282
 Section de psychologie Sous la direction de Susanne Kaiser STRUCTURAL A NAL YSIS OF TEMPORAL PATTERNS OF FACIAL ACTIONS: MEASUREMENT AND IMPLICATIONS FOR THE STUDY OF EMOTION PERCEPTION THROUGH FACIAL EXPRESSIONS THESE Présentée à la Faculté de psychologie et des sciences de l’éducation de l’Université de Genève pour obtenir le grade de Docteur en Psychologie par Mr. Stéphane WITH d e Genève Thèse No 455 GENEVE Mars 2010

Cluster Fac s

Embed Size (px)

Citation preview

Page 1: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 1/282

 

Section de psychologie

Sous la direction de Susanne Kaiser

STRUCTURAL ANALYSIS OF TEMPORAL PATTERNS

OF FACIAL ACTIONS:

MEASUREMENT AND IMPLICATIONS FOR THE STUDY OF EMOTION

PERCEPTION THROUGH FACIAL EXPRESSIONS

THESE 

Présentée à laFaculté de psychologie et des sciences de l’éducation

de l’Université de Genève

pour obtenir le grade de Docteur en Psychologie

par

Mr. Stéphane WITH

de

Genève

Thèse No 455

GENEVE

Mars 2010

Page 2: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 2/282

INDEX

I.  FOREWORD ........................................................................................................... 1 

II.  THEORETICAL INTRODUCTION ....................................................................... 6 

Prototypical Facial Expressions of Emotions ............................................................. 7 

Issues of Ecological Validity of Emotion Recognition Studies ............................... 14 

The Componential View on Facial Expressions of Emotions .................................. 19 

Summary .................................................................................................................. 23  

III.  EXPERIMENTAL SECTION ............................................................................... 26 

Research aims ........................................................................................................... 27 

Collecting samples of dynamic emotional facial expressions .................................. 27 

The MeMo database ............................................................................................. 27 

Emotional narratives eliciting task ....................................................................... 27 

Participants to the narration tasks (production study) .......................................... 28 

Laboratory and interview settings ........................................................................ 29 

Assessment of emotional induction ...................................................................... 29 

Extracting video sample files from the original films .......................................... 30 

Assessing the message value of spontaneously expressed dynamic displays of

emotions ............................................................................................................................... 32 

Judgment task ....................................................................................................... 33 

Participants to the judgment task and rating protocol .......................................... 33 

Reliability analyses ............................................................................................... 34 

Principal Components Factor Analysis ................................................................ 35 

Clustering of video files on factor scores ............................................................. 39 

Methodology of behavior annotation ....................................................................... 41 

The Anvil annotation tool ..................................................................................... 41 

Coding scheme ..................................................................................................... 41 

Measurement of facial activity ............................................................................. 42 

Additional Nonverbal Codes ................................................................................ 45 

Speech and Voice Codes ...................................................................................... 46 

Scoring procedure and reliability assessment ........................................................... 47 

Results .................................................................................................................. 50 

Descriptions of scores in database ............................................................................ 52 

Interpretation of FACS Codes with EMFACS/FACSAID ....................................... 56 

Methodological issues in measuring the co-occurrences of Action Units ............... 59 

Page 3: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 3/282

Measuring Co-ocurrences of Facial Actions with GSEQ (Generalized Sequential

Querier) ................................................................................................................................ 62 

Contingency table statistics with GSEQ............................................................... 62 

From Odds ratios to Yules’s Q ............................................................................. 64 

Testing for the occurrence of EMFACS predicted facial patterns using Yules Qs

.......................................................................................................................................... 65 

Relating nonverbal signals to emotion perception ................................................... 70 

Relative frequencies of single action units across the rating clusters ...................... 70 

Clusters characterization by patterns of action units ................................................ 71 

Prototypical Patterns of Facial Expressions across the Clusters .............................. 74 

Results for prototypical expressions across the clusters........................................... 74 

Happiness ............................................................................................................. 74 

Anger .................................................................................................................... 75 

Fear ....................................................................................................................... 76 

Surprise ................................................................................................................. 77 

Sadness ................................................................................................................. 77 

Disgust .................................................................................................................. 78 

Contempt .............................................................................................................. 79 

Masking smiles (blends of smiles with displays of negatively valenced emotions) 80 

Summary of results ............................................................................................... 86 

Sequential Analysis communicative behaviours – Methodological Issues .............. 88 

Definition of T-patterns. ....................................................................................... 90 

Statistical validation of T-patterns........................................................................ 92 

Setting up T-patterns detection parameters .......................................................... 93 

T-patterns search results and selection criteria ..................................................... 94 

T-Pattern statistics by clusters .................................................................................. 98 

Enjoyment cluster ................................................................................................. 98 

Hostility cluster .................................................................................................... 99 

Embarrassment cluster........................................................................................ 101 

Surprise cluster ................................................................................................... 102 

Sadness cluster ................................................................................................... 104 

Summary of results ............................................................................................. 105 

T-patterns illustrations and comparison by clusters ............................................... 107 

Enjoyment cluster ............................................................................................... 108 

Hostility Cluster ................................................................................................. 112 

Embarrassment Cluster ....................................................................................... 123 

Page 4: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 4/282

Surprise Cluster .................................................................................................. 129 

Sadness Cluster ................................................................................................... 134 

Summary of findings .......................................................................................... 141 

IV.  GENERAL DISCUSSION AND CONCLUSIONS ............................................ 143 

General Discussion ................................................................................................. 144 

MeMo - a new research database of dynamic facial expressions of emotions ... 145 

The perceived message value of dynamic facial expressions of emotions ........ 145 

The role of sequential patterns of communicative actions in the perception of

emotions ......................................................................................................................... 146 

Limitations .......................................................................................................... 147 

Future perspectives ............................................................................................. 148 

Conclusions ............................................................................................................ 150 

V.  REFERENCES .................................................................................................... 151 

Appendix I. Facial Action Coding System Figures and Definitions of Major Action Units .

.............................................................................................................................. 163

Appendix II Frequency Distribution Tables for Event Types in Rating Clusters ............. 170

Appendix III. Transition Graphs for T-patterns. ............................................................... 194

Appendix IV. Instructions and questionnaires. ................................................................. 258

Appendix V. Consent Form ............................................................................................... 269

Appendix VI. Normality tests for Action Units Distribution in Database. ....................... 271

Page 5: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 5/282

1

II.. FFOORREEWWOORRDD 

The human face provides a rich source of information that we use to identify other

members of our species, gather information about gender, age, attractiveness (Rhodes, 2006)

or personality traits. Besides static signals extracted from the face, dynamic facial expressions

are an important means of communicating and understanding other’s intentions and affective

reactions (Keltner and Ekman, 2000). Facial displays have been associated with the signaling

of emotions and pain (Ekman, 1993) the communication of empathic understanding (Bavelas

et al. 1986) the regulation of conversations (Cohn and Elmore, 1988). They may signal some

 brain dysfunctions (Rinn, 1984), psychopathological conditions (Ellgring and Gaebel, 1994;

Benecke and Krause, 2005), suicidal intent (Heller et al. 2001). They have also been showed

to signal developmental changes in children (Yale et al. 1999; Yale, Messinger, Cobo-Lewis,2003) inform person recognition (Cohn et al. 2002) and betray attempts at deceit (Frank and

Ekman, 2003).

In recent years, we have witnessed the rapid emergence of an interest for the

automated analysis and interpretation of facial activity through computer vision. Computer

vision is the science of extracting and representing meaningful information from digitized

video and recognizing perceptually meaningful patterns. In 1992, the U.S. National Science

Foundation convened a seminal interdisciplinary workshop on this topic (Ekman, Huang,

Sejnowski, & Hager, 1992), which brought together psychologists with expertise in facial

expression and computer vision scientists with interest in facial image analysis. Since then,

there has been considerable research activity, as represented by a series of six international

meetings beginning in 1995, devoted to the topic face and gesture. Several automated facial

image analysis systems have been developed (Cootes, Edwards & Taylor, 2001; Essa &

Pentland, 1997; Lyons, Akamasku, Kamachi, & Gyoba, 1998; Padgett, Cottrell, & Adolphs,

1996; Wen & Huang, 2003; Yacoob & Davis, 1996; Zhang, 1999; Zhu, De Silva, & Ko,

2002). Most of those systems have in common to attempt classifying facial movements in a

small set of specific emotion categories, such as joy, anger surprise, fear or happiness. Of

course the potential economical stakes linked to the development of such technologies are

high. Possible commercial applications include notably the development of cameras taking

 pictures of your friends and family only when they oblige you with a smile, computer tutoring

systems adapting your learning gradients depending on your perceived level of frustration, or

artificial agents attuning their reactions to your nonverbally expressed emotions. In the post

Page 6: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 6/282

2

9/11 U.S funds have been granted by Homeland Security for the training of behavioral

 profilers for screening airport clients for potential terrorist intents. In the August 14 2009

issue of the Ottawa Citizen newspaper, reporter Ian MacLeod writes:

«Beginning next year, some air travellers will be scrutinized by airport

"behavior detection officers" for physiological signs of hostile intent — in

other words: screening for dangerous people rather than just for dangerous

objects……… Similar programs operate in the United States, the United

 Kingdom and Israel, which pioneered spying on people's expressions and body

movements for involuntary and fleeting "micro-expressions" and movements

 suggesting abnormal stress, fear or deception. This might indicate a passenger

has malicious intentions," said Mathieu Larocque, spokesman for the security

authority, which is responsible for pre-board screening of airport passengers.

"It offers an additional security layer for the aviation system."

In some airports passengers’ voices are already being screened by machines for signs

of stress, when asked to answer questions about terrorist intents. On the Digital Civil Rights in

Europe website (www.edri.org) one reads1:

“Lie detectors will be used in Russian airports as part of the security measures

 starting with July 2006. Meant to identify terrorists or other types of criminals,

a lie-detecting device developed in Israel, known as "truth verifier," will be

 first introduced in Moscow's Domodedovo airport as early as July. The

technology…. is said to be able to detect answers coming from imagination or

memory.”

In the United Kingdom, local social institutions have introduced voice stress analysis

to detect fraudulent benefactors. For example journalist Les Reid reports (2009):

«A lie detector system designed to root out benefits cheats in Coventry has

identified 1,200 dodgy claims in just over a year. The technology detects stress

levels in people's voices over the phone and has been used by the city council

to assess new Housing Benefit claims since November 2007.Council bosses say

1http://www.edri.org/edrigram/number4.7/liedetector

Page 7: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 7/282

3

the Voice Risk Analysis (VRA) system has dramatically sped up the time taken

to process at least 1,700 genuine claims, saving money on paperwork. (Reid,

2009). »

Amongst the numerous TV soaps praising the feats of scientific polices so common

these days; one especially attracted my attention in 2009. It is called “ Lie To Me”. Produced

 by FOX television the series’ main character is called Dr Cal Lightman. A scientific expert in

reading emotions from the face and detecting subtle signs of deceit from nonverbal behavior;

Dr Lightman rents his services to U.S. federal agents and private parties to help resolve

different sorts of investigations. Freely inspired by the life of psychologist and facial

expressions expert Paul Ekman, this show can boast to have renowned experts like Dr Erica

Rosenberg, a long time collaborator of Ekman, as scientific advisor. All this seems to show

that the current Zeitgeist is somehow ripe for accepting the spread of human and automated

technologies of behavior profiling, possibly as a necessary evil in return for a safer society.

And for those of us who still think they can get away with cheating, the message is clear. You

will be caught one way or the other. All this is well and good but how much of this is based

on sound science and reliable technologies?

In 2008, Noldus technology historically commercialized the first ever facial emotion

expressions analysis software called “FaceReader”2. It is based on a classification algorithm

developed by Den Uyl and Van Kuilenburg (2005). By curiosity, Susanne Kaiser and I invited

to our lab a commercial agent from the distributing company to test the system on video

records collected for the present thesis. I recall feeling amused, relieved and frustrated at the

same time while watching the program detect “anger” whenever the participant in the video

was frowning; “surprise” if her eyebrows rose and “happy” if she happened to smile. I was

amused to see how unreliable and arbitrary these interpretations were; I was relieved because

it comforted me that I had not spent the last three years and half cautiously, and I must say

 painfully, annotating facial actions manually when a computer program could have done it

 just as well in no time (although I still have hopes that this will soon become at least partially

2http://www.noldus.com/human-behavior-research/products/facereader

Page 8: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 8/282

4

 possible). Eventually, I was frustrated and upset at seeing how promising technological

advances were put to such uninformed use.

Surprising as it may be to computer engineers, behavioral scientists still have many

unanswered questions as to even what an emotion is, and what are the essential nonverbal

features necessary to communicate affective mental states in social contexts The present

thesis is an attempt to investigate some unsettled issues about the perception of emotions from

facial expressions. Even though in real life facial expressions are inherently dynamic, the vast

majority of claims about how emotions are communicated through facial patterns come from

recognition studies using static photographs of prototypical expressions posed by actors. Even

though some questions about the way these expressions are perceived have already largely

 been addressed, not much is known about their frequency of occurrences in naturalistic

contexts and therefore what their contribution to communicating emotions in social

interactions really amounts to. In this study we will put a special emphasis on the relationship

 between how spontaneously produced facial actions unfold in time and how they are

 perceived in terms of the emotional messages they convey. Moreover, because faces are

usually not perceived in isolation but are integrated with numerous additional nonverbal

signals in a multi-channel communicative system, we will also consider head and gaze

movement/orientation as well as some speech and voice related variables as communicative

signals that may potentially play a role in moderating the message value derived from

dynamically perceived facial expressions of emotions. 

The study described in this thesis can be divided in four sections. First, we will begin

with a theoretical introduction questioning the validity of generalizing results of traditional

emotion recognition studies to emotional signal processing in real life situations. Second, we

 present our strategy to collect spontaneous facial expressions produced during an emotion

sharing task. We will describe a new audio-video database called MeMo created for the need

of this thesis. MeMo is constituted of 200 sample files extracted from 50 face to face semi-

structured interviews conducted with 10 female participants narrating five emotional

autobiographic episodes each. All the extracted video sample were pre-selected on the basis

of agreements between two independent judges asked to identify sequences in the interviews

were participants appeared “emotional”. All the facial actions occurring in these files were

then annotated with the Facial Action Coding System as well as with additional codes

designed specifically for this study. Second we report the results of a multi-scalar rating

 judgment study conducted to assess if a) independent judges could agree on the message

Page 9: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 9/282

5

value of the emotions (if any) communicated in the sample files, b) if on the basis of these

 judgments, we could create distinct clusters of video records with similar rating profiles to

conduct quantitative comparisons of the facial and related nonverbal actions contained in

these groups. In section three, we report our attempt to compare groups of videos with

distinctively different rating scores on five emotional factors, in terms of both traditional

 prototypical patterns of facial configurations and dynamic patterns of multimodal

communicative actions detected by the T-pattern detection algorithm developed by

Magnusson (2005). An emphasis will be put on the different types of information derived

from these two types of analysis. Finally, in the discussion section, the main results of the

study are reviewed and potential implications for future research are discussed. 

Page 10: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 10/282

6

IIII.. TTHHEEOORREETTIICC A ALL IINNTTRROODDUUCCTTIIOONN 

Page 11: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 11/282

7

Prototypical Facial Expressions of Emotions

In psychology, the prevalent conception about emotions assumes that there exist a

limited number of fundamental or basic emotions that are neurologically pre-wired and that

are expressed through distinctively recognized facial expressions. Initial support for this view

started to emerge in the early 1970s with the first research reports suggesting that a limited set

of emotion terms could be matched above chance level with static photographs of faces of

individuals posing emotions corresponding to six English affective terms: happiness, fear,

anger, surprise and sadness. Later work led to the addition of a seventh emotion: “contempt”

to the list (Ekman and Friesen, 1986; Ekman and Heider, 1988 – see figure 1. for illustration).

The results of these early research projects inspired by the neo-Darwinian theories of Tomkins

(1962, 1963) and conducted by psychologists Paul Ekman (1972, 1994; Ekman et al., 1987)

and Caroll Izard (1971) across various literate and illiterate cultures having had little contact

with each other have revived an interest for the search of universal invariants in the way facial

displays communicate emotions, at a time where socio-constructivist models viewing

emotional behavior as determined solely by cultural influences on expressive prescriptions

were predominant (Lutz & White 1986; Wierzbicka, 1994).

Since these princeps studies replications by other research groups have generally

 produced congruent results with the original findings. Notably a meta-analysis by Elfenbein

and Ambady (2002) performed on 87 articles; describing 97 separate studies on cross-cultural

emotion recognition supports empirical claims made in favor of cross-cultural recognition of

emotions, suggesting that certain core components of facial expressions of emotions are

universal. The conclusion that prototypical facial displays can be reliably and cross-culturally

associated with predicted emotion labels or appropriate emotion eliciting scenarios is usually

taken as evidence that at least some facial patterns function as innate and phylogenetically

evolved signals for the communication of emotions. Based on his empirical work and

theoretical intuitions of Tomkins, Ekman proposed a neuro-cultural account of emotions

(1972) positing a dual influence of psycho-physiological and socio-cultural mechanisms asexplanatory causes for both “universal” invariants and “culture” specifics in facial displays of

emotions. The neuropsychological component of the model posits the existence of facial

affect programs or FAPs that are automatically activated when an emotion is triggered. These

FAPs are essentially hypothetical neuro-motor programs triggered during an emotion episode

and considered responsible for organizing the full facial response patterns distinctively

Page 12: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 12/282

8

characteristic of a small set of fundamental or “basic” emotions. The very notion that there

exist a limited number of emotions sharing a more basic or fundamental status compared to

others is essentially derived from Ekman’s interpretations of the implications to be drawn

from the thesis of a universally recognized set of facial emotional expressions.

The neuro-cultural model views it as a sine qua non requirement for the inclusion of

an affective state in the category of emotions, that evidence be produced that this state

 possesses a distinctive expressive signal that can accurately be recognized cross-culturally.

When such evidence can be provided it is taken as strong suggesting evidence that the label

referring to the emotion emerged as a semantic transliteration or rendering of some naturally

 preexisting, phylogenetically evolved and innate response. Additional indirect evidence cited

in favor of phylogenetically evolved «facial affect programs» comes from observed

similarities between human and nonhuman emotional displays (Chevalier-Skolnikoff, 1973;

Darwin, 1872/1965; Redican, 1982, Parr, Waller, Vick, & Bard, 2007; van Hooff, 1972;

Waller & Dunbar, 2005), the mutual recognition of emotional signals across species

 boundaries (Itakura, 1994; Linnankoski, Laasko, & Leinonen, 1994). Note however, that

strictly speaking these studies provide evidence for the existence of cross-species similarities

in the forms and functions of communicative signals; not that they are related to the

theoretical construct of emotion.

Figure 1. Prototypical expressions for seven « Basic » emotions according to Paul Ekman’s predictions (1994). From left to right: Surprise, Anger, Disgust, Fear, Sadness, Happiness, and Contempt. The expressions have been generated with the FACSGen tool (Roesch and al 2006). 

A recent study also showed that congenitally, non-congenitally blinds and sighted

athletes photographed while receiving medals during Paralympics and Olympic Games

Page 13: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 13/282

9

 produce similar prototypical expressions of emotions seemingly excluding the possibility of

social modeling of the expressions (Matsumoto & Willingham, 2009; but see Mistschenka,

1933 for contradictory observations). Also recent dissection work on 18 human shows that

independently of the fact that facial musculature is far from consistent between individuals in

terms of both presence and symmetry (McAlister, Harkness, & Nicoll, 1998; Pessa, Zadoo,

Adrian, Yuan, & Garza, 1998; Pessa et al., 1998); muscles essential for producing

 prototypical facial displays of emotions vary little among individuals. In this study, all

examined cadavers were equipped with the facial muscles necessary to produce the required

actions, almost always exhibited these muscles bilaterally, and exhibited minimal size

asymmetry. In contrast, muscles non essential for the production of facial prototypes of

emotions showed inconsistency in presence, and were often asymmetric in presence and size

(Waller, Cray, Burrows, 2008). This explains how universally recognized facial expressions

can be produced even in light of individual variation in facial musculature. In a 1999 text

 promoting the construct of basic emotions Ekman univoquely restates:

“I have gone back and forth on the question of whether or not a universal

 signal is the sine qua non for emotion. Once again, I will set out that claim, as

a challenge for someone to identify states which have all the other

characteristics (of emotions)... but no signal. To date there is no such evidence

and I doubt it will be found. I believe it was central to the evolution of

emotions that they inform conspecifics ….about what is occurring inside the

 person. What most likely occurred before to bring about that expression, and

what is most likely to occur next. (Ekman, 1999).

Paul Ekman often refers to himself as the upholder of the ideas of Charles Darwin’s

exposed in the book: The Expression of Emotions in Men and Animals (1872, 1996). In the

1996 edition of the book published by Oxford University Press, Ekman even authored, an

extensive commentary of Darwin’s text based his own views of basic emotions. Interestingly

enough, attentive readers of Darwin have highlighted the fact that the notion of basic

emotions and prototypical expressions were probably foreign to the mind of Darwin. For

example, Michel Heller states:

“Darwin aimait tellement décrire avec minutie ce qu’il observait, qu’il

n’aurait jamais pu se contenter de réduire les expressions émotionnelles à

quelques traits, ou à quelques émotions de base. Ce qu’il inclut dans sa liste

des expressions émotionnelles est à la fois varié à l’extrême et hétérogène. Il

Page 14: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 14/282

10

aurait plutôt tendance à croire qu’il n’a pas pu tout analyser, et que la réalité

est encore plus différenciée que ce qu’il est parvenu à décrire.” (Heller, 2008).

Whatever opinion one may hold about Ekman’s arguments, the principal strength of

his work has probably been to reaffirm Darwin’s propositions that emotions are an

appropriate object of study for the natural sciences. Even though Ekman puts a strong

emphasis on the biological determinants of facial expressions of emotions, he does not

altogether rejects the importance of culture as is reflected in the second part of his model’s

name. The neuro-cultural model acknowledges that both cultures and institutions promote

implicit and explicit expectations which are meant to influence the ways in which emotional

episodes are being acted out in the interpersonal arena. The notion of cultural display rules

was first introduced by Ekman and Friesen (1969) as a hypothetical construct to explain the

observed differences of facial expressive styles in a study comparing Japanese and American

students. Since that time, the notion of display rules has become a central concept in the study

of culture and emotion. Cultural display rules can be defined as culturally prescribed rules,

which are learnt early in life through socialization. These rules influence the emotional

expression of people from any culture depending on what that particular culture has

characterized as an acceptable or unacceptable expression of emotion (Matsumoto, Kasri, &

Kooken, 1999).

These culturally shared norms dictate how, when, and to whom people should express

their emotions. Note, that in keeping with the notion of a set of universal emotions

communicated through prototypical facial patterns, the concept of display rules does not

extend to the initial shaping of an emotion display per se. The “how”, in the sentence:

“how….people should express their emotions” is not meant to refer to the canonical form of

the emotional expression, considered an innate and phylogenetically inherited pattern

 produced identically across individuals and cultures. Rather, display rules are inferred from

the operation of modulation strategies of an expressive response already triggered by an

emotion. Several modulation strategies meant to alter the supposedly natural course of an

expression have been described such as: acting out of an « unfelt » emotion, as in social or polite smiling; trying to suppress the expression by activating counteracting muscles,

minimizing, or maximizing the amplitude and or duration of a response, and also masking

negative displays with social smiles. Interestingly, the same meta-analysis by Elfenbein and

Ambady (2002) that seems to confirm a minimal universality in the recognition of core

elements of facial expressions of emotions also provides non-accounted for evidence that

Page 15: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 15/282

11

emotional expressions may lose some of their meaning across cultural boundaries. For

example these authors report that some facial displays are more accurately understood when

they are judged by members of the same national, ethnic, or regional group that had expressed

the emotion.

According to Ekman’s model, this in group advantage effect ought to be explained by

a shared knowledge of culture specific display rules by individuals of the same culture. This

interpretation of the in-group advantage in decoding emotions facially expressed was

challenged by two subsequent studies that explored not only how emotions were perceived

 but also how they are produced cross-culturally (Elfenbein et al. 2007). Surprisingly little

research has examined cross cultural differences in actual (not self-reported) emotionally

expressive behaviors (the most often cited of these studies—Ekman, 1972—was not

 published in a peer-reviewed journal). In the study by Elfenbein and colleagues participants

from Quebec and Gabon were asked to pose facial expressions of emotions. Group specific

displays in the form of pattern activation of distinct muscles for the same expression emerged

most clearly for serenity, shame, and contempt and also for anger, sadness, surprise, and

happiness, but not for fear, disgust, or embarrassment. In a second study, Quebecois and

Gabonese participants were asked to recognize these expressions as well as expressions

standardized to erase the cultural specificities. Results showed that an in-group advantage

emerged for non standardized expressions only and most strongly for expressions with greater

regional expressive specificities. These authors have interpreted these results as suggesting

the existence of nonverbal dialects showing cultural variations similar to linguistic dialects,

thereby decreasing accurate recognition by out-group members.

From the early 1970s on to this day, theoretical claims in favor of the existence of

 basic emotions, depend largely on convergence of results from cross-cultural studies where

 participants are asked to judge pre-selected displays from static faces. Typically, links

 between facial expressions and self reported emotional experience are at best moderate

(Rosenberg, 2005). In a recent review of 257 published papers covering the 1997-2007

 period, Eva Bänninger (2009) showed that studies on facial expressions were dominated by

either judgment or production studies (N=158, 61%). Only 38 (15%) combined the

measurement of actual facial behavior with impression formation. This easily produces a

 problem of circularity since production studies usually rely on coding systems and

interpretation tables derived from the results of these judgments studies to select which

 behavior to observe and subsequently how to make sense of their data.

Page 16: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 16/282

12

Ekman’s arguments in favor of the universality of a small set of basic emotions,

signaled by corresponding patterns of facial expressions, has not gone unchallenged by

alternative psychological models of emotions. For example according to Russell’s

dimensional model, facial expressions are not seen as expressing distinct emotions, 

nevertheless observers do infer much about the expresser from the face (Carroll and Russell,

1996).

According to this view one can extract two kinds of information from the face easily

and automatically. First, quasi-physical information is perceived. That is, the observer can see

from the eyes whether the expresser is weeping, winking, looking down or up, staring at

something, or looking way. The mouth shows whether the expresser is talking, shouting,

yawning, laughing, smiling, or grimacing. Carroll and Russell (1996) refer to such

information as quasi-physical to indicate its simplest literal meaning. Thus, as quasi-physical,

the smile is recognized simply as a smile—not whether it is a smile of joy, of embarrassment,

of nervousness, or a polite greeting. Second, based in part on perceived quasi-physical

features, the observer infers the expresser's feelings on the general dimensions of pleasantness

and arousal. Any further differentiation of a displayed emotion is considered to be inferred

from additional contextual cues according to Russell’s dimensional model.

According to Frijda’s definition, emotions as essentially states of action readiness;

facial expressions are seen as reflecting an intention to act in a certain way. For example,

using Ekman’s facial prototypes of basic emotions Frijda showed that participants couldreliably associate the displays with particular states of action readiness. For example disgust

and fear were associated with the tendency to “avoid” and “protect oneself”, happiness with

the desire to “approach” and “be with” (Frijda and Tcherkassof 1997).

Even though their theories differ in what they predict Ekman’s prototypical expression

should signal; what those researchers share in common is the use of recognition studies to

 back up their particular claim as to what an emotion is. This may prove inappropriate since

the only thing that these researches convincingly show is that not only emotions but, levels of

arousal and hedonicity, cognitive appraisal as well as action tendencies can also be inferred

from prototypical facial emotional expressions (see Scherer and Grandjean, 2008) .  This

suggests that results from recognition studies may be compatible with several theoretical

models and thus inadequate for testing the competing theories. As for the investigation of

correspondences between self reported feelings and theoretically predicted facial displays

inconsistent results come up. Some researchers report a weak (Bonanno & Keltner, 2004;

Page 17: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 17/282

13

Frijda & Tcherkassof, 1997; Kappas, 2003) to moderate link (Rosenberg, 2005). For instance,

Fernandez-Dols, Sanchez, Carrera and Ruiz-Belda (1997) have found no coherence between

the subjective reports of the participants watching emotion-eliciting movies and their facial

expressions. As an example, two participants have displayed a prototypical expression of

surprise while reporting feeling disgust.

Page 18: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 18/282

14

Issues of Ecological Validity of Emotion RecognitionStudies

Emotional signals in social interactions are typically not conveyed by specific facial

 patterns alone but by a complex combination of rapidly changing and overlapping individual

facial actions integrated with other nonverbal cues. The well established empirical evidence

demonstrating that a limited number of discrete emotion categories can be cross-culturally

recognized from facial configurations alone, rest on the results of emotion recognition studies

using static photographs of posed expressions presented in isolation and pre-selected for

maximum discriminability (Barret, Lindquist and Gendron, 2007).

The generalization of these recognition data to emotional signal processing in more

realistic social contexts is questionable on several grounds. First, most of the standardized

facial stimuli used in laboratory experiments (most often of Matsumoto & Ekman’s, 1988,

JACFEE set or Ekman & Friesen’s, 1976, pictures of facial affect) were produced by actors

who followed strict guidelines detailed in the « Directed Facial Action Task » protocol

(Ekman, 2007) on how to pose each facial expressions corresponding to Ekman’s prototypical

set of basic emotions.

By contrast, naturally occurring facial expressions are often of weaker intensity, less

clear cut and their interpretation more elusive and ambiguous than posed expressions

(Nummenmaa, 1992, Hess and Kleck, 1994, Russell, 1997). Indirect evidence to this fact is

that drastic drops or even disappearance of inter-rater’s agreement for specific emotion labels

have been reported when spontaneously produced facial expressions instead of posed

expressions are used (Motley and Camden, 1988, Motley, 1993, Yik, Meng and Russell,

1998).

Standardized posed expressions are more easily recognized than spontaneous ones

 probably because they act as super stimuli by exaggerating the features of the emotion type

they depict. As Ekman (1972, 1989) stresses it, they possess a ‘“snapshot quality”’ that fosters

instant recognition. Second, several studies using well established facial coding systems like

FACS to specify the configurations of spontaneously produced expressions report little

evidence for the existence of specific prototypical expressions predicted by proponents of

Page 19: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 19/282

15

 basic emotion theories (Matias, and Cohn, 1993; Camras and al. 2002, Scherer and Ellgring,

2007a).

Third, in real life situations, facial displays are only one component of an integrated

complex multi-channels, multi-signals communicative system, where additional components

 provide a possible context for modulating the perceived meaning of facial displays. Despite

this fact, most research on emotion recognition has focused on isolated modalities, mostly

facial and vocal, at the expense of other communicative channels. The few studies having

investigated the combination of facial displays with additional nonverbal signals suggest that

head orientation (Hess, Adams and Kleck, 2007), body postures (Aviezer and al., 2008), head

 positions (Krumhuber, Manstead and Kappas, 2007), and gaze orientation (Reginald and

Kleck, 2005) all have a modulating impact on the meaning derived from facial displays. For

example, the role of horizontal head tilt for the perceptions of facially expressed emotions was

examined by Hess, Adams and Kleck (2007). Head position was found to strongly influence

reactions to anger and fear but less so for other emotions. Direct anger expressions were more

accurately identified, perceived as less affiliative, and elicited higher levels of anxiousness

and repulsion, as well as less desire to approach than did averted anger expressions.

Conversely, for fear expressions averted faces elicited more negative affect in the perceiver.

The authors conclude that their findings suggest that horizontal head position is an important

cue for the assessment of threat. Additionally Reginald and Kleck (2005) have demonstrated

that the way in which gaze direction influences emotion perception actually depends on the

specific type of emotion in question. They show that direct gaze enhances the perception of

anger; whereas averted gaze enhances the perception of fear expressions.

These patterns of findings are explained according to the perspective that emotional

expressions and gaze behavior communicate basic behavioral intentions to approach or avoid.

Thus, when congruent in signal value, gaze direction acts to enhance the perception of the

emotion communicated by the face. Gaze direction influences anger and fear perception

 because it indicates the source of threat, as part of an early warning mechanism, whereas for

 joy and sadness, gaze may simply be a social signal indicating a tendency for social

engagement. In this example, averted gaze may enhance the perception of fear because it

helps indicate the source of potential threat via joint attention (see Driver et al., 1999),

whereas averted gaze may enhance the perception of sadness because it indicates social

withdrawal.

Page 20: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 20/282

16

Keltner (1995) has been the first to provide evidence that two distinct emotions

sharing the same facial signal of smiling could only be accurately differentiated on the basis

of additional behavioral cues. He found that when people report embarrassment, they show a

consistent pattern of behavior distinct from that of amusement. When embarrassed, people

look down, then smile and simultaneously attempt to control the smile with facial actions that

are antagonistic to the upwards pull of the zygomatic muscle, turn their head away and then

touch their face. Follow up research has shown that observers are able to discriminate displays

of spontaneous embarrassment and amusement. This suggests that an important part of the

embarrassment signal might the sequential unfolding of its multimodal component actions.

The same emphasis on the temporal unfolding that was useful in differentiating

different kinds of smiling could also be of interest to understand if and how observers

attribute different emotional values to morphologically similar facial actions depending on the

their sequential organization and pairing with other nonverbal actions. In the same line as

what Keltner (1995) showed with embarrassment, recent work suggests that positive affect

states that were not previously considered as basic emotions can possibly be identified by

specific pattern of expressive actions (Shiota, Campos, & Keltner, 2003).

For example, Tracy and Robins (2004, 2008) found that an action pattern involving a

small smile, a head tilted back, the arms raised or akimbo with hands on hips, and visibly

expanded posture could be reliably interpreted as an expression of pride. Because they were

able to reproduce these results cross culturally, these authors argue that the term « pride »should be added to the traditional list of basic emotions.

Another under-investigated hypothesis is that in social conversations, the verbal

communication of the circumstances and evaluation of a situation serve to reduce the

uncertainty inherent to some facial expressions and constrain their meaning to allow for quick

categorization of emotion (Lindquist and al., 2006). Indirect evidence in favor of this

hypothesis is suggested by the fact that, when given the opportunity, judges invent plausible

eliciting scenarios when presented with prototypical emotional expressions (Frijda and

Tcherkassof, 1997). Therefore, it only takes a small leap to assume that when an actual

eliciting event is known, it will be taken into account in interpreting someone's facial

expressions.

Finally, when it comes to produce relevant empirical data about how emotions are

 perceived through the face, traditional judgments studies using static stimuli do not capitalize

on the fact that the natural dynamic component of facial expressions provides unique

Page 21: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 21/282

17

information about a sender’s mental state that is not available in static displays (Ekman,

1982). In natural settings, the face moves and shifts, sometimes even quickly, from one

expression to another. In other words, observers in natural environments observe social

signals conveyed by the face not as static stimuli but as complex action patterns unfolding in

time.

Thus, the sequential unfolding of facial actions provides observers with different

information than the ones provided by static photographs, since still expressions do not

 present subtle changes. It may be that differences in the social information displayed by static

and dynamic expressions lead to differential effects on emotion perception.

