Cherin Et Al 2014 ACINONYX

Embed Size (px)

Citation preview

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    1/16

    Acinonyx pardinensis(Carnivora, Felidae) from the Early Pleistocene ofPantalla (Italy): predatory behavior and ecological role of the giantPlioePleistocene cheetah

    Marco Cherin a,*, Dawid Adam Iurino b, Raffaele Sardella b, Lorenzo Rook c

    a Dipartimento di Scienze della Terra, Perugia University, Piazza Universit, 06123 Perugia, Italyb Dipartimento di Scienze della Terra, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italyc Dipartimento di Scienze della Terra, Florence University, Via G. La Pira 4, 50121 Florence, Italy

    a r t i c l e i n f o

    Article history:

    Received 25 November 2013Received in revised form3 January 2014Accepted 4 January 2014Available online

    Keywords:

    Acinonyx pardinensis

    Giant cheetahHunting behavior

    Jaw musclesPantallaVillafranchian

    a b s t r a c t

    The site of Pantalla (central Italy) yielded a rich late Villafranchian (Early Pleistocene) faunal assemblage,which includes some well-preserved large mammal skulls. We describe here two nearly complete craniaand a left hemimandible ofAcinonyx pardinensis from this locality, representing the most completecranial material of this species in Europe. These nds allowed us to dene more clearly the craniodentalmorphology ofA. pardinensis. Similarly to the forms from North Africa and China, the giant cheetah fromPantalla has a more generalized skull than the living Acinonyx jubatus, showing some primitive,pantherine-like features such as the less domed dorsal outline of the cranium, the more developedsagittal and nuchal crests and the less bowed zygomatic arches. High-resolution CT scans of the speci-mens were used to obtain the rst 3D model of a cranium with articulated mandible ofA. pardinensis.Starting from the insertion areas on this model we reconstructed the jaw muscles of the Pantalla felid,conrming its afnities with pantherine felines. In the light of the musculoskeletal skull anatomy and theaverage body mass (about 80 kg), it is likely that A. pardinensiscould kill large prey through a hunting

    strategy more similar to pantherine cats than to the living cheetah.2014 Elsevier Ltd. All rights reserved.

    1. Introduction: what we know about cheetah-like cats

    The extant cheetah Acinonyx jubatus is the fastest creature interrestrial ecosystems, reaching 103 km/h in running (Sharp, 1997).The cheetahs killing strategy is based on high speed: after anoiseless and stealthy approach to the potential prey, the chasenormally begins with a gentle trot followed by an extraordinaryacceleration; the capture occurs at high speed, thanks to a preciseaction of clawing at one side of the preys rear, causing its fatal fall(Turner and Antn, 1997).

    The cheetahs skeletal anatomy is highly specialized for thispeculiar hunting behavior (Hildebrand, 1985; Van Valkenburghet al., 1990; Turner and Antn, 1997): the body is very slender onthe whole, with a long lumbar region relative to the thoracic one,thus increasing spinal dorsiexion during running; pelvic limbbones are elongated, reecting increasing cursoriality; the long tailis used as a rudder to counterbalance body weight during therunning; the skull is short and small, and teeth are reduced in size,

    determining a reduction of the head mass; respiratory passages areenlarged thanks to an expansion of the posterior portion of thefrontals and an enlargement of nares, nasal passages and sinuses,thus assuring a good oxygenation.

    A similar body plan (with probably comparable hunting strat-egy) is displayed in at least two PlioePleistocene cheetah-like fe-lids: the North American cheetah Miracinonyx, with the two speciesMiracinonyx inexpectatus and Miracinonyx trumani (VanValkenburgh et al., 1990), and the Old World giant cheetah Acino-nyx pardinensis(Ficcarelli, 1984).

    The fossil record suggests that cheetahs originated in Africa(Fig. 1).Werdelin and Dehghani (2011)reported some remains ofAcinonyxsp. from Laetoli (Tanzania), which are very similar in sizewith the modernA. jubatus. These remains are 3.85e3.60 Ma in age,representing the rst occurrence of the genus, together with thosefrom Sterkfontein Member 2 (South Africa), although the age of thelatter site is disputed (cfr. Werdelin, 2010, p. 31). Other Sub-Saharian African sites with cheetah fossils are reported inTable 1.

    Since the second half of the XX Century, remains of cheetah-likecats were described in a number of Eurasian and North African sites(Fig. 1, Table 1), but their taxonomic attribution is debated.Considering the scarcity of the fossil record, Hemmer et al. (2008,

    * Corresponding author. Tel.: 39 340 5123518.E-mail addresses:[email protected],[email protected](M. Cherin).

    Contents lists available at ScienceDirect

    Quaternary Science Reviews

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . co m / l o c a t e / q u a s ci r e v

    0277-3791/$ e see front matter 2014 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.quascirev.2014.01.004

    Quaternary Science Reviews 87 (2014) 82e97

    mailto:[email protected]:[email protected]://www.sciencedirect.com/science/journal/02773791http://www.elsevier.com/locate/quascirevhttp://dx.doi.org/10.1016/j.quascirev.2014.01.004http://dx.doi.org/10.1016/j.quascirev.2014.01.004http://dx.doi.org/10.1016/j.quascirev.2014.01.004http://dx.doi.org/10.1016/j.quascirev.2014.01.004http://dx.doi.org/10.1016/j.quascirev.2014.01.004http://dx.doi.org/10.1016/j.quascirev.2014.01.004http://www.elsevier.com/locate/quascirevhttp://www.sciencedirect.com/science/journal/02773791http://crossmark.crossref.org/dialog/?doi=10.1016/j.quascirev.2014.01.004&domain=pdfmailto:[email protected]:[email protected]
  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    2/16

    2011)propose to considerA. pardinensisas a broad macrospecies,represented by several subspecies in Eurasia and North Africaduring the PlioePleistocene (Table 1):A. p. arvernensis, for the re-mains from touairesdated to the Pliocene to Pleistocene transition(Felis arvernensis sensu Schaub,1949), and fromthe younger site ofTuozidong (China;Dong et al., 2013); A. p. aicha, for the earliestPleistocene cheetah from North Africa (Acinonyx aicha sensuGeraads, 1997);A. p. pardinensis, for a number of Early Pleistocenesites from Europe to Central Asia; A. p. linxiaensis, for the northernChinese forms previously referred to Sivapantheralinxiaensis(Qiuet al., 2004); A. p. pleistocaenicus, for the late Early Pleistocene(latest Villafranchian, 1.05 Ma) large-sized cheetah from Unter-

    massfeld and the older Chinese Sivapantherapleistocaenica(Cyn-aiulurus pleistocaenicussensuZdansky, 1925);A. p. intermedius, for

    the Galerian (i.e., Middle Pleistocene) specimens from Hundsheimand Mosbach (Acinonyx intermedius sensuThenius, 1954).

    In addition, Hemmer et al. (2011)claried that there was a long-lasting mistake in the identication of the type locality ofA. pardinensisin the last 50 years. In fact, the type mandible wasattributed to the French site of touaires, together with the typemandible of the largerFelis arvernesis(Schaub, 1949), which is anolder synonym ofA. pardinensis according to Viret (1954). However,the former mandible was found at La Cte d Ard, which is not farfrom the touaires classic site, but stratigraphically higher. As aconsequence, A. pardinensiswas found in two different sites of thePuy de Dme, La Cte dArd and touaires, the former being the

    type locality.

    Evolutionary relationships among all these forms, as well asbetween Old and New World forms, are still cloudy. At least twotaxa were suggested to be the possible ancestor of cheetahs: thepuma-like cat Puma pardoides from Eurasia (Kurtn, 1976) andPanthera crassidens from Africa (Petter and Howell, 1976). The latterhowever should not be considered because the holotype wasdemonstrated to be a composite specimen (Turner, 1990). TheAmerican cheetahM. inexpectatusprobably reached North Americain the Late Pliocene and could be ancestral to both M. trumaniandthe extant cougar Puma concolor(Van Valkenburgh et al., 1990).Miracinonyx inexpectatus and A. pardinensis seem to appearapproximately at the same age. Although the origin ofA. pardinensis

    is still unclear,Hemmer et al. (2011)supposed that European andAsian forms followed a separate evolutionary history during theEarly Pleistocene: while in the WestA. p. pardinensis was probably achronological successor of A. p. arvernensis during the early tomiddle Villafranchian transition, in the East the primitive A. p. lin-xiaensis was substituted by A. p. pleistocaenicus, which invadedEurope in conjunction with the climatic aridication at the begin-ning of the latest Villafranchian (Spassov, 2011).

    All the above taxonomic, phylogenetic and paleobiogeographicpoints about cheetah-like fossil cats, and A. pardinensis in partic-ular, are still unsolved due to the scantiness of the fossil record.Most of the European sites yielded fragmentary specimens, mainlyrepresented by mandibular and postcranial material. Sufcientlycomplete A. pardinensis crania are known from only three sites:

    Montopoli (Ficcarelli, 1984), Untermassfeld (Hemmer, 2001) and

    Fig. 1.Map of the PlioePleistocene records of cheetah-like cats in the Old World. 1, Villafranca dAsti IT; 2, Les touaires FR; 3, Villarroya ES; 4, Las Higueruelas ES; 5, Shamar MN; 6,Beregovaya RU; 7, Yushe CN; 8, Tuozidong Cave CN; 9, Pantalla IT; 10, Casa Frata IT; 11, Montopoli IT; 12, Olivola IT; 13, Pirro Nord IT; 14, Saint Vallier FR; 15, La Cte dArd FR; 16,Senze FR; 17, Fonelas P-1 ES; 18, La Puebla de Valverde ES; 19, Ahl Al Oughlam MA; 20, Varshets BG; 21, Khapry RU; 22, Dmanisi, GE; 23, Kuruksay TJ; 24, Siwalik Hills IND; 25,Longdan CN; 26, Nihewan CN; 27, Untermassfeld DE; 28, Le Vallonnet FR; 29, Yuanqu Loc. 105 CN; 30, Gongwangling CN; 31, Longgudong Cave CN; 32, Liucheng GigantopithecusCave CN; 33, Hundsheim AT; 34, Mosbach DE; 35, Saint Estve FR; 36, Zhoukoudian Locs. 1, 13 CN. The unpublished material ofSivapantherasp. from Yushe (7) was preliminarilyreferred tothe Middle Pliocene (Qiu, 2006), allowing a possible late Ruscinian rather than early Villafranchian biochronological attribution of this locality. The site of Tuozidong Cave(8) is actually late Villafranchian in age (w2.0 Ma), but it bears remains referred to A. p. arvernensis(Dong et al., 2013), suggesting that this primitive form probably survived in theFar East longer than in Europe (Hemmer et al., 2011). The position of the marker no. 24 has to be considered approximate, as we do not know the position of the exact locality ofdiscovery of the cheetah-like remains within the Siwalik Hills. (Online version in color.)

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e97 83

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    3/16

    Table 1

    List of the Old World localities bearing PlioePleistocene remains of cheetah-like cats. Numbers in the third column refer to Fig. 1.

