CHE422L06_AB_initial report.pdf

Embed Size (px)

Citation preview

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    1/17

    Department of Chemical Engineering

    University of San Carlos - Technological Center

    Nasipit, Talamban, Cebu City

    ChE 422L

    Chemical Engineering Laboratory 1

    Absorption

    (Hydrodynamics in a Packed Absorption Column)

    An initial report submitted to

    Engr May V Tampus

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    2/17

    Engr May V Tampus

    1. Objectives

    Determine experimentally the pressure drop across a wet column as a function

    of the air flow rate and compare the results with theoretically calculated

    values.

    Determine through visual observation and by graphical methods the loading

    and the flooding points of the packed column at pre-set values of water flow

    rates.

    Construct from experimental data the loading and the flooding curves of the

    packed column based on the generalized correlations proposed by Sherwood,

    Shipley and Holloway.

    2. Results and Discussion

    2.1

    Pressure drop across a wet column as a function of air flow rate

    Table 1. Pressure drop in a wetted column with increasing air flow rate

    vg

    (L/min)

    vg

    (m3/s)

    h (m

    H2O) Pexp(Pa)

    vg(m/s) Pth(Pa) Pexp/L Pth/L

    30 0.0005 0.0040 39.0518 0.1132 9.4439 26.7478 6.4684

    40 0.0007 0.0080 78.1035 0.1509 15.4075 53.4955 10.5531

    50 0.0008 0.0120 117.1553 0.1886 22.7790 80.2433 15.6021

    60 0.0010 0.0160 156.2070 0.2264 31.5584 106.9911 21.6153

    70 0.0012 0.0200 195.2588 0.2641 41.7455 133.7389 28.5928

    80 0.0013 0.0230 224.5476 0.3018 53.3406 153.7997 36.5346

    90 0 0015 0 0260 253 8364 0 3395 66 3435 173 8605 45 4407

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    3/17

    70 0.0012 0.0200 195.2588 0.2641 41.7455 133.7389 28.5928

    60 0.0010 0.0140 136.6811 0.2264 31.5584 93.6172 21.6153

    50 0.0008 0.0100 97.6294 0.1886 22.7790 66.8694 15.602140 0.0007 0.0080 78.1035 0.1509 15.4075 53.4955 10.5531

    30 0.0005 0.0060 58.5776 0.1132 9.4439 40.1217 6.4684

    *operational temperature: Twater= 27.75C, Tair= 27.5C

    Tables 1 and 2 show the experimental and theoretical pressure drop in a wetted

    column at increasing and decreasing flow rate respectively. In the experiment,

    manometer readings with increasing flow rates increases hence pressure drop increases

    also. While with decreasing flow rates, manometer reading decreases hence pressure drop

    also decreases. In order for the air to flow upward, there must be a pressure difference

    between the bottom and the top of the column. So for increasing air flow rate, the

    pressure difference must also be increasing. The opposite is happening for decreasing air

    flow rate.

    400.0000

    500.0000

    600.0000

    700.0000

    L(Pa/m)

    Increasing airflowrate

    Decreasing air

    flowrate

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    4/17

    spherical. Whereas, in the experiment, the packings used were cylindrical. Also, the walls

    of the column and the water inside the column added to the resistance against air flow

    causing pressure drop to be higher than that of the theoretical values.

    2.2Loading and flooding points of the packed column at pre-set values of water

    flow rates

    Table 3. Loading and Flooding Points through Visual Observation

    vL(L/min)

    Loading Point Flooding Point

    vg(L/min)

    vg(m3/s) vg (m/s)

    vg(L/min)

    vg(m3/s) vg (m/s)

    1 150 0.0025 0.5659 - - -

    2 110 0.0018 0.4150 135 0.0023 0.5093

    2.5 100 0.0017 0.3773 125 0.0021 0.4716

    3 90 0.0015 0.3395 118 0.0020 0.44523.5 80 0.0013 0.3018 110 0.0018 0.4150

    4 70 0.0012 0.2641 105 0.0018 0.3961

    5 60 0.0010 0.2264 90 0.0015 0.3395

    In table 3, the air flow rate, where loading and flooding points were

    observed at pre-set values of water flow rate, are shown. At loading point, water starts

    to build up at the bottom of the upper part of the packed of column. Beyond the

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    5/17

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    6/17

    Figure 5. log P/L vs log vg at 3 L/min water flow rate

    Figure 6. log P/L vs log vg at 3.5 L/min water flow rate

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    7/17

    Figure 8. log P/L vs log vg at 5 L/min water flow rate

    Table 4. Loading and Flooding Points through Graphical method

    vL(L/min)