Indeed, preliminary investigations suggest that the dynamic aspects of facial displays

are likely to be of importance (Bassili, 1978, 1979; Buck, Miller, & Caul, 1974; Hess &

Kleck, 1990; Kamachi et al., 2001). For example, Edwards (1998) has shown that observers

are sensitive to subtle changes in a person’s facial expression. When asked to assess the

temporal progression of emotional facial displays, the participants were able to detect

extremely fine dynamic cues. It led the author to assert that facial expressions of emotion are

temporally structured in a way that is both perceptible and meaningful to an observer.

The relevance of temporal aspects has also been stressed in a research conducted by

Wehrle et al. (2000) on emotion perception for schematic facial expressions. The results

support the claim that dynamic displays improve the recognition and differentiation of the

facial patterns of emotions as compared to static displays (see also, Ambadar, Schooler, and

Cohn, 2005; Bould and Morris, 2008, Lemay, Kirouac, and Lacouture, 1995). Evidence is

starting to accumulate concerning the importance of dynamic parameters on observer's

categorization of subtle facial expressions judgment of genuineness (Krumhuber and Kappas,

2005) and trustworthiness (Krumhuber and al., 2007).

The relevance of the relative timing emerged from studies showing that humans were

sensitive to the duration of a facial display when considering the sincerity or deceptiveness of

an emotional display (Ekman, Friesen, and O’Sullivan, 1988). Ekman and Friesen (1982)

have suggested that social or polite smiles are sometimes obvious because of their short onset

and irregular offset times which convey a lack of authenticity. Cohn and Schmidt (2004) have

shown that spontaneous smiles have smaller amplitude and present a more linear relation

 between amplitude and duration than deliberate smiles. Hess and Kleck (1990) have also

 pointed out the importance of the dynamics of facial movements, and particularly the

irregularity, or phasic change, in the expression’s unfolding.

Page 22: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 22/282

18

Thus, pauses and stepwise intensity changes, for example, the number of onset, offset

and apex phases that the expression contains, came out as significant parameters. (See also

Frank, Ekman, and Friesen, 1993; Hess, et al., 1989; Messinger, Fogel, and Dickson, 1999).

All of these researches point to the possibility that perception of emotions from static and

dynamic facial stimuli might involve distinct cognitive processing strategies and that until

recently researchers in behavioral sciences may have seriously underestimated the importance

of context and motion dynamics for making sense of subtle or otherwise ambiguous facial

expressions that permeate real life situations. In the next section, we will introduce an

alternative theoretical account of the relationship between facial displays and emotions that

take into account the unfolding of facial expressions in time in its formulation.

Page 23: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 23/282

19

The Componential View on Facial Expressions ofEmotions

Recognition studies of emotions have been largely limited to a set of 7 (±2)

 prototypical facial patterns and minor variants on them. At the same time, Ekman (1972) and

Izard (1994) acknowledged that each emotion is associated with more than one facial pattern.

Indeed, Ekman and Friesen (1978) originally listed 55 facial patterns for six emotions (30 for

anger, 8 for sadness, 6 each for fear and disgust, 3 for surprise, and 2 for happiness; this count

ignores possible variations in head and eye movements and variations in degree of mouth

opening. Several predictions for incomplete prototypes have been proposed by Ekman and

Friesen in their 2003 book: Unmasking the Face – A guide to recognizing emotions from

 facial expressions. This text contains detailed descriptions of partial prototypes centering on

the brow, eye or mouth region. Multiple patterns for a single emotion raise a conceptual

 problem: Which pattern occurs in a given instance of the emotion and why? For example,

from the 6 variants predicted for disgust: what on a specific occasion determines which one of

the 6 actually occurs? Furthermore, facial expressions outside the predicted set of 55 also may

also occur. If so, Ekman and Friesen's (1978) analysis may not specify the full set of patterns

that an observer will attribute to a specific emotional category. Nonetheless, Ekman (1980)

was clear that all the patterns for a given emotion should be quite similar.

One characteristic trait of the still facial images provided by Ekman and colleagues is

that they show global patterns. The typical facial expressions used in most recognition studies

is the result of different muscles acting to move the brows, eyelids, cheeks, and mouth

converging simultaneously to their maximum point of contraction. Ekman and Friesen (1978)

developed a system of analyzing a facial display into its constituent movements, called action

units (AUs). To illustrate, figure (3) shows how the how prototypical facial pattern of anger

(figure 2) can be decomposed into four different facial actions or AUs: AU4 (lowering the

brow) AU5 (raising the upper eyelids), AU17 (raising the chin) AU23 (pursing the lips)

Page 24: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 24/282

20

Figure (2)

AU4+5+17+23

AU4 AU5 AU17 AU23

 Figure (3). The four individual action units that constitute the pattern shown in figure(2).

There is an alternative account of facial behavior that does not predict one specific

facial pattern for each emotion and thus can explain the existence of multiple patterns. Indeed,

it raises the possibility of even more diversity, including the frequent occurrence of no facial

action, single actions, and small combinations of muscular group. This alternative is

commonly referred to as “componential theories”. The central claim of the componential view

of facially communicated emotions is that single elements of facial expressions might convey

meaningful information’s at more molecular levels than full blown prototypes (Smith and

Scott, 1997). 

Componential accounts of facial expressions of emotions are derived from appraisal

theories of emotion (for a review see Scherer, 2001). Appraisal theories claim that emotions

are elicited and differentiated by conscious and/or nonconscious evaluations of events and

situations. Although different appraisal theories vary with regard to both the number of

Page 25: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 25/282

21

appraisal dimensions and their exact definitions, there is substantial overlap (Frijda, 1986;

Ortony & Turner, 1990; Russell, 1997; Scherer, 1984; Smith, 1989; Smith & Scott, 1997).

Amongst appraisal theories Scherer’s multi componential model of emotions or CPM

for short presents a particular interest because it provides specific predictions linking

individual facial actions with appraisals dimensions (see table 1. extracted from Wehrle et al.,

2000). According to that model, the temporal orders in which individual facial actions unfold

are seen to reflect an individual’s ongoing cognitive processing of emotionally relevant

stimuli (Scherer, 1992, 2009). The CPM’s appraisal categories can be broadly categorized

into four classes: appraisals related (1) to the intrinsic properties of the stimulus, such as

novelty and pleasantness; (2) to the significance of the event for the individual’s needs and

goals; (3) to the individual’s ability to cope with the consequences of an event; and (4) to the

compatibility of the event with social and personal norms and values. According to appraisal

theory, it is the subjective evaluation of an event as pleasant or unpleasant, conducive, or

obstructive to one’s goals, as changeable or not, and as compatible or incompatible with

social and personal norms that determines the type of emotion that is experienced.

Thus, an event that is appraised as pleasant and goal conducive elicits joy, whereas

one that is appraised as goal obstructive and as difficult or impossible to redress elicits

sadness (Scherer, 1992). In the CPM, an emotion episode is the result of a momentary

synchronization of functionally distinct components, including cognitive appraisals,

subjective feelings, physiological changes, pre-motor activation preparing for action andfacial expressions.

 No one component will be common to all instances of any one type of emotion, and

each component can function independently of any other and in the absence of any emotional

feeling. If facial movements are the direct outcomes of an appraisal process, an emotion is

therefore expressed in the face only indirectly, through its correlation with the other defining

components.

To illustrate, let us return to Figure 2. Component theory posits that several AUs are

concomitant with a cognitive appraisal. In the first slide of figure 3, the brows are lowered

and brought together in an action called AU4 according to the FACS system. The CPM

 predicts that this could signal that the person is appraising an event as unexpected, unfamiliar,

unpleasant or as obstructing his/her goals. The rising of the upper eyelid referred to as AU5 in

the second slide of figure 3, could reflect an attentional response to a sudden change in the

environment.

Page 26: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 26/282

22

 Note that for Smith and Scott (1997) the appraisal component can initiate a facial

expression even in the absence of any underlying emotional feeling. On the other hand a

feeling of anger dissociated from the activation of additional components, would produce no

facial behavior at all. Put more formally, components are necessary and sufficient for facial

action; emotions are neither necessary nor sufficient for facial action. According to this,

 prototypical patterns of facial actions can arise only secondarily, through the coincidental

combination of two or more dimensions of the appraisal process. Table 2, provides some

 predictions for facial action patterning corresponding to the basic categories identified by

Ekman. Of course, these are just hypotheses to illustrate the componential view of facial

expression. Even though some encouraging data have been reported (see: Lanctôt and Hess,

2007; Aue and Scherer, 2008; Delplanque and al. 2009) most of the details remain to be

established empirically.

 Nevertheless, it opens up for the possibility that partial expressions that would be seen

as meaningless when considered in isolation could in fact still be quite informative when

 preceding and following actions are taken into consideration. Authors in this tradition

componential approach have called for more research on the temporal dynamics of facial

expressions (Kaiser and Wehrle, 2008) and possible combinations with other expressive

modalities (Scherer and Ellgring, 2007b).

Page 27: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 27/282

23

Summary

Besides speech, we use notably facial expressions, gaze direction, vocal modulation

and body segment orientation to interact with others. One characteristic of human

communicative abilities is to combine actions from different behavioral modalities into

specific patterns that involve either some temporal overlap or sequence. For example, a vocal

emphasis on a word might begin and end within a bilateral rising of the brows; or a gaze at a

 person’s face might contain a smile that is followed by downwards movements of the head

and eyes. To date little attention has been given to the temporal sequence in which facial

actions unfold and how they are coordinated with head and eye motions. Such coordinated

 patterns may be perceived as communicating specific emotional meanings, but relevant

research is scarce. In this thesis, we attempt to provide detailed examples of the ways dynamic

facial expression of emotions are produced and perceived. By extracting and representing the

sequential unfolding of facial and other nonverbal actions during spontaneous emotional

displays, nonverbal analysis can begin to discriminate among the message values of otherwise

undetected features of expressive actions. This is a critical step if we are to move from simple

 prototypical expression recognition to the interpretation of dynamic and naturally occurring

expressions.

Page 28: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 28/282

24

   T  a   b   l  e   1 .   S  c   h  e  r  e  r   '  s   C  o  m  p  o  n  e  n   t   i  o  n  a   l  m  o

   d  e   l  p  r  e   d   i  c   t   i  o  n  s   l   i  n   k   i  n  g  c  o  g  n   i   t   i  v  e  a  p  p  r  a   i  s  a   l  s  w   i   t   h   f  a  c   i  a   l  g  r  o  u  p  m  u  s  c   l  e  s  a  c   t   i  v  a   t   i  o  n .   R  e   t  r   i  e  v  e   d   f  r  o  m   W  e

   h  r   l  e  e   t  a   l .   2   0   0   0 .

   N  o  v  e   l   t  y

   H   i  g   h

   L  o  w

   S  u   d  e  n  n  e  s  s

   1   +   2   +   5   +   2   6   /   2   7   /   3   8   /   G  a  z   i  n  g  a   t

   N   A

   F  a  m   i   l   i  a  r   i   t  y

   N   A

   4   B   +   7

   P  r  e   d   i  c   t  a   b   i   l   i   t  y

   N   A

   4   B   +   7

   H   i  g   h

   L  o  w

 

   T  a  s   t  e   6   +   1   2   +   2   5   /   2   6

 

   T  a  s   t  e   (   9   +   1   0   )   +   1   6   +   1   9   +   2   6

 

   S   i  g   h   t

   5   A   +   2   6   A

 

   S   i  g   h   t   4   +   7   /   (   4   3   )   /   4   4   +   5   1   /   5   2   +   (   6   1   /   6   2   )

 

   S  m  e   l   l   2   6   A   +   3   8

 

   S  m  e   l   l   9   +   (   1   0   )   +   (   1   5   +   1   7   )   +   (   2   4   )   +   3   9

 

   S  o  u  n   d  s   1   2   +   (   2   5   )   +   4   3

 

   S  o  u  n   d  s  :  a  n  y  c  o  m   b   i  n  a   t   i  o  n  s  o   f   t   h  e  o   t   h  e  r  s

   G  o  a   l   S   i  g  n   i   f   i  c  a  n  c  e

   G  o  a   l   R  e   l  e  v  a  n  c  e

   H   i  g   h   F

  o  c  u  s   i  n  g  r  e  s  p  o  n  s  e  s  :   l  o  w  e  r   i  n   t  e  n  s   i   t  y  o   f   t   h  e  c  u  m  u   l  a   t   i  o  n  o   f   t   h  e   2   f   i  r  s   t   S   E   C  s

   L  o  w  :   N   A

   O  u   t  c  o  m  e  p  r  o   b  a   b   i   l   i   t  y

   P  r  o   b  a   b   l  e  :   h   i  g   h  e  r   i  n   t  e  n  s   i   t  y   f  o  r   f  u   t  u  r  e  r  e  s  p  o  n  s  e  s

   N  o   t  p  r  o   b  a   b   l  e  :   l  o  w  e  r   i  n   t  e  n  s   i   t  y   f  o  r   f  u   t  u  r  e  r  e  s  p  o  n  s  e

   E  x  p  e  c   t  a   t   i  o  n

   C  o  n  s  o  n  a  n   t  :   N   A

   D   i  s  s  o  n  a  n   t  :  r  e  a  c   t   i  v  a   t   i  o  n  o   f  n  o  v  e   l   t  y  r  e  s  p  o  n  s  e   1   +   2   +   5  o  r   4   B   +   7

   C  o  n   d  u  c   i  v  e  n  e  s  s

   C  o  n   d  u

  c   i  v  e  :   6   +   1   2

   O   b  s   t  r  u  c   t   i  v  e  :   4   C   (   l  o  n  g   )   +   7   +   1   7   +   2   3   /   2   4

   U  r  g  e  n  c  y

   U  r  g  e  n   t  :   i  n   t  e  n  s   i   f   i  c  a   t   i  o  n  ;   h   i  g   h   t  e  n  s   i  o  n

   N  o   t  u  r  g  e  n   t  :   D  e  a  m  p   l   i   f   i  c  a   t   i  o  n  -   l  o  w   t  e  n  s   i  o  n

   C  a  u  s  a   l   i   t  y

   A  g  e  n   t

   S  e   l   f  o  r

  n  o  n   h  u  m  a  n  :   l  e  s  s   i  n   t  e  n  s  e   t   h  a  n  e  x   t  e  r  n  a   l  p  e  r  s  o  n  a   l  a   t   t  r   i   b  u   t   i  o  n

   O   t   h  e  r  p  e  r  s  o  n  :   i  n   t  e  n  s   i   f  y   f  u   t  u  r  e  r  e  s  p  o  n  s  e  s ,  m  o  r  e   i  n   t  e  n  s  e   t   h  a  n  s  e   l   f  o  r  n

  o  n  p  e  r  s  o  n  a   l

   M  o   t   i  v  e

   N  o  n   i  n

   t  e  n   t   i  o  n  a   l  :   d   i  m   i  n  u   t   i  o  n  o   f   i  n   t  e  n  s   i   t  y  o   f  e  x   i  s   t   i  n  g  a  n   d   f  u   t  u  r  e  r  e  s  p  o  n  s  e

   I  n   t  e  n   t   i  o  n  a   l  :   i  n   t  e  n

  s   i   f  y  e  x   i  s   t   i  n  g  a  n   d   f  u   t  u  r  e  r  e  s  p  o  n  s  e  :   M  o  r  e   i  n   t  e  n  s  e   t   h  a  n  n  o   t   i  n   t  e  n   t   i  o  n  a   l

   C  o  p   i  n  g  p  o   t  e  n   t   i  a   l

   C  o  n   t  r  o   l

   L  o  w  :   1

   5   +   2   5   /   2   6   +   4   3   B   /   4   3   C   /   +   5   4   +   6   1   /   6   2   +   6   4  o  r   1   +   4

   H   i  g   h  :   4   +   5  o  r   7   +   2

   3   +   2   5

   P  o  w  e  r

   L  o  w  :   2

   0   +   2   6   /   5

   H   i  g   h  :   N   A

   A   d   j  u  s   t  m  e  n   t

   L  o  w  :   h

  o   l   d   i  n  g   t   h  e  e  x   i  s   t   i  n  g  p  a   t   t  e  r  n

   H   i  g   h  :   D  e  a  m  p   l   i   f   i  c

  a   t   i  o  n

   S   t  a  n   d  a  r   d  s   C  o  m  p  a   t   i   b   i   l   i   t  y

   A  c   h   i  e  v

  e ,  c  o  m  p   l  y  o  r  s  u  r  p  a  s  s  s   t  a  n   d  a  r   d  s

   F  a   i   l   t  o  a  c   h   i  e  v  e  o  r  v   i  o   l  a   t  e  s   t  a  n   d  a  r   d  s

   S  e   l   f

   S  e   l   f  :   1   7   +   2   4   (   +   5   3   )

   S  e   l   f  :   1   4   /   4   3   A   /   4   3

   C   /   4   3   C   +   5   4   +   5   5   /   5   6   +   6   1   +   6   2   +   6   4

   S  e   l   f  :   1   7   +   2   4   (   +   5   3   )

   S  e   l   f  :   4   1   /   4   2   /   4   3   +   5   4   +   5   5   /   5   6   +   6   1   /   6   2   +   6   4

   O   t   h  e  r  :

   D   i  r  e  c   t  g  a  z  e  a   t ,   1   +   2   +   5   +   2   6

   O   t   h  e  r  :   4   +   1   0   U   +   (   1

   2   )   +   (   5   3   +   6   4   )   /   1   2   U   /   1   4   U

   O  u   t  c  o  m  e   B

   I  n   t  r   i  n  s   i  c  p   l  e  a  s  a  n   t  n  e  s  s

   O   t   h  e  r

   A  p  p  r  a   i  s  a   l   d   i  m  e  n  s   i  o  n

   O  u   t  c  o  m  e   A

 

Page 29: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 29/282

25

Emotion Prototype Predicted Appraisal1 Predicted Sequence2

Unfam./Discrepant 4+7

Disgust Unpleasant 9,10,15,39High Coping 23+25, 17+23,6+17+24

Sudden 1+2

Discrepant 4+7

Obstructive 17+23,17+24

High Coping 23+25, 17+23,17+24

Sudden 1+2

Fear Unfam./Obstructive 4+7

Low coping 20,26,27

Discrepant 4+7

Sadness Obstructive 17+23,17+24

Low coping 20,26,27

Sudden 1+2

Happiness Pleasant 12+25

Conducive 6+12

1. Predicted Appraisal: Antecedents postulated by CPM. 2. In this colomn left, centre and right alignement are used

to suggets the relative temporal position of the indicated action units (+: simultaneous AU / ,: alternative AU)

Anger 

Table 2. Components Processes Model - Facial Action Units prediction for five modal

emotions. Derived from Scherer (2001)

Page 30: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 30/282

26

IIIIII..  EEXXPPEERRIIMMEENNTT A ALL SSEECCTTIIOONN 

Page 31: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 31/282

27

Research aims

The general aims of this thesis are exploratory in nature. They can be divided into two

main questions that we will attempt to address. First, we want to investigate the possibility

that the natural unfolding of spontaneously produced facial expressions combined with head,

gaze and speech parameters, follow structured rules of organization that can be detected by

hierarchical sequential pattern analysis. Second, in case such patterns can indeed be detected

we want to test the possibility that they may play a role in the way emotions are perceived

from the face.

Collecting samples of dynamic emotional facialexpressions

In order to accomplish our research tasks we first need to collect a database of

dynamic facial expressions that are both natural and emotional enough. Describing the steps

taken to create such a database will be the topic of the next sections.

The MeMo database 

The MeMo (Multimodal Emotions) corpus was created for the purpose of this study.

We wanted to collect a database of facial expressions that were natural enough though

emotional enough to be used for this thesis. We decided to use an emotion sharing task as

affect eliciting methodology. MeMo is an audiovisual database consisting of 200 short video

segments extracted from 50 autobiographic narratives of emotional episodes produced in the

context of face to face semi-structured interviews.

Emotional narratives eliciting task  

The emotional memories were elicited using a set of fixed propositions corresponding

to situation parameters predicted to lead to specific emotions according to appraisal theories

(see Scherer, 2001). We used predictions of appraisal patterns to produce items to guide

 participants in recollecting and selecting five negatively valenced emotions corresponding to:

anger, fear, guilt, sadness and contempt. Before being used in the actual experimental task, the

appraisal items had previously been tested and refined in three pilot studies until respondents

could identify the predicted emotion in at least 75% of the time. During the experimental task

each participant was expected to produce five narratives of personal events during which they

had experienced intense emotions. At no time were the participants told the type of emotion

Page 32: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 32/282

28

expected, the only constrain was that the retrieved event had to correspond to the suggested

features detailed in the appraisal items. The complete appraisal list of items used for this

 protocol can be found in appendix 5. The order of the five emotional narratives elicitation

tasks was counterbalanced, in order to neutralize potential effects of fatigue and habituation

with the task.

Participants to the narration tasks (production study) 

Participants were 16 females recruited by ads placed in various university facilities.

Ages varied from 23 to 56 (µ =31). Because of the potential negative effects of remembering

difficult life events, each participant was screened for signs of depressive symptoms and

current use of antidepressive medications prior to inclusion in the study. Signs of depressions

were assessed with the Beck Depression Inventory – 21 items (Cottraux, 1985). According to

 protocol, prospective participants with a BDI score over 13 (upper threshold for lowsymptoms) or currently under antidepressants medication would not be invited to take part in

the experiment. In practice, none of the prospective participants met these exclusions criteria.

Out of the 16 participants 13 completed the protocol to the end. Three participants were

unable to produce all the required narratives. One could not produce a narrative targeting

anger and two others could not produce narratives targeting contempt. Later we had to

renounce using the videos of three additional participants for technical problems. The first

was not included because the audio recording did not function, the second, because the

 participant often moved outside of the camera’s frame, and the third because the camera

unexpectedly stopped during the session.

Page 33: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 33/282

29

Laboratory and interview settings 

The narratives were recorded in our lab at the University of Geneva. The participants

were seated on a chair and their faces were videotaped by a hidden camera located in a

cupboard in front of them. The author of this thesis was seated at a 45°angle to the right and at

a distance of one and a half meter of the participant. The role of the interviewer was to present

the instructions for the tasks and to introduce the items for the guided recollection and

selection of personal memories. Once the participants were ready to begin their storytelling,

we would start listening without asking questions or engaging the conversation. Support in the

form of backchannels signals and minimum empathic statements were given when

appropriate.  After each narratives ended, the participant was handed a self report

questionnaire to fill in order to assess the possible induction of emotions aroused during the

task. Once the self report file was completed, we would leave the room for five minutes to let

the participant take a short break. We would then come back and present the instructions for

the second narrative. This sequence would be repeated 4 times until the participant had

 produced the five narratives. Finally, at the end of the procedure we debriefed the participants

about the purpose of the study and obtained their permission to make use of their films for

scientific purposes. Each participant received an amount of 50 Frs. in return for participation.

 Assessment  of  emotional induction 

The emotional induction effects of the task were assessed by self-reports once the

narratives were completed. The emotional induction was measured with the « Geneva

Emotion Wheel » (Bänziger, Tran and Scherer, 2005), a self report tool composed of 20

frequently used French emotional terms that can each be rated for intensity on a 5-point scale.

A response indicating no emotions could also be checked. Participants were asked to report

the emotions, if any that they had experienced while sharing their story. Self-reports’ data

show that the emotional induction was generally effective for each narrative (Table 3).

Page 34: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 34/282

30

Table 3. Emotional Induction Assessment

Other Other  

Task induction emotion Fel t emotion No emotion Anger Fear Guilt Contempt Sadness Positive Negative

Anger Group Means 0.00 3.2 0.00 0.00 2.27 0.00 1.80 2.9

 N=10 (-) (1.80) (-) (-) (1.90) (-) (0.50) (0.56)

Fear Group Means 0.00 1.30 1.80 2.20 0.00 0.00 2.30 1.2 N=10 (-) (0.52) (0.67) (0.80) (-) (-) (0.95) (1.05)

Guilt Group Means 0.00 1.20 0.00 2.30 0.00 1.05 1.30 2.4

 N=10 (-) (0.39) (-) (1.20) (-) (0.23) (0.80) (1.25)

Contempt Group Means 0.00 2.90 0.00 0.00 3.20 1.00 0.00 1.22

 N=10 (-) (1.70) (-) (-) (1.40) (0.59) (-) (0.90)

Sadness Group Means 0.00 2.30 0.60 0.86 0.00 3.90 2.30 1.80

 N=10 (-) (1.3) (0.25) (0.50) (-) (2.10) (1.84) (0.84)

 Note: SD between brakes  

For example, when telling sadness stories participants have reported high scores of

sadness (3.90). In fact the emotion targeted by the appraisal profiles is always the one with the

highest score, at the exception of fear. This somehow makes sense because narratives of fear

frequently involved situations in which a participant felt threatened by a situation, which in

the end didn’t turn out as badly as expected. To illustrate this point, one participant told the

story of a time when she was caught on a boat at see during a storm. She really felt she was

about to die at that time, when recalling the event she frequently blames herself in front of us

for having neglected to check the weather forecast before sailing off with the boat that

morning. She also expresses her relief at having survived this dreadful experience.

Consequently her self reported current level of fear is rather low while her scores on guilt

and « other positive » (relief in this case) is rather high. On the other hand the sadness

appraisal involves an irreversible loss; therefore the potential for reactivating a sadness affect

is high because the stories frequently trigger unfinished business like the unexpected death of

a close relative or friend. Interestingly, even though each narrative is usually characterized by

a dominant emotion, participants did not hesitate to use additional adjectives to account for

complex feelings.

Extracting video sample files from the original films 

The second step of the study was to select the most appropriate material, which is

natural though emotional enough stimuli, in order to end up with a good quality sample of

spontaneous and dynamic facial displays. Two judges, undergraduate psychology students,

not otherwise involved in the study were instructed to independently look the 50 films and

time mark the start of sequences where participants “seemed” to be experiencing an emotion.

Segments on which the judges agreed yielded an initial database of 350 clips. In order to

Page 35: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 35/282

31

avoid giving more weight to the expressive style of some participants over others we

randomly selected 20 clips per participants (corresponding to the maximum number of clips

extracted from the least expressive participant) ending up with a core set of 200 video sample

files. It must be noticed that up to now, there is no consensual criterion for defining dynamic

sequences. Researchers using video clips do not always specify the length of their films, and

when they do so, do not justify it (clips’ length typically vary from 2 seconds to at least 24

seconds). For the present research, the set rule for extracting a segment of video was to

include the full propositional unit accompanying, preceding or following the emotional

sequence. A propositional unit was defined as a unit composed at minima of an actor

(generally the grammatical subject of the sentence) and an action verb. The mean duration of

the sequences in our database is 5.88 seconds (with minima at 1.8s and maxima at 15s).

Page 36: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 36/282

32

 Assessing the message value of spontaneouslyexpressed dynamic displays of emotions 

 Now that we have collected the database needed to address our research questions we

need to verify that our sample files of video records are indeed perceived as conveying

reliable emotional signals. Our next step has been to determine what methodology to use in

order to answer this question. In most studies of emotion perception from facial expressions,

subjects are shown photographs of prototypical expressions and asked to choose one adjective

from a short list to classify them. For example, presented with a predicted “anger” expression,

and given the list: “happy, surprise, fear anger and disgust ” most subjects have been shown

to choose the “anger ” label to characterize the expression (Ekman and Friesen, 1975).

Many important studies presenting evidence in favor of basic emotions being

recognized from prototypical expressions have used forced choice response formats (Boucher

and Carlson, 1980; Ekman, 1972, Ekman and Friesen, 1971, 1975, Ekman and al. 1987;

Ekman and Heider 1988; Ekman, Sorensen and Friesen, 1969; Izard, 1971, MacAndrew,

1986; Niit and Valsiner, 1977). Nevertheless in the context of emotion judgment studies,

forcing a participant to choose one from a short list of emotions labels has been shown to

inflate agreement and even produce blatant artifacts (Russell 1994). Providing the judge with

more options lowers agreement (Banse & Scherer 1996). Allowing the judge to specify anyemotion (free labeling) lowers agreement still further (Russell 1994). Some of the artifacts

can be eliminated by providing “none of the above” as a response option (Frank & Stennett

2001).

One alternative to forced choice response format that has been used but has not

received as much attention involves scalar ratings of multiple labels. Multi-scalar rating tasks

are interesting because observers can describe not only the most salient emotions they

 perceive (by giving a label higher ratings than others); they can also rate the presence of other

emotions as well, as neutral or no emotion by giving all labels zeros (Yrizarry, Matsumoto,

and Wilson-Cohn, 1998). The ability to detect the presence of multiple emotions and provide

a neutral response makes this task unique. A prototypical analysis of french affective lexicon

has revealed that the intensity component of the subjective emotional experience was the most

important predictor of prototypicality for the French category “émotion” (Niedenthal and al.,

2003). 

Page 37: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 37/282

33

Judgment  task  

Judgment task: Multi-scalar ratings. To report their impressions of what the subjects

on the video were expressing, participants rated the relevance for each video sample of 17

adjectives– embarrassed, disgusted, ironic, proud, surprised, nervous, entertained, sad,

 scornful, joyful, affectionate, angry, enthusiastic, anxious, perplexed, disappointed and

relieved -by rating its intensity using a continuous bipolar scale labeled: " Not at all"   and "A

lot". The adjectives were selected with the following criteria in mind:

Participants to the judgment  task  and rating protocol 

A total of 45 individuals participated in this study. All were native french speaking

women recruited through ads posted in various university facilities. Female judges were

chosen because their accuracy in judging the emotional meaning of nonverbal cues is well

established to be greater than male's (Hall, 1978, 1984; Hall, Carter, & Horgan, 2000). The

overall gender difference corresponds to a Cohen’s d (Cohen, 1988) of about .40 and a point-

 biserial correlation (r ) of about .20. The tasks used in this literature encompass wide variation

in stimuli and response options such as whether observers are asked to identify emotions,

situations, or interpersonal relationships (Costanzo & Archer, 1989; Hall, 1978, 1984;

 Nowicki & Duke, 1994; Rosenthal, Hall, DiMatteo, Rogers, & Archer, 1979). More recent

research suggests that women’s higher accuracy in « recognition » of emotional meaning of

nonverbal cues extends to stimuli presented so fast as to be at the edge of conscious

awareness (Hall and Matsumoto, 2004).

In this study, each participant worked alone and received a nominal fee of 25 Frs. for

 participation. Upon arrival to the laboratory, the participants were all given similar oral

instructions on how to proceed with the task. They were told that they would be seeing brief

videotape samples extracted from longer interviews in which individuals had been asked to

recall and talk about an autobiographical event from their life. They were informed that they

would be asked to decide for each video sample the degree with which 17 adjectives

corresponded to their impression of the person on the videos. They were then handed out a

written copy of the list of rating adjectives with corresponding definitions (see appendix 5).

After reading the definitions they could ask for clarifications about the meaning of a specific

term or definition. In order to limit the impact of cognitive overload and fatigue on the

experimental results several measures were insured. First, participants were not asked to rate

the totality of the 200 video samples. Our pilot studies had previously shown that rating the

Page 38: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 38/282

34

200 videos took 2h30 on average and was experienced as highly demanding by most

 participants. The 45 participants in this study were randomly assigned to one of three groups

composed of 15 individuals each. Each group had to rate a unique subset of the original core

set of 200 videos. At least six videos from each of the ten participants were distributed across

the three groups so that no encoder would be over represented in any group. Group one

included 72 sample files (mean age = 26.4; Caucasians, 87% other ethnicities 13%); group

two included 72 video samples (mean age = 25.8 Caucasians, 100 other ethnicities); group

three included 71 video samples (mean age = 26.3 Caucasians, 93% other ethnicities, 7%).

Before pooling the results of the three rating blocks, we first had to verify that the use

of the scales by the judges was consistent for a common subset of video samples. This was

done by computing interrater's agreements indexes across the three groups for five videos not

 part of the 200 core set files. The actual rating task was implemented in a Matlab script

written for this study so that each participant could work alone during the task. Given the

large number of adjectives to review for each video record we decided to present each records

twice. Right after the presentation of a video, a screen appeared with either 8 or 9 of the 17

adjective scales. By default, the cursor appeared at the center of the first scale on top of the

screen. The cursor would only change scale item after the participant provided his response by

moving it to a desired location on the line and entered his response by a mouse click. When

all the items listed on the page had been rated, the routine would load the same video a second

time. The remaining adjectives were then presented in the same way.

To neutralize order of presentation effects, both the position of the adjectives on the

screen and the order of video files were presented randomly by the program for each trial.

Participants were seated in front of a Dell PC wired to a 17 inches screen and stereo

headphones. Before the actual rating task started, the instructions given orally were presented

again on the screen and a mock trial was launched to insure that the participants had

understood and could comply with the instructions. Once any questions were answered and

the participant understood the task, the program was started. The experiment ended with

completion of the ratings for the last item.

Reliability analyses 

A first cronbach α was computed on the sum of the 17 scales scores for the five video

samples common to the three rating blocks. Because the alpha was high (α  = 0.94,

standardized α = 0.95, inter-item correlations = 0.20) we felt justify pooling the ratings of the

Page 39: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 39/282

35

three groups together for further analysis. Cronbach’s alphas were then computed for each

adjective scale independently. Results are reported in table 4. Setting an inferior threshold of

α = 0.70, the analysis provides support for the internal reliability of 14 adjective scales. Three

adjectives had to be rejected according to the set criteria: proud, relieved and affectionate. In

subsequent analysis we dropped these three scales for which internal reliability was not

supported.

Principal Components Factor  Analysis 

To reduce the number of remaining terms we performed a principle components factor

analysis with varimax rotation on the ratings with the terms as variables and the subject and

clips as cases. Using eigenvalues >0.90, it revealed five factors (see table 5).

Page 40: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 40/282

36

   T  a   b   l  e   4 .   I  n   t  r  a  c   l  a  s  s  c  o  r  r  e   l  a   t   i  o  n  s   f  o  r   t   h  e  e  m  o   t   i  o  n  s  c  a   l  e   i   t  e  m  s

   A   d   j  e  c   t   i  v  e  s

   C  r  o  n   b  a  c   h  a   l  p   h  a

   S   t  a  n   d  a  r   d

   i  z  e   d  a   l  p   h  a

   i  n   t  e  r  -   i   t  e  m  c  o  r  r .

   A   d   j  e  c   t   i  v  e  s

   C  r  o  n   b  a  c   h  a   l  p   h  a

   S   t  a  n   d  a  r   d   i  z  e   d  a   l  p   h  a

   i  n   t  e  r  -   i   t  e  m  c  o  r  r .

   A   d   j  e  c   t   i  v  e  s

   C  r  o  n   b  a  c   h  a   l  p   h  a

   S   t  a  n   d  a  r   d

   i  z  e   d  a   l  p   h  a

   i  n   t  e  r  -   i   t  e  m  c  o  r  r .