    Continent State No. Locality Original determination Revised determination Age References

    Afr ica S Africa e SterkfonteinMember 2

    Acinonyxsp. e Middle Pliocene(ca 4.0e3.0 Ma)a

    Werdelin andPeign (2010)

    Tanzania e Laetoli BedsUpper Unit

    Acinonyxsp. e Middle Pliocene(3.85e3.60 Ma)

    Werdelin andDehghani (2011)

    Ethiopia e Omo Shungura

    C-Usno

    cf.Acinonyx e Late Pliocene

    (ca 3.3e3.0 Ma)

    Werdelin and

    Peign (2010)S Africa e Makapansgat

    Member 3Acinonyxsp. e Late Pliocene

    (3.2e2.5 Ma)Werdelin andPeign (2010)

    Morocco 19 Ahl Al Oughlam Acinonyx aicha A. pardine nsis aich a(type) early Early Pleistocene(ca 2.5 Ma)

    Geraads (1997)

    Kenya e Koobi Fora UpperBurgi-KBS-Okote

    Acinonyxsp. e Early Pleistocene(2.0e1.4 Ma)

    Werdelin andPeign (2010)

    S Africa e SwartkransMember 1

    Acinonyx jubatus e Early Pleistocene(ca 1.9e1.8 Ma)

    de Ruiter (2003)

    S Africa e SwartkransMembers 2e3

    Acinonyx jubatus e late Early Pleistocene(?ca 1.6 Ma)

    de Ruiter (2003)

    Tanzania e Olduvai Bed 2 Acinonyxcf. jubatus e late Early Pleistocene(ca 1.4 Ma)

    Turner (1990)

    Ethiopia e Awash 7 Acinonyxsp. e Early Pleistocene Werdelin andPeign (2010)

    Morocco e Doukkala 1e2 Acinonyx jubatus e MiddleeLate Pleistocene Werdelin andPeign (2010)

    Asia China 7 Yushe Sivapantherasp. Sivapantherasp. ?Middle Pliocene Qiu (2006)Mongolia 5 Shamar Acinonyxsp. e Late Plioceneeearliest

    PleistoceneSotnikova (1978)

    E Russia 6 Beregovaya Acinonyxsp. e Late PlioceneeearliestPleistocene

    Sotnikova (1978)

    China 25 L ongdan Sivapanthera linxiaensis A. pardinensis linxiaensis(type)

    early Early Pleistocene(2.58e2.25 Ma)

    Qiu et al. (2004)

    India 24 Siwalik Hil ls ,Pinjor Stage

    Felis brachygnathus Acinonyx pardinensisb Early Pleistocene(2.5e1.7 Ma)

    Lydekker (1884);Spassov (2011)

    Tajikistan 23 Kuruksay Acinonyx pamiroalayensis A. pardinensis pardinensis early Early Pleistocene(MN17)

    Sharapov (1986);Hemmer et al. (2011)

    China 8 Tuozidong Cave Acinonyx arvernensis A. pardinensis arvernensis early Early Pleistocene(ca 2.0 Ma)

    Hemmer et al. (2011);Dong et al. (2013)

    China 26 N ihewan Cynailurus pleistocaenica Acinonyxsp. (archaic form) Early Pleistocene(1.9e1.6 Ma)

    Teilhard de Chardinand Piveteau (1930);Qiu et al. (2004)

    China 29 Yuanqu Loc. 105 Cynailurus pleistocaenica A. pardinensis pleistocaenicus(type)

    late Early Pleistocene(1.6e1.2 Ma)

    Zdansky (1925);Qiu (2006); Spassov

    (2011)China 30 Gongwangling Sivapanthera pleistocaenica A. pardinensis pleistocaenicus late Early Pleistocene

    (1.6e1.2 Ma)Qiu (2006)

    China 31 Longgudong Cave Sivapanthera pleistocaenica A. pardinensis pleistocaenicus Early Pleistocene Hou and Zhao (2010)China 32 Liucheng

    GigantopithecusCaveSivapanthera pleistocaenica A. pardinensis pleistocaenicus Early Pleistocene Tong and Gurin (2009)

    China 36 ZhoukoudianLocs. 1, 13

    Acinonyxsp. e early Middle Pleistocene Pei (1934)

    Europe Italy 1 V illafranca dAsti Acinonyx pardinensis e Late Pliocene (Triversa FU) Kurtn and CrusafontPair (1977)

    France 2 Les touaires,Puy de Dme

    Acinonyx pardinensis A. pardinensis arvernensis

    (type)Late PlioceneeearliestPleistocene (MN16)

    Schaub (1949);Viret (1954);Hemmer et al. (2011)

    Spain 3 Villarroya Acinonyx pardinensis e Late PlioceneeearliestPleistocene (MN16)

    Villalta (1952)

    Europe Spain 4 Las Higuerelas Acinonyx pardinensis e Late PlioceneeearliestPleistocene (MN16)

    Villalta (1952)

    Italy 11 Montopoli,Lower ValdarnoAcinonyx pardinensis

    e Late PlioceneeearliestPleistocene(Montopoli FU)

    Ficcarelli (1984)

    France 15 La Cte dArd,Puy de Dme

    Acinonyx pardinensis A. pardinensis pardinensis

    (type)early Early Pleistocene Schaub (1949);

    Viret (1954); Hemmeret al. (2011)

    France 14 Saint Vallier Acinonyx pardinensis A. pardinensis pardinensis early Early Pleistocene(MN17)

    Viret (1954);Argant (2004);Spassov (2011)

    Bulgaria 20 Varshets Acinonyx pardinensis A. pardinensis pardinensis early Early Pleistocene(MN17)

    Spassov (2011)

    W Russia 21 Khapry Acinonyx pardinensis A. pardinensis pardinensis early Early Pleistocene(MN17)

    Sotnikova et al. (2002);Hemmer et al. (2011)

    France 16 Senze Acinonyx pardinensis e early Early Pleistocene(MN18)

    Schaub (1942);Delson et al. (2006)

    Spain 17 Fonelas P-1 Acinonyx pardinensis e early Early Pleistocene(MN18)

    Garrido (2008)

    Spain 18 Acinonyx pardinensis e

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e9784

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    4/16

    Saint Vallier (Viret, 1954). Nevertheless, the cranium IGF 12477from Montopoli is so heavily deformed and fragmented that onlythe upper teeth can be fully described. The specimen IQW 1980/16350 from Untermassfeld is well preserved only in the ventralarea. The complete skull with associated mandible MHNL QSV.112from Saint Vallier gured and described by Viret (1954) was heavilyreconstructed, especially in the posterior portion, while a secondcranium (MHNL QSV.115) is crushed and unreconstructed (Geraads,2008).

    In this scenario the new sample from the site of Pantalla(Perugia, Italy;Gentili et al., 1997) is of crucial importance becauseit is the most complete available cranial material ofA. pardinensisinEurope and offers a unique opportunity to deepen our knowledgeon this carnivores cranial anatomy and function. The rst detaileddescription ofA. pardinensisfrom Pantalla is offered here. In addi-tion, some inferences on the predatory behavior of this species arediscussed starting from the analysis of the masticatory system.

    2. Geological framework and biochronology of the Pantalla

    assemblage

    The Early Pleistocene locality of Pantalla (about 30 km S toPerugia, Italy; 4252046.7900N, 1224023.2600E) yielded abundant

    remains of late Villafranchian continental mammals, mostly rep-resented by well-preserved skulls.The site is located near the western margin of the Apennine

    Chain, in the southwestern branch of the Tiber Basin, a wideextensional continental basin with a characteristic upside down Yshape (Fig. 2). This basin was lled by clastic (lacustrine, palustrineand uvial) and, secondly, carbonate deposits during a time spanranging from the early Late Pliocene until the early Late Pleistocene(Basilici, 1997).

    The Pantalla mammal fauna (Gentili et al., 1997) was recoveredin 1995 from a 15 m-thick stratigraphic succession referred to theEarly Pleistocene Santa Maria di Ciciliano Unit. In particular, fossilbones were discovered within two levels: the lower level wascomposed by uvial silty sands interpreted as crevasse-splay de-

    posits and yielded abundant herbivore and carnivore remains

    concentrated in a very small area (about 2 m2); the upper level wascomposed by silty clays interpreted as a drained paleosol, wherefragmented postcranial bones of herbivores and few micromammalteeth were found.

    Table 1 (continued )

    Continent State No. Locality Original determination Revised determination Age References

    La Puebla deValverde

    early Early Pleistocene(ca 2.04 Ma)

    Kurtn andCrusafont Pair (1977);Alcal et al. (1989e1990)

    Italy 10 Casa Frata,Upper Valdarno

    Acinonyx pardinensis A. pardinensis pardinensis late Early Pleistocene(Tasso FU)

    Ficcarelli (1984);Spassov (2011)

    Georgia 22 Dmanisi A. pardinensis?pardinensis e early Early Pleistocene

    (ca 1.8 Ma)

    Hemmer et al. (2011)

    Italy 9 Pantalla Acinonyx pardinensis e late Early Pleistocene(OlivolaeTasso FU)

    This paper

    Italy 12 Olivola Acinonyx pardinensis A. pardinensis pardinensis late Early Pleistocene(Olivola FU)

    Ficcarelli (1984);Spassov (2011)

    Italy 13 Pirro Nord Acinonyx pardinensis e late Early Pleistocene(Pirro FU)

    Petrucci et al. (2013)

    Germany 27 Untermassfeld A. pardinensis pleistocaenicus e late Early Pleistocene(ca 1.05 Ma)

    Hemmer (2001)

    France 28 Le Vallonnet Acinonyx pardinensis e late Early Pleistocene(0.98e0.91 Ma)

    de Lumley et al. (1988)

    Austria 33 Hundsheim Acinonyx intermedius A. pardinensis intermedius(type)

    Middle Pleistocene Thenius (1954);Hemmer et al. (2008)

    Germany 34 Mosbach Acinonyx intermedius A. pardinensis intermedius Middle Pleistocene Schtt (1970);Hemmer et al. (2008)

    France 35 Saint Estve Acinonyx pardinensis e Middle Pleistocene(MN22)

    Bonifay andBonifay (1963)

    a The age of the Sterkfontein site is a topic of debate. SeeWerdelin (2010)for a synthesis of the different hypotheses.b In thelight of ourre-analysis of theSiwalik material (hemimandibles NHM16537 andNHM 16576), we agree with Spassov (2011) in attributing thespecimens toAcinonyxpardinensis.

    Fig. 2. Location of the paleontological site of Pantalla (Italy). The Tiber Basin is high-

    lighted in light grey along the middle part of the region Umbria.

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e97 85

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    5/16

    The mammal fauna is represented by the following taxa:Apodemus cf. A. dominans, Canis etruscus, Vulpes sp., Lynx issio-dorensis valdarnensis, Acinonyx pardinensis, Lutra sp., Sus cf.S. strozzii, Pseudodama nestii, Leptobos aff. L. furtivus, Equus sp.,Mammuthus cf. M. meridionalis (Gentili et al., 1997; Cherin et al.,2013a,b).

    From a biochronological point of view, the assemblage fromPantalla can be referred to the Olivola/Tasso Faunal Unit (Gentiliet al., 1997), in a time span approximately ranging 1.8e1.7 Ma(Rook and Martnez-Navarro, 2010).

    3. Materials and methods

    The sample of A. pardinensis from Pantalla consists of twomostly complete crania and a left hemimandible (Fig. 3).

    Forthe purpose of comparison we studied also theA. pardinensissample from Montopoli (Italy) and we referred to bibliographicdata aboutA. pardinensisfrom the Eurasian and African sites listedinTable 1. Cranial and mandibular remains ofPanthera gombas-zoegensis (P. toscana) from the Upper Valdarno (Italy) and the typelocality of Gombaszog (Slovakia) were also analyzed. Additional

    Fig. 3. Acinonyx pardinensisfrom Pantalla (Italy). aed) Cranium SBAU 337624 in dorsal (a), ventral (b), left lateral (c) and rostral (d) view. eei) Cranium SBAU 337648 in dorsal (e),ventral (f), left lateral (g) with close-up of the upper cheek teeth (h) and rostral (i) view. jem) Left hemimandible SBAU 337627 in lingual (j), labial (k) and occlusal (l) view with

    close-up of the lower teeth (m). Scale bars 5 cm.

