tw B z

    Ordre de la saisonnalit : s = 12 (mois) ou 4 (trimestre)

  • 8/2/2019 Box Jenkins (1)

    9/109

    9

    March total des anti-inflammatoires :Diffrence saisonnire (s = 12) dordre D = 1

  • 8/2/2019 Box Jenkins (1)

    10/109

    10

    Pour enlever tendance et saisonnalit

    Formule gnrale :

    (1 ) (1 )d s Dt tw B B z

    On peut choisir detD minimisantlcart-type de wt.

    Application March total : s = 12, d= 1,D = 112

    12 1 13(1 )(1 ) ( ) ( )t t t t t t w B B z z z z z

  • 8/2/2019 Box Jenkins (1)

    11/109

    11

    March total des anti-inflammatoires :Diffrence rgulire/saisonnire (s = 12, d = 1, D = 1)

  • 8/2/2019 Box Jenkins (1)

    12/109

    12

    Calcul des sries diffrenciesDonnes (20 premiers mois)

    JAN 1978 3741 . . .

    FEB 1978 3608 -133 . .

    MAR 1978 3735 127 . .

    APR 1978 3695 -40 . .

    MAY 1978 3810 115 . .

    JUN 1978 3819 9 . .

    JUL 1978 3291 -528 . .

    AUG 1978 3053 -238 . .

    SEP 1978 3908 855 . .

    OCT 1978 4035 127 . .

    NOV 1978 3933 -102 . .

    DEC 1978 4004 71 . .

    JAN 1979 3961 -43 220 .

    FEB 1979 4025 64 417 197MAR 1979 4336 311 601 184

    APR 1979 4335 -1 640 39

    MAY 1979 4412 77 602 -38

    JUN 1979 4268 -144 449 -153

    JUL 1979 3968 -300 677 228

    AUG 1979 3505 -463 452 -225

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    1415

    16

    17

    18

    19

    20

    DAT E ventes DIFF(ventes,1) SDIFF(ventes,1,12) DIFF(ventes_2,1)

  • 8/2/2019 Box Jenkins (1)

    13/109

    13

    Calcul des carts-typesDescriptive Statistics

    55 3053 4347.71 478.613

    54 -868 13.31 382.030

    43 -243 263.47 279.368

    42 -436 -5.17 242.719

    ventes

    DIFF(ventes,1)

    SDIFF(ventes,1,12)DIFF(SDIFF(ventes,1,12),1)

    N Minimum Mean Std. Deviation

    s = 12, d= 1,D = 1

  • 8/2/2019 Box Jenkins (1)

    14/109

    14

    Dveloppement de zt

    12 1 13( ) ( )t t t t t w z z z z De

    On dduit

    12 1 13( )t t t t t z z z z w

    valeur

    1 an avant

    valuationde la tendance

    1 an avant

    terme

    alatoire

    On va modliser la srie stationnaire wt.

  • 8/2/2019 Box Jenkins (1)

    15/109

    15

    Pour stabiliser la variance

    On utilise souvent les transformations ( ) out tLog z z

  • 8/2/2019 Box Jenkins (1)

    16/109

    16

    3. Le modle statistique

    On suppose que la srie stabilise (w1,,wN)provient dun processus stationnaire (wt) :

    2( )( )

    ( , )

    t

    t w

    k t t k

    E w

    Var w

    Cor w w

    Indpendantde la priode t

    Dans des conditions assez gnrales tout processusstationnaire peut tre approch par des modlesAR(p), MA(q) ou ARMA(p,q).

  • 8/2/2019 Box Jenkins (1)

    17/109

    17

    AR(p) : Auto-rgressif dordre p

    2

    ( ) 0

    ( )

    ( , ) 0 pour tout 1,2,...

    t

    t

    t t k

    E a

    Var a

    Cor a a k

    1 1 ...t t p t p t w w w a

    o atest un bruit blanc :

    Remarque : 1(1 ... )p

  • 8/2/2019 Box Jenkins (1)

    18/109

    18

    MA(q) : Moyenne Mobile dordre q

    1 1 ...t t t q t qw a a a

    Remarque :

  • 8/2/2019 Box Jenkins (1)

    19/109

    19

    ARMA(p,q)

    1 1 1 1... ...t t p t p t t q t qw w w a a a

    Remarque : 1(1 ... )p

  • 8/2/2019 Box Jenkins (1)

    20/109

    20

    Question

    Comment choisir le modlecorrespondant le mieux aux donnes

    tudies ?Rponse

    On utilise les autocorrlations ket les autocorrlations partielles kk.

  • 8/2/2019 Box Jenkins (1)

    21/109

    21

    4. Autocorrlation

    1

    2

    1

    ( , )

    ( )( )

    = estimation de

    ( )

    k t t k

    N

    t t k

    t kk kN

    tt

    Cor w w

    w w w w

    r

    w w

  • 8/2/2019 Box Jenkins (1)

    22/109

    22

    Exemple : March TotalDiffrence rgulire/saisonnire : d= 1,D = 1

    Autocorrlationscalcules

    Autocorrelations

    Series: ventes

    -.515 .154 11.937 1 .001

    .016 .191 11.948 2 .003

    .189 .191 13.635 3 .003-.200 .195 15.581 4 .004

    .062 .200 15.770 5 .008

    .174 .201 17.326 6 .008

    -.243 .204 20.449 7 .005

    .076 .211 20.759 8 .008

    .081 .212 21.127 9 .012

    -.210 .212 23.686 10 .008

    .344 .217 30.755 11 .001

    -.312 .230 36.747 12 .000

    .114 .240 37.574 13 .000

    -.139 .241 38.842 14 .000

    .140 .243 40.184 15 .000

    -.072 .245 40.549 16 .001

    Lag

    1

    2

    34

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    Autocorrel

    ation Std. Errora

    Value df Sig.b

    Box-Ljung Statistic

    The underlying process assumed is MA with the order equal to

    the lag number minus one. The Bartlett approximation is used.

    a.

    Based on the asymptotic chi-square approximation.b.