   A   f   f  e  c   t   i  o  n  a   t  e

   0 .   5   5

   0 .   6   4

   0 .   1   0

   A   f   f  e  c   t   i  o  n  a   t  e

   0 .   5   2

   0 .   6   0

   0 .   0   9

   A   f   f  e  c   t   i  o  n  a   t  e

   0 .   6   0

   0 .   6   8

   0 .   1   5

   A  n  g  e  r

   0 .   8   8

   0 .   8   9

   0 .   3   6

   A  n  g  r  y

   0 .   8   3

   0 .   8   5

   0 .   2   8

   A  n  g  r  y

   0 .   8   7

   0 .   8   7

   0 .   3   3

   A  n  x   i  o  u  s

   0 .   8   0

   0 .   8   1

   0 .   2   1

   A  n  x   i  o  u  s

   0 .   8   4

   0 .   8   5

   0 .   2   8

   A  n  x   i  o  u  s

   0 .   8   1

   0 .   8   2

   0 .   2   4

   D   i  s  a  p  p  o   i  n   t  e   d

   0 .   8   3

   0 .   8   4

   0 .   2   6

   D   i  s  a  p  p  o   i  n   t  e   d

   0 .   8   3

   0 .   8   3

   0 .   2   5

   D   i  s  a  p  p  o   i  n   t  e   d

   0 .   8   5

   0 .   8   6

   0 .   2   9

   D   i  s  g  u  s   t  e   d

   0 .   8   4

   0 .   8   6

   0 .   3   0

   D   i  s  g  u  s   t  e   d

   0 .   8   3

   0 .   8   4

   0 .   2   6

   D   i  s  g  u  s   t  e   d

   0 .   8   0

   0 .   8   1

   0 .   2   5

   E  m   b  a  r  r  a  s  s  e   d

   0 .   7   7

   0 .   7   9

   0 .   2   0

   E  m   b  a  r  r  a  s  s  e   d

   0 .   8   0

   0 .   8   1

   0 .   2   3

   E  m   b  a  r  r  a  s  s  e   d

   0 .   7   7

   0 .   7   8

   0 .   1   9

   E  n   t  e  r   t  a   i  n  e   d

   0 .   8   6

   0 .   8   8

   0 .   3   4

   E  n   t  e  r   t  a   i  n  e   d

   0 .   8   8

   0 .   8   8

   0 .   3   5

   E  n   t  e  r   t  a   i  n  e   d

   0 .   8   1

   0 .   8   5

   0 .   2   8

   E  n   t   h  u  s   i  a  s   t   i  c

   0 .   7   8

   0 .   7   9

   0 .   3   0

   E  n   t   h  u  s   i  a  s   t   i  c

   0 .   7   8

   0 .   8   8

   0 .   3   4

   E  n   t   h  u  s   i  a  s   t   i  c

   0 .   7   2

   0 .   7   3

   0 .   1   6

   I  r  o  n   i  c

   0 .   8   1

   0 .   8   3

   0 .   2   3

   I  r  o  n   i  c

   0 .   8   0

   0 .   8   2

   0 .   2   4

   I  r  o  n   i  c

   0 .   8   4

   0 .   8   5

   0 .   2   9

   J  o  y   f  u   l

   0 .   7   9

   0 .   8   1

   0 .   2   4

   J  o  y   f  u   l

   0 .   8   8

   0 .   8   9

   0 .   3   8

   J  o  y   f  u   l

   0 .   8   0

   0 .   8   1

   0 .   2   5

   N  e  r  v  o  u  s

   0 .   7   7

   0 .   7   8

   0 .   1   8

   N  e  r  v  o  u  s

   0 .   7   8

   0 .   8   1

   0 .   1   4

   N  e  r  v  o  u  s

   0 .   7   6

   0 .   8   0

   0 .   3   0

   P  e  r  p   l  e  x  e   d

   0 .   7   9

   0 .   8   1

   0 .   2   3

   P  e  r  p   l  e  x  e   d

   0 .   8   5

   0 .   8   5

   0 .   2   9

   P  e  r  p   l  e  x  e   d

   0 .   7   1

   0 .   6   9

   0 .   1   3

   P  r  o  u   d

   0 .   6   2

   0 .   6   8

   0 .   1   8

   P  r  o  u   d

   0 .   6   8

   0 .   6   4

   0 .   2   5

   P  r  o  u   d

   0 .   6   0

   0 .   6   1

   0 .   5   3

   R  e   l   i  e  v  e   d

   0 .   6   6

   0 .   6   9

   0 .   2   5

   R  e   l   i  e  v  e   d

   0 .   6   0

   0 .   6   6

   0 .   1   2

   R  e   l   i  e  v  e   d

   0 .   5   3

   0 .   6   5

   0 .   1   1

   S  a   d

   0 .   8   9

   0 .   8   9

   0 .   3   7

   S  a   d

   0 .   9   1

   0 .   9   1

   0 .   4   2

   S  a   d

   0 .   8   9

   0 .   9   0

   0 .   3   8

   S  c  o  r  n   f  u   l

   0 .   7   1

   0 .   7   4

   0 .   1   6

   S  c  o  r  n   f  u   l

   0 .   7   8

   0 .   7   6

   0 .   1   9

   S  c  o  r  n   f  u   l

   0 .   8   2

   0 .   8   3

   0 .   2   5

   S  u  r  p  r   i  s  e   d

   0 .   8   4

   0 .   8   6

   0 .   2   1

   S  u  r  p  r   i  s  e   d

   0 .   8   1

   0 .   8   4

   0 .   2   6

   S  u  r  p  r   i  s  e   d

   0 .   8   2

   0 .   8   3

   0 .   2   5

   R  a   t  e  r  s   b   l  o  c   k   3

   R  a   t  e  r  s   b   l  o  c

   k   1

   R  a   t  e  r  s   b   l  o  c   k   2

 

Page 41: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 41/282

37

Table 5. Eigenvalues

Factor  Eigenvalue % Total Cumulative %

Factor 1 4.19 29.93 29.93

Factor 2 2.83 20.21 50.15

Factor 3 1.58 11.27 61.42

Factor 4 1.49 10.62 72.03

Factor 5 0.90 6.44 78.47  

These accounted for >78% of the variance in the contextual use of the adjectives. We

assigned each adjective to only one factor according to its largest partial correlation

coefficient. The loadings are listed in table 6.

Table 6. Factors loadings

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Adjectives Enjoyment Hostility Embarrassment Surprise Sadness

Angry 0.12 0.87 -0.01 0.08 0.10

Anxious 0.28 0.12 0.41 -0.21 -0.65

Disappointed 0.26 -0.43 -0.08 0.10 0.71

Disgusted 0.16 0.84 -0.04 -0.03 -0.32

Embarrassed 0.06 0.29 0.82 0.03 -0.11

Entertained 0.83 0.13 0.13 0.12 0.31

Enthusiastic 0.87 0.10 -0.24 -0.05 0.12

Ironic -0.48 -0.14 0.22 0.25 0.41

Joyful 0.93 0.12 0.03 0.05 0.16

 Nervous -0.04 -0.07 0.89 -0.13 -0.05

Perplexed 0.24 0.07 0.24 0.79 -0.15

Sad 0.30 0.11 0.15 0.16 0.82

Scornful 0.03 0.84 -0.15 0.09 0.15

Surprised -0.08 0.06 -0.05 0.85 0.22  

The adjectives with the highest loadings on the first factor are “entertained”,

“enthusiastic” and “joyful”. Because these adjectives all refer to some pleasant affect we

named this factor “enjoyment”. On the second factor the highest loadings are on the “angry”,

“scornful” and “disgusted” scales. Because these terms all have a connotation of rejecting or

opposing something/someone, we decided to refer to this factor as “hostility”. For the thirdfactor, the loadings are highest on the “nervous” and “embarrassed” scales. We decided to

refer to it as “embarrassment”. The fourth factor was named “surprise” for its highest loadings

on the “surprised” and “perplexed” scales and the fifth was labeled “sadness” with high

loadings on the “sad” and “disappointed” scales. In this study it appears that the raters have

not made a differentiated use of the six adjectives possibly referring to enjoyable affects. The

Page 42: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 42/282

38

use of the “relieved”, “affectionate” and “proud” terms was inconsistent across judges and

had to be dropped from the analysis. As for the three remaining terms, the notion of joy is

highly correlated in its use with the concepts of entertainment/amusement and enthusiasm.

Even though, Paul Ekman acknowledges the probable existence of several different enjoyable

emotions-sensory pleasures, excitement, relief, wonder, ecstasy, pride, schadenfreude

(enjoyable feelings experienced when one learns that an enemy has suffered) , elevation,

amusement and gratitude-he seems pretty convinced that the face does not provide distinctive

signals for each of these emotions (Ekman, 2003). Rather, he has suggested that the Duchenne

smile (Ekman, Davidson, Friesen, 1990) is a part of all of them. He further proposes that the

voice might provide the distinctive signal for each of them. Despite the fact that the three

adjectives scales – angry, disgusted and scornful - refer to emotions considered more

fundamental or basic than others, our data does not support the view that participants have

made a differentiate use of these terms to report their impressions of the displays presented to

them. Recently, Widen and Russell (2008) produced evidence showing that children of 4

years old that know the meaning of the word disgust as well as the meaning of anger and fear;

for example, when asked, they are equally able to generate a plausible cause for each of these

emotions. Yet, in tasks involving finding a ‘‘disgust face’’ in an array of faces a majority of 3

to 7 year-old children are found to associate the prototypical ‘‘disgust face’’ with anger and

deny its association with disgust. Moreover he was able to show that 25% of adults on the

same tasks did so as well. As for contempt expressions, it has been previously documented

that native English speakers also do not label the contempt expression as “contempt” in free-

response tasks (Haidt & Keltner, 1999; Rosenberg & Ekman, 1995; Russell, 1991; Wagner,

2000), in which participants can generate any label of their own to describe the stimuli. These

tasks are completely free of any effects of process of elimination. The modal response for

Americans free labeling the contempt expression in Haidt and Keltner’s (1999) study was

“annoyance”; for Canadians in Russell’s (1991b) study, it was “disgust.” One suggested

explanation for the low agreement rates for native English speakers judging contempt is that

 people understand which situations are associated with the contempt expression even though

they do not have an agreed-on label for such situations or the expressions that occur within

those situations (see Matsumoto & Ekman, 2004). To our knowledge no similar studies have

 been conducted with french labels. So we can only speculate that the results observed in

English speaking samples might also be relevance for french speaking participants

Page 43: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 43/282

39

Clustering of  video files on factor scores 

To constitute groups of video samples that were rated most similar on the five factors

extracted form the previous PCA, we performed a K-means clustering on the video records

means (across subjects) factors scores. In order to maximize the probability of characterizing

each group of video samples by one factor, we first imposed a five group’s solution on the

analysis. Graph 1 shows that this attempt proved adequate since all the clusters do indeed

relate strongly to one specific factor 3.

Figure 4. K-means clustering. Plot of Means on Factors for each Cluster 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

3 The coherence of k-means clustering was also examined for two, three and six groups’ solutions. The details of

these analyses are not reported here for reason of readability. For information, two groups divided the video samples into

what could be reffered to as videos rated positively versus negatively. A three group’s solution maintained the

 positive/negative partition but the third cluster could not be interpreted easily. A four clusters partition yielded a solution

where three factors were best represented by three clusters – enjoyment- surprise and sadness. The second and third factors

were mixed with all the others in clusters two and three. A six clusters solution did produced two variants of the

embarrassment cluster one where the enjoyment factor played a substantial role along with the embarrassment factor and one

where embarrassment stood alone. This partition could have been interesting to explore in order diffrentiate amongst possibly

two types of embarrassment displays. Unfortunately, this solution produced an enjoyment group constituted of only eight

video files. We decided to priviledge the five groups’ solution that maximized our power of analyis for further quantitative

explorations.

Page 44: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 44/282

40

The results of the K-means clustering in five groups demonstrates that it is justified to

relabeled each cluster according to the factor that most characterizes it. Accordingly, cluster

one will be renamed “enjoyment”, cluster two “hostility”, cluster three “embarrassment”,

cluster four “surprise” and cluster five “sadness”. Figure 4 shows that the 200 video files

constituting our core set of videos are not distributed evenly across the five clusters. The

enjoyment and surprise group are the least populated clusters with respectively 14 and 26

sample files. The three other clusters share approximately the same number of video files.

Figure 5. Frequency Distribution of

Video Samples in Five Clusters

Surprise

 N=26

(13%)

Hostility

 N=54

(27%)

Enjoyment

 N=14

 (7%)Sadness

 N=55

 (27%)

Embarrassment

 N=51

(26%) 

Page 45: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 45/282

41

Methodology of behavior annotation

In this section, we present the various methodological options chosen to annotate

facial displays and other communicative signals of interest in the MeMo database.

The  Anvil annotation tool 

Anvil (Kipp, 2004) is a free tool written in Java well suited for manual annotation of

audio-video corpora containing behaviors from different communicative modalities.

Annotation takes place on freely definable multiple tracks by inserting time-anchored

elements (variables) that can be further specified by several attributes values (modalities for a

variable). Anvil allows for a multiple tracks export in text format. Each annotated element is

defined by its behavioural class, attributes, onset time, end time and duration. The beginning

and end tags of each element on an annotation track is precisely aligned to match the

corresponding beginning and end parts of the segment of video they refer to (see figure 1 for

an illustration of the Anvil annotation environment). 

Coding scheme 

Our multimodal annotation script was written in XML and implemented in the beta

version 4.9., of the Anvil software. The annotation window provides 4 tracks for the

annotation of formal linguistic features: speech flow, verbal encoding difficulties, vocal

emphasis and non linguistic vocalizations. In addition, we provided 35 tracks for nonverbal

 behavior coding.

Page 46: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 46/282

42

Figure 6. Anvil Annotation Environnment

 

Measurement  of  facial activity 

Facial expressions of emotions or any facial display of interest (e.g. raised brows

found in greeting displays), result from the contraction of facial muscles and their consequent

effects on skin and underlying subcutaneous fascia. Facial activity was annotated according to

the Facial Action Coding System or FACS (Ekman and Friesen, 1978; Ekman, Friesen and

Hager, 2002). The use of FACS for this research imposed itself for two reasons. First, FACS

is the current standard tool for researchers looking for a measurement system allowing micro-

analytic collection and analysis of facial movements. Second, contrary to facial EMG which

requires the placement of several electrodes on the surface of the skin’s face, FACS is non

invasive, and only actions visible by the coders are taken into account. This is important since

we are interested in measuring facial activity that is potentially accessible for inferences about

emotional states.

FACS is a comprehensive and anatomically based coding system designed for the

measurement of all visually distinguishable facial activity on the basis 44 action units (AUs)

and action descriptors (ADs) as well as several additional categories of head and eyes

 positions and movements. Action descriptors codes differ from Action Units in that the

authors of FACS have not specified the muscular basis for these actions and have not

Page 47: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 47/282

43

distinguished specific behaviors as precisely as they have for the AUs (see table 7 and 8 for a

description of FACS codes). The development of FACS greatly benefited from the work of

Swedish anatomist Hjortsjö (1970), who was the first to describe the muscular basis of facial

expressions (see figure 6) and to classify the visible changes on the surface of the skin caused

 by different muscular actions (see table 7).

Figure 7. Facial Muscular Structure

 

Page 48: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 48/282

44

AU codes Description Muscular basis

AU1 Inner Brow Raiser Frontalis, Pars Medialis

AU2 Outer Brow Raiser Frontalis, Pars Lateralis

AU4 Brow Lowerer Procerus, Corrugator  

AU5 Upper Lid Raiser Levator Palbebrae SuperiorisAU6 Cheek Raiser Orbicularis Oculi, Pars Orbitalis

AU7 Lid Tightener Orbicularis Oculi, Pars Palebralis

AU9 Nose Wrinkler Levator Labii Superioris, Alaeque Nasi

AU10 Upper Lip Raiser Levator Labii Superioris, Caput Infraorbitalis

AU11 Nasolabial Fold Deepener Zigomatic Minor  

AU12 Lip Corner Puller Zigomatic Major  

AU13 Cheek Puffer Caninus

AU14 Dimpler Buccinator  

AU15 Lip Corner Depressor Triangularis

AU16 Lower Lip Depressor Depressor Labii

AU17 Chin Raiser Mentalis

AU18 Lip Puckerer Incisivii Labii Superioris and Inferioris

AU20 Lip Stretcher Risorius

AU22 Lip Funneler Orbicularis Oris

AU23 Lip Tightener Orbicularis Oris

AU24 Lip Pressor Orbicularis Oris

AU25 Lips Part Depressor Labii; Relaxation of Mentalis or Orbicularis Oris

AU26 Jaw Drop Masetter; Pterygoid relaxed

AU27 Mouth Stretch Pterygoid; Digastric

AU28 Lip Suck Orbicularis Oris

Table 7. Single Action Units in the Facial Action Coding System

While FACS is anatomically based, there is no one to one correspondence between

muscle groups and AUs. This is due to the fact that a single muscle may contract in different

ways or in selective regions, resulting in visibly different actions. For example, contraction of

the medial portion of the  frontalis muscle  raises the inner corners of the brows only

(producing AU1), while contraction of the lateral portion of the same muscle raises the outer

 brow (producing AU2). Also, more than one muscle group can be involved in the production

of a single action unit. For example, AU9 (Nose Wrinkler) results from the combined

contraction of the levator labii superioris and alaeque nasi muscles. In the Anvil annotation

tool, each facial code was assigned a separate track. During coding, every individual AUs and

ADs were coded in separate runs. Each facial action was assigned a duration code delimited

 by its onset and offset times. Onset and offset times were annotated using Anvil’s variable

speed option set at a frame by frame resolution. Asymmetries (A) and laterality (U) ofmovements were also coded. Intensity of muscle contraction for each AU was coded near the

apex on a three level scale: low, medium or high.

Page 49: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 49/282

45

AU or AD codes

AU8(25)

AD19

AU21

AD29

AD30

AU31

AD32

AD33

AD34

AD35

AD36

AD37

AU38

AU39AU43 Eye Closure

AU45 Blink  

AU46 Wink  

Lip Wipe

 Nostril Dilator 

 Nostril Compressor 

Blow

Puff 

Cheek Suck 

Tongue Bulge

Jaw Thrust

Jaw Sideways

Jaw Clencher 

Lip Bite

Lips toward Each other 

Tongue out

 Neck Tightener 

Table 8. More grossly defined Actions in the Facial Action Coding System

Description

 

 Additional Nonverbal Codes 

In addition to the FACS action units, we created additional codes for gaze and head

 positions, movements and social orientation (towards or away from the interviewer). Even

though FACS suggests certain codes for some of these event types, not all the actions we

wanted to include were accounted for in FACS.

Gaze: gaze orientation was scored for two modalities: the participant could be scored

either as looking at or away from the interviewer (“look at”/”look away”). We determined

several position codes for the eyes, these were: looking straight; looking away and to the side

(on the left since the experimentator was seated to the right of the participant); looking up or

down; blinking and the upper eyelids drooping (AU43 in the FACS system).

 Head: as for gaze, the head could be said to either be oriented on “Head On” or away

from the interviewer “Head Away”. Head movement codes include: the chin lowering or

raising on a vertical axis (Head Lower; Head Raise); Diagonal movements upwards or

downwards (Head raise and turn; Head lower and turn); horizontal movements either to the

right or to the left (Head turns) as well as lateral head tilts (Head tilting). Two emblems

 performed with the head are also coded: head nods (as in saying yes) and head shakes (as in

saying no). A last category of head codes involves head positions (positions of the head that

Page 50: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 50/282

46

are maintained at least 2 seconds). These head position codes were: head down; head raised,

head turned away (from the interviewer to the left side of the participant). Head laterally tilted

“head tilted” either to the left or to the right. Finally two types of extra-communicative

gestures were coded: manipulators (ex. the participant manipulates a pen or her glasses) and

auto contacts (ex. the participant is putting her hand in her hair).

Speech and Voice Codes 

The last categories of codes concern behaviors related to the flow of speech, verbal

encoding difficulties, nonverbal vocalizations - laughter’s and tears - and phatic devices like

word or sentence stresses. In order to score each of these categories we first had to align the

written transcriptions of the sample video files with the sound waves of the recorded voices of

the participants. In order to do this time dependent transliteration we used the PRAAT voice

acoustic analysis tool (Boersma and Weenink, 2005) and subsequently imported the text filesas a track into Anvil. The transcription track of Anvil’s annotation window contains the word

 by word orthographic transcription of the speaker's propositional statement in each video

samples.

Speech flow: For each record file we did discriminate between segments where a

 participant was speaking from those where she remained silent (pause). Only “pauses” lasting

¼ of a second or more were taken into account.

Verbal encoding difficulties: We defined two different event types for verbal encoding

difficulties: “hedges” and “disfluencies”. Both were scored for occurrence and duration.

Hedges are a special case of discourse markers, which Lakoff (1972) defines as: «words

whose job it is to make things more or less fuzzy”. “kind of ”; “sort of”;” somehow”;”like” etc.,

are considered to be fuzzy hedges. Disfluencies reflect production problems coming along

with spontaneous speech. Following Shriberg (1999), we code the following features as

disfluencies: (1) filled pauses (”uh”,”um”), (2) repetitions (”the the”), (3) repairs (”that’s her

 fault- his fault ”), and (4) false starts (” I was feeling really - I should have told her ”).

Words or sentence stresses  were scored on an “emphasis” track. Emphasis was

defined as a clearly perceived change in vocal intensity during speech segments (single words

or sequence of words). Vocal intensity can increase (moderate or strong) or decrease

(reduced).

 Non-linguistic vocalizations codes include laughter and sobbing. They were coded at

three levels of intensity: low, moderate or strong.

Page 51: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 51/282

47

Scoring procedure and reliability assessment

FACS coding was performed by the author and an undergraduate student getting

credits for a Master’s degree in psychology at the University of Geneva in 2008. Reliability of

facial action coding was assessed in several ways. First, the author took and succeeded the

FACS final test achieving a mean agreement ratio of 0.88 with the authors of FACS (minimal

requirement for passing is set at 0.70). The second coder did not attempt the final test but was

trained in FACS with certified FACS coder, Prof. Susanne Kaiser. Her training took place

over a period of one semester prior to the coding of the research videos. Besides using the

FACS manual as a constant aid to scoring decision, we established a scoring protocol to

insure adequate comparability in procedures. Scoring by both coders was performed in our lab

on a computer equipped with a 17 cm screen, resolution 1680 x 1050, sampling rate 60 Hz.

During the scoring phase both the author and the assistant coder worked independently and

were blind as to which judgment clusters each sequence belonged to. Each sequence was

viewed mute to avoid being influenced by speech content. The first pass was viewed at

normal speed to get a realistic impression of the sequence. On successive pass, we viewed the

record in slow motion from beginning to end, looking at each individual AU independently,

always starting with the upper face and finishing in the lower face region. When a scorable

action was identified, a « start » and « end » tags were placed at the onset and offset of the

event. At this stage, precise location of the event on the time line was done at a frame by

frame resolution. When it was difficult to determine if an AU was involved, we reviewed the

event a maximum of three times. If the uncertainty was not resolved with three reviews, we

scored as though the suspected AU(s) did not occur. Thus, only the most obvious aspects of

the activity were scored.

Exhaustive FACS coding can be problematic when subjects are speaking because

certain lower face AUs may be involved in speech articulation: 10, l4, 16, 17, 18, 20, 22, 23,

24, 25, 26, and 28. Initially, Ekman discouraged scoring AUs 17, 18, 22, 23, 24, 25, or 26 if

they coincided with speech and recommended instead an action descriptor 50 to indicate thatthe person was talking. In the 2002 version of the FACS Investigator manual, he revised his

opinion claiming that: « …we have found since that all these actions can be scored and we

now only omit 25 and 26 when 50 is scored. For almost all of these AUs the amount of action

required by talking is below what has been set as the criteria for the B intensity in the FACS

manual. » (Ekman and Hager, 2002). In other words, the opinion expressed is that coders should

Page 52: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 52/282

48

 be sensitive to the intensity of an action when deciding whether or not to code during speech.

When actions are more intense than needed for mere articulation these actions ought to be

scored. Nevertheless, to remain cautious, we decided for this study not to score AU16, AU18

AU19, AU22, AU25, AU26, AU27, AD18 and AD19 while subjects were speaking. Any

miscellaneous and other non FACS related codes were scored as described above. The

Master’s student double-coded 80 video sequences (40% of the corpus) extracted randomly

from the core dataset. Because, we weren’t able to recruit another person to work on the “non

FACS” codes, we assessed our own intraindividual reliability for these categories. This was

done by rescoring 30% of the data set on these codes, with a one year interval between the

two sessions. In all cases, scoring agreement was quantified with Cohen's Kappa. Cohen's

Kappa is a standard measure of observer agreement. It is defined as Kappa = ( p observed - p 

chance) / (1 -  p  chance) and can vary from 0 to 1 (Cohen, 1960, Bakeman and Gottman,

1997). Coefficients ranging from 0.40 to 0.60 indicate fair reliability. From 0.61 to about 0.75

coefficients are considered good; 0.75 or higher indicate excellent reliability (Fleiss, 1981).

The reliability of FACS scoring was assessed at two levels of analysis: 1) Agreements on the

occurrences of individual AU scoring; and 2) temporal precision of individual AU scoring for

onsets and offsets. In a seminal work on scoring reliability of FACS codes for non acted

expressions, Sayette and al. (2001) have shown that a precise frame by frame unit of

measurement usually provide adequate Kappa’s, but that the coefficients significantly

improve when using a 1/6th. For most purposes they consider a ½ second tolerance window

acceptable. Since brief latencies are crucial to our hypotheses we found it necessary to use

smaller tolerance windows. In assessing precision of scoring, we used tolerance time windows

of 0, and 5 frames, which correspond to a reliability of 1/25 th  to 1/6th  of a second,

respectively. Coders were considered to agree on the occurrence of an AU if they both

identified it within the same time window. Results are reported in tables 9, 10, 11 and 12.

Action Units Frames Occurrence 1/25th 1/6th 1/25th 1/6th

AU1 1913 0.79 0.71 0.79 0.57 0.68

AU2 436 0.88 0.80 0.87 0.64 0.80

AU1+2 14787 0.82 0.74 0.80 0.65 0.78

AU4 2954 0.87 0.69 0.82 0.66 0.81

AU5 8314 0.92 0.67 0.91 0.60 0.90

AU6 5342 0.70 0.58 0.70 0.49 0.61

AU7 2882 0.68 0.49 0.67 0.51 0.65

Table 9. Kappa's Coefficients for Single Upper Face Action Units

Upper Face Codes

Onset Offset

Tolerance window (seconds)

 

Page 53: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 53/282

49

Action Units Frames Occurrence 1/25th 1/6th 1/25th 1/6th

AU9 2552 0.85 0.69 0.80 0.66 0.78

AU10 7026 0.91 0.79 0.91 0.70 0.80AU11 380 0.38 0.27 0.35 0.22 0.28

AU12 12881 0.93 0.87 0.90 0.59 0.68

AU12A 1359 0.74 0.65 0.72 0.50 0.61

AU12U 458 0.81 0.63 0.81 0.60 0.76

AU13 62 0.35 0.30 0.32 0.25 0.28

AU14 2964 0.78 0.69 0.76 0.58 0.70

AU14A 114 0.67 0.48 0.60 0.45 0.62

AU14U 1469 0.72 0.61 0.72 0.59 0.70

AU15 5463 0.68 0.59 0.65 0.54 0.59

AU16 1584 0.64 0.54 0.64 0.58 0.62

AU17 10027 0.82 0.75 0.81 0.72 0.75

AU18 272 0.30 0.21 0.29 0.20 0.25AU20 2260 0.78 0.70 0.75 0.65 0.73

AU22 173 0.32 0.29 0.32 0.28 0.30

AU23 1811 0.65 0.58 0.63 0.50 0.59

AU24 1901 0.69 0.54 0.67 0.61 0.63

AU25 13149 0.92 0.82 0.90 0.70 0.88

AU26 9044 0.93 0.75 0.89 0.72 0.89

AU27 76 1.00 0.80 0.96 0.70 0.76

Table 10. Kappa's Coefficients for Single Lower Face Action Units

Lower Face Codes

Onset Offset

Tolerance window (seconds)

 

AU and AD Frames Occurrence 1/25th 1/6th 1/25th 1/6th

AU8(25) 0 -- -- -- -- --

AD19 74 0.31 0.26 0.27 0.21 0.28

AU21 607 0.49 0.43 0.48 0.40 0.45

AD29 28 -- -- -- -- --

AD30 22 -- -- -- -- --

AU31 0 -- -- -- -- --

AD32 179 0.66 0.52 0.65 0.51 0.60

AD33 343 0.70 0.63 0.70 0.62 0.68

AD34 40 -- -- -- -- --

AD35 30 -- -- -- -- --

AD36 18 -- -- -- -- --

AD37 351 0.82 0.75 0.80 0.70 0.76

AU38 101 0.36 0.23 0.32 0.20 0.27

AU39 101 0.28 0.21 0.25 0.22 0.30

Table 11. Kappa's Coefficients for Miscellaneous FACS Codes

Onset Offset

Miscellaneous Codes Tolerance window (seconds)

 

Page 54: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 54/282

50

Action Units Frames Occurrence 1/25th 1/6th 1/25th 1/6th

Blink  9691 0.90 0.82 0.90 0.76 0.80

Eyelids Droop 4857 0.85 0.78 0.83 0.69 0.72Look At 15222 0.96 0.80 0.94 0.79 0.92

Look Away 18828 0.95 0.70 0.89 0.83 0.90

Look Down 7602 0.80 0.76 0.79 0.74 0.79

Look Up 1070 0.87 0.69 0.82 0.70 0.78

Lower Head 1380 0.94 0.83 0.91 0.78 0.89

Head Turns 2492 0.83 0.77 0.81 0.78 0.80

Head Down 1223 0.89 0.71 0.79 0.74 0.79

Head Raise 2065 0.76 0.69 0.74 0.68 0.70

Head Raise and Turn 2980 0.92 0.73 0.92 0.80 0.89

Head Lower and Turn 2240 0.74 0.71 0.72 0.69 0.73

Head Raised 1178 0.75 0.65 0.71 0.58 0.68

Head On 15869 0.90 0.80 0.88 0.75 0.82

Head Turned Away 11237 0.71 0.60 0.69 0.65 0.70

Head Tilted Side 3147 0.83 0.74 0.80 0.70 0.80

Head Tilting Side 3205 0.70 0.49 0.58 0.60 0.69

Head Shake 2861 0.87 0.82 0.87 0.78 0.83

Head Nod 1653 0.93 0.88 0.92 0.76 0.90

Pause 15917 0.97 0.80 0.95 0.74 0.79

Speak  27748 0.96 0.90 0.95 0.91 0.94

Hesitation 1559 0.88 0.85 0.88 0.76 0.83

Verbal Filler  1411 0.77 0.70 0.75 0.68 0.72

Word Stress 3248 0.80 0.72 0.80 0.76 0.79

False Start 3247 0.96 0.88 0.94 0.85 0.92

Manipulator 0 -- -- -- -- --

Autocontact 455 0.82 0.78 0.82 0.80 0.82

Laughing 1352 0.94 0.87 0.93 0.85 0.90

Crying 833 0.97 0.90 0.95 0.76 0.92

Onset Offset

Tolerance window (seconds)

Table 12. Kappa's Coefficients for non FACS Codes

 Non FACS Codes

Results 

Using a 1/6th-second tolerance window, all the upper and lower face action units, but

four AUs 11 (Nasolabial furrow deepener), 13 (Sharp lip puller), 18 (Lip pucker) and 22 (Lip

 funneler)  had good to excellent reliabilities for scoring onsets (see tables 9 and 10). The

results are similar for offsets scoring except for AU23 (Lip tightener)  whose coefficient

regresses to a still acceptable 0.59 value. Generally, as the tolerance window decreased to an

exact frame criterion AUs with good to excellent reliability decreased. However, even at this

smallest possible tolerance window, 16 of the 27 AUs continued to have good to excellent

reliability for both onset and offset scoring. Moreover, AUs 6 (Cheek raise), 7 (Lids Tight),

14A (Asymetric dimpler), 15 (Lip corner depressor), 16 (Lower lip depressor), 23 (Lip

tightener) and 24 (Lip presser), still achieved acceptable scores at 1/25th-second ranging from

Page 55: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 55/282

51

0.40 to 0.59. We are not able to report Kappa’s for 50% of the miscellaneous codes This is

due in part to the low frequency of 7 codes of that category in the database : 8(25) ( Lips

toward each other) 29 (Jaw thrust), 30 (Jaw sideways), 31 (Jaw clencher), 34 (Puff), 35

(Cheek suck), 36 (Tongue bulge). Furthermore, agreement on occurrences for three more

miscellaneous actions: 19 (Tongue show), 38 (Nostril dilate) and 39 (Nostril compress); yield

unsatisfactory coefficients. The large majority of additional non FACS scores have good to

excellent Kappa’s for occurrences as well as event’s start and end times at an exact frame

resolution. Two exceptions are limit scores for the onsets of  Head Tilting Side  (1/25th and

1/60th) and the offset of  Head Raise at 1/25th-second. Generally, reliability analysis indicate

good to excellent scores at an exact frame resolution for both lower and upper face action

units that are elements of emotion prototypes as proposed by discrete emotion theorists. One

exception is AU11 « Nasolabial furrow deepener »  sometimes involved in « Sadness » 

expressions. Note however that scored AU11 represent less than one percent of the total upper

and lower face action units in the database. FACS miscellaneous codes are shown to be unfit

for further analysis due to low frequency of occurrences and unreliable Kappa’s. On the other

hand, our additional nonverbal categories are definitely stable in time and can be included in

further multimodal analysis.

Page 56: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 56/282

52

Descriptions of scores in database

Before we can address specific questions concerning the patterning of facial actions, it

is necessary to insure that the constitutive elements of these patterns are actually present in

our database. In figures 8 to 12 we report the raw frequency and relative percentages of

recorded scores.

 Note, that these frequency distributions do not imply any rank order with regards to

the importance of single actions. Events occurring rarely may be highly important for gaining

a specific impression. Nevertheless, in comparison to frequently occurring codes, these

elements cannot be relied upon in quantitative analysis.

Table . Frequency and Percentage Distributions of Code Categories in Database

104 (1%)

1328 (12%)

2252 (21%)

7294 (66%)

0

1000

2000

3000

4000

5000

6000

7000

8000

 Non FACS Codes Lower Face Upper Face Miscellaneous

Code Categories

Figure 8. Frequency and Percentage Distribution of Codes Categories in Database

Page 57: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 57/282

53

Table . Frequency and Percentage Distributions of Upper Face Action Units in Database.