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e9786

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    6/16

    data on P. gombaszoegensis were taken fromKoufos (1992) andHank (2007). Morphometric data about A. p. aicha are fromGeraads (1997), while those aboutPuma pardoidesare fromArgant(2004), Hemmer et al. (2004) and Cherin et al. (2013c). Ourcomparative dataset was completed by morphometric datacollected on the following extant felids stored in various Europeanmuseum and institutions (the number of analyzed specimens is inbrackets):A. jubatus(14),Panthera onca(21),Panthera pardus(17),Panthera uncia (9), Panthera leo (14), Panthera tigris (18), Pumaconcolor (3). Additional morphometric data were taken from theliterature also for extant species (references given in the text andtables). Cranial, mandibular and dental measurements wererecorded to the nearest 0.1 mm with a digital caliper.

    The Pantalla specimens were also scanned through a PhilipsBrilliance CT 64-channel scanner in order to analyze the internalanatomy, to virtually correct the diagenetic deformation and tomodel virtual 3D reconstructions. Tomographic images were madeat the M.G. VanniniHospital of Rome (Italy). The specimens werescanned in the coronal (i.e.,transverse)plane from rostral to caudal.The scanning resulted in 436 slices (i.e., images) for SBAU 337624,297 slices for SBAU 337648, 226 slices for SBAU 337627, 218 slicesfor MCZR 367 (skull of the extant A. jubatus), 279 slices for MCZR

    258 (skull of the extantP. onca) and 308 slices for IGF 13577 (cast ofthe complete A. pardinensisskull from the French locality of SaintVallier), with images size of 512 512 pixels. The slices were0.8 mm thick with an interslice space (i.e., the space betweenconsecutive slices) of 0.4 mm. Segmentation, 3D rendering andelaboration of the fossil and modern materials were computedusing Osirix 3.9.4 32-bits for Mac, an Open-Source image process-ing software dedicated to DICOM les, and the 3D Open-Sourcesoftware Blender 2.63a Intel 32 bits for Mac.

    Blender was also used to create the jaw muscles of SBAU 337624,MCZR367andMCZR258inordertoperformacomparativeanalysisofthe masticatory system. The 3D images of the specimens wereexported from OsiriX as .obj les and successively imported inBlender. The reconstruction process of the masticatory muscles

    included two different phases: (1) creation and modeling of the 3Dobjects; (2)enrichment ofsurfacedetailsand insertionof coloreffects.Each musclewas rst created as a Blender new mesh (3D object) witha low number of polygons in order to improve the computer perfor-mance. Afterward we started the modeling process following themuscle insertion areas clearly evident on the skulls (Antn et al.,2009). The volume of the muscle mass was reconstructed takinginto account the spatial distance between the temporal surface andthezygomaticarch forthe temporal muscleandthe distance betweentheexternal surface ofthezygomaticarchandthehorizontalbranch ofthe mandible for the masseter muscle. In order to confer a morerealistic aspect to the 3D models, the number of polygons was thenincreasedtoimprovethegraphicdetailsofthemuscles,andadditionalartistic works, as color, surface and light effects were performed.

    Institutional abbreviations e HMV, Hezheng PaleozoologicalMuseum (China); HNHM, Hungarian Natural History Museum andGeological Institute of Hungary, Budapest (Hungary); ICP, Museodel Institut Catal de Paleontologia Miquel Crusafont, Sabadell(Spain); IGF, Museo di Storia Naturale, Sezione di Geologia e Pale-ontologia, Florence University (Italy); IGME, Museo Geominero,Instituto Geolgico y Minero de Espaa, Madrid (Spain); INSAP,Institut National des Sciences de lArchologie et du Patrimoine duRoyaume du Maroc, Casablanca (Morocco); IQW, SenckenbergResearch Institute, Quaternary Large Mammal Section, Weimar(Germany); IVPP, Institute of Vertebrate Paleontology and Paleo-anthropology, Chinese Academy of Sciences, Nanjing (China);MCZR, Museo Civico di Zoologia, Rome (Italy); MHNB, MusumdHistoire Naturelle, Basel (Switzerland); MHNL, Musum dHis-

    toire Naturelle, Lyon (France); MHNP, Musum national d

    Histoire

    naturelle, Paris (France); SMF, Senckenberg Naturmuseum Frank-furt (Germany); NHM, Natural History Museum, London (UK);SBAU, Soprintendenza per i Beni Archeologici dellUmbria, Perugia(Italy); SPE, Museo di Storia Naturale, Sezione di Zoologia La Spe-cola, Florence University (Italy).

    4. Analytical study

    4.1. CT scanning and 3D virtual modeling

    The good state of preservation of the fossils and the features ofthe sediment in which they laid (uvial silty sands) allowed toobtain high quality two- and three-dimensional tomographic im-ages, favoring an easy discrimination of materials with differentdensity. The boundaries among fossilized bone, tooth enamel andsandy sediment are therefore visible in the virtual slices of thespecimens (Fig. 4).

    In the case of SBAU 337624 this type of investigation allowed todetermine the non-pathological nature of the swelling on the rightmaxilla (Fig. 4). CT images clearly show a line of discontinuity be-tween the wall of the maxillary bone and the swelling, which hasdifferent density (Fig. 4a). Therefore, what from the outside

    appeared to be a bony excrescence, proved to be a splinter of bone,connected to the cranium by a piece of unremoved sediment. Usingthe density lters available on Osirix, it was possible to verify theexcellent preservation of the right inner ear of SBAU 337624 (Fig. 5).At present the study of this important anatomical structure is inprogress and may help to explore interesting aspects of the hearingcapability of these felids. Furthermore, within both the crania verydense mineral veins are evident, developing from rostral to caudal(Fig. 5). These structures arose during the fossilization process,withprecipitation of minerals due to water percolation.

    Inner CT sections of the two crania and the hemimandible SBAU337627 allowed us to have a look at the root morphology (Fig. 5).The analysis of the whole tooth structures made possible to excludeany dental anomaly, presence of supernumerary roots, intra-vitam

    fractures or diseases (Iurino et al., 2013b).3D computer graphics was used with the aim of minimizing the

    deformation of the two crania that took place during the fossil-ization process (the hemimandible is virtually undeformed) (Iurinoet al., 2013a). The process of remodeling of the fossils required asrst step to identify and virtually track the sagittal plane of thecrania (Fig. 6b and k). In this way the symmetry plane of eachcranium was created. Secondly, the mesh (3D object) was lockedalong the whole palatal area, which is the least affected by thedeformation. The term lockedin this case means that each optionwas disabled by virtual movements of the highlighted object. It wasthus possible to shift the remaining portion of the craniumfollowing the symmetry plane (on the right in the case of SBAU337624 and on the left in the case of SBAU 337648) to compensate

    for the diagenetic deformation. During the operations of remod-eling of SBAU 337624 the foreign swelling on the right maxilla wasalso deleted. This series of operations allowed obtaining reliablemodels of the crania, free from deformations and other anomaliesdue to fossilization (Fig. 6k).

    The computer graphic technology was also used for recon-structing the whole jaw starting from the left hemimandible SBAU337627. Firstly the left hemimandible was cloned and mirrored,obtaining the right hemimandible. The two hemimandibles werethen hinged together along the mandibular symphysis and in orderto improve the angle between the two portions, they were articu-lated to SBAU 337624, which is the cranium with almost completedentition and complete zygomatic arch. Simulations of the closingand opening of the jaw were nally performed, verifying the cor-

    rect dental occlusion (Fig. 6me

    n).

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e97 87

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    7/16

    The 3D visualization of the scanned specimens (MCZR 367, IGF13577, SBAU 337648 and MCZR 258) accelerated and facilitated thecomparative analysis (Fig. 7). The possibility to turn the digitalizedskulls in the three directions of the space proved to be a very usefultool to detect a wide range of morphological features, much morethan a classic comparison of 2D images (Iurino et al., 2013a).

    4.2. Anatomical description

    4.2.1. Cranium SBAU 337624

    The cranium (Figs. 3aed and 6aef,Table 2) shows a very good

    state of preservation, although it was partially deformed during the

    diagenesis. In rostral view, it is evident a plastic translation on theright side, especially in the upper portion. As a consequence, themiddle and rostral parts of the nasals were slightly crushed into thenasal cavities. Besides this distortion, the cranium is almost com-plete, although the right zygomatic arch and the jugular and mas-toid processes on both sides are fragmented. Unfortunately, suturesare not more visible on the bone surfaces. Moreover, the inllingsandy sediment covering the body of the basisphenoid and thechoanae has not been mechanically removed for not endangeringthe specimens integrity.

    In lateral view, the cranium appears quite domed and ros-

    trocaudally compressed. The orbit is oriented rostrally and quitelarge. Well-developed zygomatic process of the frontal and frontalprocess of the zygomatic delimit the orbit respectively caudo-dorsally and caudoventrally; a little process is also present on therostral margin of the orbit, just above the lacrimal pit. A single, ovaland quite small infraorbital foramen opens rostroventrally to theorbit. The zygomatic arch is quite slender and dorsoventrallyarched. The braincase is wide respect to total length, mostly thanksto the enlargement of the caudal portion of frontal bones. A quitetall sagittal crest crosses all the neurocranium till the akrokranion,where it reaches a well-developed nuchal crest.

    In ventral view, the palate appears large and at; two elongatedpalatine ssures are visible rostrally to the incisors. The nasal spineand the pterygoid hamuli are broken. The tympanic bullae are quitelarge and elliptical in shape; they are separated by a wide

    Fig. 4. Acinonyx pardinensisfrom Pantalla (Italy). The coronal section (a) of the craniumSBAU 337624 allows observing the inner structure of the specimen, in particular theboundaries among fossilized bone (fb), tooth enamel (te), sandy sediment (se) anddense mineral veins (mv). The black arrows indicate the line of discontinuity betweenthe wall of the maxillary bone and the swelling. b) The external look of the swelling onthe right maxilla on the 3D model. c) Close-up of the swelling consisting of a splinter ofbone (sb) connected to the cranium by a piece of unremoved sediment (se). Scale bars

    3 cm (a) and 1 cm (be

    c). (Online version in color.)

    Fig. 5. Acinonyx pardinensis from Pantalla (Italy). 3D models of the cranium SBAU337624 and some of its inner structures. a) External surface of the cranium in right

    lateral view. be

    c) View in transparency (b) and 3D models (c) of the inner structures:teeth, inner ear (ie) and mineral veins (mv) developed during the diagenesis. Scale bar3 cm. (Online version in color.)

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e9788

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    8/16

    basioccipital, which is characterized by the presence of a sharpcrest in the middle. Unfortunately, no foramina are clearly visible inthe temporal region because of their obliteration by the inllingsediment.

    Even if the nasal cavities were slightly deformed and narrowedduring the diagenesis, they look large in rostral view.