  • 8/2/2019 Box Jenkins (1)

    23/109

    23

    Exemple : March TotalDiffrence rgulire/saisonnire : d= 1,D = 1

    Corrlogrammeobserv

    Formulede Bartlett

  • 8/2/2019 Box Jenkins (1)

    24/109

    24

    Variance des autocorrlations rk

    Formule de Bartlett(Hypothse : h= 0 pour hk)

    2 2 2

    1 1

    1

    ( ) (1 2 ... 2 ) estimation de ( )k k ks r r r Var r N

    Formule de Box-Jenkins pour un bruit blanc

    (Hypothse : h

    = 0 pourh

    1)2 1( ) estimation de ( )

    2k k

    N ks r Var r

    N N

  • 8/2/2019 Box Jenkins (1)

    25/109

    25

    Test : H0 : k= 0

    On rejette H0 : k= 0 au risque = 0.05 si

    2 ( )k kr s r

    Application March total :

    1

    = 0, k

    = 0 pour k > 1

    Corrlogrammethorique

    0

    k

    1 k

  • 8/2/2019 Box Jenkins (1)

    26/109

    26

    5. Autocorrlation partielle

    Rgression de wtsur wt-1,,wt-k:

    0 1 1 ...t k k t kk t k t w w w

    Autocorrlation partielle dordre k: kk

    Cest une corrlation partielle:

    1 1( , | ,..., )kk t t k t t k Cor w w w w

  • 8/2/2019 Box Jenkins (1)

    27/109

    27

    Calcul pratique de estimation de kk

    1 2 1

    1 3 2

    1 2 1

    1 2 1

    1 3 2

    1 2 1

    1

    1

    1

    1

    1

    k

    k

    k k k

    kkk k

    k k

    k k

    Soit :1

    11 11

    12

    1 2 2 122 2

    1 1

    1

    1

    1 1

    1

    Etc

    On obtient les estimations des kken remplaant les kpar rk.kk

    kk

  • 8/2/2019 Box Jenkins (1)

    28/109

    28

    Partial Autocorrelations

    Series: ventes

    -.515 .154

    -.339 .154

    .039 .154

    -.073 .154

    -.073 .154

    .186 .154

    -.012 .154

    -.097 .154

    .001 .154

    -.139 .154

    .238 .154

    -.116 .154

    .029 .154

    -.343 .154

    .022 .154

    -.053 .154

    Lag

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    Partial

    Autocorrelation Std. Error

    Exemple : March TotalDiffrence rgulire/saisonnire : d= 1,D = 1

    Autocorrlations partielles calcules

    Rejet de

    H0 : kk=0si:

    2 /kk N

  • 8/2/2019 Box Jenkins (1)

    29/109

    29

    Corrlogramme partiel observ

    Corrlogrammepartiel thorique

    0

    kk

    1 k

    142

  • 8/2/2019 Box Jenkins (1)

    30/109

    30

    6. Autocorrlations et autocorrlations partielles desmodles AR(p) et MA(q)

    Corrlogramme Corrlogramme partiel

    (a) (a)

    (b) (b)

    10.5t t tw w a

    (a) :

    10.5t t tw w a (b) :

    AR(1)

  • 8/2/2019 Box Jenkins (1)

    31/109

    31

    Corrlogramme Corrlogramme partiel

    (a) (a)

    (b) (b)

    AR(2)

    1 2.8 .15t t t tw w w a

    (a) :

    (b) :

    1 2.5t t t tw w w a

    Le dernier pic significatif du corrlogramme partiel donne

    lordrep du modle AR(p).

  • 8/2/2019 Box Jenkins (1)

    32/109

    32

    Corrlogramme Corrlogramme partiel

    (a) (a)

    (b) (b)

    MA(1)

    1.7t t tw a a

    (a) :

    (b) :

    1.7t t tw a a

    C l d diff t MA( )

  • 8/2/2019 Box Jenkins (1)

    33/109

    33

    MA(q)

    1 2.5 .3t t t t w a a a (a) : q = 2

    (b) : q = 5

    5.7t t tw a a

    Corrlogramme de diffrents processus MA(q)

    (a)

    (b)

    (c)

    (c) : q = 6

    1 6.3 .6t t t t w a a a

    Le dernier pic significatif ducorrlogramme donne lordre q

    du modle MA(q).

  • 8/2/2019 Box Jenkins (1)

    34/109

    34

    7. tude de la srie March Total

    Les autocorrlations suggrent un modle MA(1).

    Les autocorrlations partielles suggrent unmodle AR(14).

  • 8/2/2019 Box Jenkins (1)

    35/109

    35

    7.1 tude de la voie moyenne mobile

    On suppose que wtsuit un modle MA(1) :

    1

    2( )

    t t t

    t

    w a a

    Var a

    et on a = E(wt) = .

    On choisit les paramtres , et 2 laidede la mthode du maximum de vraisemblance.

  • 8/2/2019 Box Jenkins (1)

    36/109

    36

    Maximum de vraisemblance

    On suppose que le vecteur alatoirew = (w1,,wN) suit une loi multinormale.

    Densit de probabilit de w :2

    1

    2 1 '

    / 2 2

    ( ,..., | , , )

    1 1exp ( ) ( , ) ( )

    2(2 ) ( , )

    N

    N

    p w w

    w - w -

    On recherche maximisantla vraisemblance

    2

    , et

    2

    1

    ( ,..., | , , )Np w w

  • 8/2/2019 Box Jenkins (1)

    37/109

    37

    Qualit de lajustement dans ARIMA

    2 ( ) 2

    2 ( ) ( )

    AIC Log r

    SBC Log rLog N

    On recherche le modle minimisant SBC.

    o r est le nombre de paramtres (hors 2).

  • 8/2/2019 Box Jenkins (1)

    38/109

    38

    Modle MA(1) avec constante

    1t t tw a a

    Residual Diagnostics

    42

    1

    40

    1585179

    1591466

    39100.764

    197.739

    -280.918

    565.835

    569.311

    Number of Residuals

    Number of Parameters

    Residua l df

    Adjusted Residual Sum of

    Squares

    Residua l Sum o f Squares

    Residual Variance

    Model Std. Error

    Log-Likelihood

    Akaike's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    .657 -7.772

    .123 10.990

    5.326 -.707

    .000 .484

    Estimates

    Std Error

    t

    Approx Sig

    MA1

    Non-

    Seasonal

    Lags

    Constant

    Melard's algorithm was used for estimation.