11 (1%)

39 (4%)

72 (8%)87 (9%)

117 (13%)

254 (28%)

337 (37%)

0

50

100

150

200

250

300

350

400

 AU1+2 AU5 AU7 AU6 AU4 AU1 AU2

Upper Face Codes

Figure 9. Frequency and Percentage Distribution of Upper Face Action Units in Database 

Table . Frequency and Percentage Distributions of Lower Face Action Units in Database

  2   (   0  %   )

  3   (   0  %   )

  3   (   0  %   )

  1  2   (   1  %

   )

  1  3   (   1  %

   )

  1 4   (   1  %

   )  7  0   (   3  %

   )

  7  2   (   3  %

   )

  7  7   (   3  %

   )

  8  3   (  4  %   )  1  0

  5   (   5  %   )  1  5

  5   (   7  %   )

  1  6  5   (   7  %

   )

  1  6  7   (   7  %

   )  2  3  1   (   1  0

  %  3  1

  0   (   1 4  %

  3  1  9   (   1 4

  %

 4  5  1   (   2  0

  %   )

0

50

100

150

200

250

300

350

400

450

500

   A   U   2   5

   A   U   2   6

   A   U   1   7

   A   U   1   2

   A   U   1   4

   A   U   1   0

   A   U   1   5

   A   U   2   0

   A   U   2   4

   A   U   2   3

   A   U   1   6

   A   U   9

   A   U   2   2

   A   U   1   1

   A   U   1   8

   A   U   1   3

   A   U   2   8

   A   U   2   7

Lower Face Action Units Codes

Figure 10. Frequency and Percentage Distribution of Lower Face Action Units in Database 

Unsurprisingly, the most frequent event types scored in the database are gaze, head

and speech codes. These event types cover 66% of the codes scored in the database. Gaze and

head codes are predominant because they refer to behavioral categories that are always coded

active on at least one of their modalities. This is also true for the “speak” and “pause” codes.

Lower face action units come next with 21% of the totality of event types followed by 12% of

upper face action units. Finally the FACS category of miscellaneous actions is way behind

representing 1% of scored event types. For upper face actions the most frequent event type is

AU1+2 (bilateral eyebrow raise) and the least frequent is AU2 a unilateral raise of the outer

 part of the brow. For lower face action units the most frequent action is the lips parting

(AU25) followed by the jaw opening (AU26). Three actions do not reach a 1% threshold in

the lower face category. These are: AU13 (Chaplin smile); AU27 (Mouth stretch) and AU28

Page 58: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 58/282

54

(Lips Suck). All action units that are predicted to enter in the composition of facial

expressions of emotions have been produced by the participants to the emotion eliciting task.

In the next section, we will introduce how FACS action units are usually collected and then

interpreted as expressive displays of 7 discrete emotions.

Page 59: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 59/282

55

   G  r  a  p   h   (   )   F  r  e  q  u  e  n  c   i  e  s  a  n   d   P  e  r  c  e  n   t  a  g  e  s   D   i  s   t  r   i   b  u   t   i  o  n  s  o   f   F   A   C   S   A  c   t   i  o  n   U  n   i   t  s   i  n   D  a   t  a   b  a  s  e

     4     5    1    (    1    2      %    )

     4    1    1    (    1    1      %

    )    3    3     7

    (    9      %    )

    3    1    9    (    9      %

    )

    3    1    0    (     8      %

    )

    2     5     4    (     5      %

    )

    2    3    1    (     6      %    )

    1     6     7    (     5      %

    )

    1

     6     5    (     4      %    )

    1     5     5    (     4      %    )

    1    1     7    (    3      %

    )

    1    0     5    (    3      %

    )     7    2    (    2      %

    )

     8     7    (    2      %

    )     7    0

    (    2      %    )

     7    2    (    2      %    )

     7     7    (    2      %    )

     8    3    (    2      %    )

    3    9    (    1      %

    )

    3    1    (    1      %    )

    2    0    (    1      %    )

     0     5     0

     1     0     0

     1     5     0

     2     0     0

     2     5     0

     3     0     0

     3     5     0

     4     0     0

     4     5     0

     5     0     0

     A     U     2     5

     A     U     4     3

     A     U     1    +     2

     A     U     2     6

     A     U     1     7

     A     U     5

     A     U     1     2

     A     U     1     4

     A     U     1     0

     A     U     1     5

     A     U     7

     A     U     2     0

     A     U     4

     A     U     6

     A     U     9

     A     U     1     6

     A     U     2     3

     A     U     2     4

     A     U     1

     A     U     2     1

     A     D     3     7

   F   i  g  u  r  e   1   2 .   F  r  e  q  u  e  n  c  y  a  n   d   P  e  r  c  e  n   t  a  g  e   D   i  s   t  r   i   b  u   t   i  o  n  o   f   F   A   C   S   A  c   t   i  o  n   U  n   i   t  s   i  n   D

  a   t  a   b  a  s  e

 

   T  a   b   l  e .

   F  r  e  q  u  e  n  c  y  a  n   d   P  e  r  c  e  n   t  a  g  e   D   i  s   t  r   i   b  u   t   i  o  n  s   f  o  r   N  o  n   F   A   C   S  c  o   d  e  s   i  n   D  a   t  a   b

  a  s  e

   9   (   0    %

  )

   3   2

   (   0    %  )

   4   3   (   1    %

  )

   6   0   (   1    %

  )

    7   3   (   1    %

  )

   3   8   5   (   5    %  )

   4   1   1   (   6    %  )

   4   8   5   (    7    %  )

   5   3    7   (    7    %  )

   5   4   2   (    7    %  )

   8   1   5   (   1   1    %  )

    7   9   2   (   1   1    %  )    6   3   1   (   9    %

  )

   2   8   6   (   4    %  )

   2   6   4   (   4    %  )

   2   2   4   (   3    %  )    2

   2   4   (   3    %  )

   2   1   0   (   3    %  )

   2   0   5   (   3    %  )

   1   8   3   (   3    %  )

   1   6   8   (   2    %  )

   1   3   5   (   2    %  )

   1   2   2   (   2    %  )

   1   1   2   (   2    %

  )   1   1   2   (   2    %

  )   1   0    7   (   1    %

  )   9   4

   (   1    %  )

   4   (   0    %

  )

   0   (   0    %

  )

      0

      1      0      0

      2      0      0

      3      0      0

      4      0      0

      5      0      0

      6      0      0

      7      0      0

      8      0      0

      9      0      0

   L   o   o   k    A    w  a   y

   B  l  i   n   k

    H  e  a   d   O   n

   L   o   o   k    A  t

   P  a   u  s  e

   S   p  e  a   k

   E   y  e  l  i   d  s   D  r   o   o   p

    H  e  a   d   T   u  r   n  e   d

    A    w  a   y

   L   o   o   k   D   o    w   n

    H  e  a   d   T  i  l  t  i   n   g

   S  i   d  e

    H  e  a   d   L   o    w  e  r  s

  a   n   d   T   u  r   n

    H  e  a   d   T   u  r   n  s

   F  a  l  s  e   S  t  a  r  t

    H  e  a   d   R  a  i  s  e

  a   n   d   T   u  r   n

    H  e  a   d   R  a  i  s  e

     W   o  r   d   S  t  r  e  s  s

   L   o    w  e  r    H  e  a   d

    V  e  r   b  a  l   F  i  l  l  e  r

    H  e  a   d   T  i  l  t  e   d

   S  i   d  e

    H  e  s  i  t  a  t  i   o   n

   L   o   o   k   u   p

    H  e  a   d   S   h  a   k  e

    H  e  a   d   D   o    w   n

    H  e  a   d   R  a  i  s  e   d

    H  e  a   d    N   o   d

   L  a   u   g   h  i   n   g

    A   u  t   o  c   o   n  t  a  c  t

   C  r   y  i   n   g

    M  a   n  i   p   u  l  a  t   o  r

   C  o   d  e  s   L  a   b  e   l  s

    F   i  g  u  r  e   1   1 .

 

Page 60: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 60/282

56

Interpretation of FACS Codes with EMFACS/FACSAID

With FACS coding, data collection is independent of data interpretation. When

scoring, the focus is exclusively on the identification of specific movements that are translated

into numerical codes. These codes refer to no more than a precise description of facial actions

detailed in the FACS manual. There is no a priori assumption between a code and its possible

 psychological meaning, either in terms of emotional or otherwise communicative signals.

With EMFACS/FACSAID dictionaries, FACS coded facial events can be classified into

emotion and non-emotion categories. EMFACS (EmotionFACS) refers to both: a) a

simplified FACS coding manual and b) an interpretation dictionary implemented in a

computer program (Levenson, 2005). The EMFACS dictionary determines whether coded

events include core facial movement’s characteristic of prototypical facial displays of

emotion. References to emotions in table 13 cannot be used as a definite guideline. They

correspond to possible interpretation originally proposed by Tomkins and mainly validated on

the basis of recognition studies from posed photographs by Ekman and Friesen (1975, 1978).

AU Description Surprise Fear Happiness Sadness Disgust Anger Contempt

1 Inner Brow Raiser     x

1+2 Inner and outer Brow Raiser    x x

4 Brow Lowerer     (x) (x) x

5 Upper Lid Raiser     x x

6 Cheek Raiser     x

7 Lid Tightener     x

9 Nose Wrinkler x

10 Upper Lip Raiser     x x x

12 Lip Corner Puller     x

14 Dimpler     x

15 Lip Corner Depressor    x

17 Chin Raiser     x x x

20 Lip Stretcher     x

23 Lip Tightener     x

24 Lip Pressor     x

25 Lips part   (x) x

26 Jaw drop   x (x)

Emotion Labels

Table 13. EMFACS AUs and Hypothetical Relations to Discrete Emotions

 

 Nevertheless, the EMFACS dictionary has been used for the classification of

spontaneous facial behavior in many published studies (Berenbaum & Oltmanns, 1992;

Page 61: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 61/282

57

Ekman and al., 1990, 1997; Keltner and al., 1995; Matsumoto, Haan, Gary, Theodorou, &

Cooke-Carney, 1986; Rosenberg & Ekman, 1994; Rosenberg, Ekman, & Blumenthal, 1998,

Rosenberg and al. 2001; Steimer- Krause, Krause, & Wagner, 1990), as well as in studies that

used FACS and then virtually the same dictionary codes to produce emotion predictions but

did not mention EMFACS (Chesney and al., 1990; Ekman and al., 1988; Frank and al., 1993;

Gosselin and al., 1995; Heller & Haynal, 1994; Keltner, 1995; Levenson, Carstensen, Friesen,

& Ekman, 1991; Messinger, Fogel, & Dickson, 2001; Ruch, 1993, 1995; Sayandte and al.

2003).

All AUs combinations can be entered in the EmotionFACS (EMFACS) dictionary to

obtain emotion predictions (Ekman & Friesen, 1982a; Matsumoto, Ekman, & Fridlund, 1991).

The dictionary is accessed via a computer program made available to all researchers who have

FACS data (Levenson, 2005). Figure 14, present a flowchart of the various possible EMFACS

outputs.

Action Units and

Descriptors No interpretations

Interpretations

Conversational facial

gestures

(Ex: eyebrow flash)

Prototypical displays of basic

emotions

 Negatively valenced

 Anger Contempt

 Disgust Fear Sadness

 No valence

Surprise

Positively valenced

 Enjoyment 

Controlled enjoyment 

Social smiles

“non enjoyment”

Masking

smilesBlends of negative

displays

Addtional EMFACS Categories

Figure 13

Structure of the EMFACS Dictionary

(Derived from Merten, 2001)

 

EMFACS identifies AUs that are theoretically related to facial expressions of emotion

originally proposed by Tomkins (1962, 1963) and partly empirically verified by studies of

 judgments of expressions by Ekman and colleagues over 20 years (Ekman and al., 1990;

Ekman & Friesen, 1971; Ekman and al., 1980; Ekman, Friesen, & Ellsworth, 1972; Ekman

and al., 1988; Ekman, Sorenson, & Friesen, 1969). The facial configurations associated with

Page 62: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 62/282

58

the emotion predictions were first listed in Ekman (1972) and in the original FACS manual

(Ekman & Friesen, 1978). Prototypic examples of the emotion facial configurations were

described in Ekman and Friesen’s (1975) Unmasking the Face and portrayed in their Pictures

of Facial Affect   (Ekman & Friesen, 1976) and the  Japanese and Caucasian Facial

 Expressions of Emotion (Matsumoto & Ekman, 1988). Tables 14, 15 and 16 provide the most

common predictions of emotion related facial categories derived from the EMFACS

dictionary.

Anger Sadness Fear Contempt Positive emotions Surprise Disgust

 AU17+23 AU1 AU1+2+4 AU1+2+14 AU6+12 (D-Smile)  AU1+2+5 AU9

 AU17+24  AU6+15 AU1+2+5 AU10U AU12 (Social Smile)  AU1+2+26 AU10

AU4+5+10  AU6+17AB AU1+2+5+20 AU12U AU5+26 AU10+12

AU4+7+10 AU6+15+17 AU1+2+20 AU14U  

AU4+5+7  AU6+11+15 AU20

AU4+5+23  AU6+11+17

AU4+5+23+25 AU6+11+15+17

AU23  AU11+15

AU4+7  AU11+17

AU11+15+17

AU1+14

AU1 +10

AU1+14

Table 14. EMFACS predictions for "Basic" emotions prototypes

 

Anger/Contempt Anger/Disgust Fear/Surprise Sadness/Anger Sadness/Disgust Negative unspecified

AU4+10U AU4+5+9 AU1+2+5 AU1+23 AU1+9 AU1+10

AU4+14U AU4+7+9 AU1+2+5+7 AU1+24 AU1+4+5AU4+7+14U AU9+23 AU1+2+5+7+25 AU20+23

AU4+7+10U AU9+15+23 AU1+2+5+25 AU1+2+4+9+20

AU9+17+23 AU1+2+5+20+25

Table 15. EMFACS predictions for typical "Blended" expressions

 

Table 16. EMFACS predictions for typical "Masked" expressions

Anger Sadness Fear Contempt Surprise Disgust

AU12+23 AU1+12 AU1+2+4+12 AU6+12+14U AU1+2+12 AU6+12+9

AU6+12+23 AU1+12U AU6+12+20 AU6+12+14U AU1+2+5+12 AU9+12

AU6+12+23+14 AU1+6+12 AU12+20 AU12+14U AU1+2+5+6+12 AU10+12

AU6+12+23+15 AU1+4+12 AU12+14U AU6+12+10

AU6+12+23+17 AU1+4+6+12 AU10U+12

AU6+12+23+24 AU1+5+12 AU6+10U+12

AU12+23+14 AU1+4+5+12 AU7+12+14U

AU12+23+15 AU1+4+5+6+12 AU7+12+14U

AU12+23+17 AU1+5+7+12

AU12+23+24 AU1+5+6+12

AU1+12+17  

Page 63: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 63/282

59

Methodological issues in measuring the co-occurrencesof Action Units

The traditional scoring procedure for the EMFACS system is event based. This means

that the duration, the dynamics and the sequential unfolding of the facial actions are not

accounted for. The EMFACS scoring manual instructs coders to view a video record in real

time concentrating on any movement of the following upper face AUs: 1, 2, 4 and 5. When

the coder detects any activity of any of those AUs he/she should observe the upper and lower

face and determine all additional AUs that are in the event. If the event contains the AUs of at

least one core combination (see table 17 for a list of core AUs/combinations), the coder is

further instructed to:

"Locate one time point (or frame number) when all of the AUs scored in the

event first reached a mutual apex." (Ekman, Irwin and Rosenberg, 1994, p. 8).

When this point has been located the event is scored. This scoring strategy has the

advantage of retaining only the most prototypical displays that have been shown to be

relatively well recognized in judgments studies. The disadvantage is of course that the

 procedure precludes any discovery of potentially new and meaningful patterns. At best one

finds the predicted pattern if they exist in a dataset at worst nothing comes out.

Page 64: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 64/282

60

Upper Face Core AUs Lower Face Core AUs Lower and Upper Face

and combinations and combinations AUs combinations

  AU1+2+4 AU9 AU1+2+26

  AU1+2+5 AU10 AU1+2+27  AU5 AU10A AU1+2+14

  AU7 AU10U AU5+26

  AU12A AU5+27

  AU12U AU6+12

  AU14* AU6+15

  AU14A AU6+17

  AU14U

  AU14+Head Tilt**

  AU14+Eyes gazing to the side**

  AU14+Head moving uppwards**

  AU14+Eyes gazing upwards**

  AU15

  AU17

  AU17+23

  AU17+24

  AU20

  AU23

  AU24

 

*If a bilateral 14 is scored, one must also score whether or not the person is swallowing simultaneously. The AU for swallowing is 80.

 Note: AU1 is not to be considered a core AU for the combination 1+2. AU1+2 is sco red only when AUs 4, 5, 14, 26 or 27

 are present or, when the requirements for another core combination in the upper or lower face have been met.

Source: EMFACS-V8 coder's ins truction manual (Ekman, Irwin & Rosenberg, 1994).

**To be scored with a symmetrical 14, the add itional movements mus t directly preeced or overlapp with the AU.

Core EMFACS AUs and AUs combinationsTable 17. Core EMFACS AUs and Combinations

Since our main interest lies with the unfolding of facial actions in time, we had to

define an alternative coding procedure that would take into account the onset and offset points

for each event type that was scored. With information on both the start and end time of an

event type we could then easily compute its duration, as well position in a sequence and time

of overlap with other events (see figure). With this procedure we could then operationalize the

co-occurrences of several event types (two or more facial actions with or without other

nonverbal behavior codes) as the number of overlapping time units shared between the codes.

On the descriptive level co-occurrence analysis defined as such provides a fine grained

description of momentary facial configurations that judges are exposed to when asked to

report their impressions of a video segment. On a more theoretical level the analysis of co-

occurrences provides empirical data against which hypothesis concerning the relevance of

 prototypical facial patterns in attributing emotional meaning to a facial display can be tested.

In this section we report the methodological strategies used to analyze co-occurring codes. At

Page 65: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 65/282

61

this time, we’re not yet interested by the sequential structure of the datasets. Rather, what

we’re focusing on in is the identification in our dataset of EMFACS predicted facial patterns

of two or more AUs overlapping in time.

Given: AU1

Targets: AU4; AU5; AU12

Onset Offset

AU4 duration AU5 duration AU12 duration

Boundaries of overlapping time

units between « Given » and

« Target » codes.

AU1 duration

Figure .Figure 15Figure 14.

Page 66: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 66/282

62

Measuring Co-ocurrences of Facial Actions with GSEQ

(Generalized Sequential Querier)

In order to test the hypothesis that some EMFACS predicted patterns of facial actions

were more characteristics of certain rating cluster than others we used the GSEQ statistical

 package (Quera, Bakeman and Gnisci, 2007). The program has been specifically designed for

the analysis of sequential observational data. In this case we used it to compute simple

contingency table statistics.

Contingency table statistics with GSEQ 

In GSEQ most of the overlapping codes analyses performed are based on 2x2

contingency tables. 2x2 table stats are summary statistics for 2x2 tables. When these stats are

selected for larger than 2x2 tables, GSEQ forms as many separate 2x2 tables as there are cells

in the larger table. Each cell becomes cell X11 in one of these tables and cells X12, X21, and X22 

are formed by collapsing the appropriate cells from the larger table.

Let a = X11, b = X12, c = X21, and d = X22. Then:

Table 18 shows a joint frequency table output of GSEQ where rows represent any

“given” event type and columns represent any “target” event type. Individual cells indicate

how many time units a subject is producing a “target” behavior B while also displaying a

“given” behavior A. Let’s take the example of three Action Unit streams – codes for AU1+2

and AU4 are assigned a “given” category and the code for AU5 is treated as the “target”

category. The resulting 3x2 contingency table looks like Table 18.

Table 18

Givens Targets

AU5

&

AU1+2AU4

&

The first row of the table divides the time units (seconds) coded AU1+2 into those that

were also coded AU5 and those that were not (here the ampersand represents the residual

Page 67: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 67/282

63

category every other code not specified as either “givens” or “targets”). The second row

divides the seconds coded AU4 (that were not also coded AU1+2) into those that were also

coded AU5 and those that were not. Finally, the last row indicates the number of seconds

coded AU5 but none of the other codes specified as “givens”. Joint frequency is the number

of tallies observed in a cell: Xij (where i  is the row subscript and j the column subscript).

Based on these joint frequency tables it becomes possible to compute conditional and

marginal probabilities. Conditional probability being the probability of some event  A, given

the occurrence of some other event  B. Conditional probability is written  P ( A| B), and is read

"the probability of A, given B" . So a joint probability is the probability of two events in

conjunction. That is, it is the probability of both events together. The joint probability of  A 

and B is written P ( A∩ B). Then, the marginal probability is the unconditional probability P ( A)

of the event A; that is, the probability of A, regardless of whether event B did or did not occur.

If  B  can be thought of as the event of a random variable  X   having a given outcome, the

marginal probability of  A  can be obtained by summing (or integrating, more generally) the

 joint probabilities over all outcomes for  X . For example, if there are two possible outcomes

for  X  with corresponding events  B  and  B' , this means that  P(A)=P(A∩ B)+P(A∩ B’). This is

called marginalization. From these joint probability tables it becomes possible to compute

index of associations. Perhaps the most straightforward descriptive index of association is the

odds ratio. Imagine that we label the cells of a 2×2 table:

A B

C D

Where a, b, c, and d refer to observed frequencies of time units for the cells of a 2×2

table. Then, the odds ratio can be formalized as: Estimated odds ratio = ((A/B)/(C/D)) ; or

more commonly Estimated odds ratio = ((AxD)/(BxC)). Considering a fictional 2x2 table

such as this one:

AU5 & Total

AU1+2 20 460 480

& 20 1300 1260

Total 40 1760 1800

Page 68: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 68/282

64

Then, the odds of Action Unit 5 beginning during a time unit also coded for Action

Unit 1+2 are 20/460 or 1 to .043, whereas the odds of Action Unit 5 beginning in seconds not

coded for Action Unit 1+2 are 20/1300 or 1 to .015. That is, the odds of Action Unit 5

 beginning are about 2.87 times greater with Action Unit 1+2 than without it, which is the ratio

of the two odds (i.e., the odds ratio). The odds ratio can assume values from 0 (the odds for

the first row are vanishingly small compared to the second row), to 1 (the odds for the two

rows are the same), to infinity (the odds for the second row are vanishingly small compared to

the first row); especially when the odds ratio is greater than 1. It has the merit, lacking in

many indices, of a simple and concrete interpretation. Note that if (B or C) is zero then the

odds ratio is infinite; if (A or D) is also zero, then it is undefined. Odds ration vary from 0 to

infinity. One ('1') is the neutral value and means that there is no difference between the groups

compared; close to zero or infinity means a large difference. An odds ratio larger than 1

means that group one has a larger proportion than group two, if the opposite is true the odds

ratio will be smaller than one. If you swap the two proportions, the odds ratio will take on its

inverse (1/OR). If no cells are zero, 95% confidence intervals are given. The odds ratio gives

the ratio of the odds of suffering some fate. The odds themselves are also a ratio. To explain

this we will take the example of traditional versus experimental surgery. If 10% of operations

results in complications, then the odds of having complications if traditional surgery is used

equals 0.11 (0.1/0.9, you have a 0.11 times higher chance of getting complications than of not

getting complications). 12.5% of the operations using the experimental method result in

complications, giving odds of 0.143 (0.125/0.875). The odds ratio equals 0.778 (0.11/0.143).

You have a 0.778 times higher chance of getting complications than of not getting

complications, in traditional as compared with experimental surgery. The inverse of the odds

ratio equals 1.286. You have a 1.286 times higher chance of getting complications than of not

getting complications, in experimental as compared with traditional surgery. The problem of

the odds ratio index is that it is difficult to compare indexes that can vary to infinity. One

 possibility is to transform odds ratios into Yule’s Q.

From Odds

 ratios

 to

 Yules’s

 Q

 

Yule's Q is an association index based on transformation of the odds ratio designed to

vary, not from zero to infinity, with 1 indicating no effect, but from -1 to +1 with zero

indicating no effect, just like the Pearson correlation. For that reason, we find it more

descriptively useful than odds ratios. First, C/D is subtracted from the numerator so that

Yule’s Q is zero when A/B = C/D. Then an index of association based on the odds ratio and a

Page 69: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 69/282

65

symmetric measure taking on values between -1 and +1. One (1) implies perfect negative (-)

or positive (+) association, Zero (0) no association. In two by two tables Yule's Q is equal to

Goodman and Kruskal's Gamma. The interpretation of Q as Gamma is easiest to understand.

Each observation is compared with each other observation; these are called pairs, the

relationship between two observations. If an observation is higher in value as another

observation on both the horizontal and the vertical marginals, the pair of observation is called

concordant; if this is not the case the pair is discordant. The Gamma is the ratio of concordant

 pairs on the total number of pairs. A high Gamma means that there is a high proportion of

concordant pairs; high values on the vertical marginal tend to go with high values on the

horizontal marginal. Note that if (A or D) and (B or C) is zero, Yule's Q is undefined.

Testing for the occurrence of  EMFACS predicted facial patterns using 

Yules Qs 

Because specific facial actions patterns have been found repeatedly and cross-

culturally to signal a limited number of basic emotions, we first wanted to examine how

frequent these patterns were in our database of emotional displays. In order to address this

question our first step was to compute odds ratios and Yules Qs for the main EMFACS

 predictions in the categories of prototypical, blended and masked expressions of emotions.

 Note that for the prototypical category we only tested combinations for which empirical data

have demonstrated that they could reliably be recognized as expressing the target emotion.

Even though we couldn’t find any study systematically exploring the EMFACS predictions

for masking smiles, partial empirical validation could arguably be said to exist with studies

investigating the perceptions of distinct forms of smiles, including some action units

considered part of negative expressions (for example: Ekman, Friesen, and O’Sullivan, 1988).

As for blended negative expressions we couldn’t find any published studies having

systematically investigated how they are perceived. Note that most studies looking at the

 production of facial expressions rely on the EMFACS dictionary to assign an emotional

category to their patterns. Typically the facial combinations leading to these categorizations

are not specified. Rather, the emotional labels (anger, happiness, sadness, surprise, fearcontempt) are used to test for possible differences in groups of interest. Because one single

emotion category can encompass many distinct combinations one could hope that these have

 been previously empirically tested for their ability to communicate that emotion. In fact this is

not the case for most of them. So instead of testing all possible combinations and accept the

EMFACS interpretations at face value, we only included in the analysis the more common

Page 70: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 70/282

Page 71: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 71/282

Table 19. Odds ratios and Yules Q’s for Prototypical Expressions of Basic Emotions accor

(Ekman, Irwin and Rosenberg, 1994)

Prototype FACS 

G ive n Targe t Joint Duration Given

 Residual Given

 Total Target

 Residual Target

 Tota

Anger AU17+23 17 23 2367 17687 20054 1255 3622

Anger AU17+24 17 24 2890 17164 20054 911 3801

Anger AU4+5 4 5 755 5152 5907 15872 16627

Anger AU4+5+10 4+5 10 59 696 755 11789 11848

Anger AU4+7 4 7 1972 3935 5907 3791 5763

Anger AU4+7+10 4+7 10 192 1780 1972 11656 11848

Fear AU1+2+4 1+2 4 387 29186 29573 5520 5907

Fear AU1+2+5 1+2 5 7061 22512 29573 9566 16627

Fear AU1+2+20 1+2 20 1205 28368 29573 2546 3751

Fear AU1+2+5+20 1+2+5 20 569 6492 7061 3182 3751

Disgust AU10+12 10 12 4347 7501 11848 21414 25761

Positive AU6+12 6 12 8916 1768 10684 16845 25761

Contempt AU1+2+14 1+2 14 1562 28011 29573 4366 5928

Surprise AU1+2+5 1+2 5 7061 22512 29573 9566 16627

Surprise AU5+26 5 26 1903 14724 16627 16185 18088

Surprise AU1+2+26 1+2 26 3236 26337 29573 14852 18088

Sadness AU1+10 1 10 239 3586 3825 11609 11848

Sadness AU1+14 1 14 204 3621 3825 5724 5928

Sadness AU1+14U 1 14U 116 3709 3825 2822 2938

Sadness AU6+17 6 17 2125 8559 10684 17929 20054

Sadness AU6+15 6 15 1073 9611 10684 9853 10926

Sadness AU6+15+17 6+15 17 604 469 1073 19450 20054

Page 72: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 72/282

Blends FACS  Given Target Joint Duration Given Residual Given Total Target Residual Target Total Neithe

Anger/Contempt AU4+10U 4 10U 116 5791 5907 2088 2204 12

Anger/Contempt AU4+14U 4 14U 148 5759 5907 2790 2938 12

Anger/Contempt AU4+7+14U 4+7 14U 48 1924 1972 2890 2890 12

Anger/Contempt AU4+7+10U 4+7 10U 36 1936 1972 2168 2204 12

Anger/Disgust AU4+5+9 4+5 9 64 691 755 5040 126530 12

Anger/Disgust AU4+7+9 4+7 9 216 1756 1972 4888 5104 12

Anger/Disgust AU9+23 9 23 88 5016 5104 3534 3622 12

Anger/Disgust AU9+15+23 9+15 23 24 604 628 3598 3622 12

Anger/Disgust AU9+17+23 9+17 23 88 1352 1440 3534 3622 12

Fear/Surprise AU1+2+5 1+2 5 7061 22512 29573 9566 16627 93

Fear/Surprise AU1+2+5+7 1+2 5+7 0 29573 29573 217 317 10

Fear/Surprise AU1+2+5+7+25 1+2+5 7+25 0 7061 7061 5763 5763 11

Fear/Surprise AU1+2+5+25 1+2+5 25 1327 5734 7061 24970 26297 10

Fear/Surprise AU1+2+5+20+25 1+2+5 20+25 159 6902 7061 757 916 12

Sadness/Anger AU1+23 1 23 140 3685 3825 3482 3622 12

Sadness/Anger AU1+24 1 24 44 3781 3825 3757 3801 12

Sadness/Disgust AU1+9 1 9 243 3582 3825 4861 5104 12

Negative unspecified AU1+10 1 10 239 3586 3825 11609 11848 11

Negative unspecified AU1+4+5 1+4 5 63 674 737 16564 16627 11

Negative unspecified AU20+23 20 23 345 3406 3751 3277 3622 12

Negative unspecified AU1+2+4+9+20 1+2+4 9+20 0 387 387 196 196 1

Table 20. Odds ratios and Yules Q’s for Blended Expressions of Basic Emotions according to

Rosenber , 1994

Page 73: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 73/282

Table 21. Odds ratios and Yules Q’s for Masked prototypes according to EMFACS predictions (Ekman, Ir

Page 74: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 74/282

70

Relating nonverbal signals to emotion perception

So far, we have been able to show that 45 independent judges could agree about their

impressions of the affects being conveyed in 200 video records of spontaneously produced

dynamic facial expressions. Five factors were found to explain over 78% of the variance in

the use of 17 affective adjectives scales. These five factors could easily be interpreted as

reflecting impressions of enjoyment, hostility, embarrassment, surprise and sadness.

Furthermore a cluster analysis (K-means) demonstrated that we could distribute the 200 video

records into five groups, each of which being related strongly to one specific factor. Then we

have described how the totalities of the video samples were manually annotated for the onset

and offset times of any visible movement of the face using the categories of the FACS

system. Additionally gaze and head orientation, positions and movements as well as several

characteristics of speech related variables were also annotated. We also have reviewed the

methodological propositions suggested by proponents of basic emotion theory to interpret

facial patterns. We showed that our database contained the event types predicted to be

constitutive elements of prototypical facial expressions of emotions. Therefore we felt

confident that we could address the question of the prevalence of these prototypes in our

dataset. We are now ready to address more specific questions relating to the perception of

emotions from non acted and non static facial expressions. In the next sections, we will

compare different types of analysis to represent the same set of behavioral data in distinctive

ways. Our purpose in doing so is to determine if one type of data representation can be shown

to better account for the reasons that in our judgment study video samples were classified

according to distinct and coherent emotional categories. From now on, we will only work by

comparing facial action units and related patterns across the five rating clusters. Our first

analysis will involve a simple univariate comparison of means for single action units.

Relative frequencies of single action units across therating clusters

Univariate analysis based on comparisons of means even if they seem simplistic, are

often very valuable for the characterization of group differences. Even though our data would

not usually be considered suited for classical variance analysis for lack of a normal

distribution (see appendix 6), we still attempted to determine to what extent mean differences

for individual action units across the clusters are statistically significant. We performed a

Page 75: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 75/282

71

repeated measures analysis of variance (ANOVAS) on the relative frequencies of individual

action units for each clip with the cluster as repeated factor (five levels). Frequency is the

number of onsets recorded for each code selected for the analysis. Relative frequency is a

code's frequency divided by the sum of the frequencies for all of the selected codes. Relative

frequencies sum to 1. For readability reasons we only report differences reaching statistical

significance. AU1 (Inner Brow Raise) is significantly found more often in the sadness than in

the embarrassment cluster [F(4,195) = 2.3; p = 0.0500]. This action which raises and possibly

 brings together the inside corners of the brows, creates appearance changes on the forehead

that Ekman identifies as the « sadness brow » (Ekman and Friesen, 2003, p. 117). Differences

in the frequency for this action between the sadness, the enjoyment, hostility and surprise

clusters do not reach statistical significance. Nevertheless, we do find a significantly lower

frequency of AU1 in the embarrassment cluster compared to the other groups. The tests also

show that AU6 (cheek raise) is found significantly more often in the enjoyment cluster than in

any other group of video samples [F(4,195) = 11.70; p = 0.0000]. The relative frequency of

occurrence of AU12 (lip corner puller) is significantly highest in the enjoyment and

embarrassment clusters. Moreover the frequency of AU12 is higher in the enjoyment than in

the embarrassment cluster [F(4,195) = 7.176; p = 0.0002]. Taken individually the action unit 9

(nose wrinkler) is interpreted in EMFACS as a prototypical disgust expression. The analysis

shows that the occurrence of this action is significantly lower in the sadness than in the

hostility cluster. No other significant differences concerning this action reaches statistical

significance [F(4,195) = 7.176; p = 0.0002]. Finally, AU15 (lip corner depressor), an

important element of prototypical expressions of sadness, is found significantly more often in

the sadness cluster than in the hostility cluster [F(4,195) = 2.663; p = 0.003]. Overall, the

ANOVA tests reveal that only a limited number of facial action units (5 out of 20)

theoretically associated with the display of emotional expressions can be said to differ in

relative frequency of occurrences across the clusters. Still, when the differences are

significant they are coherent with the basic emotion view in the sense that these AUs are

essential elements in the constitution of prototypical patterns considered characteristic for

these clusters.

Clusters characterization by patterns of action units

 Next, we performed a G.G-corrected MANOVA to check if the patterns of frequencies

of occurrences of the AUs could be said to differ across the five clusters. The analysis does

Page 76: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 76/282

72

shows a significant AUs by clusters interaction [F(160, 7800) = 2.12, p = 0.000]. We feel that

this supports the view that patterns of facial actions rather than individual AUs considered in

isolation will better be able to explain how raters have classified the video samples in the five

clusters. Accordingly our next step was to try to rank the facial actions units possibly involved

in the composition of facial emotion prototypes according to their importance within each

clusters. To perform this, we used a "test value" on AUs predicted to be part of emotion

 prototypes according to the EMFACS dictionary. The test value (VT) is mainly used for the

characterization of a group of observations according to continuous or categorical variables.

Here, the groups were defined by our five clusters: enjoyment, hostility, embarrassment,

surprise and sadness; and the variables were the relative frequency distributions of the core

EMFACS AUs in each cluster. The principle is elementary: we compare the values of the

means computed on the whole sample and computed on sub sample related to each clusters.