    All the upper teeth are present except for both M1. Incisors arerobust and progressively larger from I1 to I3. A short diastemaseparates the incisors from the canines, which appear small and

    slender. Cheek teeth are very close one another. The P2 is very smalland circular in occlusal view. It is characterized by a thin cuttingridge running from the mesiolingual to the distolabial margin. TheP3 is quite narrow and high-crowned. The protocone is very smalland located in lingual position, while the paracone is high anddirected vertically; the hypocone is well developed and the distalcingulum is as well isolated as appearing an accessory cusp. The P4

    is a robust tooth characterized by the strong reduction of the pro-tocone, which appears as a simple swelling of the mesiolingual part

    Fig. 6. Acinonyx pardinensisfrom Pantalla (Italy). aef) 3D models of the cranium SBAU 337624 in caudal (a), rostral (b), left lateral (c), right lateral (d), dorsal (e) and ventral (f) view.

    gej) 3D models of the left hemimandible SBAU 337627 in labial (g), lingual (h), occlusal (i) and ventral (j) view. k) Cranium SBAU 337624 after the retrodeformation process. Thedotted line indicates the sagittal symmetry plane. The swelling on the right maxilla (sw) was digitally removed. l) Virtual reconstruction of the whole skull of A. pardinensisfromPantalla, realized by articulating the cranium SBAU 337624, the left hemimandible SBAU 337627 and the cloned and mirrored right hemimandible (in brown). men) Reconstructedskull in left lateral view with the jaw open (m) and closed (n). Scale bars 5 cm. (Online version in color.)

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e97 89

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    9/16

    of the crown base, between the parastyle and the paracone. Theparastyle is strong and mesiolabially enlarged at the base. Theprotocone and metacone are similarin size, with theformer slightlyhigher than the latter; in labial view, the protocone is directedvertically as the paracone of P3.

    4.2.2. Cranium SBAU 337648

    The specimen is fully similar to SBAU 337624, both morpho-logically and morphometrically (Fig. 3eei, Table 2). The craniumshows a smaller degree of diagenetic distortion but is moreincomplete: both zygomatic arches are broken and most of theoccipital region and the left tympanic bulla are missing. Thanks tothe lower dorsoventral deformation, the cranium is more domedthan SBAU 337624. The upper dentition lacks the right I 3 and both

    the P2

    , although the root of the left P2

    is visible in the CT scans.Unlike SBAU 337624, the right M1 is still present. In occlusal view, itis elliptical in shape, with the main axis perpendicular to the toothrow; a thin cutting ridge runs through the crown.

    4.2.3. Hemimandible SBAU 337627

    The left hemimandible (Figs. 3jem and 6gej,Table 3) is prac-tically complete, with the exception of all the incisors. It is shortand slender on the whole. The corpus is straight both in lateral anddorsal view. The coronoid process is quite low and vertical and theangular process is very short, as it does not reach the caudalmargin of the condylar process. In occlusal view, the long axis ofthe condyle is inclined respect to the corpus with an angle of about45. The symphysis is leaf-shaped and very short. The ros-

    troventral margin of the hemimandible is quite squared.

    Unfortunately, no mental foramina are clearly visible on the lateralsurface of the corpus.

    The lower canine is short and slender. The crown of the P3isalmost as tall as the one of P4. The diastema is short. In labial view,the premolar teeth show a eur-de-lis morphology, with theparaconid and the hypoconid diverging respectively mesially anddistally from the straight and high protoconid. Both the P3and P4have a well-developed cingulum distally to the hypoconid. Therelative length of the P3 is quite small if compared to the M1. Inocclusal view, postcanine teeth are so close one another to appearpartially overlapped.

    4.3. Comparisons and discussion

    From an anatomical point of view, modern cheetahs are clearlydifferent from other large felids, especially considering the skullmorphology, which retains a number of features that normallydistinguish small cats (ORegan, 2002).

    The felid from Pantalla shows a large set of characters thatallowed us to refer it to the cheetah group. At the same timethrough our comparisons we recognized some important differ-ences between the Pantalla cat and the extantA. jubatus, which arediscussed in the Section5from a functional and ecological point ofview. In order to highlight the main anatomical similarities anddifferences between our sample and some extinct and extant taxawe produced Fig. 7, where the 3D model of the cranium SBAU337624 is compared to those ofA. pardinensis from Saint Vallierandthe modernA. jubatusand P. onca. The latter species was selected

    within the pantherine clade (including the genera Panthera and

    Fig. 7. Comparative cranial morphology ofAcinonyx jubatusMCZR 367 (a1ea4),Acinonyx pardinensisIGF 13577 from Saint Vallier (b1eb4),Acinonyx pardinensisSBAU 337624 fromPantalla (c1ec4) andPanthera oncaMCZR 258 (d1ed4). The 3D models are shown in left lateral (a1ed1), dorsal (a2ed2), ventral (a3ed3) and rostral (a4ed4) view. The images arenormalized. (Online version in color.)

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e9790

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    10/16

    Neofelis; Johnson et al., 2006) being characterized by a quitegeneralized cranium and a mean body size comparable to that of

    the extinctA. pardinensis.From a lateral view thecraniumfromPantalla is quitedomed androstrocaudally compressed (Fig.7c1). This character normally occursin the extant and extinct cheetah-like cats (Spassov, 2011), anddiffers from the Panthera lineage, whose members show moreelongated crania. The only exception is represented by the snowleopard P. uncia, which is the only member of its clade havinga rostrocaudally shortened cranium, although the dorsal outline ismuch less domed than inA. jubatus. Recent genetic studies (Johnsonet al., 2006) exclude any phylogenetic relation betweenP. unciaandthe other short-cranium large cats (AcinonyxePumalineage), mak-ing this anatomical character a morphologic convergence amonglarge felids. The cranial shortening in P. unciacould be related to theenlargement of the nasal cavities and sinuses, which could be linked

    to life in cold environment (Turner and Antn, 1997).

    The Pantalla felid also shows a lateral enlargement of the fron-tals caudally to the zygomatic processes (Fig. 7c3). This characterwas pointed out as a synapomorphy of the closely related genera

    Acinonyxand Puma (Spassov, 2011), but is observable to a lesserdegree also in P. uncia.The Pantalla specimens share with A. pardinensis from Saint

    Vallier thewidening of the nares and orbits, with the latterorientedfrontward (Fig. 7b4 and c4). This morphology is intermediate be-tween the modernPanthera(showing narrower nares and smallerand more laterally-oriented orbits;Fig. 7d4) andAcinonyx(havingvery large nares and orbits;Fig. 7a4). Similarly toAcinonyx, the catfrom Pantalla has smaller infraorbital foramina than Panthera.

    The quite high development of the sagittal and nuchal crests canbe pointed out observing the crania from Pantalla in lateral anddorsal view. In this feature, they resemble more Panthera thanAcinonyx (Fig. 7a1, c1 and d1). The morphology of the caudal part ofthe cranium inA. pardinensisfrom Saint Vallier (Fig. 7a2) should be

    considered with prudence, because this portion was reconstructed(Geraads, 2008).Taking into account all the above cranial characters, the felid

    from Pantalla strongly recalls the morphology of A. pardinensislinxiaensis from Longdan (Qiu et al., 2004, Plates 20 and 21),although the Chinese specimens are slightly larger than the Italianones.

    The upper dentition of the Pantalla felid is much more similar tocheetah-like than to pantherine-like cats. The quite slender caninesand the narrow cheek teeth are two of the most important char-acters identifying cheetahs according toO Regan (2002). All thecharacters of the P3 (the relative development of the cusps, the highand vertical crown, the narrow occlusal outline) clearly resemblethe extantA. jubatusas well as A. pardinensisfrom Saint Vallier. Inparticular, the P3 of the Pantalla specimens is more similar to the

    Table 3

    Measurements (mm) of the mandible and lower teeth ofAcinonyx pardinensisfrom Pantalla (Italy).

    Mandible SBAU 337627

    Length at the condylar process 154.0Length at the coronoid process ca 150Max height 74.0Height behind the canine 29.5

    Height behind M1 29.2Breadth at P4 15.6Length of the diastema 12.2Postcanine tooth length (alveolar) 52.0Cmand

    Length 13.5Breadth 10.3Crown height 22.3

    P3Length 14.7Max breadth 8.1Mesial breadth 6.4Paraconid length 8.4Paraconid height 10.4

    P4Length 18.4Max breadth 8.5Mesial breadth 6.9Paraconid length 9.1Paraconid height 11.8

    M1Length 21.3Max breadth 10.4Protoconid length 10.5Protoconid height 12.7Paraconid length 11.9Paraconid height 14Height at the central notch 7.5

    Table 2

    Measurements (mm) of the cranium and upper teeth ofAcinonyx pardinensisfromPantalla (Italy).

    Cranium SBAU337624

    SBAU337648

    Condylobasal length 190.0 eBasal length 175.5 eViscerocranium length (NasioneProsthion) 108.3 117.4

    Basicranial axis (BasioneSynsphenion) ca 48 ca 50Basifacial axis (SynsphenioneProsthion) ca 132 ca 135Zygomatic breadth ca 150 eNeurocranium breadth 67.7 64.3Breadth at the canine alveoli 56.4 51.7Max palatal breadth (at the P4 alveoli) 84.2 82.1Mastoid breadth 77.4 ca 73Breadth of the occipital condyles 44.6 eBreadth of the foramen magnum ca 20 eMax diameter of the tympanic bulla 31.0 31.3Min diameter of the tympanic bulla 21.0 14.4I1 r l r l

    Length 4.3 4.3 4.4 4.4Breadth 3.4 3.2 3.2 3.3

    I2 r l r lLength 5.6 5.4 5.3 5.2Breadth 4.5 4.1 3.8 4.2

    I3 r l r lLength 7.3 7.3 e 6.9Breadth 5.2 5.8 e 5.1

    Cmax r l r lLength 15.1 15.0 15.5 14.8Breadth 11.4 11.4 11.5 11.9Crown height 28.1 e e 23.7

    P2 r l r lLength 6.1 5.8 e eBreadth 4.6 4.7 e e

    P3 r l r lLength 17.9 19.0 18.1 17.2Max breadth 8.9 9.0 8.5 8.6Mesial breadth 7.6 8.1 7.7 7.6Paracone length 8.8 8.8 7.5 7.5Paracone height 11.4 12.3 12.0 12.2

    P4 r l r lLength 29.2 29.9 28.5 28.3

    Length at the protocone 26.9 27.2 26.3 25.8Max breadth 12.9 13.1 14.4 13.0Breadth behind the protocone 10.5 10.6 9.7 9.7Max distal breadth 10.7 10.8 9.7 9.8Paracone length 11.2 12.2 11.9 11.4Metacone length 12.8 12.7 12.0 12.0Paracone Metacone length 22.9 24.2 22.7 22.8Paracone height 14.4 14.6 15.7 10.0

    M1 r l r lLength e e 4.4 eBreadth e e 10.0 e

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e97 91

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    11/16

    one of the skull fragment QSV 116 (Viret, 1954, Plate 12, Fig. 3b)than to that of the cranium QSV 112 (Viret, 1954, Plate 12, Fig. 1b),which appears broader in occlusal view. In this, the latter resemblesthe P3 ofA. p. linxiaensis (Qiu et al., 2004, Plate 20, Fig. 1c).