  • 8/2/2019 Box Jenkins (1)

    39/109

    39

    Modle MA(1) sans constante

    1t t tw a a

    Residual Diagnostics

    421

    41

    1603132

    1620350

    38625.634

    196.534-281.143

    564.285

    566.023

    Number of ResidualsNumber of Parameters

    Residual df

    Adjusted Residual Sum of

    Squares

    Residual Sum of Squares

    Residual Variance

    Model Std. ErrorLog-Likelihood

    Akaike's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    .634

    .125

    5.066

    .000

    Estimates

    Std Error

    t

    Approx Sig

    MA1

    Non-Seasonal Lags

    Melard's algorithm was used for estimation.

  • 8/2/2019 Box Jenkins (1)

    40/109

    40

    Modlisation de zt

    12 1 13 1( ) ( )t t t t t t t w z z z z a a De

    On dduit

    12 1 13 1( )t t t t t t z z z z a a

    march1 an avant

    valuation

    de la tendance1 an avant

    chocalatoire

    en tchocalatoireen t-1

  • 8/2/2019 Box Jenkins (1)

    41/109

    41

    Calcul des prvisions et des erreurs

    Modle : 12 1 13 1t t t t t t z z z z a a

    Prvision de zt ralise en t-1 :

    12 1 13 1

    t t t t t z z z z a

    Erreur de prvision lhorizon 1 :

    t t ta z z

    Calcul pratique des prvisions et des erreurs sur lhistorique:

    12 1 13 1

    ett t t t t t t t z z z z a a z z

  • 8/2/2019 Box Jenkins (1)

    42/109

    42

    MA(1) sans constante

    DATE. ventes Fit Error

    1 JAN 1978 3741 . .

    2 FEB 1978 3608 . .

    3 MAR 1978 3735 . .

    4 APR 1978 3695 . .

    5 MAY 1978 3810 . .

    6 JUN 1978 3819 . .

    7 JUL 1978 3291 . .

    8 AUG 1978 3053 . .

    9 SEP 1978 3908 . .

    10 OCT 1978 4035 . .

    11 NOV 1978 3933 . .

    12 DEC 1978 4004 . .

    13 JAN 1979 3961 . .

    14 FEB 1979 4025 3828.00 197.00

    15 MAR 1979 4336 4062.93 273.07

    16 APR 1979 4335 4140.81 194.19

    17 MAY 1979 4412 4331.83 80.17

    18 JUN 1979 4268 4370.99 -102.99

    19 JUL 1979 3968 3804.86 163.14

    20 AUG 1979 3505 3626.87 -121.87

    21 SEP 1979 4434 4437.16 -3.16

    22 OCT 1979 4854 4563.00 291.00

    23 NOV 1979 4592 4567.61 24.39

    24 DEC 1979 4264 4647.55 -383.55

    Rsultats

  • 8/2/2019 Box Jenkins (1)

    43/109

    43

    Rsultats (suite)MA(1) sans constante

    DATE. ventes Fit Error

    25 JAN 1980 4687 4464.06 222.9426 FEB 1980 4704 4609.72 94.28

    27 MAR 1980 4579 4955.25 -376.25

    28 APR 1980 4800 4816.44 -16.44

    29 MAY 1980 4485 4887.42 -402.42

    30 JUN 1980 4617 4596.02 20.98

    31 JUL 1980 4491 4303.71 187.29

    32 AUG 1980 3832 3909.31 -77.31

    33 SEP 1980 4669 4809.99 -140.9934 OCT 1980 5193 5178.35 14.65

    35 NOV 1980 4544 4921.72 -377.72

    36 DEC 1980 4676 4455.37 220.63

    37 JAN 1981 4709 4959.18 -250.18

    38 FEB 1981 4705 4884.55 -179.55

    39 MAR 1981 4677 4693.78 -16.78

    40 APR 1981 4627 4908.64 -281.64

    41 MAY 1981 4555 4490.48 64.5242 JUN 1981 4570 4646.11 -76.11

    43 JUL 1981 4457 4492.23 -35.23

    44 AUG 1981 3589 3820.33 -231.33

    45 SEP 1981 4636 4572.60 63.40

    46 OCT 1981 5077 5119.82 -42.82

    47 NOV 1981 4623 4455.14 167.86

    48 DEC 1981 4591 4648.62 -57.62

  • 8/2/2019 Box Jenkins (1)

    44/109

    44

    Rsultats (fin)

    MA(1) sans constante

    DATE. ventes Fit Error

    49 JAN 1982 4764 4660.52 103.48

    50 FEB 1982 4726 4694.42 31.58

    51 MAR 1982 5080 4677.99 402.01

    52 APR 1982 4952 4775.23 176.77

    53 MAY 1982 4633 4767.98 -134.98

    54 JUN 1982 4830 4733.54 96.46

    55 JUL 1982 4460 4655.87 -195.87

    Vrifier les calculs pour 55 55 etz a

  • 8/2/2019 Box Jenkins (1)

    45/109

    45

    Graphique des ventes observes et prdites

  • 8/2/2019 Box Jenkins (1)

    46/109

    46

    Graphique des rsidus

    Limite 2

  • 8/2/2019 Box Jenkins (1)

    47/109

    47

    Qualit de lajustement dansTime Series Modeler

    2 ( )

    Normalized BIC 2 ( )t

    a Log N

    Log rN r N

    2 2

    2 2

    Stationary R-Squared 1 1t t t t

    t t

    t t

    t t

    w w z z

    w w w w

  • 8/2/2019 Box Jenkins (1)

    48/109

    48

    Validation du modletude des ( )k tr a

    Autocorrelations

    Series: Error for ventes from ARIMA, MOD_2, NOCON

    -.087 .149 .342 1 .558

    .072 .147 .581 2 .748

    .188 .145 2.253 3 .522-.079 .143 2.556 4 .635

    .128 .141 3.379 5 .642

    .164 .140 4.768 6 .574

    -.168 .138 6.265 7 .509

    .031 .136 6.316 8 .612

    .063 .134 6.535 9 .685

    -.115 .132 7.304 10 .696

    .208 .130 9.894 11 .540-.281 .127 14.747 12 .256

    -.076 .125 15.119 13 .300

    -.157 .123 16.750 14 .270

    .062 .121 17.017 15 .318

    -.054 .119 17.222 16 .371

    Lag

    1

    2

    34

    5

    6

    7

    8

    9

    10

    1112

    13

    14

    15

    16

    Autocorrel

    ation Std. Errora

    Value df Sig.b

    Box-Ljung Statistic

    The underlying process assumed is independence (white

    noise).

    a.