By ranking the VTs for each action units we wanted to detect the ones that are most

characteristic of each cluster. As an example, let us examine AU6 in the enjoyment group (see

table 22 column 1). The group includes 7% (N=14) of the video sample files. The mean

relative frequency for AU6 in this group is 0.07 compared to 0.02 for the rest of the sampled

 population. Into the brackets, we have the computed standard deviation. The test value for

AU6 in the first column is 1.31, which makes it the most characteristic action unit for this

cluster. Note that one should not overly focus on the comparison of the computed VT with a

threshold, very difficult to define in practice (Lebart and al., 2000). It is more important to use

the VT as a criterion for the ranking of the variable, in order to distinguish those that play an

essential role in the interpretation of the groups. At first glance, what table 22 shows seems to

 be roughly compatible with Ekman’s predictions of prototypical expressions. When looking at

the most characteristic AUs in each of the cluster, we find that they are constitutive elements

of prototypical facial patterns predicted by basic emotion theory for the enjoyment (AU6+12),

surprise (AU1+2+5) and sadness categories (AU1+15). As for our composite hostility

category, it is mainly characterized by facial action actions constitutive of “disgust” patterns.

Finally, because embarrassment is not considered a basic emotion, no EMFACS predictions

are suggested. We find that similarly to the enjoyment cluster, the embarrassment group is

characterized by AU12 and AU6. At this point however we do not know if these action units

do indeed significantly overlap in time in the clusters, producing momentary facial patterns

corresponding to the predicted prototypes.

Page 77: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 77/282

Page 78: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 78/282

74

Prototypical Patterns of Facial Expressions across theClusters

In this section, we will test the hypothesis that some EMFACS patterns of facial

configurations may be more characteristic to some clusters than others. We used the relative

 joint frequency duration (joint duration of AUs/duration of video record) of the overlapping

actions to test for group differences. The facial patterns tested in this analysis include the

same combinations that were used at the database level. Because Kolmogorov-Smirnov and

Lilliefors tests for normality (see appendix 6 for details) showed that the frequency

distributions of the majority of actions units did not follow a normal distribution we decided

to use Kruskal-Wallis and U Mann Whitney tests for potential group differences concerning

specific facial patterns. Kruskal-Wallis tests show significant general group differences for

 both prototypical and masked expression for the EMFACS categories ( Respectively:

 Prototypical: H(4, N= 3800) =12.49 p =.014 and Masked: H(4, N= 3800) =72.24 p =.000).

However, we found no statistically significant differences for blended expressions across the

five clusters: H(4, N= 3800) =9.99 p =.071. Next, we performed Kruskal-Wallis tests on each

individual action unit combination listed in the "prototype" and "masked" categories to

determine if the frequency of overlapping time units of predicted AUs differed significantly

across the five clusters. Finally, we performed two ways Mann Whitney tests to estimate the

direction of these differences. In the next section, we will report the results of both analyses.

First we will look at the displays predicted for the seven basic emotions included in the

EMFACS taxonomy-enjoyable emotions, anger, contempt, fear, surprise and sadness. Second,

we will look at the masking smiles patterns.

Results for prototypical expressions across the clusters

First, we will review and discuss significant Kruskal-Walliss and U Mann Whitney

tests for the basic emotions prototypes; then we will do the same for the masked emotion

category.

Happiness 

The only EMFACS prediction for any enjoyable emotions includes a combined

innervations of the Orbicularis oculi, Pars orbitalis (AU6) and the Zygomatic major (AU12)

see figure 15. The Kruskal-Wallis test confirms that the relative duration of this combination

differs significantly across the five rating groups [H (4, N = 200) = 42.81 p = 0.000]. More

Page 79: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 79/282

75

specifically, the Mann Whitney tests reveals that the relative duration of overlap between

action unit 6 and 12 is significantly longer in the video records rated as conveying a sense of

enjoyment than in all the other clusters (see table 23).

Figure 15

AU6+12

 Anger 

For angry expressions, only 2 out of 8 proposed combinations are shown to differ

across clusters. These are combinations AU4+5 [H (4, N = 200) = 8.86 p = 0.039] and AU4+7

[H (4, N = 200) = 8.31 p = 0.040]. Both these configurations involve the brow and eye

regions. Action unit 4 draws the brows down and together. Combined with AU4, action units

5 or 7, produce the two versions of “angry” eyes described by Ekman (Ekman and Friesen,

2003, p.83). In the AU4+7 version (figure 16), the lower eyelid is tensed narrowing the lower

 part of the eye. The lowering of the upper part of the eye is due to the action of unit 4 that

creates the impression that the upper eyelid is lowered. In the AU4+5 version (figure 17), the

 brow is also lowered reducing the eye aperture but the action of unit 5 produces a wider gaze

opening than in AU4+7. The AU4+5 configuration is found in both the “hostility” and

“sadness” clusters. Mann Whitney tests shows it is significantly more frequent in the

“hostility” than in the “sadness” cluster (see table). The AU4+7 combination is found only in

the “embarrassment” and “enjoyment” clusters. Significantly more in the “embarrassment”

than in the “enjoyment” group (see table). The Kruskal-Wallis tests for the other predictions

tested were all non significant: AU17+23 [H (4, N = 200) = 2.57 p = 0.039]; AU17+24 [H (4,

 N = 200) = 1.85 p = 0.039]; AU4+5+10 [H (4, N = 200) = 3.47 p = 0.482]; AU4+7+10 [H (4,

 N = 200) = 5.06 p = 0.280]; AU4+7+23 [H (4, N = 200) = 2.70 p = 0.600] and AU4+5+7 [H

(4, N = 200) = 3.24 p = 0.518]. Prototypical “anger” expressions also include lower face

Page 80: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 80/282

76

movements notably lips pressing against each other or open square mouth (as in screaming).

When these lower face elements are not present together with the involvement of the brows /

forehead and eyes / lids, the meaning of these expressions are ambiguous (Ekman and

Friesen, 2003, p.87). Aside from a slight display of anger or signs of anger control; a serious,

concentrated or a determinate attitude are also presented as possible interpretative alternatives

 by Ekman and Friesen (2003).

Figure 17

AU4+5

Figure 16

AU4+7

Fear 

Out of the five "fear" expressions investigated, only a single configuration involving

three upper face actions was found to differ across the clusters: AU1+2+4 [H (4, N = 200) =13.29 p = 0.009]. The combination of AU1+2 with AU4 (see figure 18) is considered a typical

“fear” brow in Ekman’s terminology (Ekman and Friesen, 2003, p.50). The brows are lifted as

they are in surprise, but in addition to the lift they are drawn together so that the inner corner

of the brows are closer together in fear than in surprise. According to Ekman, a full blown

expression of fear would also include an upper eyelid raise (AU5) as well as a bilateral stretch

of the mouth (AU20). When the brow is held in the fear position with the rest of the face

uninvolved, Ekman suggests that worry or controlled fear might be conveyed (Ekman and

Friesen, 2003, p.52). The Mann-Whitney test reported in table 23 shows that this expression is

found significantly more in the embarrassment and sadness clusters than in the hostility

group. The surprise and enjoyment clusters contain no instances of this combination. The non

significant combinations tested were: AU1+2+5 [H (4, N = 200) = 3.60 p = 0.560];

AU1+2+20 [H (4, N = 200) = 3.95 p = 0.412]; AU1+2+4+20 [H (4, N = 200) = 0.00 p =

1.000]; AU1+2+5+20 [H (4, N = 200) = 3.60 p = 0.462].

Page 81: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 81/282

77

Figure 18.AU1+2+4

Surprise 

 None of the three proposed configurations for "surprise" expressions seems to differ in

terms of frequency of common overlapping time units across the five clusters. The

configurations tested were: AU1+2+5 [H (4, N = 200) = 2.94 p = 0.560]; AU1+2+26 [H (4, N

= 200) = 2.94 p = 0.908] and AU25+26 [H (4, N = 200) = 2.94 p = 0.36]. Note, that Ekman

(2003) has pointed out that the evidence for surprise being a basic emotion in his sense is the

weakest of all candidates because it hedonically neutral. Moreover in recognition studies

 prototypical displays of surprise are often not distinguishable from fear (Ekman, 2003). Apart

from the possible ambiguous status of surprise as a “basic” emotion possessing a distinctive

facial display, an alternative explanation can be invoked to explain the apparent lack of

specificity in the distribution of the AU1+2+5 configuration across the five rating groups. In

our dataset emotional as well as conversational facial signals are presented together to the

 judges. Because the combination of AU1 with AU2 has been documented to serve as a

common conversational gesture used to emphasize (baton) or underlie (underliner) parts of

speech it is possible that a large proportion of action units 1+2 in the database serve such

conversational functions. If this is the case, it becomes difficult to find quantitative

differences in the association of AU1+2 with other AUs that are not due to chance alone.

Sadness 

From the six configurations tested for their predicted potential to convey a sad

demeanor only one did come out as significantly differing across the five clusters [H (4, N =

200) = 11.82 p = 0.019]. The combination of action units AU6 (cheek raise) with AU15

(corner lip depressor) (figure) is found to be more prevalent in the enjoyment than in the

Page 82: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 82/282

78

hostility and sadness clusters (see table). The non significant combinations tested were AU1

+14, [H (4, N = 200) = 2.51 p = 0.642]; AU1 +10, [H (4, N = 200) = 5.10 p = 0.277];

AU1+14 [H (4, N = 200) = 5.29 p = 0.258]; AU6+17 [H (4, N = 200) = 8.98 p = 0.068] and

finally AU6 +15 +17 [H (4, N = 200) = 5.61 p = 0.230].

Figure 19AU6+15

Disgust  

For disgust displays, the frequency of occurrences of only 1 out of 4 possible

EMFACS prototype tested is found to differ across the rating groups [H (4, N = 200) = 17.18

 p = 0.0018]. Table 23 shows that in the sample files belonging to the enjoyment group the

duration of overlap between AU10 and AU12 (see figure 20) is significantly longer than in

any other cluster. Additionally this combination is also more characteristic of the

embarrassment than the sadness cluster. Although "disgust" expressions are mainly depicted

with single actions; AU9 or AU10 in emotion recognition studies, the combination of AU10

with a smiling action (AU12) appears in the dictionary predictions as a prototypical

expression of disgust. 

Page 83: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 83/282

79

Figure 20AU10+12

Interestingly, the same configuration is also listed as a possible masked expression of

disgust. The authors of the dictionary seem to leave open the interpretation of this display as

communicating either a frank attitude of disgust or alternatively an attempt at concealing a

disgust reaction. The fact that this display is more characteristic of video files rated as

conveying enjoyment rather than hostility can be interpreted in several ways. First it is

 possible that raters have simply disregarded subtle signs of disgust (AU10) in their

assessment of video-files rated as positively valenced. Second the AU10 may have been noted

 but its association with AU12 may have dampened its negative message value

Contempt  

For contempt displays, the only action units combination proposed in the EMFACS

taxonomy involves the following actions: AU1+2+14. The other predictions are limited to

single action units AU10U, AU12U and AU14U that were shown not to differ significantly in

their frequency of occurrences across the five clusters. In our dataset the cumulating time

units when AU1+2 and AU14 overlap is not found to be significantly larger in any of the

rating clusters [Kruskal Wallis: H (4, N = 200) = 3.47 p = 0.1].

Page 84: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 84/282

80

Masking smiles (blends of smiles with displays ofnegatively valenced emotions)

After examining the predictions for prototypical emotions, we will now turn to the

EMFACS category of masking smiles. By definition patterns of AUs in this category all

involve an action unit 12 supposed to signal either enjoyment or politeness (social smile) with

actions units typical of either negatively valenced affects – sadness, anger, contempt, anger or

the hedonically neutral category of surprise. The Kruskall-Wallis tests shows that for the

EMFACS category of smiles blending with negative signals, several combinations vary

significantly in the overlap durations of their constitutive action units across the clusters.

Action units 1+2 accompanied with a D-smile (figure 21) [H (4, N = 200) 12.30 p = 0.008]

which can be interpreted either as a concealment of surprise or alternatively a pleasantly

surprised reaction is found more frequently in the enjoyment than in all the other clusters (see

table 24 for U tests and p values). When AU1+2 is paired with a simple AU12 (social smile)

[see figure 22. Kruskal Wallis: H (4, N = 200) 11.22 p = 0.04], the Mann Whitney U tests

reveal that the pattern is more frequent in the enjoyment group than in the hostility, surprise

and sadness groups. Moreover, this pattern is also more frequent in both the hostility and

embarrassment groups than in the surprise cluster. No significant differences are found

 between the enjoyment and embarrassment clusters. Another variant of blends between

surprise and enjoyment: AU1+2+5+12 (figure 23), is present in all the clusters at the

exception of the surprise group. Moreover, it is significantly more frequent in the enjoyment

than in the sadness cluster.

Page 85: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 85/282

81

Figure 21AU1+2+6+12

Figure 22AU1+2+12

Figure 23AU1+2+5+12

Page 86: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 86/282

82

   T  a   b   l  e   2   3 .   E   M   F   A   C   S   P  r  o   t  o   t  y  p  e   J  o   i  n   t   D  u  r  a   t   i  o  n

   M  a  n  n  -   W   h   i   t  n  e  y   U   T  e  s   t

   B  y  v  a  r   i  a   b   l  e  c   l  u  s   t  e  r .   M  a  r   k  e   d   t  e  s   t  s  a  r  e  s   i  g  n   i   f   i  c  a  n   t  a   t  p   < .   0   5

   A   U   C  o  m   b  o

   C   l  u  s   t  e  r  c  o  m  p  a  r  a   i  s  o  n

   P  r  o   t  o   t  y  p  e

   R  a  n   k   S

  u  m   G   1

   R  a  n   k   S  u  m   G   2

   M  e  a  n   G  r  o  u  p   1   S   t   d .   G   1

   M  e  a  n   G  r  o  u  p   2

   S   t   d .   G   2

   U

   Z  a   d   j  u  s   t  e   d

  p  -   l  e  v  e   l

   A   U   6   +   1   2

   E  n   j  o  y  m  e  n   t  -   H  o  s   t   i   l   i   t  y

   H  a  p  p   i  n  e  s  s

   4   6   7 .   0

   1   8   7   9 .   0

   0 .   1   9   1

   0 .   1   3   6

   0 .   0   1   9

   0 .   0   5   3

   1   1   1 .   5

   5 .   1   0   9

   0 .   0   0   0

   A   U   6   +   1   5

   E  n   j  o  y  m  e  n   t  -   H  o  s   t   i   l   i   t  y

   S  a   d  n  e  s  s

   5   7   7 .   0

   1   7   6   9 .   0

   0 .   0   2   6

   0 .   0   4   7

   0 .   0   0   4

   0 .   0   1   9

   2   8   4 .   0

   2 .   7   7   4

   0 .   0   0   6

   A   U   1   0   +   1   2

   E  n   j  o  y  m  e  n   t  -   H  o  s   t   i   l   i   t  y

   D   i  s  g  u  s   t

   6   3   1 .   5

   1   7   1   4 .   5

   0 .   1   0   9

   0 .   1   5   5

   0 .   0   1   6

   0 .   0   5   8

   2   2   9 .   5

   3 .   1   8   8

   0 .   0   0   1

   A   U   6   +   1   2

   E  n   j  o  y  m  e  n   t  -   E  m   b  a  r  r  a  s  s  m  e  n   t

   H  a  p  p   i  n  e  s  s

   6   3   3 .   5

   1   5   1   1 .   5

   0 .   1   9   1

   0 .   1   3   6

   0 .   0   8   3

   0 .   1   0   4

   1   8   5 .   5

   2 .   8   5   3

   0 .   0   0   4

   A   U   4   +   7

   E  n   j  o  y  m  e  n   t  -   E  m   b  a  r  r  a  s  s  m  e  n   t

   A  n  g  e  r

   3   6   4 .   0

   1   7   8   1 .   0

   0 .   0   0   0

   0 .   0   0   0

   0 .   0   2   4

   0 .   0   5   2

   2   5   9 .   0

  -   2 .   1   7   5

   0 .   0   3   0

   A   U   1   0   +   1   2

   E  n   j  o  y  m  e  n   t  -   E  m   b  a  r  r  a  s  s  m  e  n   t

   D   i  s  g  u  s   t

   5   7   9 .   5

   1   5   6   5 .   5

   0 .   1   0   9

   0 .   1   5   5

   0 .   0   2   4

   0 .   0   5   6

   2   3   9 .   5

   2 .   3   3   4

   0 .   0   2   0

   A   U   6   +   1   2

   E  n   j  o  y  m  e  n   t  -   S  u  r  p  r   i  s  e

   H  a  p  p   i  n  e  s  s

   4   1   6 .   5

   4   0   3 .   5

   0 .   1   9   1

   0 .   1   3   6

   0 .   0   2   0

   0 .   0   5   3

   5   2 .   5

   4 .   1   4   7

   0 .   0   0   0

   A   U   1   0   +   1   2

   E  n   j  o  y  m  e  n   t  -   S  u  r  p  r   i  s  e

   D   i  s  g  u  s   t

   3   7   2 .   5

   4   4   7 .   5

   0 .   1   0   9

   0 .   1   5   5

   0 .   0   0   2

   0 .   0   1   2

   9   6 .   5

   3 .   4   7   0

   0 .   0   0   1

   A   U   6   +   1   2

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   H  a  p  p   i  n  e  s  s

   7   4   9 .   5

   1   6   6   5 .   5

   0 .   1   9   1

   0 .   1   3   6

   0 .   0   2   8

   0 .   0   6   4

   1   2   5 .   5

   4 .   6   1   5

   0 .   0   0   0

   A   U   6   +   1   5

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   S  a   d  n  e  s  s

   5   8   9 .   0

   1   8   2   6 .   0

   0 .   0   2   6

   0 .   0   4   7

   0 .   0   0   2

   0 .   0   1   0

   2   8   6 .   0

   3 .   0   2   2

   0 .   0   0   3

   A   U   1   0   +   1   2

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   D   i  s  g  u  s   t

   6   3   0 .   5

   1   7   8   4 .   5

   0 .   1   0   9

   0 .   1   5   5

   0 .   0   2   5

   0 .   0   7   4

   2   4   4 .   5

   2 .   9   0   5

   0 .   0   0   4

   A   U   1   +   2   +   4

   H  o  s   t   i   l   i   t  y  -   S  a   d  n  e  s  s

   F  e  a  r

   1   2   3   8   6 .   0

   1   1   4   8   5 .   0

   0 .   0   0   9

   0 .   0   2   7

   0 .   0   0   1

   0 .   0   0   6

   5   3   8   0 .   0

   2 .   8   3   0

   0 .   0   0   5

   A   U   4   +   5

   H  o  s   t   i   l   i   t  y  -   S  a   d  n  e  s  s

   A  n  g  e  r

   3   1   6

   6 .   0

   2   8   2   9 .   0

   0 .   0   1   5

   0 .   0   4   7

   0 .   0   0   1

   0 .   0   0   5

   1   2   8   9 .   0

   2 .   4   8   9

   0 .   0   1   3

   A   U   6   +   1   2

   H  o  s   t   i   l   i   t  y  -   E  m   b  a  r  r  a  s  s  m  e  n   t

   H  a  p  p   i  n  e  s  s

   2   3   4

   0 .   0

   3   2   2   5 .   0

   0 .   0   1   9

   0 .   0   5   3

   0 .   0   8   3

   0 .   1   0   4

   8   5   5 .   0

  -   4 .   0   2   7

   0 .   0   0   0

   A   U   1   +   2   +   4

   H  o  s   t   i   l   i   t  y  -   E  m   b  a  r  r  a  s  s  m  e  n   t

   F  e  a  r

   1   1   8   1   0 .   0

   1   0   3   4   5 .   0

   0 .   0   0   9

   0 .   0   2   7

   0 .   0   0   1

   0 .   0   0   6

   5   0   9   2 .   0

   2 .   0   5   5

   0 .   0   4   0

   A   U   6   +   1   2

   H  o  s   t   i   l   i   t  y  -   E  m   b  a  r  r  a  s  s  m  e  n   t

   H  a  p  p   i  n  e  s  s

   2   3   4

   0 .   0

   3   2   2   5 .   0

   0 .   0   1   9

   0 .   1   0   4

   0 .   0   8   3

   0 .   0   5   3

   8   5   5 .   0

  -   4 .   0   2   7

   0 .   0   0   0

   A   U   1   +   2   +   4

   H  o  s   t   i   l   i   t  y  -   S  a   d  n  e  s  s

   F  e  a  r

   1   2   3   8   6 .   0

   1   1   4   8   5 .   0

   0 .   0   0   9

   0 .   0   2   7

   0 .   0   0   1

   0 .   0   0   6

   5   3   8   0 .   0

   2 .   8   3   0

   0 .   0   0   5

   A   U   4   +   5

   H  o  s   t   i   l   i   t  y  -   S  a   d  n  e  s  s

   A  n  g  e  r

   3   1   6

   6 .   0

   2   8   2   9 .   0

   0 .   0   4   7

   0 .   0   4   7

   0 .   0   0   1

   0 .   0   0   5

   1   2   8   9 .   0

   2 .   4   8   9

   0 .   0   1   3

   A   U   6   +   1   2

   E  m   b  a  r  r  a  s  s  m  e  n   t  -   S  u  r  p  r   i  s  e

   H  a  p  p   i  n  e  s  s

   2   2   2

   6 .   5

   7   7   6 .   5

   0 .   0   8   3

   0 .   1   0   4

   0 .   0   2   0

   0 .   0   5   3

   4   2   5 .   5

   2 .   8   8   4

   0 .   0   0   4

   A   U   1   0   +   1   2

   E  m   b  a  r  r  a  s  s  m  e  n   t  -   S  u  r  p  r   i  s  e

   D   i  s  g  u  s   t

   2   1   2

   0 .   5

   8   8   2 .   5

   0 .   0   2   4

   0 .   0   5   6

   0 .   0   0   2

   0 .   0   1   2

   5   3   1 .   5

   2 .   1   7   1

   0 .   0   3   0

   A   U   6   +   1   2

   E  m   b  a  r  r  a  s  s  m  e  n   t  -   S  a   d  n  e  s  s

   H  a  p  p   i  n  e  s  s

   3   1   6

   9 .   5

   2   5   0   1 .   5

   0 .   0   8   3

   0 .   1   0   4

   0 .   0   2   8

   0 .   0   6   4

   9   6   1 .   5

   3 .   2   5   0

   0 .   0   0   1

Page 87: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 87/282

83

When paired with a D-smile, the upper lip raise action typical of disgust expressions

(figure 24) is shown to differ across the clusters [Kruskal Wallis: H (4, N = 200) 4.37 p =

0.05]. The U tests show that this pattern is more frequent in the enjoyment clusters than in any

other clusters. It is also more present in the embarrassment than in the hostility and surprise

clusters. As a reminder, the analysis of variance has previously shown that considered

individually the relative frequency of AU10 was not significantly different across the five

clusters. The frequency of overlapping actions units of AU9 with AU12, a second variant of a

disgust display paired with a smile, also varies significantly across the clusters [H (4, N =

200) = 3.47 p = 0.04]. AU9+12 (figure 25) is more frequent in the enjoyment and hostility

clusters than in the sadness cluster. It is absent in the embarrassment and surprise clusters.

Figure 24AU6+10+12

Figure 25AU9+12

The combination AU6+12+17+23 is listed in the dictionary as a blended expression of

anger and enjoyment. In addition to a D-smile, the action of the mentalis muscle raises the

chin (AU17) and the lips are The Kruskall-Wallis test is significant [H (4, N = 200) = 10.36 p

= 0.001], and the U tests show that this configuration is significantly more frequent in the

enjoyment than in the hostility group (see table 24). The pattern does not appear in the

embarrassment, surprise or sadness clusters.

Page 88: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 88/282

84

Figure 26AU6+12+17+23

The two remaining configurations for which the Kruskall Wallis tests show positively

significant differences between the clusters are AU12+20 [H (4, N = 200) = 18.3 p = 0.000]

and AU6+12+20 [H (4, N = 200) = 12.36 p = 0.005]. AU20 is a lower face action that

stretches the lips laterally. This action unit is an important element of prototypical fear

displays. Here, it is associated with signs of both “genuine/felt” and “social” smiles. These

two configurations are mostly associated with the enjoyment cluster.

Figure 27AU6+12+20

Figure 28AU12+20

Page 89: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 89/282

85

   T  a   b   l  e   2   4 .   E   M

   F   A   C   S   M  a  s   k  e   d   E  x  p  r  e  s  s   i  o  n  s  -   J  o   i  n   t   D  u  r  a   t   i  o  n

   M  a  n  n  -   W   h   i   t  n  e  y   U   T  e  s   t

   B  y  v  a  r   i  a   b   l  e  c

   l  u  s   t  e  r .   M  a  r   k  e   d   t  e  s   t  s  a  r  e  s   i  g  n   i   f   i  c  a  n   t  a   t  p   < .   0   5

   A   U   C  o  m   b  o

   C   l  u  s   t  e  r  c  o  m  p  a  r  a   i  s  o  n

   M  a  s   k  e   d   E .

   R  a  n   k   S  u  m   G   1

   R  a  n   k   S  u  m   G   2

   M  e  a  n

   G  r  o  u  p   1

   S   t   d .   G   1

   M  e  a  n   G  r  o  u  p   2

   S   t   d .   G   2

   U

   Z  a   d   j  u  s   t  e   d  p  -   l  e  v  e   l

   A   U   1   +   2  -   +   6   +   1   2

   E  n   j  o  y  m  e  n   t  -   H  o  s   t   i   l   i   t  y

   S  u  r  p  r   i  s  e

   6   3   0 .   5

   1   7   1   5 .   5

   0 .   0   3   1

   0 .   0   5   2

   0 .   0   1   1

   0 .   0   4   1

   2   3   1

   3 .   3   6   7

   0 .   0   0   1

   A   U   1   +   2   +   1   2

   E  n   j  o  y  m  e  n   t  -   H  o  s   t   i   l   i   t  y

   S  u  r  p  r   i  s  e

   6   4   5 .   0

   1   7   0   1 .   0

   0 .   0   6   6

   0 .   0   5   9

   0 .   0   3   2

   0 .   0   6   1

   2   1   6

   2 .   6   8   3

   0 .   0   0   7

   A   U   6   +   1   0   +   1   2

   E  n   j  o  y  m  e  n   t  -   H  o  s   t   i   l   i   t  y

   D   i  s  g  u  s   t

   6   0   5 .   0

   1   7   4   1 .   0

   0 .   0   5   7

   0 .   1   1   2

   0 .   0   0   5

   0 .   0   3   1

   2   5   6

   3 .   5   0   8

   0 .   0   0   0

   A   U   6   +   1   2   +   1   7

   +   2   3

   E  n   j  o  y  m  e  n   t  -   H  o  s   t   i   l   i   t  y

   A  n  g  e  r

   5   1   0 .   0

   1   8   3   6 .   0

   0 .   0   0   3

   0 .   0   1   1

   0 .   0   0   0

   0 .   0   0   0

   3   5   1

   1 .   9   6   4

   0 .   0   5   0

   A   U   6   +   1   0   +   1   2

   H  o  s   t   i   l   i   t  y  -   E  m   b  a  r  r  a  s  s  m  e  n   t

   A  n  g  e  r

   2   6   7   1 .   0

   2   8   9   4 .   0

   0 .   0   0   5

   0 .   0   3   1

   0 .   0   1   5

   0 .   0   4   7   1

   1   8   6

  -   2 .   3   0   4

   0 .   0   2   1

   A   U   1   +   2   +   5   +   1

   2

   H  o  s   t   i   l   i   t  y  -   S  u  r  p  r   i  s  e

   S  u  r  p  r   i  s  e

   2   2   9   1 .   0

   9   4   9 .   0

   0 .   0   1   1

   0 .   0   3   4

   0 .   0   0   0

   0 .   0   0   0

   5   9   8

   2 .   0   5   2

   0 .   0   4   0

   A   U   1   +   2   +   1   2

   H  o  s   t   i   l   i   t  y  -   S  u  r  p  r   i  s  e

   S  u  r  p  r   i  s  e

   2   3   6   8 .   0

   8   7   2 .   0

   0 .   0   3   2

   0 .   0   6   1

   0 .   0   0   9

   0 .   0   2   7

   5   2   1

   2 .   3   2   7

   0 .   0   2   0

   A   U   9   +   1   2

   H  o  s   t   i   l   i   t  y  -   S  a   d  n  e  s  s

   D   i  s  g  u  s   t

   3   0   8   0 .   0

   2   9   1   5 .   0

   0 .   0   0   3

   0 .   0   1   3

   0 .   0   0   0

   0 .   0   0   0   1

   3   7   5

   2 .   0   4   7

   0 .   0   4   1

   A   U   1   +   2   +   5   +   1

   2

   E  m   b  a  r  r  a  s  s  m  e  n   t  -   S  u  r  p  r   i  s  e

   S  u  r  p  r   i  s  e

   2   1   1   9 .   0

   8   8   4 .   0

   0 .   0   1   1

   0 .   0   3   2

   0 .   0   0   0

   0 .   0   0   0

   5   3   3

   2 .   3   9   7

   0 .   0   1   7

   A   U   1   +   2   +   1   2

   E  m   b  a  r  r  a  s  s  m  e  n   t  -   S  u  r  p  r   i  s  e

   S  u  r  p  r   i  s  e

   2   2   2   5 .   0

   7   7   8 .   0

   0 .   0   5   5

   0 .   0   7   8

   0 .   0   0   9

   0 .   0   2   7

   4   2   7

   3 .   0   1   8

   0 .   0   0   3

   A   U   6   +   1   0   +   1   2

   E  m   b  a  r  r  a  s  s  m  e  n   t  -   S  u  r  p  r   i  s  e

   D   i  s  g  u  s   t

   2   1   0   6 .   0

   8   9   7 .   0

   0 .   0   1   5

   0 .   0   4   7

   0 .   0   0   0

   0 .   0   0   0

   5   4   6

   2 .   2   5   9

   0 .   0   2   4

   A   U   1   +   2   +   6   +   1

   2

   E  n   j  o  y  m  e  n   t  -   E  m   b  a  r  r  a  s  s  m  e  n   t

   S  u  r  p  r   i  s  e

   5   6   2 .   5

   1   5   8   2 .   5

   0 .   0   3   1

   0 .   0   5   2

   0 .   0   1   5

   0 .   0   3   6

   2   5   7

   2 .   0   7   5

   0 .   0   3   8

   A   U   1   2   +   2   0

   E  n   j  o  y  m  e  n   t  -   E  m   b  a  r  r  a  s  s  m  e  n   t

   F  e  a  r

   5   7   9 .   0

   1   5   6   6 .   0

   0 .   0   4   4

   0 .   0   7   8

   0 .   0   0   9

   0 .   0   3   3

   2   4   0

   2 .   8   5   8

   0 .   0   0   4

   A   U   1   +   2   +   5   +   1

   2

   E  n   j  o  y  m  e  n   t  -   S  u  r  p  r   i  s  e

   S  u  r  p  r   i  s  e

   3   3   9 .   0

   4   8   1 .   0

   0 .   0   1   7

   0 .   0   3   5

   0 .   0   0   0

   0 .   0   0   0

   1   3   0

   2 .   8   3   2

   0 .   0   0   5

   A   U   1   +   2   +   6   +   1

   2

   E  n   j  o  y  m  e  n   t  -   S  u  r  p  r   i  s  e

   S  u  r  p  r   i  s  e

   3   7   0 .   5

   4   4   9 .   5

   0 .   0   3   1

   0 .   0   5   2

   0 .   0   0   2

   0 .   0   1   2

   9   9

   3 .   3   8   9

   0 .   0   0   1

   A   U   1   +   2   +   1   2

   E  n   j  o  y  m  e  n   t  -   S  u  r  p  r   i  s  e

   S  u  r  p  r   i  s  e

   4   1   0 .   5

   4   0   9 .   5

   0 .   0   6   6

   0 .   0   5   9

   0 .   0   0   9

   0 .   0   2   7

   5   9

   4 .   1   1   1

   0 .   0   0   0

   A   U   6   +   1   0   +   1   2

   E  n   j  o  y  m  e  n   t  -   S  u  r  p  r   i  s  e

   D   i  s  g  u  s   t

   3   5   2 .   0

   4   6   8 .   0

   0 .   0   5   7

   0 .   1   1   2

   0 .   0   0   0

   0 .   0   0   0

   1   1   7

   3 .   2   0   8

   0 .   0   0   1

   A   U   6   +   1   2   +   2   0

   E  n   j  o  y  m  e  n   t  -   S  u  r  p  r   i  s  e

   F  e  a  r

   3   2   6 .   0

   4   9   4 .   0

   0 .   0   2   4

   0 .   0   5   0

   0 .   0   0   0

   0 .   0   0   0

   1   4   3

   2 .   4   2   1

   0 .   0   1   5

   A   U   1   2   +   2   0

   E  n   j  o  y  m  e  n   t  -   S  u  r  p  r   i  s  e

   F  e  a  r

   3   5   8 .   0

   4   6   2 .   0

   0 .   0   4   4

   0 .   0   7   8

   0 .   0   0   2

   0 .   0   1   2

   1   1   1

   3 .   0   4   0

   0 .   0   0   2

   A   U   1   +   2   +   5   +   1

   2

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   S  u  r  p  r   i  s  e

   5   7   7 .   0

   1   8   3   8 .   0

   0 .   0   1   7

   0 .   0   3   5

   0 .   0   0   1

   0 .   0   0   7

   2   9   8

   2 .   3   3   5

   0 .   0   2   0

   A   U   1   +   2   +   6   +   1

   2

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   S  u  r  p  r   i  s  e

   6   3   7 .   5

   1   7   7   7 .   5

   0 .   0   3   1

   0 .   0   5   2

   0 .   0   0   7

   0 .   0   2   7

   2   3   8

   3 .   2   2   6

   0 .   0   0   1

   A   U   1   +   2   +   1   2

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   S  u  r  p  r   i  s  e

   6   8   1 .   5

   1   7   3   3 .   5

   0 .   0   6   6

   0 .   0   5   9

   0 .   0   2   4

   0 .   0   4   7

   1   9   4

   3 .   1   8   4

   0 .   0   0   1

   A   U   6   +   1   0   +   1   2

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   D   i  s  g  u  s   t

   5   9   3 .   0

   1   8   2   2 .   0

   0 .   0   5   7

   0 .   1   1   2

   0 .   0   1   4

   0 .   0   4   7

   2   8   2

   2 .   5   1   0

   0 .   0   1   2

   A   U   6   +   1   2   +   2   0

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   F  e  a  r

   5   7   2 .   5

   1   8   4   2 .   5

   0 .   0   2   4

   0 .   0   5   0

   0 .   0   0   0

   0 .   0   0   0

   3   0   3

   3 .   4   8   4

   0 .   0   0   0

   A   U   9   +   1   2

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   D   i  s  g  u  s   t

   5   1   7 .   5

   1   8   9   7 .   5

   0 .   0   0   3

   0 .   0   1   2

   0 .   0   0   0

   0 .   0   0   0

   3   5   8

   1 .   9   8   2

   0 .   0   4   7

   A   U   1   2   +   2   0

   E  n   j  o  y  m  e  n   t  -   S  a   d  n  e  s  s

   F  e  a  r

   6   3   8 .   0

   1   7   7   7 .   0

   0 .   0   4   4

   0 .   0   7   8

   0 .   0   0   6

   0 .   0   4   0

   2   3   7

   3 .   9   7   2

   0 .   0   0   0

 

Page 90: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 90/282

86

Summary of  results 

In this section, we have examined the main patterns of FACS action units

corresponding to the most common EMFACS predictions for the basic, blended and masked

expression categories. We explored the possibility that these patterns may be more prevalent

in some rating clusters than others. Results show that out of 39 tested predictions for

 prototypical expressions of basic emotions 6 patterns (15%) were found to differ across the

clusters in their relative frequency of co-occurrences. These correspond to one pattern for

enjoyment (6+12), one for disgust (AU10+12) and one for sadness (AU6+15). Additionally,

two partial prototypes for anger (AU4+5 / AU4+7) and one for fear (AU1+2+4) were detected

as significant. These last three cannot be considered full blown patterns though since only the

upper face region is involved and the lower face defining elements are missing. No significant

cluster differences were found for surprise and contempt prototypes.

