31
UTINAM Institut UTINAM Institut Chaotic dark matter in the Solar system and galaxies Guillaume Rollin 1 , José Lages 1 , Dima Shepelyansky 2 1 Equipe PhAs - Physique Théorique et Astrophysique Institut UTINAM - UMR CNRS 6213 Observatoire de Besançon Université de Franche-Comté, France 2 Laboratoire de Physique Théorique - UMR CNRS 5152 Université Paul Sabatier, Toulouse, France Workshop « Dynamics & Kinetic theory of self-gravitating systems », GRAVASCO, Institut Henri Poincaré, November 2013 References : J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL 430, L25-L29 (2013), arXiv :1211.0903 G. Rollin, J. L., D. Shepelyansky, Chaotic enhancement of dark matter density in binary systems and galaxies, to be submitted

Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Chaotic dark matter in the Solar system and galaxies

Guillaume Rollin1, José Lages1, Dima Shepelyansky2

1Equipe PhAs - Physique Théorique et AstrophysiqueInstitut UTINAM - UMR CNRS 6213

Observatoire de BesançonUniversité de Franche-Comté, France

2Laboratoire de Physique Théorique - UMR CNRS 5152Université Paul Sabatier, Toulouse, France

Workshop « Dynamics & Kinetic theory of self-gravitating systems », GRAVASCO, Institut Henri Poincaré, November 2013

References :J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL 430, L25-L29 (2013), arXiv :1211.0903G. Rollin, J. L., D. Shepelyansky, Chaotic enhancement of dark matter density in binary systems and galaxies, to be submitted

Page 2: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Three-body problem

DMP

Ecliptic

p

Possible DMP capture due to Jupiter rotation around the Sun

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 3: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations

mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (in absence of close encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3 (Petrosky 86’)

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 09’)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 4: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (in absence of close encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3 (Petrosky 86’)

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 09’)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 5: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (in absence of close encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3 (Petrosky 86’)

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 09’)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 6: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (in absence of close encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3 (Petrosky 86’)

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 09’)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 7: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (in absence of close encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3 (Petrosky 86’)

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 09’)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 8: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Kicked model

x : Jupiter’s phase when DMP at perihelion (x = ϕ/2π mod 1)w : DMP energy (w = −2E/mDMP)

Symplectic Kepler-Petrosky map

x = x + w−3/2 third Kepler’s laww = w + F(x) energy change after a kick

Map already used in the study of :I Cometary clouds in Solar systems (Petrosky 86’)I Chaotic dynamics of Halley’s comet (Chirikov, Vecheslavov 89’)I Microwave ionization of hydrogen atoms (see e.g. Shepelyansky, scholarpedia)

Advantage : providing the fact the kick function F(x) is known the dynamics of a huge number ofparticles can simulated.

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 9: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Kicked model

x : Jupiter’s phase when DMP at perihelion (x = ϕ/2π mod 1)w : DMP energy (w = −2E/mDMP)

Symplectic Kepler-Petrosky map

x = x + w−3/2 third Kepler’s laww = w + F(x) energy change after a kick

Map already used in the study of :I Cometary clouds in Solar systems (Petrosky 86’)I Chaotic dynamics of Halley’s comet (Chirikov, Vecheslavov 89’)I Microwave ionization of hydrogen atoms (see e.g. Shepelyansky, scholarpedia)

Advantage : providing the fact the kick function F(x) is known the dynamics of a huge number ofparticles can simulated.

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 10: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Kicked model

x : Jupiter’s phase when DMP at perihelion (x = ϕ/2π mod 1)w : DMP energy (w = −2E/mDMP)

Symplectic Kepler-Petrosky map

x = x + w−3/2 third Kepler’s laww = w + F(x) energy change after a kick

Map already used in the study of :I Cometary clouds in Solar systems (Petrosky 86’)I Chaotic dynamics of Halley’s comet (Chirikov, Vecheslavov 89’)I Microwave ionization of hydrogen atoms (see e.g. Shepelyansky, scholarpedia)

Advantage : providing the fact the kick function F(x) is known the dynamics of a huge number ofparticles can simulated.

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 11: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Dark map

Kick function determination

F(x)→ F`,θ,φ(x) ∼ Fq,θ,φ(x)

The kick function is different for each approaching con-figuration (`, θ, φ) ∼ (q, θ, φ)For close to 1 eccentricities the perihelion is such as

q ∼`2

2

For each approaching configuration (q, θ, φ), the inte-gration of the three-body problem gives the kick func-tion.

θ

φ

q

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 12: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Dark map

Kick function determination

F(x)→ F`,θ,φ(x) ∼ Fq,θ,φ(x)

The kick function is different for each approaching con-figuration (`, θ, φ) ∼ (q, θ, φ)For close to 1 eccentricities the perihelion is such as

q ∼`2

2

For each approaching configuration (q, θ, φ), the inte-gration of the three-body problem gives the kick func-tion.