    The P4 is the most characteristic tooth, showing a markedreduction of the protocone. Such morphology has been recognizedas typical for both extant and extinct cheetahs by many authors(Viret, 1954; Van Valkenburgh et al., 1990; Geraads, 1997; ORegan,2002; Argant, 2004; Spassov, 2011). From a morphometric point ofview, the reduction of the protocone corresponds to a reduction ofthe ratio between the P4 maximum breadth and length, which is onaverage always lower than 45% in cheetah-like cats (i.e., Acinonyxand Miracinonyx species; Fig. 8). On the contrary, the uppercarnassial of Panthera and Puma always shows a strong andlingually-enlarged protocone, more or less oriented in mesial di-rection (Fig. 8). From this perspective, the P4 from Pantalla differsfrom the recently describedAcinonyx kurteni from the Late Plioceneof China (Christiansen and Mazk, 2009), which is characterized bya Panthera-likestrong protocone. As a matter of fact, the holotype

    and single specimen ofA. kurteniseems to be a fossil forgery, sincemost of the skull was articially modeled (Deng, 2011). As aconsequence, the validity of this taxon was seriously challenged(Spassov, 2011). Christiansen and Mazk (2009) also pointed outthat one of the most peculiar features of the cheetahs uppercarnassial is the presence of a well-developed ectoparastyle, anaccessory style located mesiolabially to the parastyle. Although theextantA. jubatusis characterized by a prominent ectoparastyle, webelieve that it cannotbe considered as a diagnostic character. In factthis is present with different extent in many other large felids suchas P. onca and P. tigris, moreover showing a remarkable individualvariability. The dimensional values of the P4 from Pantalla fall intothe range ofA. pardinensis from Eurasia and North Africa. The uppercarnassial IGF 4372 from Olivola cited by Kurtn and CrusafontPair (1977) was not taken into consideration in our morpho-metric comparisons since it does not belong toA. pardinensisbut toP. gombaszoegensis. Similarly, the tooth IGF 15358 from Montopolilabeled as Acinonyxsp.in the catalogue of the Florence paleon-tological museum was recently referred to Puma pardoides(Cherinet al., 2013c).

    SBAU 337627 resembles a typical cheetahs mandible in all itsmorphological characters. On the contrary, pantherine cats nor-

    mally have longer and more robust mandibles, with a longer dia-stema between the canine and the P3, and a deeper and widermasseteric fossa. The overall morphology of the hemimandiblefrom Pantalla is very similar to the complete specimens ofA. pardinensis from Saint Vallier, Untermassfeld and Longdan.However, it has to be pointed out that the corpus of the Frenchspecimen QSV 112 (Viret, 1954, Plate 12, Fig. 2a) in occlusal view ismore curved than the one form Pantalla, which is almostcompletely straight. In addition, the two mandibles from Unter-massfeld IQW 1980/15503 and 15504 are characterized by a verycaudally-inclined coronoid process, which is quite vertical in SBAU337627. Nevertheless, this character seems to be quite variable incheetah-like cats, given that the two complete mandibles ofA. p.linxiaensis gured byQiu et al. (2004, Plate 20, Fig. 2 and Plate 21,

    Fig. 2) are clearly different from this perspective.The angular outline of the rostroventral margin is another

    interesting mandibular character linking the Pantalla mandible tofossil and living cheetahs. On the contrary, in pantherine cats andpumas this margin is more receding, probably due to the greaterdevelopment of the canine root. This reects also in the symphysisshape, which is very short in cheetahs and long in Panthera andPuma.

    The lower postcanine teeth of SBAU 337627 are again verysimilar to those of cheetah-like cats. The partial overlapping of thethree teeth in occlusal view and the quite short P3compared to theM1 are two characters pointed out for A. pardinensis bySchaub(1949) and Viret (1954). In labial view, the high-crowned post-canine teeth have more or less the same height, as in all cheetahs

    and differently form Panthera, in which the P3 is normally muchlower than the P4and M1. In addition, the pantherine lower pre-molars never show the characteristic cheetah-like eur-de-lismorphology. The single right P4ofA. pardinensis reported at CasaSgherri (Italy) byMarcolini et al. (2000)cannot be referred to thistaxon because it does not show this peculiar morphology, but aheavier and sturdier pantherine-like appearance. Unfortunately,Marcolini et al. (2000)did not publish any measure of the tooth, soit is not possible to offer an alternative taxonomic attribution.

    In the light of the above comparisons, the felid from Pantalla ishere referred to the large-sized cheetah-like cat A. pardinensis.Further taxonomic considerations are hard to be carried on becausethe available fossil record is not enough to shine a light on thiscarnivores taxonomic status. The macrospecies concept proposed

    byHemmer et al. (2008, 2011)and supported, at least in part, by

    Fig. 8. Occlusal view of the left upper carnassial of selected extinct and extant Felidae,drawn not in scale. Acinonyx pardinensisandA. jubatusare characterized by a stronglyreduced and distally-placed protocone. For each species, the ratio between themaximum breadth and length (average 100) is indicated with bold numbers (samplesize in brackets). This ratio is 45% in Pantheraand Puma. The

    specimens used for the making of the drawings are indicated below each species name.

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e9792

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    12/16

    Spassov (2011)represents a good, parsimonious model that how-ever should be reviewed starting from the Pantalla sample. In fact,the recognizing of some primitive, pantherine-like characters in thePantalla skull material (discussed from a functional and ecologicalperspective in the next paragraph) makes it more similar to themiddleelate Villafranchian North African and Chinese subspecies(respectivelyA. p. aichaandA. p. linxiaensis) rather than to the oneoccurring in Europe and Central Asia in the same period (A. p.pardinensis). As a consequence, the relations among the above threeforms should be reconsidered. Given the quite continuous chro-nologic and geographic distribution (Fig. 1), the middle to lateVillafranchian Old World cheetah-like cats may belong to a singlewide-ranging taxon. In this framework, the complete skull QSV 112from Saint Vallier, which was frequently used in the past as areference specimen for describing the anatomy and inferring theecology ofA. pardinensis (cfr. Turner and Antn, 1997), should be re-studied taking into account the hard work of restoration of itscaudal portion (Geraads, 2008). Similarly, as previously suggestedby Spassov (2011), the relationships between the early Villa-franchianA. p. arvernensisand its chronologic successor A. p. par-dinensis needto be re-examined in the light of the recentndings ofthe former taxon in Tuozidong at about 2 Ma (Dong et al., 2013).

    5. Predatory behavior and ecological role of the giant Plioe

    Pleistocene cheetah

    In the last decades a number of authors tried to infer informa-tion about the biology and ecology of the giant cheetahA. pardinensisstarting from its skeletal morphology (Kurtn, 1968;Turnerand Antn,1997; Hemmeret al., 2011). Most of these studieswere focused on comparisons with the modern cheetahA. jubatus,one of the most charismatic large carnivorans in the World, whosepredatory behavior was subject of several studies.

    On the other hand, the direct similarity between the huntingstrategy inA. pardinensisandA. jubatusis questionable in the lightof at least two considerations:

    (1) Althoughthe fossilrecordis ratherscanty, paleontologicaldataat our disposal do not clarify the phylogenetic relationshipbetweenthetwo species.Acinonyx jubatus probablyappearsinAfrica in the MiddleeLate Pliocene (cfr.Werdelin and Peign,2010), while the earliest records of cheetah-like cats in Eura-sia and North Africa are not older than the PlioePleistocene

    boundary, even if some undescribed materials of Sivapan-thera sp.from the Middle Pliocene of Yushe (Qiu, 2006) couldrepresent the rst occurrence of this group. In addition,phylogenetic proximity is not necessarily related to similarpredatory behaviors.

    (2) Thanks to the outstanding running capabilities the extantcheetah is considered a highly specialized predator, with astrong hunting adaptation in open savannah environments.Nevertheless, such considerations are inuenced by the factthat most of the studies on the cheetah s ecology werefocused on the Serengeti area in East Africa. On the contrary,recent researches in different areas (Broomhall et al., 2004;Mills et al., 2004; Bissett and Bernard, 2007) demonstratethat A. jubatus is a quite adaptable species, with a greatbehavioral and ecological exibility. This is indirectly sup-ported considering that the cheetah former range was muchwider than today, including large part of Africa and south-western Asia, from Arabia to India (Kingdon, 1977).

    Although more ecologically exible than previously thought,A. jubatus is an atypical large-sized cat, which evolved a verypeculiar predatory behavior (see Section1). Differently from pan-

    therine cats, the cheetahs small and rounded skull, which ismodied for speedas well as the postcranial skeleton, appears as anapparent anatomical deciency for hunting large prey (Eaton,1970). In fact, pantherine cats have very strong and large caninesadapted to being wedged between the preys cervical vertebrae,causing a rapid death. In addition, their large postcanine teeth(especially the upper carnassial, bearing a strong protocone) cancrush parts of the preys neck and skull (Eaton,1970). Some jaguarsfrom Mato Grosso (Brasil) were adapted in killing the capybara bypunching their temporal bones with the canines (Schaller andVasconcelos, 1978). The cheetah is not equipped with similartooth lethal weapons, so normally kills the prey by strangulation,through a prolonged (even some minutes) bite in the ventral part ofthe neck (Eaton, 1970).

    The above observations represent the starting point of our an-alyses on the morphology and function of the jaw muscles inA. pardinensis (Fig. 9), through the comparison with this musclesystem in the extant A. jubatusand P. onca(Fig. 10).

    The temporal muscle of A. pardinensis resembles the one ofP. onca in morphology and dimensions, while the overall skullshape is intermediate between the jaguar and the cheetah (Fig.10).

    Fig. 9. 3D reconstruction sequence of the masticatory muscles ofAcinonyx pardinensisfrom Pantalla (Italy). a) Reconstruction of the skull. b) Highlighting of the insertions areas ofthe temporal muscle on the cranium (iatm) and of the masseter muscle on the zygomatic process (iamm) and the masseteric fossa (mf). c) Final reconstruction with the temporal

    muscle (tm), masseter muscle (mm) and orbicularis oculi muscle (oom). (Online version in color.)

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e97 93

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    13/16

    The short and domed morphology of the cheetahs cranium isrelated to the small size and crowding of the teeth, as well as to thegreater arching of the zygomatic bones, which are more distantfrom the tooth occlusal plane (Fig. 10a). Such morphology causes a

    greater extension of the masseter muscle during the jaw openingcompared to pantherine cats. The strength of any given muscle isproportional to its cross sectional area (Liem et al., 2001), so thehigher the muscle extension, the lower its strength. In addition, themuscle strength is also related to the mechanics of the mandibularlever. In felids with a short muzzle the distance between the ca-nines and the lever fulcrum (i.e., the temporomandibular joint) islower. This reects in the decrease of the moment arm of resistanceand the enhancing of bite force (Kitchener et al., 2010). In the lightof this biomechanical principleHemmer (2001)suggested that theskull shortening inA. jubatus andA. pardinensis allows thesespeciesto have a more powerful bite than pantherine cats. On the otherhand, in large felids with elongated crania the decrease of the biteforce due to the greater distance between the canines and the

    mandibular joint is balanced by a greater development of jawmuscles (Slater and Van Valkenburgh, 2009). This suggests that thebite force is nearly constant in felids as the body size increases, sothe splanchnocranium shortening in the cheetah-like cats does notentail a more powerful bite.

    With the above considerations in mind, it can be understoodwhy the musculoskeletal skull structure in pantherine cats (inwhich the canines are very strong and stout, the temporalis has anupside down-L shape extending in the occipital region, and themasseter insertion area on the cranium is close to the occlusal planedue to the low-bowed zygomatic arch;Fig.10c) is built to achieve avery strong bite. This allows these carnivores to focus on large-sizedprey, whose catch and kill can cause high mechanical stresses to thepredators skull (Van Valkenburgh and Hertel, 1998; Radloff and du

    Toit, 2004; Hayward and Kerley, 2005; Meachen-Samuels and VanValkenburgh, 2009).The skull morphology of A. pardinensis suggests us that this

    extinct felids masticatory system could be more similar to that ofthe extant jaguar than that of the cheetah (Figs. 10and11). Simi-larly, the mean body size ofA. pardinensis(about 80 kg) was muchcloser to that of a large pantherine cat (about 80 kg forP. onca) thanthat of A. jubatus (about 40 kg) (details in Table 4). As a conse-quence, in the light of the musculoskeletal skull morphology andbody size, it is likely that A. pardinensis could catch large preythrough a killing strategy more similar to pantherine cats than tothe small and slender cheetah. The interspecic competition withP. gombaszoegensisin the areas where both species occurred (e.g.,Dmanisi, Untermassfeld, Pirro Nord) could be reduced by temporal(e.g., diurnal against nocturnal hunting activity) and/or spatial (e.g.,

    preference for more or less thicket areas in heterogeneous eco-systems) niche displacements.