Surprisingly, for the category of blended expressions, which is defined as the co-

occurrences of two or more action units from distinct negative basic prototypes, no significant

differences for the 21 combinations tested were found across the clusters. We did find some

significant cluster differences for masked expressions (a social or D-smile, combined with

AUs of negative displays). Out of the 39 EMFACS predictions tested for this category 8

(21%) stood out. These were three blends of surprise/happiness (AU1+2+6+12),

(AU1+2+12), (AU1+2+5+12); two blends of disgust/happiness (AU6+10+12), (AU9+12);

one blend of anger/happiness (AU6+12+17+23) and finally two blends of fear/happiness

(AU6+12+20), (AU12+20).

Overall, out of the 99 EMFACS predicted patterns of action units tested for the

categories of basic, blended and masked expressions, only 14 (14%) are shown to somehow

differ in their frequency of occurrences across the rating clusters. In keeping with basic

emotions theory, co-activation of AU6 with AU12 is strongly characteristic of the enjoyment

group. One of the anger prototype (AU4+5) appears in both the hostility and sadness groups

 but is found to be more characteristic of hostility than sadness. Contrary to what basic

emotion theory would predict the other partial configuration for anger (AU4+7) is found to be

most characteristic of the embarrassment rather than the hostility cluster. Moreover it is also

found to a lesser extent in the enjoyment cluster. The “fear” brow (AU1+2+4) is found

significantly more in the embarrassment and sadness clusters than in the hostility group. The

sadness pattern (AU6+15) is found to be more prevalent in the enjoyment than in the hostility

Page 91: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 91/282

87

and sadness clusters. AU10+AU12 a typical disgust pattern is most prevalent in the

enjoyment cluster. As for the masking smiles category most of them are shown to be more

 prevalent in the enjoyment than the other clusters.

In summary, predicted patterns of co-occurrences specified by the EMFACS

dictionary for the categories of basic, blended and masked expressions, are rarely found to

occur above chance level for any one cluster. When they do, their predominance in some

clusters over others does not lend itself to unequivocal interpretations in terms of their

 predicted emotional meaning. At this point, we feel that the case in favor of momentary

configurations of prototypical patterns of facial action units as explanation for the distribution

of our video-records in five rating groups is hardly supported. In the next section, we will

introduce our methodological choice of sequential analysis method to attempt to detect

dynamic patterns of facial expressions in the clusters.

Page 92: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 92/282

88

Sequential Analysis of Communicative Behaviors –Methodological Issues

“Behavior consists of patterns in time. Investigations of behavior deal with

 sequences that, in contrast to bodily characteristics, are not always visible”

(Eibl-Eibesfeldt, 1970).

Generally speaking, sequential analyses pursue two aims (Bakeman and Gottman,

1986). The first one is to discover probabilistic patterns in the stream of code events; in other

words, the interest is centered on the order and the prevailing sequences that characterize a

data set. The second aim is to assess the effect of contextual or explanatory variables on the

sequential structure of experimental data sets. Because our aim is to discover regularities in

the temporal unfolding of facial actions, the appropriate methodology to investigate the

 behavioral sequences is pattern recognition. Pattern research can be both hypothesis driven

(an earlier part of the pattern may be seen as a likely cause of the later part of the same

 pattern) and empirically driven (the search for associations between parts of sequences

without specific hypotheses). Since the structure of human behavior is very complex, it is

convenient to distinguish between manifest behavioral patterns (visible and recurrent patterns

in behavioral streams) and what has been described by Magnusson (2000) as hidden

behavioral patterns (particular relations between groups or pairs of events in a time series). In

the last case the aim is to find some nested relations among a complex sequence of

occurrences.  In the first approach the statistical techniques are easy and are based on the

conditional probability theory, but they require testing theory driven hypotheses. Prior

knowledge, theory based or based on previous studies, plays an important role in determining

the choice of the sequence pattern under study. The aim is to test whether the expected pattern

occurs among the observed patterns more often than by chance in terms of its conditional

 probability distribution. The conditional probability of a sequence is estimated by dividing the

number of times it occurred by the numbers of times it could have occurred in theobservational records (the numbers of occurrences plus the number of non-occurrences). This

approach to describe behavioral sequence, however, is not exhaustive, because patterns easily

 become invisible to the naked eye when other behaviors occur in between. For example,

imagine that each letter on the first line of figure 29 represent a distinct event type. The

underlying line stands for the time period on which the successive events unfold. Note how,

Page 93: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 93/282

89

with only six different event-types, it is already difficult to visually detect the repetition of a

simple ((ab)(cd)) sequence at first glance.

Traditional sequential analysis will only be useful in cases of confirmatory research

designs and thus are ill suited for discovering new behavioral patterns that could generate

further hypothesis testing and model development. The “hidden pattern” approach helps to

distinguish which pattern is relevant (signal) and which is irrelevant (noise), by reducing the

extraneous sources of variability (e.g. by increasing signal-to-noise ratio). The tools for the

study of hidden patterns refer to a specific branch of statistics (called also classification

theory) which explore structure and patterns in large data sets, without recourse to the

classical assumptions of the confirmatory approach, often too rigid for practical use (Lange,

1998). Magnusson (2000) defined hidden patterns as “patterns of patterns of patterns”.  (T-

 patterns). He suggests that his definition of t-patterns (to be reviewed below)  and its

associated detection algorithm could be particularly useful for the study of human behavior.Especially, to discover hierarchical patterns (patterns composed of simpler sequence patterns)

that are impossible to detect by traditional sequential analysis.

“…the patterns in question are not only patterns of elements as their various

components are also patterns as, for example, any common phrase that is a

repeated pattern of words, which again are composed of letters, etc…. as we

 go from the phrase to the letter the patterns in question become increasingly

 frequent, that is, in a standard phrase, each of its words are more frequent

than the phrase, and any letter more frequent than a word. On the other hand,there are far more different words than letters. But behavior is not always as

 plain to see as words and letters on a page." (Magnusson, 2005)

In fact, a few German research groups have been pioneers in using the t-pattern

approach for the investigation of facial actions coded with FACS. The main focus of these

research groups has been on the detection of episodes of mutually responsive facial patterns,

Figure 29

Page 94: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 94/282

90

observed in the context of face to face conversations. For example, Merten and Schwab

(Merten, 1997, Merten and Schwab, 2005) have studied different types of patterns involving

mutual smiling episodes. They described several t-patterns involving two interacting

individuals that are composed of either two Duchenne smiles, two social smiles, a Duchenne

smile being responded to with a social smile or a social smile being responded to with a

Duchenne smile. Their research supports the notion that these t-patterns might serve distinct

communicative and interpersonal regulation functions. For example, they proposed that a t-

 pattern where person A shows a Duchenne smile while the other (B) is reacting with a social

smile, might be understood as an intimacy de-intensifying signal. When both individuals

show a Duchenne smile aligned with a t-pattern, the authors suggest that the episode may

signal positive intents and or positive affect sharing. If person A starts with a social smile and

 person B responds with a Duchenne smile, the episode is understood as an intimacy

intensifying pattern. Finally, when both show a social smile aligned by a t-pattern, the

exchange is seen as an appeasement signal with no connection to enjoyment. These studies

show that dyads composed of women tend to produce more interactive intimacy

implementing patterns. In contrast, all male dyads show more appeasement patterns.

Interestingly, in mixed gender dyads, males seem to modify their behavior by increasing their

 participation in intimacy implementing patterns initiated by women. Intimacy de-intensifying

 patterns are mostly found when women interact with mental disordered patients. This is

understood by the authors as a polite way of rejecting an invitation (initiated by a patient) to

intimacy and mutual positive evaluation.

Definition of  T-patterns. 

In the present section, we will go into more depth into the definition of what a t-

 pattern is, and what its distinctive characteristics are. A t-pattern is essentially a combination

of events where the events occur in the same order with the consecutive time distances

 between consecutive pattern components remaining relatively invariant with respect to an

expectation assuming, as a null hypothesis, that each component is independently and

randomly distributed over time. As stated by Magnusson:

“if A is an earlier and B a later component of the same recurring T-pattern

then after an occurrence of A at t, there is an interval [t+d1, t+d2]

(d2 _ d1 _ d0) that tends to contain at least one occurrence of B more often than

would be expected by chance” (Magnusson, 2000).

Page 95: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 95/282

91

The temporal relationship between A and B is defined as a critical interval and this

concept lies at the centre of the pattern detection algorithms. Through use of the THEME 5.0

software package, pattern detection algorithms can analyze both ordinal and temporal data

however, for the algorithms to generate the most meaningful analyses the raw data must be

time coded. An event-type here refers to some behavior that occurs or not at a particular point

on a discrete time scale, but has no duration otherwise: For example, “subject begins to

speak” (or   short: x,b,speak) and “subject stops AU12” (or short: x,e,12) are event types. Each

event type is scored in terms of the occurrence times of its beginnings and endings points on a

discrete time scale. Each beginning and/or ending thus occurs or not at a discrete time point.

 Note that any number of event-types may occur at the same point. That means that the

 program can detect both synchronicity as well as sequentiallity in patterns. The occurrences of

all event-types within an entire set of observation periods (sample audio-video files) forming a

rating cluster, constitute the basic type of multivariate time point data set that have been

submitted to t-pattern analysis.

This  figure shows all  the occurring time  points  for  each of  the 55 event ‐types 

coded  in the 55  joined  sample  files of  the sadness cluster. The occurrence times 

 for  

each 

of  

55 

different  

event  

types 

as 

well  

as 

their  

offset  

time 

 points 

can 

thus 

be 

read   from left  to right  across the chart. 

The method of time-motion computerized video analysis we used with The Anvil

 program lends itself well to data collection that can then be submitted to t-pattern detection

with THEME. Using the THEME software will allow us to detect potentially highly complex

 patterns that are specific to the rating clusters. In each of the t-patterns, the components occur

Page 96: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 96/282

92

in a particular order and the temporal distance from one to the next is of an approximate

length that is characteristic for the particular pattern. If these time distances between

components become too short or too long the pattern disappears. These constrains are here

essential for the detection of patterns often impossible to detect on the basis of component

order alone because of the highly varied number of random behaviors that can occur between

their components. T-pattern structure

Example:

A T-pattern with m components Xi..m (each an event type or a T-pattern) can be noted

as:

X1 [d1, d2]1 X2 [d1, d2]2 .. Xi [d1, d2]i Xi+1 .. Xm-1 [d1, d2]m-1 Xm

[d1, d2]i stand for the interval within which the characteristic distances vary. Xi [d1, d2]i

Xi+1 thus means: if Xi ends at t, it is followed within [t+d1, t+d2]i by the beginning of

component Xi+1. Furthermore, any T-pattern can be described as a binary tree by splitting it

recursively (top-down) into left and right halves until the event-type level is reached. Thus,

for detection purposes, the T-pattern definition is narrowed to a binary tree of critical

intervals between left and right branches:

Xleft [d1, d2] Xright

Where Xleft stands  for the first part, ending at t, followed within [t+d1, t+d2] by the

 beginning of Xright; where 0 N d1 N d2. In [d1, d2], t is omitted to simplify notation. Note that,

when the two branches are concurrent, 0 = d1 = d2.

Statistical validation of  T-patterns 

The detection of critical intervals and therefore T-patterns is based on a null

hypothesis that is tested possibly millions of times when exploring for patterns in a single data

set. Obviously, many would thus be significant even if the data were random. A crucial issue

is whether the subject’s coordination of their own expressive actions in patterns found in our

video sequences is due to chance. More fundamentally, the question here is whether our

findings are statistically significant, that is, whether much fewer patterns are detected after

randomization of the data. To tackle this issue, each search in the experimental data is

followed by a search in a shuffled version of the same data, that is, after the time points in

each series in the real data have been randomly redistributed over the observation period. In

this way, the size of the data remains the same as the number of series, and the number of

 points in each, remain unchanged. By repeatedly shuffling and then searching for patterns in

Page 97: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 97/282

93

the same data set, an occurrence distribution with a mean and a standard deviation is obtained

for each pattern length. This allows comparison with the findings in the original (un-shuffled)

data and differences can be expressed in terms of standard deviations and p values. Recently,

a second simulation method has been added to THEME (Magnusson, 2006). The

“randomization” method maintains practically unchanged the structure of each series while

randomizing the relationship between them. This can be visualized as figure (refer to multiple

data point) being wrapped around a cylinder whereby each series forms, around the cylinder,

a circle that can be rotated by a random number of degrees independently of the others. Thus,

instead of shuffling every series, all series are left unchanged, but each one is rotated by a new

random number of degrees (between 1 and 359).

Setting up T-patterns detection parameters 

Setting search parameters for the detection of T-patterns has a critical influence on thekinds and number of patterns that THEME detects. Here we will explain and justify the

various parameters we used for this study. The first decision to make was to decide the

number of times a pattern had to occur to be detected. In general setting smaller values means

that more patterns are detected. We decided to be rather conservative and to retain only

 patterns that occurred at least 15 times in any given cluster. A significance level of 0.001 was

set as the accepted probability to determine how far from random expectation critical interval

relationships could occur for patterns to be kept or dropped. The next decision related to the

minimum percentage of video samples within a cluster in which a pattern should occur to be

detected. By default, in case of a high rate frequency of occurrences of a pattern that is present

in only one or two samples of a cluster it will still be detected. In order to report only the

 patterns that are present across a maximum number of records we set up a 60% samples

threshold for patterns detection. One also needs to define the maximum number of

hierarchical levels that are going to be investigated for pattern detection. Given that one major

advantage of THEME is the detection of non obvious patterns , we chose not to set a limit to

the search level. The number of simulations performed to statistically validate the T-patterns

depends on the value set as the significance level. Because the  p-value was set at 0.001, the

simulation was repeated (1/0.001)*10 = 10,000 times, twice, once for the shuffling and then

the randomization method.

Page 98: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 98/282

94

Table 25. T-patterns search parameters

Minimum Occurrences Minimum Samples Significance Level Max levels search Random Runs

15 60% 0.001 999 10.000  

One issue we had to tackle with in setting appropriate search parameters, was the non

 balanced distribution of records across the five clusters (Positive Emotions =14; Hostility =

54; Embarrassment = 51; Surprise =26; Sadness =55). All of the settings options we have

chosen had the effect of reducing the number of patterns found in the data. Initial analysis

 pointed to that necessity in order to avoid program overload with the largest clusters. On the

other hand, to impose a 15 repetitions detection threshold for the “positive emotions” and

“surprise” clusters, aggregating only 14 and 26 samples respectively, implied a substantial

risk of missing to detect a number of “interesting” patterns in these groups. Nevertheless, in

order to keep the search procedure comparable across all data sets, we applied the same

search parameters to all clusters.

T-patterns search results and selection criteria 

Pattern search was performed on all the sample files constitutive of each emotion

clusters. Every codes specified in our annotation scheme were fed into the analysis. By

 joining all the related video samples into a single data file, it becomes possible to ask THEME

to detect patterns that occur only once in any given sample. This is crucial because we do not

expect to find as many as 15 repetitions of a behavioral pattern in sequences that only last a

few seconds. Note, that after joining data sets into a single file, the program searches for

 patterns within the original samples, that is a pattern cannot begin in one sample and end in

another. The number of patterns found in each cluster is reported in table 26, column 3.

Unsurprisingly, the number of patterns found, increases with the number of files in a cluster.

This renders the statistical comparison of differences in number, complexity or length of

 patterns between groups of observation of little interest. We could of course work on ratios,

 but this approach wouldn’t yield any meaningful information on pattern’s composition.

Rather, we want to concentrate on the analysis of structural differences in pattern

compositions across the clusters. Because we are interested in patterns that are sequential in

nature and that include at least one facial action, we reduced the data sets by excluding all

 patterns containing no EMFACS code or that contained transition lags between two EMFACS

events that were equal to zero. Lags of zero indicate a simultaneous “onset” of codes on two

or more EMFACS tracks. Because co-occurrences of EMFACS codes have already been

addressed with more traditional statistical methods in previous sections, we will focus here

Page 99: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 99/282

95

only on purely sequential data. Number and percentages of total patterns that were kept for

further analysis are reported in columns 4 and 5 of table ? Note, that as the number of sample

files in the clusters increases the proportion of patterns including EMFACS codes decreases.

This can be explained by two factors: first FACS codes are “event based”. This means that

they can occur or not in any video sequence. On the other hand, codes like gaze direction or

head position are typical “state” codes. This implies that at any point in time of the

observation period, a subject is continuously scoring positive on one modality of the variable.

For example, the subject is either looking “at” or “away” from the interviewer but never both

or neither. This induces an increase of the global frequency of “state” codes, present in all the

video samples, over the more circumstantial EMFACS events. A second factor contributing to

the absence of a linear relationship between the number of files in a cluster and the frequency

of EMFACS patterns is probably due to the fact that the state transitions of some non FACS

variables operate on a faster time scale. It is not unusual to observe many gaze transitions

within the boundaries of a single FACS code. For example, a subject might start by raising the

 brows then looks at the interviewer, blinks, looks down and away before the brow action

finally recedes. In any case, we can conclude from these results that the mere fact of adding

more sample files in a cluster diminishes rather than increases the proportion of EMFACS

 patterns discovered by THEME in our datasets.

Table 26. Pattern Statistics for Clusters

Cluster Samples Patterns Total EMFACS patterns % of Tot. Pat.

Enjoyment 14 134 32 24 %

Surprise 26 241 38 16 %

Hostility 54 3903 260 7 %

Embarrassment 51 2069 116 6 %

Sadness 55 7605 143 2 %

Total 200 13952 589 4 %  

The exclusion of patterns that include the simultaneous onset of two or more

EMFACS codes does not reduce drastically the proportion of t-patterns that will be

considered for further analysis. In fact, depending on the cluster, 71% to 87% of the originalEMFACS patterns are sequential in nature. This is coherent with the fact that previous

analysis show little overlap between EMFACS codes. Altogether, the proportion of EMFACS

t-patterns corresponding to our selection criteria amounts to 4% (N=496) of all the t-patterns

detected by the program.

Page 100: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 100/282

96

Table 27. Number and proportion of sequential EMFACS patterns in Clusters

Cluster EMFACS Tot. EMFACS Sequential % of EMFACS Tot. % of Tot. Patterns

Enjoyment 32 25 75% 18%

Surprise 38 27 71% 11%

Hostility 260 224 86% 6%

Embarrassment 116 100 86% 5%Sadness 143 117 81% 2%

Total 589 493 84% 4%  

Following the t-patterns selection procedure, we constructed transition diagrams

showing all possible transitions from one behavior unit to the next. The entry point to each

diagram is an event type that was identified by THEME as initiating a pattern. Note, however

that these are not traditional transition graphs but ones where all transitions have been

 previously verified statistically by the program’s algorithm. An example of such a transition

diagram is given in figure 30.

STARTSTART

AU12AU12

11%

Stop

AU12

Stop

AU12AU17AU17

AU6AU6

Stop

AU6

Stop

AU6

51%27% 22%

ENDEND

100%

100%

100%43%

57%

Stop

AU17

Stop

AU17

AU6AU6

Stop

AU6

Stop

AU6

Stop

AU12

Stop

AU12

100%

100%

100%

100%

Figure 30. Transition Graph

This diagram comes from the positive emotions group and displays all the possible

 paths and their respective weights, given that a pattern starts with an action unit 12 ( Lip

Page 101: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 101/282

97

Corner Puller ). Here, one finds that 11% of all the patterns in this group start with an AU12.

Four distinct patterns starting with AU12 are identified composed of two to six behavior

units. Note that all the transition diagrams are to be found in full in appendix 3. From one

cluster to another, the types, number and proportion of event types that initiate t-patterns may

vary. This basic information’s will be used as entry points to the complex task of comparing

the structural similarities and differences of event type’s combinations and sequential

organization in time. Note that, the patterns we will report might be difficult to detect visually

as such when looking at the original video-sequences. This is because occurring events that do

not enter into a pattern composition are considered random noise by the program and have

 been dropped from the description. In the next section, we will first introduce basic search

results concerning the number, statistical validity and length distribution of the t-patterns

found in the five clusters. Then, we will use the FACSGen program to generate illustrations

of some patterns that have been found to differentiate.

Page 102: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 102/282

98

T-Pattern statistiques by clusters

Enjoyment  cluster 

The positive emotions cluster is characterized by higher ratings on the joyful,

entertained and enthusiastic scales. Out of the five clusters, the enjoyment group contains the

smallest number of video samples. It is composed of 14 clips (7%) out of the original 200.

This is no surprise since the experimental protocol was designed to elicit mainly negative

emotion narratives. In this cluster, we have found 134 different t-patterns in total. The length

of the t-patterns in the experimental data varied from 2 to 6 behavior units, with a mean of 2.7

and a mode of 2.

In contrast the mean number of t-patterns detected in randomized and shuffled data

was 5, with a maximum length of 2 behavior units.

Page 103: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 103/282

99

This figure shows the number of t-patterns detected in the positive emotion cluster and

the mean number detected after 10.000 thousand shuffling (blue bar) and random rotations

(red bar) of the same data.

The significance of the difference between the numbers of independent patterns found

in the experimental data compared to those found in the simulated data is computed on the

 basis of the distance, expressed here in standard deviations, between the number of

“experimental” patterns and the distribution of the simulated values around their mean. The

large number of standard deviations (>23SD) reported in figure 4 strongly suggests that the t-

 patterns in our cluster are not the results of chance effects for a  p-value  set at 0.001.

Following the selection procedure described above, 24 independent patterns (18%) were kept

for further analysis.

Hostility cluster 

The hostility cluster combines video-samples that were rated high on the “disgusted”,

“angry” and “scornful” adjective scales. It is the second largest group in terms of number of

video samples (N=54) included in the analysis, between the “sadness” (N=55) and

“embarrassment” (N= 51) clusters. These 54 files represent 26% of the entire corpus. The

 program detected 3903 t-patterns in the original dataset. The pattern length distribution varies

 between 2 to 7 behaviors units around a mean of 3.99 and a mode of 4.

Page 104: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 104/282

100

In contrast, the simulations do not produce any random patterns that have more than

three behavioral units. The differences between experimental and simulated data are much

smaller for short length patterns of two events compared to those with three units (>300 SD).

Even then, the difference is still large enough, above nine standard deviations, to consider

these patterns for further comparison with other clusters.

Page 105: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 105/282

101

Out of the 3903 initial t-patterns detected by THEME, 227 (6%) met the EMFACS

and sequentiallity criterion and were kept for further analysis.

Embarrassment  cluster 

The embarrassment cluster combines the “embarrassed” and “nervous” scales and

 joins together 51 files; 26% of the core set. In total, 2069 t-patterns have been detected.

Pattern length distribution in the experimental data varies between 2 to 6 behaviors units

around a mean of 3.4 and a mode of 4

Interestingly, in the rotated and shuffled data the program detects almost no t-patterns.

The mean number of patterns after the application of the shuffling procedure is 0.5 for

sequences of two events. After rotation it falls below 0.5. Note also that the standard deviation

values are very large: 687 for shuffling and 1.250 for rotations. Again, we can be confident

Page 106: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 106/282

102

that the associations of events found in the t-patterns of the embarrassment cluster cannot be

explained by chance effects.

Out of the 2069 original t-patterns detected by THEME, only 101 (5%) met the criteria

for further inclusion in subsequent analysis.

Surprise cluster 

The surprise cluster combines the “perplexed” and “surprised” scales. After the positive emotions cluster it is the least populated group in our datasets with 26 video files.

This represents 13% of all the files in the core data set. Length of patterns is distributed

 between two to five events; with a mean and a mode of 3.

Page 107: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 107/282

103

The number of patterns found in the simulated data does not exceed three events.

Regardless of the simulation procedure applied, the program finds a mean of 2 patterns of

maximum two events in length. With three events that figure falls below a 0.5 mean value.

The computed distance between the experimental and simulated data is respectively 58 and 45

standard deviations for the shuffling and rotation methods. Conclusions about the validity of

t-patterns detected in previous groups holds for the “surprise” cluster. Out of the 241 original

t-patterns detected by THEME, 27 (11%) presented the necessary features for further

inclusion in subsequent analysis.

Page 108: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 108/282

104

Sadness cluster 

The sadness cluster is composed of the “disappointed” and “sad” scales. With 55 video

records, this cluster contains the largest number of files from the core data set (28%). The

number of independent patterns detected is also the largest out of all the clusters. The program

found 7605 t-patterns in total. Pattern distribution varies between two to nine behavioral units

in length. The mean length is 4.5 with a mode of 4.

Page 109: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 109/282

105

Patterns validity assessment points to a mean number of 19 random patterns detected

in sequences, two events in length. With differences between “real” and simulated data above

30 standard deviations for both simulation methods, the t-patterns found in the experimental

data seem still valid for two events sequences. The t-pattern selection for this cluster led to a

drastic reduction of the number of sequences to consider for further analysis. Only 2% of the

original 7605 patterns have been kept (N=117).

Summary of 

 results

 

At this stage, the examination of the general characteristics of the t-patterns found in

the five clusters, yield the following informations. First the number of t-patterns found in a

cluster is in a linear relationship with the number of files composing a cluster. Nonetheless,

the proportion of t-patterns involving at least one EMFACS action decreases when the

number of sample files rises. We proposed two non-mutually exclusive possible explanations

for this phenomenon. The first concerns the type of coding involved. EMFACS codes are

“event” type codes whereas a majority of the additional non FACS codes are what we call

“state” codes. By definition, “event” codes are scored based on their frequency of occurrences

and vary from one file to the other. On the other hand, “state” codes are scored positive on all

the sample files. Only the frequency of transition states from one modality of a variable to

another varies across clusters. Second, the frequency of transition states is sensitive to the

time scale most characteristic for a specific variable. We argued that some variables, like eye

or head movements, can be so rapid and pervasive that their frequency of occurrences

Page 110: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 110/282

106

increases dramatically, compared to less frequent and longer lasting facial actions, with the

number of files involved in a cluster. We think that these two factors combined, are the main

reason why the proportion of t-patterns with EMFACS codes decreases when cluster’s size

increases. Considering that we decided to keep only the patterns that included at least one

EMFACS code, we were able to retain, depending on the cluster, from 2% to 24% of all the t-

 patterns originally detected by THEME. The second selection filter for patterns to be

considered for further analysis implied that events in a pattern needed to be composed of

events that are sequenced in time rather than simultaneously occurring. This second filtering

 procedure did not have a dramatic impact on the proportion of t-patterns to be dropped.

Indeed, 71% to 87% of the t-patterns containing a core EMFACS action showed a sequential

structure. The statistical validity of the patterns found in the clusters was estimated by

comparing the number of t-patterns found in the experimental datasets with the mean number

of patterns found after applying two randomization procedures implemented in THEME.

Results show that for all the clusters, the difference between the number of patterns detected

in the “real” data and the mean number of patterns found in the simulated data is typically

great, somewhere between 9 to 1250 standard deviations. Note that patterns longer than µ=3

are not found in either kind of randomized data, while in the real data patterns up to length 9

are detected. Even with patterns between 2 and 3 in length, the difference between real and

randomized data is always large enough to suggest that the patterns detected by the program

cannot be explained by chance effects. In the next section, we will examine the compositions

of the sequential patterns containing EMFACS actions putting an emphasis on the t-patterns

that stand out as most specific for each cluster.

Page 111: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 111/282

107

T-patterns illustrations and comparison by clusters

In this section, we will explore to what extent the t-patterns detected by THEME are

specifically related to the rating categories produced by the judges. Each t-pattern that is

unique to one cluster may be considered either as an element that was used by the judges to

score the videos or alternatively an element that co-occurs non-randomly with a latent

variable that was not measured in this thesis and which does affect the categorization process

(ex. Speech content).

We will also examine how additional nonverbal and paraverbal participate to the

structure of t-patterns containing facial action units. When possible, we will discuss possible

functional interpretations of the detected patterns. To do this, we will often refer to the

 predictions of Ekman as well as those of Scherer. Note, however that this is not done in an

attempt to test the respective predictive values of these models. Rather In the discussion

section of this thesis we will suggest possible methodologies that could be used to empirically

test the specific meaning of the t-patterns found in this thesis in a more rigorous manner.

To illustrate t-patterns that are specific to each rating cluster, we generated FACSGen

simulations that depict the unfolding of expressive actions in time. For readability reasons we

will not discuss each instances of cluster specific t-patterns. However, the exhaustive list of

all t-patterns detected in the clusters, as well as their frequency of occurrence expressed in

 percentages, is illustrated in the form of transition graphs available in appendix 3. Note, that

 by default, we added one “neutral baseline” slide, before the first event in the patterns. On this

 baseline slide, the subject is represented as if the head and gaze were oriented straight at the

camera and no facial actions were produced. Remember also, that in order to look at the

interviewer, situated at a 45° angle to the right of the subject; she needs to either move her

eyes or head to the right. Unless an “offset” code appears in the pattern, the actions are

maintained and codes accumulate on successive slides. This may, or not be an accurate

description of what would visually occur depending on whether or not an “offset” score

 presents the required characteristics to be included as an event in a t-pattern.

Our discussion of the t-patterns will be structured by presenting the specificities of

each cluster one by one.

Page 112: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 112/282

108

Enjoyment  cluster 

The enjoyment cluster includes 14 video samples rated high on the joy, amused and

entertained adjectives. 24 distinct t-patterns were considered in the following exploration. Out

of the 70 behavior units defined in the original annotation scheme, we only analyzed the 47

actions for which adequate inter-rater agreement was reach. Out of these 47 event types, 13

(28%) appear in the composition of t-patterns that have been rated as positive. They include

three upper face action units: AU1+2 (combined), AU5, AU6 and five lower face action units:

AU10, AU12, AU14, AU17 and AU20. Additional non FACS codes include: participant

looking at the interviewer (look at),  participant looking away form the interviewer (look

away), the head being turned to the side and away from the interviewer (head turned away),

 blinking (blink ) and the participant starting to speak ( speak ). FACS action units that are never

 part of a t-pattern in sample files rated as positive include: AU1, AU4, AU7, AU9, AU10U,

AU12U, AU14U, AU15, AU16, AU23, AU24, AU25, and AU26. Figure 27, shows the

 proportion of codes that initiate a t-pattern in decreasing order. The most pervasive kind of

 patterns (34%) in the “enjoyment” cluster is initiated by the participant starting to look at the

interviewer.

34

1311

9 9 86 5 5

0

5

10

15

20

25

30

35

40

Look At AU5 AU12 AU1+2 Look Away AU6 Speak AU14 AU20

Codes

   P  e  r  c  e  n   t  a  g

Figure 27 "Enjoyment" Cluster. First codes in T-patterns

 

This kind of opening seems most characteristic of this group. Neither the “Hostility”

nor the “Embarrassment” clusters contain patterns that start with a participant looking at the

interviewer. We do find such patterns in the “Surprise” and “Sadness” clusters, but they are

marginally represented in these groups, 3% and 2% respectively. In the positive emotion

group, the majority (76%) of actions that follow the “look at ” event include, either a social

smile, (AU12 -54%) or a Duchenne-smile, (AU6+12 -22%). No AUs 6 or 12 are found in the

other clusters where patterns start with a “look at ” event.

Page 113: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 113/282

109

Figure 28.

 Neurtral

Baseline Look At AU12 AU5

 

Figure 29.

AU12

Neutral

Baseline

 Look At

 AU5

 AU1+2

 Blink 

 

Page 114: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 114/282

110

Figure 30

 Neutral

 baseline AU6 AU1+2 AU12

AU6

stops

Look At

All these patterns present the characteristic of combining a social or a D-smile (a.k.a.

Duchenne smile) with a bilateral eyebrow raise, an upper lid raise or both. These two latter

actions are part of the “surprise” prototype in Ekman’s terminology. Partial sequences of t-

 patterns including action unit 12 with either 1+2 or 5 are also found in the "Hostility" (5%)

and "Embarrassment" (12%) clusters. However the combination of action unit 6+12 with 1+2

and/or 5 is unique to the positive emotions cluster. Moreover, in the other clusters the " look

at " action is never part of these sequences. Ekman finds that happiness often blends with

surprise (Ekman and Friesen, 2003 p.107). The typical eliciting scenario in his case would be

one where something unexpected occurs and the evaluation of it is favorable. The appraisal

theory interpretation of these sequenced actions would be quite comparable. AU1+2+5 would

 be interpreted as signaling an evaluation of  suddenness  on the novelty dimension. The

AU6+12 actions could either signal an intrinsically pleasant or goal conducive situation. Note

that in patterns 1 and 3; AU5 or AU1+2 but not both; occur in combination with 6+12 or 12

alone. In this case the appraisal model provides no interpretation. Also, in these two patterns

the predicted, a)  suddenness, b) intrinsic pleasantness  or c)  goal conduciveness  sequence

would not be respected as AU5 and 1+2 occur after and not before AU6 or AU12 have been

activated. An additional sequence covering 6% of all the t-patterns in the PE group includes a

Page 115: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 115/282

111

"look at"  action combined with an AU12. In this case, the subject starts to speak, looks at the

interviewer and finally produces a social smile (AU12). Not all the patterns including smiling

actions start with the subject looking at the interviewer. In fact, 11% of all the patterns in the

PE group are initiated with AU12. The most prevalent sequence in this case (51%) combines

action unit 12 with AU17 as illustrated in figure 31. Other less complex sequences including

AU12 the combination of 12 with 6, in a classic Duchenne smile (27%). We also find a

simple two events sequence starting and ending with 12 (22%).

Figure 31

AU12 AU17 Stop AU6

  AU6(Stop AU17)

Stop

AU12

 NeutralBaseline

The enjoyment group is not devoid of action units that are traditionally associated with

negatively valenced emotions. AU10, typically associated with "disgust" or "anger", is found

in 9% of the patterns. In the appraisal framework, AU10 is thought to signal an unpleasant

evaluation of olfactory or gustatory stimuli. Recent work in the field of embodied cognition

has shown that “disgust” feelings induced by unpleasant odors do affect the severity of moral

 judgments that research participants’ are asked to produce (Schnall and al, 2008). This could

 be an illustration of how a facial action that was selected phylogenetically to reduce the

inflow of odors potentially harmful to an organism, could through the development of

symbolic thinking and language skills acquisition, become a nonverbal emblem conveying a

symbolic repulsion that could be roughly interpreted as "This situation, action or person

Page 116: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 116/282

112

 stinks". Also, AU20 which is the main lower face element of the "fear" prototype is observed

in 5% of the patterns. In opposition to most of the "smiling" patterns, these actions are

systematically preceded by the subject either gazing or turning her head away from the

interviewer. In no other cluster are AU10 or AU20 directly preceded by a “look away” action.

