Calcul cofraplus60 2xD=3.8 m

  • Upload
    adrian

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • 7/26/2019 Calcul cofraplus60 2xD=3.8 m

    1/7

    Date :

    Project :

    Customer :

    Architect :

    Engineering office :

    Product :

    Building codes :

    Author :

    I . Project data

    Country : Romania

    Composite slab : Continuous spans Concrete : Normal concrete

    Span: Type: NC25/30

    n = 2 m c = 2450 kg/m

    L1 = 3.8 m fck = 25 MPa

    L2 = 3.8 m fctm = 2.6 MPa

    ECM = 31000 MPa

    Slab depth: a = 0.85

    ht = 150 mmLimit of deflection: Steel deck : Cofraplus 60

    f/L = 1 / 300 fy = 350 MPa

    Fire resistance: Ea = 210000 MPa

    RF = 60 min ts = 0.75 mm

    h = 58 mm

    Charges bbf = 62 mm

    Permanent loads (supplementary): bd = 207 mm

    gper = 0.00 kN/m buf = 106 mm

    Live load: bop = 101 mm

    q = 1.50 kN/m gs = 8.5 kg/m

    Ap = 1029 mm

    Reinforcement bars zcg = 33.3 mm

    fya = 300 MPa Ibr = 55.1 cm4

    Upper reinforcement: Ieff = 42.6 cm4

    d1 = 0 mm Mrd,+ = 4.3 kNm/m

    a1 = 0 mm Mrd,- = 4.3 kNm/m

    e1 = 0 mm Rw,Ex = 23.5 kN/m

    Reinforcement on support: Rw,C = 25.0 kN/m

    d2 = 10 mm Mpa = 7.7 kNm/m

    a2 = 100 mm zpl = 39.55 mm

    e2 = 0 mm m = 230.09 N/mm

    Lower reinforcement: k = -0.062 N/mm

    d = 0 mm/rib RD = 0.1 MPa

    e = 0 mm

    Construction stage Hyperstatic

    Safety factors f / L = 1 / 180

    gM = 1.00 Steel sheet Props : YES

    gsb = 1.15 Reinforcement Support width:

    gc = 1.50 Concrete Ss,Ex = 50 mm

    gvs = 1.25 Shearing Ss,C = 100 mm

    g0 = 1.35 Permanent load Number of props:

    gq = 1.50 Live load n1 = 1

    Y1 = 0.50 Fire n2 = 1

    kr = 0.20 Moment redist.

    Cofraplus 60

    Eurocodes

    Diaconescu Razvan

    Calculation note

    10 March 2016

  • 7/26/2019 Calcul cofraplus60 2xD=3.8 m

    2/7

    II. Longitudinal section and cross section

    III. Construction stage

    Steel deck : Hyperstatic

    Props : YES

    Dead load of steel deck and concrete:

    g = 2.90 kN/m

    1. Deflection checking

    d = 2.14 mm 15 = 10% ht

    10.56 = L / 180

    The ponding effect is ignored.

    2. Ultimate limit states

    * The loads to be taken into consideration during the conreting operation are the following:

    Dead load of the steel deck and of the concrete:

    g = 2.90 kN/m

    Construction loads during casting of conrete (according to EN 1991-1-6):

    qm = 0.75 kN/m

    * Calculations of bending moments and support reactions

    MEd,+ = 1.40 kNm MEd,- = 1.95 kNm

    REd,Ex = 3.77 kN REd,C = 10.95 kN

    * Checking of the resistance:

    MEd,+/ MRd,+ = 0.32 1 OK MEd,-/ MRd,- = 0.45 1 OK

    REd,Ex/ RRd,Ex = 0.16 1 OK REd,C / RRd,C = 0.44 1 OK

    MEd,-/MRd,- + REd,C/RRd,C = 0.89 1,25 OK

    IV. Verification of the composite deck slab

    1. Ultimate limit states

    * Three following criteria must be verified to ensure that no ultimat limit state is reached:

    Bending resistance

    Longitudinal shear

    Vertical shear

    * Calculation of the maximum design bending moments and vertical shears:

    MEd,+ = 7.78 kNm MEd,- = 8.91 kNm

    VEd,Ex = 9.80 kNm VEd,C = 14.06 kN

    20 %With moment distribution of

    cs ggg

    cponding gg d7.0

    areaworkingtheoutside0.75kN/m

    mareaworkingtheinside1.5kN/m)thanmorenotand0.75kN/mthanless(not 3310 cm

    g%q

    L1 L2

    L1/3 L2/3

  • 7/26/2019 Calcul cofraplus60 2xD=3.8 m

    3/7

    a. Sagging bending moment

    Position of neutral axis:

    Hypothesis: The neutral axis is in the concrete slab and above the steel deck.

    Fs = 360150 N

    Frib = 0 N

    xpl = 25 mm 92 = hc

    Moment of resistance:

    Mpl,Rd,+ = 37.45 kNm 7.78 OK

    b. Hogging bending moment

    Hypothesis: the neutral axis is in the steel deck.