    Loading Point Flooding Pointvg

    (L/min)vg(m

    3/s) vg (m/s)vg

    (L/min)

    vg

    (m3/s)

    vg (m/s)

    1129.8266 0.0022 0.4898 - - -

    2115.7081 0.0019 0.4365 132.8506 0.0022 0.5012

    2.596.2423 0.0016 0.3631 115.7081 0.0019 0.4365

    391.9102 0.0015 0.3467 110.5002 0.0018 0.4169

    3.580.0504 0.0013 0.3020 105.5270 0.0018 0.3981

    471.3449 0.0012 0.2692 96.2418 0.0016 0.3631

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    8/17

    while the rest have almost the same results. Comparing results of flooding points for

    both methods, results obtained graphically are a little less than that obtained by visual

    observation. This may be due to human error, the loading and the flooding points may

    not be observed really well.

    2.3Loading and Flooding Curves based on the generalized correlations

    proposed by Sherwood Shipley and Holloway

    Figure 9. vs based on visual observation

    0.00E+00

    5.00E-03

    1.00E-02

    1.50E-02

    2.00E-02

    2.50E-02

    0 1 2 3

    loading

    curve vo

    flooding

    curve vo

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    9/17

    Figures 9 and 10 show the loading and flooding curves based on the correlation

    by Sherwood, Shipley and Holloway. It is a plot of the capacity parameter versus the

    flow parameter. This correlation estimates loading and flooding at given water to gas

    rates. Operation of a packed column is most desirable in the area between the two

    curves. The two graphs show that the capacity parameter decreases with increasing

    flow parameter. This is because increasing the water flow rate, which then increases

    the flow parameter, decreases the ratio of the kinetic energy of the gas to the potential

    energy of the liquid therefore a decrease in the capacity parameter.

    3. References

    Foust, A.S et al. (1980) Principles of Unit Operations, 2nded, John Wiley and

    Sons, Inc., New York

    Geankoplis C.J. (2003) Principles of Transport Processes and Separation

    Processes, 4thed, Pearson Education Inc., Prentice Hall, New Jersey.

    McCabe, W.L et al. (1993) Unit Operations of Chemical Engineering, 5 thed,

    McGraw-Hill Inc., Singapore

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    10/17

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    11/17

    Velocity of gas at loading point for 2 L/min water flow rate:

    Velocity of gas at flooding point for 2 L/min water flow rate:

    Liquid mass rate for 2 L/min water flow rate:

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    12/17

    Capacity parameter at loading point for 2 L/min water flow rate:

    Flow parameter at loading point for 2 L/min water flow rate:

    Capacity parameter at flooding point for 2 L/min water flow rate:

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    13/17

    4.2 Processed Data Tables

    Table 5. Constant Parameters

    Diameter of the column, Dc(m) 0.075

    Length of the column (m) 1.46

    Diameter of the packing, Dp(m) 0.009

    Total area of the packing, ap(m2/m3) 420

    Porosity of packed bed, 0.63

    Gravitational Constant, g (m/s2) 9.81

    cross-sectional area of the column, Ac(m2) 0.004417865

    Packed bed height, L (m) 1.46

    Table 6. Physical Properties of Water and Air at different temperature

    vL

    (L/min)

    Water Air

    Tave(C) L (kg/m3)

    L(kg/m.s) Tave(C) G (kg/m3) G (kg/m.s)

    1 27.75 996.31 8.41E-04 27 1.1793 1.8534

    2 27.5 996.38 8.45E-04 28 1.1754 1.8577

    2.5 27.5 996.38 8.45E-04 28 1.1754 1.8577

    3 27.5 996.38 8.45E-04 28 1.1754 1.8577

    3.5 27.5 996.38 8.45E-04 28 1.1754 1.8577

    4 27.5 996.38 8.45E-04 28 1.1754 1.8577

    5 27.5 996.38 8.45E-04 28 1.1754 1.8577

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    14/17

    Table 8. Pressure drop in a packed column at 2L/min water flow rate

    vg

    (L/min)

    vg

    (m3/s)

    h (m

    H2O) Pexp(Pa)