 Note also, that AU12 is never aligned with AU10 or AU20 in a t-pattern. AU20 is believed to

reflect a “low power ” appraisal on the CPM “coping ” dimension. It is as if the subject did not

want the interviewer to see or think that these displays were addressed to him.

Hostility Cluster 

The hostility cluster includes 54 video samples in which 227 t-patterns corresponding

tour inclusion criteria were detected. In this group 62% (N=29) of the annotation codes enter

in the composition of at least one t-pattern. Because the raters did not make a differentiated

use of the “angry”, "contempt” and “disgusted” adjective scales, we could expect to find t- patterns that exemplify any of these three facial prototypes in this cluster. Graphic 1 shows

the event types initiating t-patterns in the “Hostility” group. Event types are ranked by order

of importance.

Figure 32. Hostility Cluster. First codes in T-patterns (%)

25

15

109

7 7

54 4 4

32 2

1 1 1

0

5

10

15

20

25

30

AU4 AU7 AU9 AU17 AU1+2 AU5 AU15 AU10U AU14U AU20 AU10 AU12 AU14 AU12A AU23 AU24

Codes

Most of the EMFACS action units are found to initiate t-patterns in this cluster. One

notable exception is the Duchenne marker of “enjoyment” smiles, action unit 6 (Cheek raiser).

The most prevalent event initiating a t-pattern in this group is AU4 (25%) which lowers and

draws the brows together. After AU4, the next most frequent event types starting a t-pattern

are AU7 (15%) and AU9 (10%). Those three actions together (4, 7 and 9) account for 50% of

all the t-patterns in the videos rated as communicating some form of hostile demeanor.

Page 117: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 117/282

113

According to the EMFACS taxonomy, AU4 and AU7 are constitutive elements of “anger”

 prototypes, while AU9 signals “disgust”. The preeminence of these event types in the

composition of “hostile” patterns is therefore no breaking news. If one adds AU10 as an

alternative to the encoding of “disgust”; AU10U and 14U as signs of “contempt” and AU23

and AU24 as possible elements in “anger” displays, the proportion of t-patterns starting with

an event type constitutive of facial prototypes conveying some form of hostility rises to 63%.

AU4 is the first action in 25% of the patterns present in the sample files rated as

conveying a hostile attitude. According to Ekman, for an AU4 to be interpreted as a clear

“anger ” signal, it must be associated with AU24 (lips pressing against each others) possibly

also with AU23 (Lip Tightener),  both in the lower face region (Ekman and Friesen, 2003,

 p83). If that is not the case, the expression is considered ambiguous and might take on other

meanings: visual focusing efforts, concentration, determination or anger containment. In the

cluster, we find no lower face action units aligned with AU4 in a-t-pattern. One possible

explanation for this is that AU23 and AU24 are by definition only coded when subjects are

not speaking. Because we find no “ pause” codes in these patterns it is most likely that AU4 is

 produced when the subjects are speaking. This would preclude any association of AU4 with

23 or 24. Note also, that according to Ekman, the involvement of AU23 and 24 in anger

expressions ought to be interpreted as attempts to control an impulse of saying something

hostile or shouting. This implies that the decoding of “angry” faces would have to rely on

converging signals from additional communicative channels to be disambiguated when

subjects are speaking (ex: speech content, vocal acoustics modification).  For Scherer also,

action unit 4 should not be interpreted in isolation. He provides predictions for AU4+5 and

AU4+7 when they overlap (both AUs together being an element in a sequence).  The

interpretation of the AU4+7 combinations varies depending on its position in the appraisal

sequence. When it occurs at the beginning of a pattern it would signal a low familiarity or the

occurrence of an event difficult to predict  (novelty appraisal check). If these actions are found

latter in the sequence they could signal that some situation is being evaluated as intrinsically

unpleasant   or  goal obstructive.  The association of AU4 with 5 is thought to convey an

attitude of feeling powerful enough and willing, to cope with a challenging situation. In our

dataset, the action units associated with AU4 in a t-pattern are: AU9 (63%), AU5 (50%), AU7

(41%) and AU1+2 (3%), (the proportions of independent t-patterns including these AUs are

in brackets). For Ekman, AU9 is sufficient by itself to signal a “disgust” message. Actually,

only the “disgust” and “contempt” prototypes in the EMFACS system can be defined by the

Page 118: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 118/282

114

innervations of single action units. In this system, a simultaneous activation of AU4 and AU9

would be interpreted as blending some elements of anger with disgust. Our previous results

have shown that no such blended expressions could be said to be characteristic of any clusters

in particular. Nevertheless, we do find several instances of statistically valid sequences

involving both AU9 and AU4 that are unique to the “hostility” cluster. The CPM model

 proposes two scenarios for such sequences. If AU4 and AU7 manifest before AU9, the

sequence would be interpreted as communicating something like: “ I see this event as a) new,

unfamiliar and or unpredictable and b) it is intrinsically unpleasant.” If AU9 is followed by

AU4+5, the message would then become: a) this is intrinsically unpleasant and b) I’m

 powerful enough to deal with it, and actually, I will do something about it.  In the hostility

cluster we do indeed find instances of both types of sequences. In fact 45% of all the t-

 patterns starting with AU4 are compatible with one CPM predicted sequence. Next follows

some illustrations of t-patterns initiated by AU4, that are not found outside the group of

videos rated as conveying hostility. As before, the complete set of transition diagrams

illustrating all the sequences are in the appendix 3. Even though AU7 is most predominant in

the constitution of t-patterns belonging to the hostility group (23%), it is also found in the t-

 patterns of videos rated as communicating embarrassment (19%) and to a much lesser extent

in the t-patterns of the surprise and sadness groups; 4% and 2% respectively. Besides these

quantitative differences, we also find structural variations in the composition of t-patterns

with AU7 across these four clusters. In the "Hostility" group, AU7 appears in 84% of the t-

 patterns where AU4 is present. By contrast, in the "Embarrassment" and "Surprise" clusters

no such association appears. We do find two short sequences in the "Sadness" cluster where

AU4 is aligned in a t-pattern with AU4, with no other additional codes. By contrast, when

AU4 and AU7 are associated in a t-pattern in the "Hostility" cluster they are always

accompanied with some additional FACS codes. For example, in the illustration below

( Hostility: T-pattern 1), AU9 is aligned in a t-pattern including both AU4 and AU7.

Page 119: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 119/282

115

Figure 33.

 Neutral baseline AU9AU7

StopAU7AU4

This specific t-pattern of length 4 repeats itself 19 times in the hostile group. By itself,

it represents 5% of all the sequences starting with AU4. Another sequence covering 6% of the

AU4 patterns, presents itself as follows:

Figure 34.

Baseline(AU1+2) AU4 AU9

  StopAU1+2

StopAU9

This t-pattern represents 6% of the sequences that start with an action 4 in the hostility

cluster. Before the pattern starts, two action units are already activated: AU1+2. According to

Ekman, the combination of the frontalis and corrugator actions produce a typical fear brow.

AU1+2+4, is one of the few EMFACS combination that is statistically more represented in

some clusters than others. Event though this facial configuration is present in the hostility

group, it was found to be more characteristic of the sadness and embarrassment clusters.

Interestingly, the association of AU1+2 with AU4 is never aligned in a T-pattern in either the

sadness or the embarrassment cluster. This is a good illustration of how quantitative

differences detected across the clusters are not automatically reflected in the structural

composition of the t-patterns detected by THEME. The results of the structural analysis

Page 120: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 120/282

116

suggests that 1+2+4 is part of a repetitive sequence found only in video samples rated as

“hostile”, which additionally involves AU9 and where the activation of AU4 is maintained

after AU1+2 has receded. In this case, this suggests that AU1+2+4 could be seen not as a

discrete facial signal but as a momentary configuration in a sequence of intertwining events

where AU1+2 and AU4 converge at times, but nevertheless follow distinct non random

dynamic trajectories. We do find some t-patterns starting with AU4 in the “sadness” (2%) and

“Embarrassment” (1%) cluster that are also found in the “Hostility” group. In the

“Embarrassment” group AU4 is aligned with AU5 in one t-pattern. In the sadness group AU4

is associated with AU7 in two short patterns. But, in both those cases no other EMFACS

codes are associated to these sequences. Additionally, neither in the “Positive emotions” nor

the “Surprise” cluster, does the program detect any t-patterns involving AU4. The inner and

outer brow raise action (AU1+2) in the hostility cluster initiate 7% of all the t-patterns. All of

them are directly followed by an action unit 5. According to Ekman, the association of

AU1+2 with AU5 is a combination constitutive of both the “fear” and “surprise” prototypical

expressions. Scherer associates AU1+2+5 with possibly two appraisal dimensions: “novelty”

and “ goal significance”. When these action units occur together, they are interpreted either as

a reaction to a sudden change in the person’s external or internal environment (novelty); or

alternatively as the expression of a perceived discrepancy between what is happening and

what was expected (goal significance). In 51% of the t-patterns starting with the sequence

AU1+2 +5, the next event in the sequence is an AU12. T-pattern 3 is a good illustration of

such a case. By itself it represents 16% of the patterns starting with the following sequence a)

AU1+2, b) AU5, and c) AU12.

Page 121: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 121/282

117

Figure 35.

StopAU20

StopAU5

 Neutral baseline AU1+2 AU5 AU12 AU20

Interestingly, none of the facial actions that are most typically associated with

expressions of disgust, contempt or anger are included in the composition of this pattern

identified in sample files rated as conveying some form of hostile attitude. AU5 could be an

element of an anger prototype, if it were associated with AU4, AU7 or both, which is not the

case here. Ekman’s interpretative framework would lean towards an explanation involving

some element of surprise. To this initial sequence a smiling action (AU12) is added, directly

followed by a lip stretch (AU20). The AU20 is seen as an element of a “fear” expression in

Ekman’s dictionary and Scherer interprets its message value as conveying something like: “I

have little or no power”. Ekman would probably argue that the smile should not be seen as a

true signal of enjoyment, for lack of AU6 involvement, but rather as a deceiving attempt to

mask a “fear” expression. In this case both frameworks would seemingly fail to explain why

the sequence is perceived as communicating hostility. What strikes us in this sequence is the

fact that the frontalis action is maintained throughout the sequence. According to Ekman,

surprise is the briefest emotion, and longer displays of surprise are seen by him as reliable

Page 122: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 122/282

118

cues to an “unfelt emotion” (Ekman, 2003, p.165). In this case the sequence would be

interpreted as a voluntary emblem communicating attitudes related to surprise like disbelief

and amazement. The CPM model proposes an alternative explanation to the longer than

would be expected duration for the AU1+2+5 activation. Once the initial processing of a

novel stimulus ends, the goal relevance appraisal starts. Interestingly, the facial signs

 predicted for an event evaluated as “relevant” is precisely the maintained innervations’ of

action units 1+2+5. In this case the sequence would communicate something like: “this is new

(AU1+2+5), it concerns me (AU1+2+5), but I don’t think I have any control on the situation

(AU20)”. But again, both frameworks tend to explain the lip stretching action more as a sign

of submission than dominance as would seem to be the case when someone is expressing

hostile intentions. A last perspective could be that the lip stretch action is not a sign of basic

emotion or low power appraisal, but rather a smile control action. Indeed AU20 when

occurring with AU12 has been listed by Keltner (1995) as a smile control action. This differs

radically from Ekman’s notion of masking smiles in that what is being obscured or

counteracted here is not the expression of fear but the smile itself. The fact that AU12 starts

 prior to AU20 in this sequence tends to lend credit to this view because emotion deamplifing

actions should follow not precede the display of affect. We think that this is an example of

how information about the sequential unfolding of facial displays may help decide on several

 possible interpretations when simple information about overlapping actions may not. When

the AU1+2+5 are not followed by AU12, they are systematically followed by the offset of

AU1+2 (49%). In the majority of these cases (71%) the sequence runs as follows:

Page 123: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 123/282

119

Figure 36.

 Neutral baseline AU1+2 AU5

  Stop

AU1+2AU4

StopAU4

This sequence covers 35% of the t-patterns that start with action units 1 and 2 in the

hostility cluster. It is a good illustration of the temporal structuring of communicative signals

that proponents of componential models are interested in. If one were to isolate slide 3 from

the rest of the sequence, the facial configuration on the slide would correspond to a “surprise” prototype (Ekman) or the reaction to a novel and sudden change in the environment (Scherer).

When taking into account the way that facial actions further unfold after this first display, we

get additional information about the seemingly unpleasant character of that change, signaled

with the AU4 brow action paired with the upper eyelid raise action (AU5). At no time in the

sequence are both signals overlapping. This implies that the sequence seen as a whole yields

more detailed information about the message value of the displays than the separate elements

that constitute it.

Page 124: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 124/282

120

Figure 37

 Neutral

 baseline AU14 AU23

 StopAU14

StopAU23

In the hostility cluster 2% of the sequences are initiated by an action unit 14. More

significantly this action appears in 12% of the composition of patterns in this group. The

AU14 or dimpler as it is commonly called because of the dimple-like wrinkle that it produces

 beyond the lip corner, involves a bilateral tightening and slight rising of the lip corner. In

contrast, AU14 is not found in the composition of t-patterns extracted in the embarrassment,

hostility and sadness clusters. However, we do find it in 8% of the t-patterns detected in video

files rated as positive. The most commonly accepted emotional meaning derived from this

action is thought to be an attitude of scorn or contempt. The empirical evidence in favor of the

universality of a “contempt” expression relies on 15 articles reporting the result of 26 rating

studies having investigated the impression produced by a unilateral version of AU14,

sometimes with AU12, head and eyes centered (Alvarado & Jameson, 1996; Biehl et al.,

1997; Ekman & Friesen, 1986; Ekman & Heider, 1988; Ekman, O’Sullivan, & Matsumoto,

1991; Frijda & Tcherkassof, 1997; Matsumoto, 1992; Ricci-Bitti et al., 1989; Rozin, Lowery,

Imada, & Haidt, 1999; Russell, 1991a; Wagner, 2000; Yrizarry, Matsumoto, & Wilson-Cohn,

1998, Matsumoto, 2005). A second version of this expression is similar but includes a head

tilt and/or eyes to the side (Haidt & Keltner, 1999; Rosenberg & Ekman, 1995). Nevertheless,

according to the EMFACS dictionary a symmetric AU14 can also be interpreted as a

“contempt” display under certain conditions: “The onset of the symmetrical AU14 ought to beimmediately preceded or accompanied by an upward rolling of the eyes. Without pausing, the

eyes will move up and to the side and come back down in one continuous motion. Another

variation is when the onset of AU14 is immediately preceded or accompanied by a movement

of the eyes or of the head and eyes to look at the other person in the conversation »   (see

EMFACS-8 manual, Ekman, Irwin and Rosenberg, 1994). Finally, the combinations of a

Page 125: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 125/282

121

 bilateral eyebrow raise (AU1+2) with a symmetric AU14 is also suggested in the same text as

a possible variant of a contempt expression. As is illustrated in t-pattern 5, which corresponds

to 20% of the sequences starting with AU14; none of the EMFACS requirements are met to

interpret this action as potentially conveying a scornful attitude. However we do find a t-

 pattern that closely matches the second version studied in previous work. In t-pattern 6 which

represents another 20% of the sequences starting with AU14, the participant does tilt her head

to the side after producing a unilateral 14. While the head is tilting the dimple action stops and

the head finally moves away from the interviewer.

Figure 38

 Neutral

 baseline AU14U

  Head

Tilting Side

Stop

AU14U

HeadTurnedAway

By contrast, the innervations of AU14 found in the patterns of sample files rated as

 positive are never unilateral and do not involve additional head or gaze actions. The meaning

of AU14 according to the CPM framework is linked to the appraisal of the implication of a

situation on the dimension of social normative standards or personal axiological values. If the

self is evaluated as having failed to comply with some personal or social standards, the model

 predicts a symmetric 14 with either a look down action, a partial closing of the upper eyelid

and or a head tilt to the side. If the object of the evaluation is not the self but someone else,

then the model predicts that the AU14 action ought to be unilateral and the sequence would

not involve the head and gaze patterns described above. Our data seem to suggest that

contrary to the CPM prediction the pairing of AU14 with a head tilting to the side action is

Page 126: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 126/282

Page 127: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 127/282

123

According to this view there should be no reason why these types of t-patterns should be

restricted to either negatively or positively valenced displays.

Embarrassment  Cluster 

The embarrassment cluster is constituted of 51 video samples, 25% of all the records.

According to our defined criteria 101 t-patterns were considered for exploration. In video

samples rated as conveying embarrassment and/or nervousness, 22 distinct event types (47%)

enter into the combination of t-patterns. Among these, 13 are facial actions (59%). The other

codes are distributed as following: three "Gaze" (14%), four "Head" (18%) and two "Voice

and Speech" (9%) event types. Facial actions that are never found in this group are: AU1,

AU6, AU14, AU14U, AU16, AU24 and AU25. The most predominant action initiating t-

 patterns in this cluster is AU12 (20%). The full list of initiating event is figured in figure 39.

20

12

10   10

8

7 7

6 65

3

21   1 1 1

0

2

4

6

8

10

12

14

16

18

20

22

 A   U   1  2

 A   U   1  5

 A   U   7

 A   U   1  2   U

   L o o   k

  A  w  a

  y

   L o  w e

  r    H e  a  d

   L o o   k

    D o  w  n

 A   U   1  0

 A   U   1  7

   E  y e   l  i

  d  s    D  r

 o  p

 A   U   5

 A   U   1  +  2

 A   U  4

 A   U   9

 A   U   2  0

 A   U   2  3

Figure 39. "Embarrassment" Cluster. First codes in T-Patterns (%).

The proportion of independent t-patterns containing an AU12 (38%) is next only to the

 positive emotions cluster (56%). One head movement that is most characteristic of the

embarrassment t-patterns is the lowering of the head on its vertical axis. It is present in the

composition of 21% of these patterns. Moreover, it is the initiating event of 7% of the t-

 patterns in this group. By contrast, the "lower head" action never initiates patterns in other

groups. Although it is also present to a much lesser extent in the composition of patterns

found in the hostility cluster (4%), this action does not reach the 1% threshold for the

enjoyment, surprise or sadness clusters. Figure 40, illustrates a typical embarrassment

sequence aligning a head lowering action with AU12. In 11% of the t-patterns that starts with

Page 128: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 128/282

124

the participant lowering the head, it is followed by a smiling action, a relaxing and partial

closing of the upper eyelid and finally a eyebrow raise and upper lid raise action. Codes

indicating the partial closing of the upper eyelids (eyelids droop) though present in four out of

five clusters are most prevalent in both the sadness (40%) and embarrassment” (23%)

clusters. Proportions for this action in other groups are as follows: enjoyment: (0%) anger

(3%), surprise (19%).

Figure 40.

 Neutral

 baseline

Lower

Head AU12

Eyelids

Drop AU1+2

AU5

We find that the embarrassment cluster is the only one where patterns containing a

unilateral version of AU12 are detected (see figure 12). This action which is present in the

combination of 15% of the embarrassment patterns is similarly to AU14U associated with the

 prototypical display of “contempt” in EMFACS and the communication of a sense of moral

disapproval of someone else’s actions or the appraisal of an event as unfair according to the

CPM model (see table 1. p.24). Considering these theoretical propositions we would have

expected to find a predominance of t-patterns with both AU12U and AU14U in video samples

rated as conveying hostility. Instead AU12U is not found in t-patterns rated as hostile and

conversely AU14U never enters in the combination of t-patterns found in the embarrassment

cluster. The only other group outside the hostility cluster in which we do find instances of

AU14U being part of a t-pattern is sadness (2%). Incidentally both the hostility and sadness

Page 129: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 129/282

125

clusters are likely to reflect appraisals where another person is looked down upon (hostility)

or where a situation is judged as unfair (ex: loss of a loved one) whereas embarrassment is

more likely to involve some self depreciating evaluations (remember that a majority of

records classified as conveying embarrassment were extracted from guilt narratives). If this

were the case it could be that AU14U reflects an appraisal of low compliance with standards

where the agent is not the self whereas when AU12U is activated the same appraisal would be

oriented towards the self as a causal agent. One possible counter-argument could be that it is

not the AUs 14U and 12U that are the essential signals in these t-patterns causing participants

to classify these records the way they did. When comparing the composition of t-patterns

involving AU14U in the hostility and sadness clusters with that of t-patterns involving

AU12U in the embarrassment group one discovers that a lowering head action is involved in

the embarrassment group whereas it is absent in the sadness and hostility patterns.

Figure 41.

Baseline

(Look At)

Lower

Head

Look

Away AU12U

Head Turned

Away

Admittedly, our attempt to suggest a possible explanation for this selective

dissociation between AU12U and AU14U in our dataset remains highly speculative at this

time and would need further experimentation to confirm. A position of the head that is

relatively more frequent in the embarrassment t-patterns (12%) than in the other groups is the

 participant's head being turned away from the interviewer: enjoyment (4%); hostility (4%);

surprise (0%) and sadness (6%). 

The sequence illustrated in figure 42 starts with the participant pulling the corners of

the lips down then she looks downwards and finally lowers the head on its vertical axis. This

 pattern represents 16% of the sequences starting with AU15 found in the embarrassment

cluster. A participant gazing downwards is a relatively dominant response in both the

embarrassment (28%) and the sadness (39%) t-patterns. Note, also that this action is never

Page 130: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 130/282

126

found in patterns identified in the enjoyment and hostility clusters. It is present to a lesser

extent in the composition of surprise (7%) t-patterns. Interestingly, an almost identical

sequence as the one depicted in figure 42 is repeatedly found in the sadness cluster. The only

difference being the final lowering of the head in the embarrassment patterns, which is absent

in sequences found in the sadness cluster.

Figure 42.

 Neutral

 baseline AU15

Look

Down

Lower

Head

This suggests that non facial actions, like head lowering, participating to the unfolding

of dynamic displays may actively contribute to the modulation of perceived meaning

attributed to AU15. The pattern depicted in figure 43 is characteristic of 24% of the t-patterns

starting with AU15 in the embarrassment cluster. It is directly followed by a lip corner pull

action (AU12) that counteracts the downwards pulling of AU15 producing the appearance ofa flattened smile often referred to as a “miserable smile” (Ekman & Friesen, 1982). The

sequence continues with a rising of the upper eyelid (AU5) that rapidly recedes at the end of

the pattern.

Page 131: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 131/282

127

Figure 43.

 Neutral baseline AU15 AU12 AU5

StopAU5

Comparatively, in the hostility cluster AU12 is never aligned in a t-pattern when the

sequence is initiated by action unit 15. The enjoyment and surprise clusters do not show any

involvement of AU15 in their t-patterns. Even though the patterns found in the sadness cluster

involve both the AU12 and AU15, they never occur together in a sequence. As the pattern is

initiated by AU15, predicted to be an expressive element of sadness (Ekman & Friesen, 2003)

or the reflection of evaluating oneself as powerless (Wehrle et al. 2000), the subsequent

involvement of AU12 might be seen as an attempt by the participant to regulate her feelings

« let’s cheer up » or to neutralize her display of distress by a masking smile. In fact both these

functional hypothesis might be simultaneously valid. In fact the alternative consisting of

 putting more emphasis on either the interpersonal or intrapersonal interpretation of such a

regulation episode (assuming it has this function) depends more on the perspective of the

observer than on what is being expressed. Here it seems that the judges participating in our

study have favored an interpretation of this pattern as reflecting an attempt to conceal one’s

feelings, possibly leading to an interpretation of the person’s attitude as conveying ill ease.

This could explain the presence of this t-pattern in the embarrassment cluster. The upper

eyelid raise in this sequence (AU5) is a facial action traditionally associated with either the

expression of anger (when combined with AU4 or AU7) or surprise (combined with

AU1+2+25/26) it has also been described has an emblematic facial gesture conveying a sense

of uncertain or questioning surprise (Ekman & Friesen, 2003, p. 43). The words that would go

with it might be something like: « oh really? » or « is that so? ». The sequence illustrated in

figure 16 is another example of an alignment of AU12 and AU15 in a t-pattern. It represents

23% of all the sequences initiated by AU5 in the embarrassment group. All the event types

Page 132: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 132/282

Page 133: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 133/282

129

themselves from smiling but also when attempting to conceal manifestation of distress (ex

AU15). Observers might infer from such sequences that the individual is ill at ease in letting

his distress be shown on the face for too long.

Surprise Cluster 

The surprise cluster is constituted of 26 sample files, 13% of the videos in the core set.

According to defined criteria 27 t-patterns could be included in this exploration. This cluster

is mainly defined by two adjectives: that do not share the same status with regard to their

 pototypicallity as emotion terms. As we have mentioned before, “surprise” holds a particular

status amongst emotional labels because of its apparent lack of hedonic valence. Nevertheless,

as mentioned before the Niedenthal study (2003) shows that the perceived intensity of a

subjective feeling, rather than its hedonic valence, constitutes the best predictor of

 pototypicallity for being included in the french category “émotions”. On this intensitydimension, “surprise” is a term that gets mean rating scores (µ = 6.11,) close to that of other

“basic” terms of emotions like “colère” (µ = 6.96) or “joie” (µ = 6.94) whereas “perplexe”

does not (µ = 4.04). Video samples in this group gather 26 video samples in a cluster. It the

second least populated group right after enjoyment (N=14). In the surprise cluster 15 different

event types (32%) enter in the compositions of t-patterns. There are 7 actions units out of the

21 possible codes (33%); three upper face-AU1+2, AU5, AU7- and four lower face actions-

AU17, AU24, AU25, AU26. Head codes include a vertical upwards movement of the head,

and an orientation of the head towards the interviewer. All gaze orientation and eye

movement codes are present at the exception of the “look up” action. The “pause” code

referring to speech breaks in the participant’s narrative flow is also an important element

 present in 30% of these patterns; half of which are initiated by this action. Facial actions that

are never found in this group are: AU1, AU4, AU6, AU9, AU10, AU10U, AU12, AU12U,

AU14, AU14U, AU15, AU16, AU20 and AU23. The most predominant action initiating t-

 patterns in this cluster is AU17 (20%). The full list of initiating event is listed in figure 45.

Page 134: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 134/282

130

Figure 45 “Surprise” Cluster. First codes in T-Patterns (%)

29

1615 15 15

53

2

0

5

10

15

20

25

30

35

AU17 Head On AU5 Pause AU 1+2 Blink Look At AU7 

The first t-pattern we will present from this cluster accounts for 11% of the sequencesstarting with AU17 (see figure 46). The action of the mentalis muscle raises the chin boss

 pushing the lower lip upward. It causes the mouth to take on an inverted U shape. This is the

only facial action unit in this pattern. It is followed by an orientation of the gaze first towards

and then away from the interviewer, the sequence ends with AU17 receding while the

 participant is still avoiding eye contact.

Figure 46.

AU17

 Neutral

 baseline Look At

Look

Away

Stop

AU17

While AU17 is in no way specific to the surprise cluster, it is found in the composition

of t-patterns from all clusters: enjoyment (12%), hostility (25%), embarrassment (23%) and

sadness (22%). It is the lack of association of AU17 with other core EMFACS action units

that makes this pattern specific to the surprise group. In sadness 17 is associated with 15, in

enjoyment it is aligned in t-patterns with either 6, 12 or 14; in hostility 17 is always found in

t-patterns involving at least one of the following codes: AU1+2, AU7, AU14, AU15, AU23 or

Page 135: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 135/282

131

AU24 and in embarrassment : AU1+2, AU5, AU7, AU10, AU12U or AU15. It seems that it

is only when AU17 is not qualified by other action units in a t-pattern that it takes on the

dominant perplexed and/or surprised message value. Figure 47 is a variant of the precedent

sequence. By itself, it accounts for 6% of the patterns starting with AU17 in the cluster. The

opening of the sequence is similar to the last one, but here instead of an active gaze movement

away from the interviewer the participant relaxes the upper eyelid that droops down partially

closing the eye aperture.

Figure 47.

 Neutral baseline AU17 Look At

EyelidsDrop

StopAU17

In both these patterns the chin action starts before the gaze orientation shift towards

the interviewer. In figure 46 the « look at » action rather than being maintained is directly

followed by a « look away » action. By contrast in figure 47 the eyes are not directed away

from the interviewer but the upper eyelid droop still limits the possibility of direct eye contact

 between the interacting partners. It is as if the participant’s looking at his partner was not

intended to establish mutual eye contact but possibly to scan the reaction of his partner to his

own previously manifested attitude of disbelief. In this cluster we find two distinct groups of

 patterns that can be differentiated on the basis of a) those that involve AU17 generally with

some forms of contact avoidance actions: gaze and/or head looking or turning away; and b)

those where AU1+2 and/or AU5 sometimes with AU25 and AU26 are constitutive elements

of the patterns and where no gaze or head avoidance actions are found. Ekman’s predictions

for prototypical surprise expressions do involve a combination of AU1+2+5 with lips opening

(AU25) and jaw dropping actions (AU26), whereas AU17 associated with AU1+2 possibly

also with a shoulder shrug is interpreted as an emblem; a facial shrug conveying a sense of

disbelief or bewilderment. Given the different semantic emphasis of the two dominant

adjectives in this cluster, cognitive/reflexive for perplexity and emotional for surprise, it is

Page 136: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 136/282

Page 137: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 137/282

133

or by an AU4 or AU20 for the remaining 49% (see transition graph p. 207). This is never the

case in the surprise cluster (see transition graph p.234). Still in the hostility group when the

initiating event is AU5, we do find one single instance of a pattern with AU1+2+5 but it

contains none of the other actions present in the surprise cluster. The other t-patterns initiated

 by AU5 and containing AU1+2 that are perceived as conveying hostility all do contain at least

one of these actions AU4, AU9 or AU20 usually associated with negatively valenced affects.

This contrasts with the surprise group where these three actions are never found in the

constitutions of the t-patterns. Finally in the sadness cluster t-patterns initiated by AU1+2 and

containing AU5 are aligned in a sequence with a look down action in 60% of the cases. In the

remaining patterns the sequence is a simple AU1+2+5 combination with no other qualifying

actions. The sequence depicted in figure 49 corresponds to a classical prototype of surprise

display as defined by the EMFACS dictionary. It starts with an orientation of the head

towards the interviewer followed by a bilateral raise of the brows and upper lid raise. At this

 point, the participant’s lips part and the jaw start to relax causing the mouth to open. This

specific sequence is found in 27% of the cases when a participant has his head centered on the

 partner.

Figure 49

 Neutral baseline Head On AU1+2 AU5 AU25

AU26

Page 138: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 138/282

134

The last illustration for the surprise cluster is depicted in figure 50. It is initiated with a

 participant that stops speaking (pause), followed by an upper eyelid raise (AU5) and an

opening of the mouth (AU26). This specific sequence covers 39% of all t-patterns initiated

with a pause in the surprise group. The pausing action is most characteristic of both the

surprise (31%) and sadness t-patterns (30%). It is altogether absent in t-patterns from other

clusters at the exception of embarrassment (2%).

Figure 50.

 Neutral baseline

PauseAU25 AU5 AU26

We do find that sequences appearing in video samples rated as conveying surprise do

often combine AU1+2 with AU5 in a sequence often with AU25 and or AU26. This is in

accordance with Ekman and Friesen’s predictions for a facial prototype of surprise.

 Nevertheless this combination of action units is not specific to the surprise cluster, it is also

found to be predominant in the hostility and enjoyment clusters. In fact quantitative

comparison of cluster means with Kruskall Wallis tests failed to show significant quantitative

differences for these combinations across the clusters. Only t-pattern analysis was able to

demonstrate specific structural differences across the clusters in the way these actions

combine in time with other event types. Overall the comparative analysis of the patterns

containing a AU1+2+5 sequence across the ratings provides evidence that these two actions

together constitute but one element in larger multichannel communicative structures that

when considered in their complete forms seems to affect how participants perceive the

meaning of the combination of AU1+2 with AU5.

Sadness Cluster 

The sadness cluster includes 27% (N=55) of the 200 core set video records. It is

composed of samples files rated high on the sadness and disappointment adjectives. Out of

the 47 event types, in the annotation scheme 21 (45%) appear in the composition of t-patterns

Page 139: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 139/282

135

that have been rated as conveying sadness/disappointment. These include four upper face

action units: AU1+2 found in 22% of the patterns, AU4 (3%), AU5 (13%) and AU7 (2%).

Seven lower face actions: AU12 (3%), AU15 (42%), AU17 (18%), AU23 (3%), AU24 (3%),

AU25 (7%) and AU26 (1%). Facial action units that are not found in the composition of

sadness t-patterns include: AU1, AU9, AU10, AU10U, AU12U, AU14, AU14U, AU16 and

AU20. Additional event types entering the composition of the repetitive sequences are all the

“gaze” codes at the exception of the “look up” action, with a predominance inside and across

the clusters of three specific codes: “look away” (52%), “eyelids droop” (40%) and “look

down” (39%). Head positions/actions involve the participant’s head oriented either towards or

away from the interviewer in similar proportions (6%). A small percentage of patterns include

a movement of the head tilting to the side (1%). Speech codes are exclusively related to the

speech flow of the participants indicating either a “pause” (31%) or a “start” (6%) of speech

utterances. The list of all event types initiating t-patterns in this group are listed in figure 51.

Figure 51 “Sadness” Cluster. First codes in T-Patterns (%)

22

17

14

119

53 2   2   2   2 2 2 2

1   1   1 1 1

0

5

10

15

20

25

   P  a  u  s e    B   l  i  n   k  A   U  1  5  A   U   1  +  2  A   U  1  7  A   U  5

   L o o   k

    D o  w  n

 A   U  2  5   H e

  a  d   O  n

   L o o   k

  A  w  a  y

 A   U  1  2   L o

 o   k  A  t

 A   U 4

   E  y e   l  i

  d  s    D  r o  p

  S  p e  a   k A   U

  1 4   U

   H e  a  d

    T  u  r  n e

  d  A  w  a  A   U  2  3  A   U  2 4

Codes  

The first thing we would like to highlight about this cluster is the unexpected lack of

involvement of AU1 in the patterns. AU1 is considered by Ekman and Friesen (2003, p.117)

as a defining characteristic of a “sad” brow. This action raises the inner corners of the

eyebrows; this differs from the raising and drawing together of the whole brow in AU1+2.