    Based on the asymptotic chi-square approximation.b.

  • 8/2/2019 Box Jenkins (1)

    49/109

    49

    Validation du modleCorrlogramme des ( )k tr a

    Formule deBox-Jenkins

    Corrlogrammethorique des erreurs bt

    0

    k(bt)

    12 k

  • 8/2/2019 Box Jenkins (1)

    50/109

    50

    Validation du modle : Utilisation dela statistique de Ljung-Box

    La statistique de Ljung-Box

    22

    1

    ( )( 2)

    mk t

    m

    k

    r aN N

    N k

    suit une loi du khi-deux m-rddl lorsque les rsidusforment un bruit blanc.On accepte le modle tudi si les niveaux designification

    2 2Prob( ( ) )mm r

    sont > .05 pour diffrentes valeurs de m.

    Utili ti d dl ti i i

  • 8/2/2019 Box Jenkins (1)

    51/109

    51

    Utilisation du modle estim en prvision

    Modle : 12 1 13 1t t t t t t z z z z a a

    Prvision de z55+h ralise en t= 55 :

    56 44 55 43 55 z z z z a h = 1

    57 45 56 44 z z z z h = 2

    Et ainsi de suite

  • 8/2/2019 Box Jenkins (1)

    52/109

    52

    Application

    AUG 1982 3716.13 3319.22 4113.04 196.53

    SEP 1982 4763.13 4340.43 5185.82 209.30

    OCT 1982 5204.13 4757.13 5651.12 221.34

    NOV 1982 4750.13 4280.09 5220.17 232.75

    DEC 1982 4718.13 4226.12 5210.14 243.62

    1

    2

    3

    4

    5

    DATE. Fit for ventes 95% LCL 95% UCL SE of Fit

  • 8/2/2019 Box Jenkins (1)

    53/109

    53

    Intervalle de prvision 95% de z55+h

    Chaque modle a sa propre formule de constructionde lintervalle de prvision.

    2

    55 .975

    ( ) 1 ( 1)(1 )hz t N r h

    Modle MA(1) :

  • 8/2/2019 Box Jenkins (1)

    54/109

    54

  • 8/2/2019 Box Jenkins (1)

    55/109

    55

    Amlioration du modle MA(1)

    On suppose maintenant le modle est significatif.12

    ( ) .281tr a

    1

    12 , o bruit blanct t t

    t t t t

    w b b

    b a a a

    De 12(1 ) et (1 )t t t t w B b b B a

    on dduit :12(1 )(1 )

    t tw B B a

  • 8/2/2019 Box Jenkins (1)

    56/109

    56

    Demande SPSS

  • 8/2/2019 Box Jenkins (1)

    57/109

    57

    Rsultats

    Parameter Estimates

    .715 .765 -11.468

    .107 .399 5.219

    6.693 1.918 -2.197.000 .062 .034

    Estimates

    Std Error

    t

    Approx Sig

    MA1

    Non-Seasonal

    Lags

    Seasonal MA1

    Seasonal

    Lags

    Constant

    Melard's algori thm was used for estimation.

    Residual Diagnostics

    42

    2

    39

    1268226.611

    1336414.106

    25544.245

    159.826

    -276.531

    559.062

    564.275

    Number of Residuals

    Number of Parameters

    Residual df

    Adjusted ResidualSum of Squares

    Residual Sum of Squares

    Residual Variance

    Model Std. Error

    Log-Likelihood

    Akaike's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    12(1 )(1 )t t

    w B B a

  • 8/2/2019 Box Jenkins (1)

    58/109

    58

    7.2 tude de la voie autorgressive

    On suppose que wtsuit un modle AR(14) :

    1 1 14 14

    2

    ...

    ( )

    t t t t

    t

    w w w a

    Var a

    et on a = (1 - 1 --14).

    On choisit les paramtres , 1,,14 et 2 laidede la mthode du maximum de vraisemblance.

    est appelConstant dansSPSS

  • 8/2/2019 Box Jenkins (1)

    59/109

    59

    Rsultats

    1 1 14 14...t t t t w w w a

    Residual Diagnostics

    42

    14

    27

    949178.0

    1041062

    28699.741

    169.410

    -270.689

    571.379

    597.444

    Number of Residuals

    Number of Parameters

    Residual dfAdjusted Residual Sum of

    Squares

    Residual Sum o f Squares

    Residual Variance

    Mode l Std. Error

    Log-Likelihood

    Akaike's Information

    Criterion (AIC)Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    -.680 .156 -4.367 .000

    -.441 .169 -2.614 .014

    .059 .188 .311 .758

    .034 .184 .185 .855

    .107 .191 .560 .580

    .138 .214 .644 .525

    -.051 .254 -.200 .843

    -.016 .240 -.067 .947

    -.006 .232 -.026 .980

    -.054 .237 -.228 .821

    .185 .234 .791 .436

    -.307 .227 -1.355 .187

    -.428 .208 -2.059 .049

    -.572 .156 -3.668 .001

    -10.788 9.983 -1.081 .289

    AR1

    AR2

    AR3AR4

    AR5

    AR6

    AR7

    AR8

    AR9

    AR10

    AR11

    AR12

    AR13

    AR14

    Non-Seasonal

    Lags

    Constant

    Estimates Std Error t Approx Sig

    Melard's algorithm was used for estimation.

  • 8/2/2019 Box Jenkins (1)

    60/109

    60

    Modle AR : p = (1,2,12,13,14) avec cste

    1 1 2 2 12 12 13 13 14 14t t t t t t tw w w w w w a

    Demande SPSS

  • 8/2/2019 Box Jenkins (1)

    61/109

    61

    Rsultats

    1 1 2 2 12 12 13 13 14 14t t t t t t tw w w w w w a

    Parameter Es timates

    -.775 .127 -6.083 .000-.490 .122 -4.006 .000

    -.512 .138 -3.711 .001

    -.594 .159 -3.733 .001

    -.526 .145 -3.619 .001

    -12.797 7.487 -1.709 .096

    AR1AR2

    AR12

    AR13

    AR14

    Non-SeasonalLags

    Constant

    Estimates Std Error t Approx Sig

    Melard's algorithm was used for estimation.