    Pexp/L

    (Pa/m) vg (m/s)

    log

    Pexp

    /L log vg20 0.0003 0.0060 58.5777 40.1217 0.0755 1.6034 -1.1223

    40 0.0007 0.0140 136.6814 93.6174 0.1509 1.9714 -0.8213

    60 0.0010 0.0260 253.8369 173.8609 0.2264 2.2402 -0.6452

    80 0.0013 0.0520 507.6738 347.7218 0.3018 2.5412 -0.5203

    100 0.0017 0.0840 820.0884 561.7044 0.3773 2.7495 -0.4234

    110 0.0018 0.1320 1288.7103 882.6783 0.4150 2.9458 -0.3820

    120 0.0020 0.1560 1523.0213 1043.1653 0.4527 3.0184 -0.3442

    125 0.0021 0.1840 1796.3841 1230.4001 0.4716 3.0900 -0.3265

    130 0.0022 0.2260 2206.4283 1511.2523 0.4904 3.1793 -0.3094

    135 0.0023 0.7000 6834.0700 4680.8699 0.5093 3.6703 -0.2930

    Table 9. Pressure drop in a packed column at 2.5 L/min water flow rate

    vg(L/min)

    vg(m3/s)

    h (mH2O) Pexp(Pa)

    Pexp/L(Pa/m) vg (m/s)

    logPexp/L log vg

    20 0.0003 0.0060 58.5777 40.1217 0.0755 1.6034 -1.1223

    40 0.0007 0.0200 195.2591 133.7391 0.1509 2.1263 -0.8213

    60 0.0010 0.0460 449.0960 307.6000 0.2264 2.4880 -0.6452

    70 0.0012 0.0620 605.3033 414.5913 0.2641 2.6176 -0.5783

    80 0.0013 0.0900 878.6661 601.8261 0.3018 2.7795 -0.5203

    90 0.0015 0.1200 1171.5549 802.4348 0.3395 2.9044 -0.4691100 0.0017 0.1560 1523.0213 1043.1653 0.3773 3.0184 -0.4234

    110 0.0018 0.1960 1913.5396 1310.6436 0.4150 3.1175 -0.3820

    120 0.0020 0.4800 4686.2194 3209.7393 0.4527 3.5065 -0.3442

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    15/17

    Table 11. Pressure drop in a packed column at 3.5 L/min water flow rate

    vg

    (L/min)

    vg

    (m3/s)

    h (m

    H2O) Pexp(Pa)

    Pexp/L

    (Pa/m) vg (m/s)

    log

    Pexp

    /L log vg20 0.0003 0.0100 97.6296 66.8696 0.0755 1.8252 -1.1223

    40 0.0007 0.0280 273.3628 187.2348 0.1509 2.2724 -0.8213

    50 0.0008 0.0480 468.6219 320.9739 0.1886 2.5065 -0.7244

    60 0.0010 0.0700 683.4070 468.0870 0.2264 2.6703 -0.6452

    70 0.0012 0.1060 1034.8735 708.8174 0.2641 2.8505 -0.5783

    80 0.0013 0.1480 1444.9177 989.6696 0.3018 2.9955 -0.5203

    90 0.0015 0.2000 1952.5914 1337.3914 0.3395 3.1263 -0.4691

    95 0.0016 0.2600 2538.3689 1738.6088 0.3584 3.2402 -0.4456

    100 0.0017 0.3280 3202.2499 2193.3219 0.3773 3.3411 -0.4234

    110 0.0018 0.7000 6834.0700 4680.8699 0.4150 3.6703 -0.3820

    Table 12. Pressure drop in a packed column at 4 L/min water flow rate

    vg(L/min)

    vg(m3/s)

    h (mH2O) Pexp(Pa)

    Pexp/L(Pa/m) vg (m/s)

    logPexp/L log vg

    20 0.0003 0.0140 136.6814 93.6174 0.0755 1.9714 -1.1223

    30 0.0005 0.0220 214.7851 147.1131 0.1132 2.1677 -0.9462

    40 0.0007 0.0360 351.4665 240.7304 0.1509 2.3815 -0.8213

    50 0.0008 0.0600 585.7774 401.2174 0.1886 2.6034 -0.7244

    60 0.0010 0.0960 937.2439 641.9479 0.2264 2.8075 -0.6452

    70 0.0012 0.1200 1171.5549 802.4348 0.2641 2.9044 -0.578380 0.0013 0.1940 1894.0137 1297.2696 0.3018 3.1130 -0.5203