    F1 = 0 N

    F2 = 204886 N

    x = 37 mm 58 = h

    Mpl,Rd,- = 26.97 kNm 8.91 OK

    c. Longitudinal shear

    * m-k method This method is not used in this calculation

    Shear length:

    Ls = 0 mm

    The maximum design vertical shear should not exceed the design shear resistance:

    Vl,Rd = 0.00 kN VEd,Ex

    * Partial connexion method

    u,Rd = 0.10 MPa

    Fs = 360.15 kN

    In order to develop fully plastic moment, the distance of the cross-section being considered to the nearest support:

    Lsf = 3602 mm

    For fully plastic moment section:

    xsr = 0 mm

    xf = 25 mm

    )2/2(2)2/1(1,,

    /)/1000(85.0

    /

    /

    0

    21

    22

    11

    plxethFplxethFRdplM

    cdck

    saya

    saya

    bbf

    FFx

    AfF

    AfF

    g

    g

    g

    )(, kbL

    AmbdV

    s

    p

    pRdl

    Rdu

    ssf

    b

    FL

    ,

    Fs

    Fsr

    Ncr= Fsr

    Ncf= Fs

    spanscontinuousFor

    spansingleFor

    4/9.0

    4/

    L

    LLs

    cb

    ckf

    ribF

    sF

    plx

    saribA

    yaf

    ribF

    spAyfsF

    g

    g

    g

    /85.0

    /

    /

    )2/()2/(,, pl

    xrib

    et

    hrib

    Fpl

    xp

    ds

    FRdpl

    M

    cck

    sf

    cck

    rib

    sr

    bf

    Fx

    bf

    Fx

    g

    g

    /85.0

    /85.0

  • 7/26/2019 Calcul cofraplus60 2xD=3.8 m

    4/7

    For a distance Lx< Lsf, the connexion is partial and expressed by hand the moment of resistance by M Rd:

    Mbr = 0.00 kNm Mcp = a*h + b*h

    Mpa = 7.65 kNm a = -2.33

    Mpr = 1.25Mpa(1-h) Mpa b = 39.78

    h

    Lx/Lsf Mpr Mcp MRd

    0.00 7.65 0.00 7.65

    0.11 7.65 4.17 11.82

    0.21 7.54 8.29 15.84

    0.32 6.54 12.36 18.89

    0.42 5.53 16.37 21.90

    0.53 4.52 20.34 24.86

    0.63 3.51 24.25 27.76

    0.74 2.50 28.11 30.610.84 1.49 31.92 33.41

    0.95 0.48 35.68 36.16

    1.06 0.00 37.45 37.45

    OK

    e. Vertical shear

    * End support

    The vertical shear resistance is determined according to EN 1994-1-1 and EN 1992-1-1 :

    CRd,c = 0.12

    1 = 0.020

    h1 = 1.00

    k = 2

    4.25

    MEd

    0.00

    3.28

    5.67

    -2.55

    Lx

    0

    0.38

    0.76

    1.14

    1.52

    1.90

    7.17

    7.78

    7.49

    6.32

    -7.283.80

    1.30

    3.42

    2.28

    2.663.04

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 0.5 1 1.5 2 2.5 3 3.5 4

    M(

    kNm)

    Lx(m)

    Moment of resistance Design moment

    cf

    c

    sf

    x

    N

    N

    L

    Lh

    2/12/3

    min

    2/12/3

    min

    0

    1

    1

    1

    ,,

    01min01

    3/1

    11,

    01min01

    3/1

    1,

    ,

    03.0035.0

    /

    15.0

    0.2/2001

    2200/6.04.0

    /15.0/18.0

    )()100(

    )()100(

    lcklck

    cEdcp

    p

    sl

    p

    c

    cclRdccRd

    pcplpcplckclRd

    pcppcpckcRd

    cRd

    fkVfkV

    AN

    db

    A

    k

    dk

    CC

    dbkvdbkfkC

    dbkvdbkfkCV

    h

    gg

    h

    concretelightFor

    concretenormalFor

    s

    cf

    ppfsrcfccp

    pa

    s

    cf

    papr

    srribtribbr

    prcpbrRd

    F

    NeeexxhNZNM

    MF

    N

    MM

    xehFM

    MMMM

    hhh

    h

    )()5.0(

    )1(25.1

    )2/(

  • 7/26/2019 Calcul cofraplus60 2xD=3.8 m

    5/7

    k1 = 0.15

    cp = 0

    Vmin = 0.495

    VRd,c = 40.62 kN 22.74

    = 40.62 kN VEd,Ex OK

    * Internal support

    dp = 150 mm

    1 = 0.013

    k = 2Vrd,c = 45.58 kN 29.23

    = 45.58 kN VEd,C OK

    2. Serviceability limit states

    a. Deflection control

    Modular ratio steel - concrete (average value of the modulus for both long and short term effects):

    n = 13.55

    * Homogeneous section

    xh = 66.95 mm

    Ibh = 1.57E+07 mm4

    * Cracked section

    xf = 44.78 mm

    Ibf = 9.93E+06 mm4

    * Deflection checking

    Average value of the second moment of area:

    Ibm = 1.28E+07 mm4

    Deflection:

    f = 2.27 mm

    f/L =1/ 1672 1/ 300 OK

    b. Crack control

    According to EN1992-1-1, the required minimum areas of reinforcement may be calculated as follows :

    kc = 0.4

    k = 0.65

    As,min = 207.31 mm 119.60 mm

    = 207.31 mm

    As = 785.40 mm 207.31 OK

    c. Vibration control

    The frequency of the slab is calculated using the following fomulae

    f0 = 10.34 Hz 5 OK

    2

    3/CM

    a

    CM

    a

    E

    E

    E

    E

    n

    22

    2323

    2

    )()(212212

    )(2

    hcotcophpp

    p

    h

    pcpcch

    ccbh

    coppcc

    cotcoppppcc

    i

    ii

    h

    xehAIxdAhxhnhb

    nhbhx

    nbh

    nbhI

    nAnAhbbh

    ehnAdnAdhbh

    b

    A

    zAx

    22

    3

    2

    )()(3

    ))((2()(

    fcotcopfpp

    f

    bh

    cotcoppcopcop

    f

    xehAIxdAn

    bxI

    b

    ehAdAn

    b

    AAn

    b

    AAnx

    2bfbh

    bm

    III

    qqggm percs

    Lm

    bhIaE

    f

    5.0

    Hz54

    1000

    20

    cts

    cteffctcss

    AA

    AkfkA

    0013.0min,

    ,min,

    onconstructiproppedfor

    onconstructiunproppedfor

    supportedsimplyasdesignedisspancontinuousif

    004.0

    002.0

    min,

    min,

    cts

    cts

    AA

    AA

  • 7/26/2019 Calcul cofraplus60 2xD=3.8 m

    6/7

    V. Fire resistance

    1. Geometry of the steel deck (according to Figure 4.1 of EN 1994-1-2)

    h2 = 58 mm 50h2100 OK

    l1 = 101 mm 80l1155 OK

    l2 = 62 mm 32l2132 OK

    l3 = 106 mm 40l3115 OK

    A = 4,727 mm/mm Concrete volume in the rib per m rib length

    Lr = 184 mm/mm Exposed area of the rib per m rib length

    A/Lr = 26 mm Rib geometry factor

    F = 0.727 - View factor of the upper flange

    a = 71 degrees Angle of the web / horizontal

    b = 0.32 Radians Angle of the web / vertical

    2. Fire resistance according to thermal insulation "I"

    t1 = 118 min 60 OK

    3. Integrity criterion "E"

    For composite slabs the integrity criterion "E" is assumed to be satisfied (according to EN 1994-1-2).

    4. Load bearing criterion "R"

    a. Calculation of sagging moment resistance

    Temperatures of the lower flange, web and upper flange of the steel decking:

    Temperatures of the reinforcement bar in the rib :

    Load bearing of each part of the slabs after 60 minutes :

    Temperature ky,i Ai Zi Mi

    (C) [-] (cm) (cm) (kNcm)

    Lower flange

    Web

    Upper flange

    Lower reinforcement

    Concrete

    Mfi,Rd,+ = kNm

    b. Calculation of hogging moment resistance

    Temperature ky,i Ai Zi Mi

    (C) [-] (cm) (cm) (kNcm)

    Upper reinforcement - -

    Reinforcement on support - -

    Concrete

    Mfi,Rd,- = kNm

    Fi

    (kN)

    Fi

    (kN)Part of the slab

    2

    432

    3

    10

    1FF bb

    L

    Ab

    lbb

    r

    a

    3213

    5432

    2

    310

    1111 with

    1

    uuuzlcc

    L

    Aczc

    h

    ucc

    r

    a a

  • 7/26/2019 Calcul cofraplus60 2xD=3.8 m

    7/7

    c. Fire resistance checking of composite slab

    Applied load (according to EN 1991-1-2):

    Y1,1 =

    Pfi,Ed = kN/m

    Verification of fire resistance according to EN 1992-1-2 (annex E):

    Mfi,Ed,1 = kNm = Mfi,Rd OK

    Mfi,Ed,2 = kNm = Mfi,Rd OK

    0.35*Mfi,Ed,max = 0.00 kNm = Mfi,Rd,+ OK

    1,1,1, kEdfi QGP Y

    spanscontinuousFor

    spansingleFor

    2

    8

    ,,

    ,,,,,,

    ,,

    ,

    2

    ,

    ,,

    Rdfi

    eRdfiwRdfi

    Rdfi

    Rdfi

    iEdfi

    iEdfi

    MMM

    M

    M

    LPM

    Mfi,Rd,-,w

    Mfi,Rd,-,e

    Mfi,Rd,+

    Mfi,Ed