    Residual Diagnostics

    42

    5

    36

    1093774.600

    1192109.813

    25711.840

    160.349

    -273.114

    558.228

    568.654

    Number of Residuals

    Number of

    Parameters

    Residual dfAdjusted Residual

    Sum of Squares

    Residual Sum of

    Squares

    Residual Variance

    Mode l Std. Error

    Log-Likelihood

    Akaike's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    l ( )

  • 8/2/2019 Box Jenkins (1)

    62/109

    62

    Modle AR : p = (1,2,12,13,14) sans cste

    1 1 2 2 12 12 13 13 14 14t t t t t t t w w w w w w a

    Demande SPSS

    l

  • 8/2/2019 Box Jenkins (1)

    63/109

    63

    Rsultats

    1 1 2 2 12 12 13 13 14 14t t t t t t t w w w w w w a

    Residual Diagnostics

    42

    5

    37

    1172013

    1233379

    27877.941

    166.967-274.563

    559.127

    567.815

    Number of

    Residuals

    Number of

    Parameters

    Residual df

    Adjusted Residual

    Sum of Squares

    Residual Sum ofSquares

    Residual Variance

    Model Std. ErrorLog-Likelihood

    Akaike's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Es timates

    -.747 .134 -5.591 .000

    -.460 .129 -3.568 .001

    -.454 .148 -3.066 .004

    -.508 .171 -2.975 .005

    -.467 .154 -3.041 .004

    AR1

    AR2

    AR12

    AR13

    AR14

    Non-Seasonal

    Lags

    Estimates Std Error t Approx Sig

    Melard's algorithm was used for estim ation.

    M dl R 2 P 1

  • 8/2/2019 Box Jenkins (1)

    64/109

    64

    Modle AR : p = 2, P = 1 avec cste2 12

    1 2(1 )(1 ) t tB B B w a

    Demande SPSS

    R l

  • 8/2/2019 Box Jenkins (1)

    65/109

    65

    Rsultats2 12

    1 2(1 )(1 ) t tB B B w a

    Residual Diagnostics

    42

    3

    38

    1196121

    1286077

    27725.190

    166.509

    -274.998

    557.997

    564.948

    Number of

    Residuals

    Number of

    ParametersResidual df

    Adjusted Residual

    Sum of Squares

    Residual Sum of

    Squares

    Residual Variance

    Model Std. Error

    Log-Likelihood

    Akaike's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    -.759 .139 -5.445 .000

    -.523 .132 -3.970 .000

    -.557 .146 -3.812 .000

    -12.289 8.308 -1.479 .147

    AR1

    AR2

    Non-Seasonal

    Lags

    Seasonal AR1Seasonal Lags

    Constant

    Estimates Std Error t Approx Sig

    Melard's algorithm was used for estimation.

    M dl AR 2 P 1

  • 8/2/2019 Box Jenkins (1)

    66/109

    66

    Modle AR : p = 2, P = 1 sans cste2 12

    1 2(1 )(1 ) t tB B B w a

    Demande SPSS

    R lt t

  • 8/2/2019 Box Jenkins (1)

    67/109

    67

    Rsultats2 12

    1 2(1 )(1 ) t tB B B w a

    Residual Diagnostics

    42

    3

    39

    1256636

    1315334

    29246.908

    171.017

    -276.033

    558.066

    563.279

    Number of

    Residuals

    Number of

    Parameters

    Residual df

    Adjusted Residual

    Sum of Squares

    Residual Sum of

    Squares

    Residual Variance

    Model Std. Error

    Log-LikelihoodAkaike's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    -.731 .143 -5.101 .000-.481 .135 -3.562 .001

    -.489 .154 -3.186 .003

    AR1

    AR2

    Non-Seasonal

    Lags

    Seasonal AR1Seasonal Lags

    Estimates Std Error t Approx Sig

    Melard's algorithm was used for estimation.

    Rsultats

  • 8/2/2019 Box Jenkins (1)

    68/109

    68

    Rsultats2 12

    1 2(1 )(1 ) t tB B B w a

    Rsultats avec Time Series Modeler

  • 8/2/2019 Box Jenkins (1)

    69/109

    69

    Rsultats avec Time Series Modeler

    2 12

    1 2(1 )(1 ) t tB B B w a

    Forecast

    3818 4792 5192 4688 4742

    4163 5150 5567 5123 5197

    3472 4434 4817 4253 4288

    Forecast

    UCL

    LCL

    Modelventes-Model_1

    Aug 1982 Sep 1982 Oct 1982 Nov 1982 Dec 1982

    For each model , forecasts start after the last non-missing in the range o f the requested

    estimation period, and end at the last period for which non-missing values of all the predict

    are available or at the end date of the requested forecast period, whichever is earlier.

    Rsultats avec Time Series Modeler

  • 8/2/2019 Box Jenkins (1)

    70/109

    70

    Rsultats avec Time Series Modeler2 12

    1 2(1 )(1 ) t tB B B w a

  • 8/2/2019 Box Jenkins (1)

    71/109

    71

    7.3 tude de la voie AR/MA

    2 12

    1 2(1 ) (1 )t tB B w B a Modle avecconstante

  • 8/2/2019 Box Jenkins (1)

    72/109

    72

    Rsultats

    2 121 2(1 ) (1 )t tB B w B a

    Residual Diagnostics

    42

    3

    38

    1112464

    1256550

    19325.966

    139.018

    -274.630

    557.261

    564.211

    Number of Residuals

    Number of Parameters

    Residual df

    Adjusted Residual Sum of

    Squares

    Residual Sum of Squares

    Residual Variance

    Model Std. Error

    Log-Likelihood

    Akaike's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    -.765 .123 -6.228 .000

    -.558 .114 -4.911 .000

    .965 2.964 .326 .747-11.009 6.504 -1.693 .099

    AR1

    AR2

    Non-Seasonal

    Lags

    Seasonal MA1Seasonal LagsConstant

    Estimates Std Error t Approx Sig

    Melard's algorithm was used for estimati on.

    Warnings

    Our tests have determined that the estimated model lies close to the boundary of t

    invertibility region. Although the moving average parameters are probably correctl

    estimated, their standard errors and covariances should be considered suspect.