    The prey of A. jubatus ranges from the hare (about 2 kg) toadult wildebeest and zebra (up to 270 kg), although this felid

    usually catches medium to small-sized ungulates like gazelle,impala and springbok with a mass of 23e56 kg (Turner andAntn, 1997; Hayward et al., 2006). The hunting target is inu-enced by the local availability but also by the vegetation struc-ture: cheetahs hunting in thicket areas focus on relatively largerprey (Hayward et al., 2006). This is related to the lower presenceof kleptoparasites like lions, hyenas, jackals and vultures in suchhabitats than in grasslands, where these ecological interactions(which frequently conclude with a prey loss by the cheetah) arerather common (Eaton, 1970; Hayward et al., 2006; Hunter et al.,2006). A similar preference for relatively larger prey can beobserved in the Asiatic cheetah A. j. venaticus, which occupiesareas with very low probability of meat robbery (Farhadinia andHemami, 2010). Most of the PlioePleistocene paleoecosystems

    in whichA. pardinensisoccurred were characterized by a very richand complex carnivore guild.Hemmer et al. (2011)hypothesizedthat in Dmanisi the hunting activity of the giant cheetah (prob-ably focused on 50e100 kg prey) could provide a large amount offresh meat available for kleptoparasites, including early Homo.Nevertheless, this hypothesis is again based on a direct correla-tion between the hunting strategy of A. pardinensis and that ofA. jubatus, which normally leaves uneaten large part of the preyscarcass (Hayward et al., 2006). In the light of this presumedecological and behavioral correlation,A. pardinensis was consid-ered a low-ranked species in the PlioePleistocene carnivore hi-erarchy compared to other taxa such as saber-toothed cats orP. gombaszoegensis (Hemmer, 2001; Hemmer et al., 2011). Ourresults suggest that the ecological role of the giant cheetah should

    be dealt with caution, since this predators ecology and behaviorwere probably more complex than previously thought and rather

    different from those of the extant cheetah. The supposed adap-tation ofA. pardinensis for high speed in open environments wasalready brought into consideration by Turner and Antn (1997).The few postcranial elements at our disposal, such as those fromtouaires (Schaub, 1949), Montopoli (Ficcarelli, 1984), Unter-massfeld (Hemmer, 2001) and Dmanisi (Hemmer et al., 2011),suggest that A. pardinensis had body proportions similar to theliving cheetah. On the other hand, we cannot demonstrate thatthis body structure was really related to a hunting strategy basedon high speed. While the skull anatomy is more strictly related tothe feeding behavior, the postcranial one could be inuenced byother ecological and environmental factors. This is demonstratedby the fact that a number of living medium- to large-sized felids

    Fig. 10. 3D reconstruction and morphological comparison of the masticatory muscles in Acinonyx jubatusMCZR 367 (a),Acinonyx pardinensisSBAU 337624 from Pantalla (b) andPanthera oncaMCZR 258 (c). (Online version in color.)

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e9794

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    14/16

    are characterized by similar proportions but very differenthunting behaviors compared to the cheetah. For instance, theextant snow leopard resembles to some extent the cheetah inhaving a slender skeleton with long limbs, but these features arerelated to this cats outstanding performance in mountainousterrain (Turner and Antn, 1997). In the next future, a systematicstudy of all the reported postcranial material of A. pardinensis,including a detailed comparative analysis of muscle insertions,may allow us to better explore such aspects of this carnivore sfunction and ecology.

    Fig. 11. Reconstruction sequence of the head shape of Acinonyx pardinensis fromPantalla. Artwork by D.A. Iurino.

    Table 4

    Predicted body masses (kg) for Acinonyx pardinensisfrom various Old World sitesbased on the length of the lower carnassial (mm), calculated using the predictionequation byVan Valkenburgh (1990). The source of morphometric data is indicatedin brackets. The body mass ofA. pardinensis ranges from 60 to 121 kg, with anaverage value of 83 kg, which is very close to theone estimatedfor the giant cheetahfrom Pantalla (80 kg). The prediction equation byVan Valkenburgh (1990)was alsotested by calculating the body mass of individuals of some living felid species (SPEand HNHM collections) and then comparing these analytic results with the average

    weights published byMarker and Dickman (2003; for A. jubatus) andMacdonaldet al. (2010; for the other four species). The estimated mean body masses (EBM;sample size in brackets) are very close to the actual mean body masses (ABM).

    Locality and references Specimen M1length

    Bodymass

    Pantalla, Italy (original data) SBAU 337627 21.3 80Montopoli, Italy (original data) IGF 12477 19.6 62Villafranca dAsti, Italy

    (Kurtn and CrusafontPair, 1977)

    MHNB V.I.132 20.5 71

    Mosbach, Germany(Hemmer et al., 2008)

    SMF PA/F.6236 19.2 60

    La Cte dArd, France(Kurtn and CrusafontPair, 1977)

    MHNPe 20.3 69

    Les touaires, France(Kurtn and CrusafontPair, 1977)

    MHNPe 24.4 121

    Saint Vallier, France(Viret, 1954; Kurtn andCrusafont Pair, 1977;Argant, 2004)

    MHNL QSV.110 19.5 61

    MHNL QSV.112 20.3 69MHNL QSV.113 21.4 81MHNL QSV.117 21.0 76MHNB St.V.122 19.7 63MHNL SV.98.624 20.1 67

    Untermassfeld, Germany(Hemmer, 2001)

    IQW 1980/15503 23.9 113

    IQW 1980/15504 23.4 106Fonelas P-1, Spain

    (Garrido, 2008)IGME FP1-2002-1027 19.7 63

    Villarroya, Spain(Kurtn and Crusafont

    Pair, 1977)

    ICP V.133 21.9 87

    Ahl Al Oughlam,Morocco (Geraads, 1997)

    INSAP AaO-1325 22.7 97

    INSAP AaO-3187 20.8 74Longdan, China

    (Qiu et al., 2004)HMV 1221 22.5 94

    IVPP V.13537 23.2 103HMV 1223 19.4 60

    Yuanqu Loc. 105,China (Zdansky, 1925)

    e 23.8 112

    Siwalik Hills, PinjorStage (original data)

    NHM 16573 23.6 109

    Mean body mass (Pantalla excluded) 83

    Living species EBM ABM

    Acinonyx jubatus 44 (5) 43Panthera onca 76 (8) 86Panthera pardus 44 (16) 42

    Panthera leo 149 (11) 147Puma concolor 41 (3) 45

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e97 95

  • 8/10/2019 Cherin Et Al 2014 ACINONYX

    15/16

    Acknowledgments

    We gratefully thank all the people that helped and supported usin analyzing museum collections: M.C. De Angelis (SBAU), E. Cioppi(IGF), G. Csorba and M. Gasparik (HNHM), A. Lister and P. Brewer(NHM) and R. Carlini (MCZR). M. Danti and W.S. Della Sala (M.G.VanniniHospital, Rome) were essential for the making of the CTscanning. C. Eleni and C. Cocumelli (Istituto Zooprolattico Sper-imentale del Lazio e della Toscana, Italy) gave us useful advices inthe rst phase of this work. Thanks are also due to L. Santini, N.Spassov and T. Deng for their precious suggestions and help. We areindebted to M.J. Salesa and an anonymous reviewer for the veryuseful comments on the manuscript.

    Part of the comparative analyses for this study were carried outthanks to the support from the SYNTHESYS Project http://www.synthesys.info/, which is nanced by European CommunityResearch Infrastructure Action under the FP7 CapacitiesProgram(project number: HU-TAF-2306 and GB-TAF-2953 for MC).

    References

    Alcal, L., Morales, J., Soria, D.,1989e1990. El registro fsil negeno de los carnvoros(Creodonta y Carnivora, Mammalia) de Espaa. Paleontol. Evol. 23, 55e66.

    Antn, M., Salesa, J.M., Turner, A., Galobart, ., Pastor, J.F., 2009. Soft tissue recon-struction ofHomotherium latidens(Mammalia, Carnivora, Felidae). Implicationsfor the possibility of representations in Palaeolithic art. Geobios 42, 541 e551.

    Argant, A., 2004. Les Carnivores du gisement Pliocne nal de Saint-Vallier (Drme,France). Geobios 37, S133eS182.

    Basilici, G., 1997. Sedimentary facies in an extensional and deep-lacustrine depo-sitional system: the Pliocene Tiberino Basin, Central Italy. Sediment. Geol. 109,73e94.

    Bissett, C., Bernard, R.T.F., 2007. Habitat selection and feeding ecology of the cheetah(Acinonyx jubatus) in thicket vegetation: is the cheetah a savanna specialist?

    J. Zool. 271, 310e317.Bonifay, M.F., Bonifay, E., 1963. Un gisement faune pi-villafranchienne Saint-

    Estve-Janson (Bouches-du-Rhne). C. R. Acad. Sci. Paris 256, 1136e1138.Broomhall, L.S., Mills, M.G.L., du Toit, J.T., 2004. Home range and habitat use by

    cheetahs (Acinonyx jubatus) in the Kruger National Park. J. Zool. 261, 119e128.Cherin, M., Bert, D.F., Rook, L., Sardella, R., 2013a. Re-dening Canis etruscus

    (Canidae, Mammalia): a new look into the evolutionary history of Early Pleis-

    tocene dogs resulting from the outstanding fossil record from Pantalla (Italy).J. Mamm. Evol.. http://dx.doi.org/10.1007/s10914-013-9227-4.Cherin, M., Iurino, D.A., Sardella, R., 2013b. New well-preserved material of Lynx

    issiodorensis valdarnensis (Felidae, Mammalia) from the Early Pleistocene ofPantalla (central Italy). Boll. Soc. Paleontol. Ital. 52, 103 e111.

    Cherin, M., Iurino, D.A., Sardella, R., 2013c. Earliest occurrence of Puma pardoides(Owen, 1846) (Carnivora, Felidae) at the Plio/Pleistocene transition in WesternEurope: new evidence from the Middle Villafranchian assemblage of Montopoli,Italy. C. R. Palevol 12, 165e171.

    Christiansen, P., Mazk, J.H., 2009. A primitive Late Pliocene cheetah, and evolutionof the cheetah lineage. Proc. Natl. Acad. Sci. 106, 512e515.

    de Lumley, H., Kahlke, H.D., Moigne, A.M., Moulle, P.E., 1988. Les faunes de grandsmammiferes de la Grotte du Vallonnet Roquebrune-Cap-Martin, Alpes-Mari-times. LAnthropologie 92, 465e496.

    de Ruiter, D.J., 2003. Revised faunal lists for members 1e3 of Swartkrans, SouthAfrica. Ann. Transvaal Mus. 40, 29e41.

    Delson, E., Faure, M., Gurin, C., Aprile, L., Argant, J., Blackwell, B.A.B., Debard, E.,Hancourt-Smith, W., Martin-Suarez, E., Monguillon, A., Parenti, F., Pastre, J.F.,Sev, S., Skinner, A.R., Swisher, C.C., Valli, A.M.F., 2006. Franco-American renewed

    research at the Late Villafranchian locality of Senze (Haute-Loire, France). Cour.Forsch.-Inst. Senckenberg 256, 275e290.

    Deng, T., 2011.Acinonyx kurtenibased on a fossil composite. Vertebr. PalAsiatica 49,362e364.