-0.001

0

0.001

0 0.25 0.5 0.75 1

x

F (

x) c

-0.002

0

0.002

F (

x) b

-0.006

0

0.006

F (

x) a

a : Halley’s cometb : q = 1.5, n = 4, θ = 0.7, φ = 0c : q = 0.5, n = 4, θ = 0., φ = π/2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 13: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Dark mapKick function determination

F(x)→ F`,θ,φ(x) ∼ Fq,θ,φ(x)

The kick function is different for each approaching con-figuration (`, θ, φ) ∼ (q, θ, φ)For close to 1 eccentricities the perihelion is such as

q ∼`2

2

For each approaching configuration (q, θ, φ), the inte-gration of the three-body problem gives the kick func-tion.

10-6

10-4

10-2

100

0 0.5 1 1.5 2 2.5 3 3.5 4

q / rp

Fm

ax

c

a

b

Exponential decay in agreement with Petrosky 86’

-0.001

0

0.001

0 0.25 0.5 0.75 1

x

F (

x) c

-0.002

0

0.002

F (

x) b

-0.006

0

0.006

F (

x) a

a : Halley’s cometb : q = 1.5, n = 4, θ = 0.7, φ = 0c : q = 0.5, n = 4, θ = 0., φ = π/2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 14: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter – Capture cross section

wcap =mXm�

∥∥rX∥∥2 ' 10−3

σp = π∥∥rX

∥∥2 Jupiter orbit area

10-8

10-4

100

104

108

10-4

10-2

100

102

w / wcap

σ/ σ

p

10-5

10-4

10-3

10-2

10-1

100

101

10-4

10-2

100

102

104

w / wcapd

N /

dw

/ N

p1/w

1/w2

σ/σp ' πm�mX

wcap

win agreement with Khriplovich & Shepelyansky 09’

I Predominance of long range interaction as suggested by Peter 09’I Very small contribution from close encounters invalidating previous numerical results (Gould &

Alam 01’ and Lundberg & Edsjö 04’)

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 15: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Dark matter evolution – Chaotic dynamicsSimulation of the (isotropic) injection, the capture and the escape of DMPs during the whole lifetimeof the Solar system.Injection of Ntot ' 1.5× 1014 DMPs with energy |w| in the range [0,∞] with NH = 4× 109 DMPs inthe Halley’s comet energy interval [0,wH ].

I Equilibrium reached after a time td ∼ 107yr similar to the diffusive escape time scale of theHalley’s comet (Chirikov & Vecheslavov 89’) −→ Equilibrium energy distribution ρ(w)

I The dynamics of dark matter particles in the Solar system is essentially chaotic

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 16: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Back to real space – Density distribution of captured DMPs

Nowadays equilibrium density distribution ( tS = 4.5× 109yr )

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6

r

ρ(r)

0.001

0.01

0.1

0.2 0.5 5 1 10

r

ρ(r)/r2

I The profile of the radial density ρ(r) ∝ dN/dr is similar to those observed for galaxieswhere DMP mass is dominant. Indeed ρ(r) is almost flat (increases slowly) right afterJupiter orbit (r = 1) −→ according to virial theorem the circular velocity of visible matter isconsequently constant as observed e.g. in Rubin 80’More precisely, vm ∝ r0.25 (Dark map) quite close to vm ∝ r0.35 (Rubin 80’)

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 17: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Back to real space – Density distribution of captured DMPs

Surface density

ρs(z, R) ∝ dN/dzdR

where

R =√

x2 + y2

Volume density

ρv(x, y, z) ∝ dN/dxdydz

Ecliptic

Ecliptic

Ecliptic

Ecliptic

z

x1

1

y

x1

1

y

x

1

1

z

x

1

1

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 18: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?

The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 19: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 20: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 21: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 22: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 23: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 24: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 25: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 26: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Conclusion : Dark matter capture in binary systems (preliminary results)

104

10-2

10-1 1 10

1

(u)

u

chaoti

c e

nhancem

en

t fa

cto

r

w ~w ~0.005cap H

w > ucap

1/2w < u

cap

1/2

u=220km/s

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 27: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Conclusion : Dark matter capture in binary systems (preliminary results)

104

10-2

10-1 1 10

1

(u)

u

chaoti

c e

nhancem

en

t fa

cto

r

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50u

DMP candidates

for capture

w ~w ~0.005cap H

wcap

1/2

w << ucap

w > ucap

1/2w < u

cap

1/2

1/2

u=220km/s

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 28: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Conclusion : Dark matter capture in binary systems (preliminary results)

104

10-2

10-1 1 10

1

(u)

u

chaoti

c e

nhancem

en

t fa

cto

r

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50u

DMP candidates

for capture

w ~w ~0.005cap H

0

5

10

15

20

25

30

35

0 0.02 0.04 0.06 0.08 0.1u wcap

1/2

wcap

1/2

w ~ ucap

w << ucap

w > ucap

1/2w < u

cap

1/2

1/2

1/2

e.g.

Black hole

+

Star companion

V~c/40star

u=220km/s

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 29: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Conclusion : Dark matter capture in binary systems (preliminary results)

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 30: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Conclusion : Dark matter capture in binary systems (preliminary results)

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013

Page 31: Chaotic dark matter in the Solar system and galaxiesperso.utinam.cnrs.fr/~lages/presentations/DMPIHPnov2013.pdf · J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRASL

UTINAMInstitut

UTINAMInstitut

Thank You !

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013