  • 8/2/2019 Box Jenkins (1)

    73/109

    73

    7.3 tude de la voie AR/MA

    2 12

    1 2(1 ) (1 )t tB B w B a Modle sansconstante

  • 8/2/2019 Box Jenkins (1)

    74/109

    74

    Rsultats

    2 121 2(1 ) (1 )t tB B w B a

    Residual Diagnostics

    42

    339

    1190270

    1287295

    24282.930

    155.830

    -275.152

    556.304

    561.517

    Number of Residuals

    Number of ParametersResidual df

    Adjusted Residual Sum of

    Squares

    Residual Sum of Squares

    Residual Variance

    Model Std. Error

    Log-Likelihood

    Akaike's InformationCriterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    -.736 .134 -5.488 .000

    -.506 .124 -4.074 .000

    .745 .360 2.071 .045

    AR1

    AR2

    Non-Seasonal

    Lags

    Seasonal MA1Seasonal Lags

    Estimates Std Error t Approx Sig

    Melard's algorithm was used for estimation.

  • 8/2/2019 Box Jenkins (1)

    75/109

    75

    Rsultats

    2 12

    1 2(1 ) (1 )t tB B w B a

  • 8/2/2019 Box Jenkins (1)

    76/109

    76

    Rsultats (avec Time Series Modeler)

    2 12

    1 2(1 ) (1 )t tB B w B a

    Forecast

    3861 4854 5206 4810 4798

    4184 5187 5553 5215 5220

    3539 4521 4858 4405 4375

    Forecast

    UCL

    LCL

    Model

    ventes-Model_1

    Aug 1982 Sep 1982 Oct 1982 Nov 1982 Dec 1982

    For each model, forecasts start after the last non-missing in the range of the requested

    estimation period, and end at the last period for which non-missing values of all the predict

    are available or at the end date of the requested forecast period, whichever is earlier.

    Rsultats (avec Time Series Modeler)

  • 8/2/2019 Box Jenkins (1)

    77/109

    77

    Rsultats (avec Time Series Modeler)2 12

    1 2(1 ) (1 )t tB B w B a

    8 Le modle multiplicatif usuel

  • 8/2/2019 Box Jenkins (1)

    78/109

    78

    8. Le modle multiplicatif usuelARIMA(p,d,q)*(P,D,Q)s

    ( ) (1 ) (1 ) ( )s d s D st w tB B B B z B B a

    1

    1

    1

    1

    ( ) 1 ...

    ( ) 1 ...

    ( ) 1 ...

    ( ) 1 ...

    p

    p

    s s sP

    P

    q

    qs s sQ

    Q

    B B B

    B B B

    B B B

    B B B

    o :

    Tous ces polynmes doivent tre inversibles.

    wtbruitblanc

    9 Prvision

  • 8/2/2019 Box Jenkins (1)

    79/109

    79

    9. Prvision

    (1 ) (1 )d s D t tB B B z B a

    Le modle gnral

    peut scrire :

    1 1 1 1... ...t t p t p t t q t qz z z a a a

    Prvision lhorizon h

  • 8/2/2019 Box Jenkins (1)

    80/109

    80

    Prvision l horizon h

    Modle

    1 1 1 1... ...t h t h p t h p t h t h q t h qz z z a a a

    Prvision

    1 1 1 1 ( ) ... ...t t h p t h p t h q t h qz h z z a a

    avec :si 0

    ( ) si 0

    t h j

    t h j

    t

    z h jz

    z h j h j

    1 (1) si 0

    0 si 0

    t h j t h j

    t h j

    z z h ja

    h j

    10 C l l d li t ll d i i

  • 8/2/2019 Box Jenkins (1)

    81/109

    81

    10. Calcul de lintervalle de prvision

    ( )(1 ) (1 ) ( )s d s D st tB B B B z B B a

    De

    on dduit (formellement) :

    1 1

    1 1 2 2

    ' ( )(1 ) (1 ) ( )

    ' ...

    s d s D s

    t t

    t t t

    z B B B B B B a

    a a a

    Prvision de zt h linstant t

  • 8/2/2019 Box Jenkins (1)

    82/109

    82

    Prvision dezt+h l instant t

    On a

    1 1 2 2 1 1

    1 1

    ' ...

    ...

    t h t h t h t h h t

    h t h t

    z a a a a

    a a

    Futur

    Pass

    1 1 ( ) ' ...

    t h t h t z h a a

    Do la prvision dezt+h linstant t

    E d i i lh i h

  • 8/2/2019 Box Jenkins (1)

    83/109

    83

    Erreur de prvision lhorizon h

    1 1 2 2 1 1

    ( ) ( )

    ...

    t t h t

    t h t h t h h t

    e h z z h

    a a a a

    Do :

    2 2 2

    1 1[ ( )] 1 ...t hVar e h

    [ ( )] 0tE e h

    I t ll d i i 95%

  • 8/2/2019 Box Jenkins (1)

    84/109

    84

    Intervalle de prvision 95%dezt+hralis linstant t

    2 2

    .975 1 1 ( ) ( ) 1 ...t hz h t N r

  • 8/2/2019 Box Jenkins (1)

    85/109

    85

    Exemple March Total

    12(1 )(1 ) (1 )t tB B z B a Modle :

    On dduit :

    1 12 1

    2 12 24

    2 11

    1 2 11

    (1 ) (1 ) (1 )

    (1 ...)(1 ...)(1 )

    (1 (1 ) (1 ) ... (1 ) ...)

    t t

    t

    t

    z B B B a

    B B B B B a

    B B B a

    Remarque : (1 ) pour 11h h

    M h T t l I t ll d i i

  • 8/2/2019 Box Jenkins (1)

    86/109

    86

    March Total : Intervalle de prvision lhorizon h 12

    2 2

    .975 1 1

    2

    .975

    ( ) ( ) 1 ...

    ( ) ( ) 1 ( 1)(1 )

    t h

    t

    z h t N r

    z h t N r h

    11. Le modle gnral de TS Modeler

  • 8/2/2019 Box Jenkins (1)

    87/109

    87

    g a SLe modle fonction de transfert

    1

    srie dpendante

    ,..., sries prdicteurs

    ( )

    , ou

    t

    t kt

    t t

    i

    Y

    X X

    Z f Y

    f f Log

    , (1 ) (1 )

    ( ) ( )

    ( ) ( )

    d s D

    i

    s

    i i i

    s

    i i i

    B B

    Num B B

    Den B B

    1( ) ( ) ( ) ( ) ( )

    k

    s sit i i it t

    i i

    NumB B Z f X B B aDen

    Nt= Noise

    Application la srie IPI

  • 8/2/2019 Box Jenkins (1)

    88/109

    88

    Application la srie IPI

    Anne Trimestre 1 Trimestre 2 Trimestre 3 Trimestre 4

    63

    64

    65

    66

    67

    68

    69

    70

    .