    Dong, W., Liu, J., Fang, Y., 2013. The large mammals from Tuozidong (eastern China)and the Early Pleistocene environmental availability for early human settle-ments. Quat. Int. 295, 73e82.

    Eaton, R.L., 1970. The predatory sequence, with emphasis on killing behavior and itsontogeny, in the cheetah (Acinonyxjubatus Schreber). Z. Tierpsychol. 27, 492e504.

    Farhadinia, M., Hemami, M.R., 2010. Prey selection by the critically endangeredAsiatic cheetah in central Iran. J. Nat. Hist. 44, 1239e1249.

    Ficcarelli, G., 1984. The Villafranchian cheetahs from Tuscany and remarks on thedispersal and evolution of the genus Acinonyx. Palaeontogr. Ital. 73, 94e103.

    Garrido, G., 2008. Linces y guepardos (Felidae, Carnivora, Mammalia) en el PliocenoSuperior terminal del Fonelas P-1 (Cuenca de Guadix, Granada). Cuad. Mus.Geomin. 10, 231e249.

    Gentili, S., Ambrosetti, P., Argenti, P., 1997. Large carnivores and other mammalfossils from the early alluvial plain of the Tiberino Basin (Pantalla, Central Italy).

    Preliminary reports. Boll. Soc. Paleontol. Ital. 36, 233e

    240.

    Geraads, D., 1997. Carnivores du Pliocne terminalde Ahl al Oughlam (Casablanca,Maroc). Geobios 30, 127e164.

    Geraads, D., 2008. PlioePleistocene Carnivora of northwestern Africa: a short re-view. C. R. Palevol 7, 591e599.

    Hank, E.P., 2007. A revision of three Pleistocene subspecies ofPanthera, based onmandible and teeth remains, stored in Hungarian collections. Fragm. Palae-ontol. Hung. 24e25, 25e43.

    Hayward, M.W., Kerley, G.I.H., 2005. Prey preferences of the lion ( Panthera leo).J. Zool. 267, 309e322.

    Hayward, M.W., Hofmeyr, M., OBrien, J., Kerley, G.I.H., 2006. Prey preferences of the

    cheetah (Acinonyx jubatus) (Felidae: Carnivora): morphological limitations orthe need to capture rapidly consumable prey before kleptoparasites arrive?

    J. Zool. 270, 615e627.Hemmer, H., 2001. Die feliden aus dem Epivillafranchium von Untermassfeld. In:

    Kahlke, R.D. (Ed.), Das Pleistozn von Untermassfeld bei Meiningen (Thr-ingen), Teil 3, Monographien des Rmisch-Germaisches Zentralmuseum Mainz40, pp. 699e782.

    Hemmer, H., Kahlke, R.D., Vekua, A.K., 2004. The Old World puma e P. pardoides(Owen, 1846) (Carnivora: Felidae) e in the Lower Villafranchian (Upper Plio-cene) of Kvabebi (East Georgia, Transcaucasia) and its evolutionary andbiogeographical signicance. Neues Jahrb. Geol. Palontol. Abh. 233, 197e231.

    Hemmer, H., Kahlke, R.D., Keller, T., 2008. Cheetahs in the Middle Pleistocene ofEurope:Acinonyx pardinensis(sensu lato) intermedius(Thenius, 1954) from theMosbach Sands (Wiesbaden, Hesse, Germany). Neues Jahrb. Geol. Palontol.Abh. 249, 345e356.

    Hemmer, H., Kahlke, R.D., Vekua, A.K., 2011. The cheetah Acinonyx pardinensis(Croizet et Jobert, 1828) s.l. at the hominin site of Dmanisi (Georgia) e a po-tential prime meat supplier in Early Pleistocene ecosystems. Quat. Sci. Rev. 30,2703e2714.

    Hildebrand, M., 1985. Walking and running. In: Hildebrand, M., Bramble, D.M.,Liem, K.F., Wake, D.B. (Eds.), Functional Vertebrate Morphology. Harvard Uni-versity Press, Cambridge, pp. 38e57.

    Hou, Y.M., Zhao, L.X., 2010. New archeological evidence for the earliest homininpresence in China. In: Fleagle, J.G., Shea, J.J., Grine, F.E., Baden, A.L., Leakey, R.E.(Eds.), Out of Africa I: the First Hominin Colonization of Eurasia, VertebratePaleobiology and Paleoanthropology Series. Springer, Dordrecht etc, pp. 87e95.

    Hunter, J.S., Durant, S.M., Caro, T.M., 2006. Patterns of scavenger arrival at cheetahkills in Serengeti National Park Tanzania. Afr. J. Ecol. 45, 275e281.

    Iurino, D.A., Danti, M., Della Sala, S.W., Sardella, R., 2013a. Modern techniques forancient bones: vertebrate palaeontology and medical CT analysis. Boll. Soc.Paleontol. Ital. 52, 145e155.

    Iurino, D.A., Fico, R., Petrucci, M., Sardella, R., 2013b. A pathological Late Pleistocenecanid from San Sidero (Italy): implications for social- and feeding-behaviour.Naturwissenschaften 100, 235e243.

    Johnson, W.E., Eizirik, E., Pecon-Slattery, J., Murphy, W.J., Antunes, A., Teeling, E.,OBrien, S.J., 2006. The Late Miocene radiation of modern Felidae: a geneticassessment. Science 311, 73e77.

    Kingdon, J., 1977. East African Mammals: an Atlas of Evolution in Africa. In: Part A:Carnivores, vol. 3. Academic Press, London, New York .Kitchener, A.C., Van Valkenburgh, B., Yamaguchi, N., 2010. Felid form and function.

    In: Macdonald, D.W., Loveridge, A.J. (Eds.), Biology and Conservation of WildFelids. Oxford University Press, New York, pp. 83e106.

    Koufos, G.D., 1992. The Pleistocene carnivore from the Mygdonia Basin (Macedonia,Greece). Ann. Palontol. 78, 205e259.

    Kurtn, B., 1968. Pleistocene Mammals of Europe. Weidenfeld and Nicolson,London.

    Kurtn, B., 1976. Fossil puma (Mammalia: Felidae) in North America. Neth. J. Zool.26, 502e534.

    Kurtn, B., Crusafont Pair, M., 1977. Villafranchian carnivores (Mammalia) from LaPuebla de Valverde (Teruel, Spain). Comment. Biol. 85, 1e39.

    Liem, K.F., Bemis, W.E., Walker, W.F., Grande, L., 2001. Functional Anatomy of Ver-tebrates: an Evolutionary Perspective. Thomson/Brooks Cole, Belmont, CA.

    Lydekker, R.,1884. Indian tertiary and post-Tertiary Vertebrata. Palaeontol. Indica 2,1e363.

    Macdonald, D.W., Loveridge, A.J., Nowell, K., 2010. Dramatis personae: an intro-duction to wild felids. In: Macdonald, D.W., Loveridge, A.J. (Eds.), Biology and

    Conservation of Wild Felids. Oxford University Press, New York, pp. 3e58.Marcolini, F., Bonadonna, F.P., Kotsakis, T., Mazza, P., Zanchetta, G., 2000. Pre-

    liminary data on the micro- and macromammal remains from Casa Sgherri,Lower Valdarno (Tuscany Italy). Boll. Soc. Paleontol. Ital. 39, 243e252.

    Marker, L.L., Dickman, A.J., 2003. Morphology, physical condition, and growth of thecheetah (Acinonyx jubatus jubatus). J. Mammal. 84, 840e850.

    Meachen-Samuels, J., Van Valkenburgh, B., 2009. Craniodental indicators of preysize preference in the Felidae. Biol. J. Linn. Soc. 96, 784e799.

    Mills, M.G.L., Broomhall, L.S., du Toit, J.T., 2004. Cheetah Acinonyx jubatus feedingecology in the Kruger National Park and a comparison across African savannahabitats: is the cheetah only a successful hunter on open grassland plains?Wildl. Biol. 10, 177e186.

    ORegan, H.J., 2002. Dening cheetahs, a multivariate analysis of skull shape in bigcats. Mammal. Rev. 32, 58e62.

    Pei, W.C.,1934. On the Carnivora from locality 1 of Choukoutien. Palaeontol. Sin. Ser.C 8, 1e166.

    Petrucci, M., Cipullo, A., Martnez-Navarro, B., Rook, L., Sardella, R., 2013. The lateVillafranchian (Early Pleistocene) carnivores (Carnivora, Mammalia) from PirroNord (Italy). Palaeontogr. Abt. A 298, 113e145.