    90 0.0015 0.2780 2714.1021 1858.9740 0.3395 3.2693 -0.4691

    100 0.0017 0.6400 6248.2926 4279.6524 0.3773 3.6314 -0.4234

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    16/17

    Table 14. Using Correlations of Sherwood, Shipley and Holloway based on visual observation

    vL

    (L/min)

    vL

    (m3/s)

    vL

    (m/s)

    Loading Point Flooding PointL

    (kg/m3)

    G

    (kg/m

    3)

    L

    (kg/m.s)

    L

    (kg/m

    2s)

    Loading Flooding Loading

    vg(L/mi

    n)

    vg(m3/

    s)

    vg(m/

    s)

    vg(L/mi

    n)

    vg(m3/

    s)

    vg(m/

    s)

    G(kg/

    m2s)

    G(kg/

    m2s)

    1.00

    00

    0.00

    00

    0.00

    38

    150.0

    000

    0.00

    25

    0.56

    59 - - -

    996.3

    100

    1.17

    93

    0.00

    08

    3.75

    86

    0.66

    73 - 0.0191

    0.19

    38 - -

    2.00

    00

    0.00

    00

    0.00

    75

    110.0

    000

    0.00

    18

    0.41

    50

    135.0

    000

    0.00

    23

    0.50

    93

    996.3

    800

    1.17

    54

    0.00

    08

    7.51

    78

    0.48

    78

    0.59

    86 0.0102

    0.52

    94 0.0127

    0.43

    13

    2.50

    00

    0.00

    00

    0.00

    94

    100.0

    000

    0.00

    17

    0.37

    73

    125.0

    000

    0.00

    21

    0.47

    16

    996.3

    800

    1.17

    54

    0.00

    08

    9.39

    73

    0.44

    34

    0.55

    43 0.0085

    0.72

    79 0.0109

    0.58

    23

    3.00

    00

    0.00

    01

    0.01

    13

    90.00

    00

    0.00

    15

    0.33

    95

    118.0

    000

    0.00

    20

    0.44

    52

    996.3

    800

    1.17

    54

    0.00

    08

    11.2

    767

    0.39

    91

    0.52

    32 0.0069

    0.97

    05 0.0097

    0.74

    02

    3.50

    00

    0.00

    01

    0.01

    32

    80.00

    00

    0.00

    13

    0.30

    18

    110.0

    000

    0.00

    18

    0.41

    50

    996.3

    800

    1.17

    54

    0.00

    08

    13.1

    562

    0.35

    47

    0.48

    78 0.0054

    1.27

    38 0.0084

    0.92

    64

    4.00

    00

    0.00

    01

    0.01

    51

    70.00

    00

    0.00

    12

    0.26

    41

    105.0

    000

    0.00

    18

    0.39

    61

    996.3

    800

    1.17

    54

    0.00

    08

    15.0

    356

    0.31

    04

    0.46

    56 0.0041

    1.66

    37 0.0077

    1.10

    92

    5.00

    00

    0.00

    01

    0.01

    89

    60.00

    00

    0.00

    10

    0.22

    64

    90.00

    00

    0.00

    15

    0.33

    95

    996.3

    800

    1.17

    54

    0.00

    08

    18.7

    945

    0.26

    61

    0.39

    91 0.0030

    2.42

    63 0.0057

    1.61

    75

    Table 15. Using Correlations of Sherwood, Shipley and Holloway based on graphical method

    vL(L/m

    in)

    vL

    (m3/

    s)

    vL(m/

    s)

    Loading Point Flooding Point L(kg/m

    3)

    G(kg/

    m3)

    L(kg/

    m.s)

    L

    (kg/

    m2s)

    Loading Flooding Loadingvg

    (L/mi

    n)

    vg

    (m3/

    s)

    vg(m/

    s)

    vg

    (L/mi

    n)

    vg

    (m3/

    s)

    vg(m/

    s)

    G

    (kg/

    m2s)

    G

    (kg/

    m2s)

    1.00

    00

    0.00

    00

    0.00

    38

    149.0

    608

    0.00

    25

    0.56

    23 - - -

    996.3

    100

    1.17

    93

    0.00

    08

    3.75

    86

    0.66

    32 - 0.0188

    0.19

    50 - -

    2.00 0.00 0.00 110.5 0.00 0.41 132.8 0.00 0.50 996.3 1.17 0.00 7.51 0.49 0.58 0.0103 0.52 0.0123 0.43

  • 7/25/2019 CHE422L06_AB_initial report.pdf

    17/17