    .

    .

    82

    68

    77

    76

    81

    84

    89

    95

    100

    137

    74

    79

    79

    84

    85

    77

    99

    104

    136

    64

    65

    67

    71

    72

    78

    82

    87

    111

    78

    79

    83

    87

    90

    99

    103

    110

    140

    Indice de la Production Industrielle de la France (1963 - 1982)

    Visualisation de la srie IPI

  • 8/2/2019 Box Jenkins (1)

    89/109

    89

    Visualisation de la srie IPI

    Date

    Q11982

    Q11981

    Q11980

    Q11979

    Q11978

    Q11977

    Q11976

    Q11975

    Q11974

    Q11973

    Q11972

    Q11971

    Q11970

    Q11969

    Q11968

    Q11967

    Q11966

    Q11965

    Q11964

    Q11963

    IPI

    160

    140

    120

    100

    80

    60

    40

    Cette srieprsente unetendance etune saisonnalit

    Visualisation de la saisonnalit

  • 8/2/2019 Box Jenkins (1)

    90/109

    90

    Visualisation de la saisonnalit

    Anne

    198519801975197019651960

    IPI

    160

    140

    120

    100

    80

    60

    Trimestre

    4

    3

    2

    1

    Visualisation de la tendance

  • 8/2/2019 Box Jenkins (1)

    91/109

    91

    Date

    Q11982

    Q11981

    Q11980

    Q11979

    Q11978

    Q11977

    Q11976

    Q11975

    Q11974

    Q11973

    Q11972

    Q11971

    Q11970

    Q11969

    Q11968

    Q11967

    Q11966

    Q11965

    Q11964

    Q11963

    160

    140

    120

    100

    80

    60

    40

    IPI

    MA(IPI,4,4)

    Visualisation de la tendance

    Moyenne mobile centredordre 4 :

    4

    X5.0XXXX5.0Z

    2t1tt1t2t

    t

    Tendance Zt

    (a) Indice de la production industrielle ( 23.85 )

  • 8/2/2019 Box Jenkins (1)

    92/109

    92

    7773696561575349454137332925211713951

    Trimestre

    150

    125

    100

    75

    ipi

    (b) Diffrence saisonnire de IPI ( 5.49 )

    (c) Diffrence rgulire/saisonnire de IPI ( 4.76 )

    Modle avec intervention

  • 8/2/2019 Box Jenkins (1)

    93/109

    93

    Modle avec intervention

    4

    68.2( ) ( ) (1 )(1 )( ) ( ) ( )s s

    t tB B B B z I B B a

    Effetmai 68

    Nt= Noise = Srie corrige stationnarise

    tapes1. Construction de la srie Noise 2. Modlisation de la srie Noise 3. Estimation du modle complet

    Etape 1 : Construction de la srie Noise

  • 8/2/2019 Box Jenkins (1)

    94/109

    94

    Etape 1 : Construction de la srie Noise

    4

    68.2(1 )(1 )( )

    t tNoise B B z I a

    Parameter Estimates

    -15.250 1.626 -9.380 .000

    -.160 .375 -.426 .671

    i22Regression Coeffi cients

    Constant

    Estimates Std Error t Approx Sig

    Melard's algorithm was used for estimation.

    tape 2 : Modlisation de la srie Noise

  • 8/2/2019 Box Jenkins (1)

    95/109

    95

    tape : od sat o de a s e Noise

    4

    68.2(1 )(1 )( )

    tNoise B B z I

    Noise suit un AR(8)

    Modlisation de la srie Noise

  • 8/2/2019 Box Jenkins (1)

    96/109

    96

    4

    68.2(1 )(1 )( )tNoise B B z I

    Residual Diagnostics

    75

    8

    66

    493.364

    494.199

    7.294

    2.701

    -177.255

    372.509

    393.367

    Number of Residuals

    Number of Parameters

    Residual df

    Adjusted Residual Sum of

    Squares

    Residual Sum o f Squares

    Residual Variance

    Model Std. Error

    Log-Likelihood

    Akaike's Informati on

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    .095 .118 .803 .425

    .016 .121 .135 .893

    -.215 .119 -1.800 .076

    -.520 .125 -4.175 .000

    -.081 .121 -.668 .506-.085 .119 -.714 .478

    -.116 .124 -.934 .354

    -.259 .127 -2.042 .045

    .066 .150 .437 .663

    AR1

    AR2

    AR3

    AR4

    AR5AR6

    AR7

    AR8

    Non-Seasonal

    Lags

    Constant

    Estimates Std Error t Approx Sig

    Melard's algorithm was used for estimation.

    Noise ~ ARIMA(8,1,0)*(0,1,0)4

    Modlisation de la srie Noise

  • 8/2/2019 Box Jenkins (1)

    97/109

    97

    4

    68.2(1 )(1 )( )tNoise B B z I

    Residual Diagnostics

    75

    2

    73

    549.094

    550.078

    7.344

    2.710

    -181.075

    366.150

    370.785

    Number of Residuals

    Number of Parameters

    Residual df

    Adjusted Residual Sum of

    Squares

    Residual Sum of Squares

    Residua l Variance

    Model Std. Error

    Log-Likelihood

    Akaike's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    -.628 -.292

    .115 .118

    -5.476 -2.474

    .000 .016

    Estimates

    Std Error

    t

    Approx Sig

    Seasonal AR1 Seasonal AR2

    Seasonal Lags

    Melard's algorithm was used for estimation.