    M. Cherin et al. / Quaternary Science Reviews 87 (2014) 82e9796

    http://www.synthesys.info/http://www.synthesys.info/http://refhub.elsevier.com/S0277-3791(14)00005-5/sref1http://refhub.elsevier.com/S0277-3791(14)00005-5/sref1http://refhub.elsevier.com/S0277-3791(14)00005-5/sref1http://refhub.elsevier.com/S0277-3791(14)00005-5/sref1http://refhub.elsevier.com/S0277-3791(14)00005-5/sref2http://refhub.elsevier.com/S0277-3791(14)00005-5/sref2http://refhub.elsevier.com/S0277-3791(14)00005-5/sref2http://refhub.elsevier.com/S0277-3791(14)00005-5/sref2http://refhub.elsevier.com/S0277-3791(14)00005-5/sref2http://refhub.elsevier.com/S0277-3791(14)00005-5/sref2http://refhub.elsevier.com/S0277-3791(14)00005-5/sref3http://refhub.elsevier.com/S0277-3791(14)00005-5/sref3http://refhub.elsevier.com/S0277-3791(14)00005-5/sref3http://refhub.elsevier.com/S0277-3791(14)00005-5/sref3http://refhub.elsevier.com/S0277-3791(14)00005-5/sref3http://refhub.elsevier.com/S0277-3791(14)00005-5/sref4http://refhub.elsevier.com/S0277-3791(14)00005-5/sref4http://refhub.elsevier.com/S0277-3791(14)00005-5/sref4http://refhub.elsevier.com/S0277-3791(14)00005-5/sref4http://refhub.elsevier.com/S0277-3791(14)00005-5/sref5http://refhub.elsevier.com/S0277-3791(14)00005-5/sref5http://refhub.elsevier.com/S0277-3791(14)00005-5/sref5http://refhub.elsevier.com/S0277-3791(14)00005-5/sref5http://refhub.elsevier.com/S0277-3791(14)00005-5/sref5http://refhub.elsevier.com/S0277-3791(14)00005-5/sref5http://refhub.elsevier.com/S0277-3791(14)00005-5/sref5http://refhub.elsevier.com/S0277-3791(14)00005-5/sref6http://refhub.elsevier.com/S0277-3791(14)00005-5/sref6http://refhub.elsevier.com/S0277-3791(14)00005-5/sref6http://refhub.elsevier.com/S0277-3791(14)00005-5/sref7http://refhub.elsevier.com/S0277-3791(14)00005-5/sref7http://refhub.elsevier.com/S0277-3791(14)00005-5/sref7http://refhub.elsevier.com/S0277-3791(14)00005-5/sref7http://refhub.elsevier.com/S0277-3791(14)00005-5/sref7http://dx.doi.org/10.1007/s10914-013-9227-4http://dx.doi.org/10.1007/s10914-013-9227-4http://refhub.elsevier.com/S0277-3791(14)00005-5/sref9http://refhub.elsevier.com/S0277-3791(14)00005-5/sref9http://refhub.elsevier.com/S0277-3791(14)00005-5/sref9http://refhub.elsevier.com/S0277-3791(14)00005-5/sref9http://refhub.elsevier.com/S0277-3791(14)00005-5/sref9http://refhub.elsevier.com/S0277-3791(14)00005-5/sref9http://refhub.elsevier.com/S0277-3791(14)00005-5/sref9http://refhub.elsevier.com/S0277-3791(14)00005-5/sref10http://refhub.elsevier.com/S0277-3791(14)00005-5/sref10http://refhub.elsevier.com/S0277-3791(14)00005-5/sref10http://refhub.elsevier.com/S0277-3791(14)00005-5/sref10http://refhub.elsevier.com/S0277-3791(14)00005-5/sref10http://refhub.elsevier.com/S0277-3791(14)00005-5/sref10http://refhub.elsevier.com/S0277-3791(14)00005-5/sref10http://refhub.elsevier.com/S0277-3791(14)00005-5/sref11http://refhub.elsevier.com/S0277-3791(14)00005-5/sref11http://refhub.elsevier.com/S0277-3791(14)00005-5/sref11http://refhub.elsevier.com/S0277-3791(14)00005-5/sref12http://refhub.elsevier.com/S0277-3791(14)00005-5/sref12http://refhub.elsevier.com/S0277-3791(14)00005-5/sref12http://refhub.elsevier.com/S0277-3791(14)00005-5/sref12http://refhub.elsevier.com/S0277-3791(14)00005-5/sref12http://refhub.elsevier.com/S0277-3791(14)00005-5/sref12http://refhub.elsevier.com/S0277-3791(14)00005-5/sref13http://refhub.elsevier.com/S0277-3791(14)00005-5/sref13http://refhub.elsevier.com/S0277-3791(14)00005-5/sref13http://refhub.elsevier.com/S0277-3791(14)00005-5/sref13http://refhub.elsevier.com/S0277-3791(14)00005-5/sref14http://refhub.elsevier.com/S0277-3791(14)00005-5/sref14http://refhub.elsevier.com/S0277-3791(14)00005-5/sref14http://refhub.elsevier.com/S0277-3791(14)00005-5/sref14http://refhub.elsevier.com/S0277-3791(14)00005-5/sref14http://refhub.elsevier.com/S0277-3791(14)00005-5/sref14http://refhub.elsevier.com/S0277-3791(14)00005-5/sref14http://refhub.elsevier.com/S0277-3791(14)00005-5/sref15http://refhub.elsevier.com/S0277-3791(14)00005-5/sref15http://refhub.elsevier.com/S0277-3791(14)00005-5/sref15http://refhub.elsevier.com/S0277-3791(14)00005-5/sref15http://refhub.elsevier.com/S0277-3791(14)00005-5/sref15http://refhub.elsevier.com/S0277-3791(14)00005-5/sref16http://refhub.elsevier.com/S0277-3791(14)00005-5/sref16http://refhub.elsevier.com/S0277-3791(14)00005-5/sref16http://refhub.elsevier.com/S0277-3791(14)00005-5/sref16http://refhub.elsevier.com/S0277-3791(14)00005-5/sref17http://refhub.elsevier.com/S0277-3791(14)00005-5/sref17http://refhub.elsevier.com/S0277-3791(14)00005-5/sref17http://refhub.elsevier.com/S0277-3791(14)00005-5/sref17http://refhub.elsevier.com/S0277-3791(14)00005-5/sref17http://refhub.elsevier.com/S0277-3791(14)00005-5/sref18http://refhub.elsevier.com/S0277-3791(14)00005-5/sref18http://refhub.elsevier.com/S0277-3791(14)00005-5/sref18http://refhub.elsevier.com/S0277-3791(14)00005-5/sref19http://refhub.elsevier.com/S0277-3791(14)00005-5/sref19http://refhub.elsevier.com/S0277-3791(14)00005-5/sref19http://refhub.elsevier.com/S0277-3791(14)00005-5/sref19http://refhub.elsevier.com/S0277-3791(14)00005-5/sref19http://refhub.elsevier.com/S0277-3791(14)00005-5/sref19http://refhub.elsevier.com/S0277-3791(14)00005-5/sref20http://refhub.elsevier.com/S0277-3791(14)00005-5/sref20http://refhub.elsevier.com/S0277-3791(14)00005-5/sref20http://refhub.elsevier.com/S0277-3791(14)00005-5/sref20http://refhub.elsevier.com/S0277-3791(14)00005-5/sref21http://refhub.elsevier.com/S0277-3791(14)00005-5/sref21http://refhub.elsevier.com/S0277-3791(14)00005-5/sref21http://refhub.elsevier.com/S0277-3791(14)00005-5/sref21http://refhub.elsevier.com/S0277-3791(14)00005-5/sref22http://refhub.elsevier.com/S0277-3791(14)00005-5/sref22http://refhub.elsevier.com/S0277-3791(14)00005-5/sref22http://refhub.elsevier.com/S0277-3791(14)00005-5/sref23http://refhub.elsevier.com/S0277-3791(14)00005-5/sref23http://refhub.elsevier.com/S0277-3791(14)00005-5/sref23http://refhub.elsevier.com/S0277-3791(14)00005-5/sref23http://refhub.elsevier.com/S0277-3791(14)00005-5/sref23http://refhub.elsevier.com/S0277-3791(14)00005-5/sref24http://refhub.elsevier.com/S0277-3791(14)00005-5/sref24http://refhub.elsevier.com/S0277-3791(14)00005-5/sref24http://refhub.elsevier.com/S0277-3791(14)00005-5/sref24http://refhub.elsevier.com/S0277-3791(14)00005-5/sref24http://refhub.elsevier.com/S0277-3791(14)00005-5/sref24http://refhub.elsevier.com/S0277-3791(14)00005-5/sref24http://refhub.elsevier.com/S0277-3791(14)00005-5/sref25http://refhub.elsevier.com/S0277-3791(14)00005-5/sref25http://refhub.elsevier.com/S0277-3791(14)00005-5/sref25http://refhub.elsevier.com/S0277-3791(14)00005-5/sref25http://refhub.elsevier.com/S0277-3791(14)00005-5/sref25http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref26http://refhub.elsevier.com/S0277-3791(14)00005-5/sref27http://refhub.elsevier.com/S0277-3791(14)00005-5/sref27http://refhub.elsevier.com/S0277-3791(14)00005-5/sref27http://refhub.elsevier.com/S0277-3791(14)00005-5/sref27http://refhub.elsevier.com/S0277-3791(14)00005-5/sref27http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref28http://refhub.elsevier.com/S0277-3791(14)00005-5/sref29http://refhub.elsevier.com/S0277-3791(14)00005-5/sref29http://refhub.elsevier.com/S0277-3791(14)00005-5/sref29http://refhub.elsevier.com/S0277-3791(14)00005-5/sref29http://refhub.elsevier.com/S0277-3791(14)00005-5/sref29http://refhub.elsevier.com/S0277-3791(14)00005-5/sref29http://refhub.elsevier.com/S0277-3791(14)00005-5/sref29http://refhub.elsevier.com/S0277-3791(14)00005-5/sref29http://refhub.elsevier.com/S0277-3791(14)00005-5/sref29http://refhub.elsevier.com/S0277-3791(14)00005-5/sref30http://refhub.elsevier.com/S0277-3791(14)00005-5/sref30http://refhub.elsevier.com/S0277-3791(14)00005-5/sref30http://refhub.elsevier.com/S0277-3791(14)00005-5/sref30http://refhub.elsevier.com/S0277-3791(14)00005-5/sref30http://refhub.elsevier.com/S0277-3791(14)00005-5/sref30http://refhub.elsevier.com/S0277-3791(14)00005-5/sref30http://refhub.elsevier.com/S0277-3791(14)00005-5/sref30http://refhub.elsevier.com/S0277-3791(14)00005-5/sref31http://refhub.elsevier.com/S0277-3791(14)00005-5/sref31http://refhub.elsevier.com/S0277-3791(14)00005-5/sref31http://refhub.elsevier.com/S0277-3791(14)00005-5/sref31http://refhub.elsevier.com/S0277-3791(14)00005-5/sref32http://refhub.elsevier.com/S0277-3791(14)00005-5/sref32http://refhub.elsevier.com/S0277-3791(14)00005-5/sref32http://refhub.elsevier.com/S0277-3791(14)00005-5/sref32http://refhub.elsevier.com/S0277-3791(14)00005-5/sref32http://refhub.elsevier.com/S0277-3791(14)00005-5/sref33http://refhub.elsevier.com/S0277-3791(14)00005-5/sref33http://refhub.elsevier.com/S0277-3791(14)00005-5/sref33http://refhub.elsevier.com/S0277-3791(14)00005-5/sref33http://refhub.elsevier.com/S0277-3791(14)00005-5/sref34http://refhub.elsevier.com/S0277-3791(14)00005-5/sref34http://refhub.elsevier.com/S0277-3791(14)00005-5/sref34http://refhub.elsevier.com/S0277-3791(14)00005-5/sref34http://refhub.elsevier.com/S0277-3791(14)00005-5/sref35http://refhub.elsevier.com/S0277-3791(14)00005-5/sref35http://refhub.elsevier.com/S0277-3791(14)00005-5/sref35http://refhub.elsevier.com/S0277-3791(14)00005-5/sref35http://refhub.elsevier.com/S0277-3791(14)00005-5/sref36http://refhub.elsevier.com/S0277-3791(14)00005-5/sref36http://refhub.elsevier.com/S0277-3791(14)00005-5/sref36http://refhub.elsevier.com/S0277-3791(14)00005-5/sref36http://refhub.elsevier.com/S0277-3791(14)00005-5/sref36http://refhub.elsevier.com/S0277-3791(14)00005-5/sref36http://refhub.elsevier.com/S0277-3791(14)00005-5/sref37http://refhub.elsevier.com/S0277-3791(14)00005-5/sref37http://refhub.elsevier.com/S0277-3791(14)00005-5/sref38http://refhub.elsevier.com/S0277-3791(14)00005-5/sref38http://refhub.elsevier.com/S0277-3791(14)00005-5/sref38http://refhub.elsevier.com/S0277-3791(14)00005-5/sref38http://refhub.elsevier.com/S0277-3791(14)00005-5/sref39http://refhub.elsevier.com/S0277-3791(14)00005-5/sref39http://refhub.elsevier.com/S0277-3791(14)00005-5/sref39http://refhub.elsevier.com/S0277-3791(14)00005-5/sref40http://refhub.elsevier.com/S0277-3791(14)00005-5/sref40http://refhub.elsevier.com/S0277-3791(14)00005-5/sref41http://refhub.elsevier.com/S0277-3791(14)00005-5/sref41http://refhub.elsevier.com/S0277-3791(14)00005-5/sref41http://refhub.elsevier.com/S0277-3791(14)00005-5/sref42http://refhub.elsevier.com/S0277-3791(14)00005-5/sref42http://refhub.elsevier.com/S0277-3791(14)00005-5/sref42http://refhub.elsevier.com/S0277-3791(14)00005-5/sref43http://refhub.elsevier.com/S0277-3791(14)00005-5/sref43http://refhub.elsevier.com/S0277-3791(14)00005-5/sref44http://refhub.elsevier.com/S0277-3791(14)00005-5/sref44http://refhub.elsevier.com/S0277-3791(14)00005-5/sref44http://refhub.elsevier.com/S0277-3791(14)00005-5/sref45http://refhub.elsevier.com/S0277-3791(14)00005-5/sref45http://refhub.elsevier.com/S0277-3791(14)00005-5/sref45http://refhub.elsevier.com/S0277-3791(14)00005-5/sref45http://refhub.elsevier.com/S0277-3791(14)00005-5/sref46http://refhub.elsevier.com/S0277-3791(14)00005-5/sref46http://refhub.elsevier.com/S0277-3791(14)00005-5/sref46http://refhub.elsevie