    Noise ~ ARIMA(0,1,0)*(2,1,0)4sans constante

    tape 3 : estimation du modle complet

  • 8/2/2019 Box Jenkins (1)

    98/109

    98

    tape 3 : estimation du modle complet

    4 8 4

    1 2 68.2(1 ) (1 )(1 )( )t tB B B B z I a

    Residual Diagnostics

    75

    2

    71

    547.971

    551.748

    7.533

    2.745

    -181.015

    370.031

    379.301

    Number of Residuals

    Number of Parameters

    Residual df

    Adjusted Residual Sum of

    Squares

    Residual Sum o f Squares

    Residual Variance

    Mode l Std. Error

    Log-LikelihoodAkai ke's Information

    Criterion (AIC)

    Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    -.632 -.295 -15.089 -.097

    .116 .118 1.679 .170

    -5.440 -2.509 -8.987 -.569

    .000 .014 .000 .571

    Estimates

    Std Error

    t

    Approx Sig

    Seasonal AR1 Seasonal AR2

    Seasonal Lags

    i22

    Regression

    Coefficients

    Constant

    Melard's algorithm was used for estimation.

    tape 3 : estimation du modle complett t

  • 8/2/2019 Box Jenkins (1)

    99/109

    99

    sans constante

    4 8 4

    1 2 68.2

    (1 ) (1 )(1 )( )t t

    B B B B z I a

    Residual Diagnostics

    75

    2

    72

    550.462

    554.558

    7.464

    2.732

    -181.173

    368.347

    375.299

    Number of Residuals

    Number of Parameters

    Residual df

    Adjusted Residual Sum of

    Squares

    Residual Sum of Squares

    Residual Variance

    Model Std. Error

    Log-Likelihood

    Akaike's Information

    Criterion (AIC)Schwarz's Bayesian

    Criterion (BIC)

    Parameter Estimates

    -.631 -.292 -15.095

    .116 .117 1.671

    -5.459 -2.498 -9.033.000 .015 .000

    Estimates

    Std Error

    tApprox Sig

    Seasonal AR1 Seasonal AR2

    Seasonal Lags

    i22

    Regression

    Coefficients

    Melard's algorithm was used for estimation.

    Utilisation de Time Series Modeler

  • 8/2/2019 Box Jenkins (1)

    100/109

    100

    4 8 4

    1 2 68.2

    (1 ) (1 )(1 )( )t t

    B B B B z I a

    Fentre 1

    Utilisation de Time Series Modeler

  • 8/2/2019 Box Jenkins (1)

    101/109

    101

    4 8 4

    1 2 68.2

    (1 ) (1 )(1 )( )t t

    B B B B z I a

    Fentre 2

    Utilisation de Time Series Modeler

  • 8/2/2019 Box Jenkins (1)

    102/109

    102

    4 8 4

    1 2 68.2(1 ) (1 )(1 )( )t tB B B B z I a

    Fentre 3

    Utilisation de Time Series Modeler pour la prvision

  • 8/2/2019 Box Jenkins (1)

    103/109

    103

    p p

    4 8 4

    1 2 68.2(1 ) (1 )(1 )( )t tB B B B z I a

    Forecast LCL UCL

    Q1 1983 136.1 130.7 141.6

    Q2 1983 133.4 125.7 141.1

    Q3 1983 110.3 100.9 119.8

    Q4 1983 138.1 127.2 149.0

    Model Statistics

    1 .678 18.846 16 .277 0

    Model

    IPI-Model_1

    Number of

    Predictors

    Stationary

    R-squared

    Model Fit

    statistics

    Statistics DF Sig.

    Ljung-Box Q(18)

    Number of

    Outliers

    Utilisation de Time Series Modeler pour la prvisionLa syntaxe SPSS

  • 8/2/2019 Box Jenkins (1)

    104/109

    104

    La syntaxe SPSSPREDICT THRU END.

    * Time Series Modeler.

    TSMODEL

    /MODELSUMMARY PRINT=[ MODELFIT]

    /MODELSTATISTICS DISPLAY=YES MODELFIT=[ SRSQUARE]

    /MODELDETAILS PRINT=[ PARAMETERS FORECASTS]

    /SERIESPLOT OBSERVED FORECAST FIT FORECASTCI

    /OUTPUTFILTER DISPLAY=ALLMODELS

    /SAVE NRESIDUAL(NResidual)

    /AUXILIARY CILEVEL=95 MAXACFLAGS=24

    /MISSING USERMISSING=EXCLUDE

    /MODEL DEPENDENT=ipi INDEPENDENT=i22

    PREFIX='Model'

    /ARIMA AR=[0] DIFF=1 MA=[0] ARSEASONAL=[1,2]

    DIFFSEASONAL=1MASEASONAL=[0]

    TRANSFORM=NONE CONSTANT=NO

    /TRANSFERFUNCTION VARIABLES=i22

    DIFF=1

    DIFFSEASONAL=1

    /AUTOOUTLIER DETECT=OFF.

    Utilisation de Expert Modeler

  • 8/2/2019 Box Jenkins (1)

    105/109

    105

    p

    Utilisation de Expert Modeler

  • 8/2/2019 Box Jenkins (1)

    106/109

    106

    p

    Model Description

    ARIMA(0,1,0)(0,1,1)Model_1IPIModel IDModel Type

    Model Statistics

    1 .660 27.437 17 .052 0

    Model

    IPI-Model_1

    Number of

    Predictors

    Stationary

    R-squared

    Model Fit

    statistics

    Statistics DF Sig.

    Ljung-Box Q(18)

    Number of

    Outliers

    ARIMA Model Parameters

    1

    1

    .507 .109 4.657 .000

    -15.315 1.728 -8.863 .000

    1

    1

    Difference

    Seasonal Difference

    Lag 1MA, Seasonal

    No TransformationIPI

    Lag 0Numerator

    Difference

    Seasonal Difference

    No Transformationi2 2

    IPI-Model_1

    Estimate SE t Sig.

    4 4

    68.2 1(1 )(1 )( ) (1 )t tB B z I B a

    Rponse :

    Utilisation de Expert Modeler

  • 8/2/2019 Box Jenkins (1)

    107/109

    107

    p

    Utilisation de Expert Modeler

  • 8/2/2019 Box Jenkins (1)

    108/109

    108

    p

    Forecast

    136 134 111 139141 142 121 150

    130 126 101 128

    ForecastUCL

    LCL

    Model

    IPI-Model_1

    Q1 1983 Q2 1983 Q3 1983 Q4 1983

    For each model, forecasts start after the last non-missing in the range of the

    requested estimation period, a nd end at the l ast period for which

    non-missing values of all the predictors are available or at the end date of t

    requested forecast period, whichever is earlier.

    Utilisation de Expert Modelerpour All models

  • 8/2/2019 Box Jenkins (1)

    109/109

    pour All models

    Rponse :

    Model Description

    ARIMA(0,1,0)(0,1,1)Model_1IPIModel ID

    Model Type