Arguably the overall frequency of occurrence of AU1 is lowest amongst the core EMFACS

action units in the database as a whole (N=39) accounting for only 1% percent of all the

action units scored in the video samples. Nevertheless the ANOVA test confirmed a

statistically significant higher involvement of AU1 in the surprise cluster compared to the

embarrassment cluster [F(4,195) = 2.3; p = 0.0500]. Also, the tests values shows that AU1 is

the most characteristic facial action in the sadness cluster (see table 22 p. 73). There are two

Page 140: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 140/282

136

 possible explanations for this lack of associations of AU1 with other codes in t-patterns in t-

 patterns detected by THEME, not only in the sadness cluster but in all the rating groups. First,

the relative low frequency of the action unit may have rendered it impossible for AU1 to be

included in a t-pattern because of the demanding 15 repetitions criteria that we set for

retaining patterns in clusters. In this case reducing the number of repetitions for selecting

 patterns could reveal sequenced structures containing AU1. A second possibility is that AU1

may have been frequent enough to be theoretically included in a pattern but wasn’t because its

 positioning and/or temporal distances to other event types in the continuous stream of

 behaviors is too unpredictable to be considered part of a pattern. While we suggest these two

alternatives, we will not attempt to bring a definitive answer to this specific issue by lack of

time. Note also, that contrary to the basic emotions predictions the CMP models offers no

interpretation for an AU1 not occurring simultaneously with an AU2. Even though AU1 can

not be shown to be characteristic of t-patterns found in the sadness cluster, several sequences

are indeed unique to this group. We find that the t-patterns detected in the sadness group

differ from those of the enjoyment, hostility and embarrassment clusters for its comparatively

high involvement of the “pause” event (31% of all patterns). Figure 52 depicts a t-pattern

initiated by the participant stopping to speak. It is followed by an AU15 (lip corner

depressor). Then, the upper eyelids relax covering part of the eyes aperture. At this time the

gaze is oriented to the left side, away from the interviewer and finally downwards. This

specific sequence by itself represents 7% of all the t-patterns detected in the cluster and 31%

of those initiated by a “pause” action. In this pattern both the mouth and partly the eyes

regions show the predicted appearance of sadness according to Ekman and Friesen (2003, p.

121). For the mouth region it is the corners of the lips down (AU15). Note that according to

EMFACS if AU15 is not accompanied with additional specific actions in the brow/forehead

and/or the eyes regions its meaning cannot be reliably interpreted as emotional. As we just

discussed, the suggested brow/forehead action is unit 1, which is absent from our patterns. For

the eyes region these authors suggest two possible defining characteristic of a sad demeanor:

AU7 that raises the lower lid and AU43 (eyelids droop in our system) that slightly cast down

the eyes. These two actions together or in alternation are seen as increasing the sad composure

of the display.

Page 141: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 141/282

137

Figure 52.

 Neutral baseline

(Pause)

AU15EyelidsDroop

LookAway

LookDown

As for the CPM model AU15 is hypothesized to communicate a sense of low power

(Wehrle, 2003). In keeping with this interpretation the model could possibly predict a higher

involvement of this action in groups of video samples rating high on submissive emotions like

embarrassment and sadness. In fact, as with other action units discussed in this section, AU15

is indeed involved most frequently in the sadness (42%) and to a lesser extent in the

embarrassment (17%) group while it is totally absent in the enjoyment and surprise t-patterns.

 Nevertheless it is also found in substantial proportions (15%) of the patterns detected in the

hostility record files. These are less likely to include appraisals of low power than

embarrassment and sadness. The structural compositions of t-patterns with AU15 differ across

the sadness, hostility and embarrassment clusters as follows. In the sadness group AU15 is

associated with the participants pausing and looking away to the side which is not the case in

the other groups. Even though the eyes looking down is an action aligned with AU15 in the t-

 patterns detected both in the sadness and embarrassment clusters, this association is absent in

the hostility cluster. Two head actions combined with AU15 are unique to the embarrassment

group, namely a vertical lowering of the head and a head tilting to the side. As for the

combination of AU15 with other facial actions a few notable distinctions emerge. In contrast

with the embarrassment and hostility clusters AU5 (upper eyelid raise) is never aligned in t-

 patterns rated as conveying sadness. The embarrassment and hostility clusters do show

combinations of AU15 with AU9 that are not found in sadness. Moreover the hostility and

embarrassment clusters show specific patterns of associations between AU15 and other AUs

that are not detected in the other clusters. In the hostility group, AU15 is uniquely linked with

AU14, AU23 and AU24. As for the embarrassment group, unique associations are detected

 between AU15, AU10 and AU12U. These observations clearly show that AU15 is distinctly

Page 142: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 142/282

138

aligned with other facial and additional nonverbal actions in t-patterns depending on the

cluster considered. Figure 53 provides another illustration of a sequence uniquely found in the

sadness group. It represents 3% of the sequences starting with a blink. The pattern formally

starts with a blinking action. This action is found to initiate t-patterns in 17% of the cases.

After blinking an AU17 starts then the eyes move away from the partner and to the left side.

At this time AU15 is initiated while AU17 is maintained. The following actions involve the

 participant starting to look down and finally AU17 recedes. This specific sequence while

 being unique to the sadness group involves combinations of event types mostly common to t-

 patterns with an action unit 15 across the clusters. The only exception is the “look away”

action, which as we mentioned above is characteristic of the sadness patterns that involve

AU15. But apart from the constitutive elements in the pattern, the order in which they unfold

is also unique to this cluster. For example 2% of the hostility t-patterns do involve a blinking

action but they never opens a sequence like is the case here. Moreover in the hostility group

whenever AU17 precedes AU15 the downwards movement of the lip corners always recedes

 before the chin raise action stops. Here it is clearly the contrary that is happening.

Figure 53.

Baseline Neutral Blink AU17

LookAway AU15

LookDown

StopAU17

Page 143: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 143/282

139

Figure 54 depicts a more frequent variant of a comparable sequence. By itself it covers

51% of the patterns starting with a blink. Additionally an AU1+2 and an eyelids droop insert

themselves in the pattern. After the participant starts blinking, an AU1+2 is activated. The

upper cover lids of the eyes do not go back up all the way leaving the eyes partly closed.

Finally the sequence ends with the participant first looking down and then to the side.

Figure 54.

Baseline(Look At) Blink AU1+2

EyelidsDrop

LookDown

LookAway

The next illustration (figure 55) depicts a sequence that does not contain any action

units predicted to convey the impression of sadness by either the EMFACS dictionary or the

CPM prediction tables. It is a simple sequence that involves a smiling action aligned in a t-

 pattern with a lateral head movement to the side ending with the head oriented towards the

social partner. The sequence ends with the offset of the smile. The whole sequence accounts

for 20% of the patterns initiated by AU12 in the sadness group.

Page 144: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 144/282

140

Figure 55.

 Neutral

 baseline AU12Head Tilting

Side Head On

Stop

AU12

The AU12 opens the sequence with face and head centered on the camera and

continues with the head tilting to the side. As mentioned before previous work suggests that a

head tilt could be perceived as an element of a submissive or seductive communicative

structure (Otta et al., 1994; Bänninger-Huber & Rauber-Kaiser, 1989). The fact that the head

is being oriented towards the interviewer accentuates the feeling that the display is sociallyaddressed. In the context of communicating sadness this behavioral sequence might be seen as

an example of what Bänninger-Huber describes as a: ”a fishing for resonance” episode

(Bänninger-Huber, 1992). Meaning that the participant is attempting to induce an empathic

reaction in the listener about the possibly difficult situation she finds/found herself in. The last

t-pattern extracted from the sadness cluster that we will illustrate is depicted in figure 56. This

sequence is characteristic of 65% of the patterns initiated with an AU14U in this group.

Page 145: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 145/282

141

Figure 56.

 Neutral

 baseline AU14ULook

Down AU15

The sequence starts with the participant unilaterally tightening the corner of the mouth

creating a buldge beyond the lip corner (AU14). This action is followed by a downwards

movement of the eyes then the sequence ends with action 15 pulling the corners of the mouth

downwards. As was mentioned in the discussion on the t-patterns extracted from the hostility

cluster, AU14U is only found in the composition of t-patterns from the sadness and hostility

groups. The message value associated with this facial action is one of contempt or scorn

according to the EMFACS taxonomy.  For Wagner (2000) three defining characteristics

contribute to the definition of contempt: « it is interpersonal, involves a feeling of superiority,

and views the other person negatively ». If the nonverbal display communicating this notion

of contempt was indeed AU14U, one would have to conclude that in our case the action was

not taken into account by the raters when deciding on how to classify the video files

containing the pattern. An alternative explanation could be, as the CPM model suggests, that

the action is not communicating anything about an emotional category per se but rather that

an event or the conduct of an agent other than the self is being appraised as violating a sense

of fairness or justice. For example, a fictional subtitle to this sequence according to the

appraisal model could run something like this: «  why did he die so young, it’s so unfair

(AU14U), it leaves me feeling so powerless (AU15) ».

Summary of 

 findings

 

Using the t-pattern detection algorithm developed by Magnusson (2000), we were able

to detect several sequential patterns of nonverbal signals that were specific to video samples

distributed in five groups constituted on the basis of a prior judgment study. These groups are

characterized by distinct rating profiles reflecting the perception of: enjoyment, hostility,

embarrassment, surprise and sadness. The validity of the detected t-patterns have been tested

Page 146: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 146/282

142

 by comparing the number and the complexity (number of event types) of patterns found in the

experimental datasets with those found in the same datasets after applying two distinct

randomization methods. The results of these comparisons support the conclusion that the

 patterns found in the five emotion groups were not due to chance effects. We have provided

illustrations of t-patterns that were specific to each emotion group and that could possibly

 play a role in how participants decided to classify the video samples. For example, in the

enjoyment group the t-patterns detected differed from those found in the other groups by the

frequent alignment of AU6 with AU12 in a sequential pattern. Even though the association of

6 with 12 was already reported in the results of the frequency analysis of single and

overlapping action units, characteristic unique to this combination were also found. What the

t-pattern approach uniquely shows is that these action units are most often initiated by a

 participant’s gesture of looking at the interviewer possibly indicating an intention to share a

 positive affect. Interestingly, in other clusters this “looking at” action is rarerly included in t-

 patterns and when it is the case it is never followed by a either a “social” (12) or “Duchenne”

(6+12) smile. Overall our results support the notion that facial actions are part of time

sequenced communicative structures that include additional nonverbal and para-verbal

signals. These communicative patterns present characteristic features – in terms of event type

combination and order - that are specific to the emotions clusters in which they appear. This

suggests that these multimodal dynamic patterns may play a role in the formation of

impressions concerning what emotion is being experienced by an individual who perform

them.

Page 147: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 147/282

143

IIVV..  GGEENNEERR A ALL DDIISSCCUUSSSSIIOONN A ANNDD 

CCOONNCCLLUUSSIIOONNSS 

Page 148: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 148/282

144

General Discussion

In the present thesis, we explored and addressed methodological issues relevant to

nonverbal communication research. More specifically, we were guided by three main

objectives: The first one was to collect recordings of emotional expressions spontaneously

 produced in face to face interactions; the second was to address the issue of subjective

 judgments of dynamic facial expressions of emotion. The third one was to relate the

subjective judgments of dynamic displays perceived as communicating emotions with

sequential behavioral patterns composed of FACS facial action units combined with gaze,

head and para-verbal variables. The first objective was guided by the fact that, even if most

researchers widely endorse the assumption that the human face is effective at communicating

affective information, and that conversely an observer is able to infer emotional messages

from facial expressions, the existing evidence does not allow authenticating the two sides of

this postulate.

To date the majority of published results on emotion perception from the face

originates from studies having used static and acted portrayals as stimuli for target emotion

recognition. In the introduction we have reviewed serious objections concerning the

ecological validity and therefore the generalization of the results produced under such

conditions to emotion signal processing in interactive settings. One consequence of the

methodological choice of using static display is emotion perception studies, is that little is

known about the nature of spontaneous and dynamic facial expressions.

Yet accumulating data is starting to demonstrate the importance of the dynamic

features of facial expressions for deciphering the meaning of subtle expressions frequently

encountered in naturalistic contexts (Ambadar, Schooler and Cohn, 2005; Bould, and Morris,

2008). Others have shown that deliberate and spontaneous smiles could be distinguished by

the dynamic properties of the expression (Schmidt et al. 2006; Cohn and Schmidt, 2004). This

illustrates the importance of studying the perception of facial expressions as dynamic rather

than static signals. Nevertheless, relevant database containing expressions that are natural and

emotional enough and that can be used in emotion perception studies are very rare.

Page 149: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 149/282

145

MeMo - a new research database of  dynamic facial expressions of  

emotions 

In this thesis we did present the steps taken to gather such a database. We were able to

extract 200 short segments (2s-16s, µ =5.88) of video containing emotional expression

sequences. The 200 sample files were extracted from 50 recorded interviews of ten female participants’ autobiographic events in which they had experienced an intense emotion. The

rationale for recording eliciting and filming these narratives was that they potentially could

reactivate emotions during the sharing task. We have shown that this emotion eliciting task

seemed efficient to elicit emotional feelings as evidenced by the self report data obtained after

the emotional narrative task. Most participants felt confident enough with the experimental

situation to disclose sensitive personal events including amongst others, episodes of rapes,

recent death of close relatives and physical threats by firearms.

The perceived message value of  dynamic facial expressions of  emotions 

With regards to our second objective, we wanted to address the issue of how dynamic

sequences of facial expressions would be perceived in terms of the types of emotions

identified. Because traditional judgment studies use static material they do not provide

information on how fleeting and rapidly changing expressions are perceived. Another

characteristic of those studies is that they are meant to compute recognition accuracy scores.

Typically, in cross-cultural research, groups of participants from distinct cultures are

compared in terms of their level of accuracy at matching a pre-selected prototype with a

normative emotion label.

Because we are using video sequences that were pre-selected on the basis that the

 participant simply “appeared to be experiencing” an emotion, we have no “correct response”

criteria against which ratings can be checked for accuracy. Our approach was not

confirmatory but essentially explorative in nature.

Using a multi-scalar rating task composed of 17 affective (or affect related) terms, we

were able to show that 45 participants taking part in a judgment study were able to

significantly agree in their ways of using the adjectives to describe the emotions they

 perceived in the video samples. Based on a principal components factor analysis with varimax

rotations on the ratings with adjectives as variables and the subjects and clips as cases we

were able to extract five rating factors that we identified as reflecting: enjoyment, hostility,

embarrassment, surprise and sadness.

Page 150: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 150/282

Page 151: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 151/282

147

the video samples, or b) have been co-occurring with latent variables not measured in this

thesis that did influence the categorization process.

Limitations 

The findings of this study were generated with several notable limitations. The first

major limitation is related to the fact that the judgment study was conducted with the raters

listening to what the subjects were talking about while rating the videos. Consequently, verbal

statements may have acted as important cues for the judges in their ratings of the video

samples. When the rating study was conducted we had hopes that we could include ratings of

speech content to our scoring process. This would have allowed us to better estimate the

relative importance of semantic versus nonverbal cues in the emotion inference process. As

the work on this thesis evolved, it became increasingly clear that it would need a whole team

of researches to carry on with this task. By the time we renounced coding the speech contentof the narratives there was no time left to conduct a second judgment study with the sound of

the videos off. Nevertheless, even if speech content was shown to have played a role in how

the video-samples were classified, we would still have to come up with an explanation for

why specific nonverbal t-patterns were distributed nonrandomly across the clusters. One of

the most obvious steps to take after this thesis would be to conduct a judgment study without

the sound on and the results with those described in this thesis. This would produce important

data to compare the relative weights of verbal and nonverbal cues in the judgments of

dynamic displays of facial expressions.

Secondly, even though we have used dynamic emotional displays we have not

addressed the natural counterpart issue which is the temporal process of emotional

recognition. Like most previous work on recognition of dynamic expressions we have

gathered a-posteriori punctual judgments. The participants to the rating procedure had to

 provide their judgments once the video record was over. Another method could have

consisted in having observer make emotional judgments as the expressions are going along.

Recently, Tcherkassof and colleagues (2007) reported the development of a software program

allowing matching the temporal evolution of a facial expression with the subjective judgment

of observers. Conducting moment by moment emotional ratings of videos containing

specified t-patterns might be very informative as to the evolution of the impression formation

 process.

Page 152: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 152/282

148

Additionally, future studies on the structural and dynamic impact of expressive

 behavior on emotion perception should examine other potential sources for the effect. Ekman

(1979) delineated the potential effects of static, fast, slow, and cosmetic cues in contributing

to emotion judgments. Facial expressions, which involve rapid movements of the facial

musculature, are fast cues. Facial physiognomies—the physical features of the face—provide

static cues, and ethnic/cultural differences in physiognomy may contribute differentially to

emotion-related signals independent of the expressions themselves. Individuals with

 protruding eyebrows, for instance, may be perceived as staring more, and individuals with

double eyelids may produce more sclera—the whites above the eyes—than individuals with

single eyelids for the same degree of innervations. In fact one study did indeed find

differences in judgments of fear and anger between Americans and Japanese as a function of

the degree of white above the eyes shown in these emotions (Matsumoto, 1989). Rounder

faces with larger eyes give baby-face features, while longer faces with thinner eyes may

 portray a harsher message. Slow cues, such as wrinkle patterns and pigmentation, as well as

cosmetic cues involving hair style and length, type and length of facial hair, may also

contribute to emotion signaling. Other cues in everyday life additionally compound the

 picture, such as cosmetics, eyeglasses, jewelry, and the like. All of these physical features

associated with the face may contribute to emotion messages, and these may contribute to in-

group effects.

Finally, future studies on the structural and dynamic impact of expressive behavior on

emotion perception should examine effects of gender from both the production and the

 perception side. In this thesis, we limited the participation in the production as well as the

interpretation studies to female participants. This was motivated by the fact that prior

researches have shown that women are both more expressive (Hall, Carter, and Horgan, 2000) 

and more sensitive to nonverbal cues than men (Hall and Matsumoto, 2004). In the future,

similar studies should involve participants of both gender for both the production of dynamic

displays and their interpretations. In addition to our current dataset, the paradigm used in this

study would benefit by being extended to all male and mixed participants (male judging

males; female judging males and males judging females).

Future perspectives 

To determine the precise psychological impact, in terms of message value of the t-

 patterns detected in our research several steps can be taken. Generally, structural analysis

models describe structures in terms of two main components: elements and rules connecting

Page 153: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 153/282

149

them. Each element is composed of one or more event types. When two or more event types

comprise one element, the element is considered to occur when anyone or more of its

constituent actions occurs. That is the actions are considered to be interchangeable within the

element (Duncan & Fiske 1977; Duncan and al., 1985). In this work, we have shown that the

structural composition of temporally unfolding behavioral sequences composed of FACS AUs

as well as head, gaze movements/orientation and speech categories Grouping different actions

within a single structural element is an empirical issue, based on evidence that these actions

are perceived as conveying reasonably the same meaning to different groups of observers.

The grouping of the behavior units found in our sequences, were based on t-pattern

analysis, as opposed to intuition or theory. Rules define appropriate sequences of elements

within a structure. A distinction can be made between obligatory rules and optional rules. An

obligatory rule would state that at a specified point in the stream of actions, an element must

or must not occur for the sequence to be perceived as conveying a specific attitude. An

optional rule would state that at a specified point in the stream of actions, an individual may

legitimately choose from a set of two or more alternative actions without modifying the

dominant meaning attributed to a pattern. In some cases actions will involve contrasts such as

turning the head away or looking away from the interviewer. Even though those two actions

are different they both may be serving the similar function of avoiding contact with a social

 partner, for example. In other cases, the alternatives will involve the participant performing or

not performing an action, such as smiling or not smiling. In any case, each available option

must have a different effect on the ensuing classification of the pattern. That is the perception

of the attitude enacted must be different depending on how the option is exercised. The

analysis of the action sequences presented in our study could be pushed further by developing

empirically based hypothesis concerning the psychological impact, in terms of perceived

meaning, of highly specific communicative structures. For example, Potential structures could

then be implemented as dynamic sequences in facial expression simulation software like

FACSGen. These implementations could then be evaluated in rating studies in terms of their

effectiveness to fit the hypothesis. This is an example of how due to structural analysis new

communicative patterns that have been discovered can provide a basis for quantitative studies.

Page 154: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 154/282

150

Conclusions

Despite the fact that facial expressions of emotion are naturally highly dynamic social

signals, their communicative value has typically been studied using static photographs pre-

selected for maximum discriminability. To date, most of the emphasis has been put on cross-

cultural similarities in the ability of groups of different national/ethnic origins to “recognize”

a limited number of emotion categories from prototypical facial expressions posed by actors.

Results from research supporting cross-cultural commonalities in the interpretation of

 prototypical expressions have been taken as strong evidence in favor of the universality of 6

to 7 phylogenetically inherited “basic emotions”. Because these “recognition” studies are

confirmatory in nature they can not generate information on the way emotions are

communicated nonverbally when full blown prototypical facial patterns are not enacted as is

often the case in natural settings (Russell, 1997). Moreover, the lack of ecological validity of

the facial stimuli generally used in these studies constitutes a serious objection raised against

the generalization of reported results to the way emotions are communicated and understood

in naturalistic settings. Even though the central role of the dynamics of facial expressions is

increasingly endorsed, little is known about the impact of the temporal unfolding of facial

expressions, in interaction with other nonverbal signals, on the process of inferring emotional

states from others during social interactions. In this thesis, we showed that judges could

reliably agree on the emotional message value of spontaneously produced dynamic facial

expressions of emotions. Five distinct groups of emotion categories were found to account for

the impressions of 45 judges rating 200 video sample files. These five categories were

labeled: enjoyment, hostility, embarrassment, surprise and sadness. This thesis also

demonstrates that repetitive sequential patterns composed of specific facial movements

combined with other nonverbal behaviors are distributed in distinctive and systematic ways in

the five emotion groups. This suggests that the composition and order of unfolding of

nonverbal communicative actions might play a significant role in deciphering the emotional

meaning of dynamic displays of emotions. Thus, this thesis suggests a strong need to carry on

systematic research on the perception of emotions from spontaneous and dynamic facial

displays. This is important because empirical data on this issue is likely to improve the

capacity of computer vision engineers to focus on relevant social signals in order to infer

affective states in the context of human/machine interactions.

Page 155: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 155/282

Page 156: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 156/282

152

Benecke C, Krause R (2005): Facial-affective relationship offers of patients with panic

disorder. Psychother Res; 15: 178–187.

Ellgring H, Gaebel W (1994): Facial expression in schizophrenic patients; in Beigel A, Lopez

Ibor JJ, Costa e Silva JA (eds): Past, Present and Future of Psychiatry. IX World

Congress of Psychiatry. Singapore, World Scientific, vol. 1, pp 435–439

Berenbaum, H., & Oltmanns, T. (1992). Emotional experience and expression in

schizophrenia and depression. Journal of Abnormal Psychology, 101, 37–44.

Biehl, M., Matsumoto, D., Ekman, P., Hearn, V., Heider, K., Kudoh, T., & Ton, V. (1997).

Matsumoto and Ekman's Japanese and Caucasian Facial Expressions of Emotion

(JACFEE): Reliability Data and Cross-National Differences.  Journal of

 Nonverbal Behavior, 21, 3-21.

Boucher, J.D., & Carlson, G.E. (1980) Recognition of Facial Expression in Three Cultures. 

 Journal of Cross-Cultural Psychology, Sep 1980; 11: 263 - 280.

Bould, E. and Morris, N. (2008). Role of motion signals in recognizing subtle facial expressions of

emotion. British Journal of Psychology, (99: 2) 167-189.

Brooks, V. B. (1986). The Neural Basis of Motor control . New York: Oxford University

Press.

Camras, L. A., Meng, Z., Ujiie, T., Dharamsi, S., Miyake, K., Oster, H., Wang, L., Cruz, J.,

Murdoch, A. and Campos, J. (2002). Observing emotion in infants: facial

expression, body behaviour, and rater judgments of responses to an expectancy-

violating event. Emotion (2:2), 179-193.

Carroll, J.M., & Russell, J.A. (1996). Do facial expressions express specific emotions?

Judging emotion from the face in context.  Journal of Personality and Social

 Psychology, 70, 205-218.

Carroll, J. M., & Russell, J. A. (1997). Facial expressions in Hollywood's portrayal of

emotion. Journal of Personality and Social Psychology, 72, 164-176.

Chesney, M. A., Ekman, P., Friesen, W. V., Black, G. W., & Hecker, M. H. (1990). Type A

 behavior pattern: Facial behavior and speech components.  Psychosomatic

 Medicine, 52, 307–319.

Cootes, T.F., Edwards, G.J., & Taylor, C.J. (2001). Active appearance models.  IEEE

Transactions on Pattern Analysis and Machine Intelligence, 681-685. 

Cohen, J. (1960). A coefficient of agreement for nominal scales.  Educational and

 psychological measurement , 20, 37-46.

Page 157: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 157/282

153

Cohn J.F., Elmore M. (1988). Effect of Contingent Changes in Mothers. Affective Expression

on the Organization of Behavior in 3-Month-Old Infants.  Infant Behavior and

 Development , vol. 11, pp. 493-505.

Cohn, J. F., Schmidt, K., Gross, R., & Ekman, P. (2002). Individual differences in facial

expression: Stability over time, relation to self-reported emotion, and ability to

inform person identification. Proceedings of the International Conference on

 Multimodal User Interfaces (ICMI 2002), Pittsburgh, PA, 491-496.

Cohn, J. F. & Schmidt, K. L. (2004). The timing of facial motion in posed and spontaneous

smiles. International Journal of Wavelets, Multiresolution and Information

 Processing, 2, 1-12.

Costanzo, M., & Archer, D. (1989). Interpreting the expressive behavior of others: The

Interpersonal Perception Task. Journal of Nonverbal Behavior, 13, 225–245.

Cottraux, J. (1985)  Evaluation clinique et psychométrique des états dépressifs. Collection

Scientifique Survector, Paris.

Darwin, C. (1998). The Expression of the Emotions in Man and Animals, 3rd

  edit. Oxford

University Press. New York.

Delplanque, S., Grandjean, D., Chrea, C., Coppin, G., Aymard, L., Cayeux, I., Margot, C.,

Velazco, M. I., Sander, D. and Scherer, K. R. (2009). Sequential unfolding of

novelty and pleasantness appraisals of odours: evidence from facial

electromyography and autonomic reactions. Emotion (9:3), pp. 316-328.

Den Uyl, M.J. ; van Kuilenburg, H. (2005)  The FaceReader: Online facial expression

recognition. Proceedings of Measuring Behavior 2005 (Wageningen, 30 August –

2 September 2005) Eds. L.P.J.J. Noldus, F. Grieco, L.W.S. Loijens and P.H.

Zimmerman. 

Duncan, S. D., Jr., & Fiske, D. W. (1977).  Face-to-face interaction: Research, methods, and

theory. Hillsdale, NJ: Lawrence Erlbaum Associates.

Duncan, S. D., Jr., Fiske, D. W., Denny, R. Kanki, B. G., & Mokros, H. B. (1985).   Interaction

 structure and strategy. New York: Cambridge University Press. 

Eibl-Eibesfeldt (1970).  Ethology: The Biology of Behavior . New York: Holt, Rinehart and

Winston.

Eibl-Eibesfeldt I. (1972). Love and hate: The natural history of behavior patterns New York:

Holt, Strachan.

Ekman, P., & Friesen, W. (1969). The repertoire of nonverbal behavior: Categories, origins,

usage, and coding. Semiotica, 1, 49–98.

Page 158: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 158/282

154

Ekman, P., Friesen, W. V., & Ellsworth, P. (1972). Emotion in the human face: Guidelines for

research and an integration of findings. New York: Pergamon Press.

Ekman, P and Friesen, W. (1978).  Facial Action Coding System: A Technique for the

 Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto.

Ekman, P. (1982). Methods for measuring facial action. In K.R. Scherer and P. Ekman (Eds.),

 Handbook of methods in Nonverbal Behavior Research (pp 45- 90). Cambridge:

Cambridge University Press.

Ekman, P. & Friesen, W.V. (1982).  Felt- False- And Miserable Smiles.  Journal of Nonverbal

 Behavior., 6(4), 238-252. 

Ekman, P., and Friesen, W. V. (1986). A new pan-cultural facial expression of emotion.

 Motivation and Emotion, 10, 159–168.

Ekman, P., Friesen, W. V., O’Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., Heider, K., et

al. (1987). Universals and cultural differences in the judgments of facial

expressions of emotion.  Journal of Personality and Social Psychology, 53, 712– 

717.

Ekman, P., Friesen, W. V., & O’Sullivan, M. (1988). Smiles When Lying.  Journal of Personality and

Social Psychology, 1988, 54, 414-420. 

Ekman, P., and Heider, K. G. (1988). The universality of a contempt expression: A

replication. Motivation and Emotion, 12, 303–308.

Ekman, P., Davidson, R.J., & Friesen, W.V. (1990). Emotional expression and brain

 physiology II: The Duchenne Smile.  Journal of Personality and Social

 Psychology, 58, 342-353.

Ekman, P. (1993). Facial Expression and Emotion.  American Psychologist , vol. 48, pp. 384-

392. 

Ekman, P, Irwin W, and Rosenberg E. (1994). EMFACS-8. Unpublished manual.

Ekman, P. (1999) Basic Emotions.  In T. Dalgleish and T. Power (Eds.) The Handbook of

Cognition and Emotion Pp. 45-60. Sussex, U.K.: John Wiley & Sons, Ltd. 

Ekman, P., Friesen, W. and Hager, J.C. (2002).  New version of the Facial Action Coding System. 

http://www.face-and-emotion.com/dataface/facs/new_version.jsp.

Ekman, P., Friesen, W. and Hager, J.C. (2002).  FACS investigator Guide. http://www.face-and-

emotion.com/dataface/facs/new_version.jsp.

Ekman, P. (2003). Sixteen Enjoyable Emotions. Emotion Researcher, 18, 6-7.

Page 159: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 159/282

155

Ekman, P (2007). The Directed Facial Action task; emotional responses without appraisal. In

J.A. Coan and J.B. Allen (Eds.), Handbook of Emotion Elicitation and Assessment  

(pp. 47-53).

Elfenbein, H. A., & Ambady, N. (2002). On the universality and cultural specificity of

emotion recognition: A meta-analysis. Psychological Bulletin, 128, 203-235.

Elfenbein, H. A., Beaupré, M. G., Lévesque, M. & Hess, U. (2007). Toward a dialect theory:

Cultural differences in the expression and recognition of posed facial

expressions. Emotion, 7, 131-146.

Essa, I., & Pentland, A. (1997). Coding, analysis, interpretation and recognition of facial

expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7 ,

757-763.

Fleiss, J.L. (1981). Statistical methods for rates and proportions. NY: Wiley

Frank, M. G., Ekman, P., and Friesen, W. V. (1993). Behavioral markers and recognizability

of the smile of enjoyment. Journal of Personality and Social   Psychology, 64, 83-

93.

Frank M.G. & Ekman, P. (2003) Nonverbal Detection of Deception in Forensic Contexts.

 Handbook of Forensic Psychology. Academic Press.

Frijda, N.H. and Tcherkassof, A. (1997). Facial expressions as modes of action readiness. In

J.A. Russell and J.M. Fernández-Dols (Eds.), The psychology of facial expression 

(pp. 78-102).Cambridge: Cambridge University Press.

Gosselin, P., Kirouac, G., & Dore, F. (1995). Components and recognition of facial

expression in the communication of emotion by actors. Journal  of Personality and

Social Psychology, 68, 83–96

Haidt, J., & Keltner, D. (1999). Culture and facial expression: Open-ended methods find more

expressions and a gradient of recognition. Cognition & Emotion, 13(3), 225-266.

Haberman, S.J. (1979). Analysis of qualitative data (Vol. 2). New York: Academic Press.

Hall, J. A. (1978). Gender effects in decoding nonverbal cues.  Psychological Bulletin, 85,

845–857.

Hall, J. A. (1984). Nonverbal sex differences: Communication accuracy and expressive style.

Baltimore: Johns Hopkins University Press.

Hall, J. A., Carter, J. D., & Horgan, T. G. (2000). Gender differences in the nonverbal

communication of emotion. In A. H. Fischer (Ed.), Gender and emotion: Social

 psychological perspectives (pp. 97–117). Paris: Cambridge University Press.

Page 160: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 160/282

156

Hall, J. A., & Matsumoto, D. (2004). Sex differences in judgments of multiple emotions from facial

expressions. Emotion, 4(2), 201-206.

Heller, M., Haynal-Reymond, V., Haynal, A. Archinard, M. (2001): Can Faces Reveal

Suicide Attempt Risks? Heller, M. (ed.): The Flesh of the Soul: the body we work

with, pp. 213-256. Bern: Peter Lang. 

Heller, M (2008).  Psychothérapies corporelles: fondements et méthodes.  De Boeck

Université. Collection: Carrefour des psychothérapies. Louvain

Hess, U., Adams, R. and Kleck, R. (2007). Looking at You or Looking Elsewhere: The

Influence of Head Orientation on the Signal Value of emotional facial

expressions. Motivation and Emotion, 31, 137-144.

Izard, C. E. (1971). The face of emotion. East Norwalk, CT: Appleton-Century-Crofts.

Keltner, D. (1995). The signs of appeasement: Evidence for the distinct displays of

embarrassment, amusement and shame.  Journal of Personality and Social

 Psychology, 68, 441-454. 

Krumhuber, E., Manstead, A. S. R., Cosker, D., Marshall, D., Rosin, P. L. and Kappas, A.

(2007). Facial dynamics as indicators of trustworthiness and cooperative

 behaviour. Emotion, (7:4), 730-735.

Krumhuber, E., Manstead, A. S. R. and Kappas, A. (2007) Temporal Aspects of Facial

Displays in Person and Expression Perception: The Effects of Smile Dynamics,

Head-tilt, and Gender. Journal of Nonverbal Behaviour  (31:1), 39-56. 

Krumhuber, E. and Kappas, A. (2005). Moving smiles: The role of Dynamic Components for

the Perception of the Genuineness of Smiles. Journal of Nonverbal Behaviour ,

(29:1), 13-24.

Lanctôt, N. and Hess, U. The timing of appraisals. Emotion (7:1), 2007, pp. 207-212.

Lebart, A. Morineau, M. Piron, L  Statistique Exploratoire Multidimensionnelle,  Dunod,

 pp.181‐184, 2000.

Levenson, R. W. (2005). FACS/EMFACS emotion predictions [Computer software].

Berkeley: University of California, Department of Psychology.

Lindquist, K. A., Barrett, L. F., Bliss-Moreau, E. and Russelll, J. A. (2006). Language and the

 perception of emotion. Emotion (6:1), 125-138.

Lutz, C., & White, G. M. (1986). The anthropology of emotions.  Annual Review of

 Anthropology, 15, 405–436.

Page 161: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 161/282

157

Lyons, M., Akamasku, S., Kamachi, M., & Gyoba, J. (1998). Coding facial expressions with

Gabor wavelets.  Proceedings of the International Conference on Face and

Gesture Recognition, Nara, Japan. 

Magnusson, M. (2000). Discovering Hidden Time Patterns in Behavior: T-Patterns and their

Detection.  Behavior Research Methods, Instruments and Computers, 32(1): pp.

93-110.

Magnusson, M. (2006). Structure and communication in Interactions in : Riva, M.T. Anguera,

B.K. Wiederhold and F. Mantovani (Eds.)  From Communication to Presence:

Cognition, Emotions and Culture towards the Ultimate Communicative

 Experience. IOS Press, Amsterdam.

Matias, R. and Cohn, J. F. (1993). Are MAX-specified infant facial expressions during face-

to-face interaction consistent with Differential Emotions Theory?  Developmental

 Psychology, 29, 524-531.

Matsumoto, D., & Ekman, P. (1988). Japanese and Caucasian facial expressions of emotion

and neutral faces ( jacfee and jacneuf ). Retrieved from http://www.paulekman.com

Matsumoto, D. (1990). Cultural similarities and differences in display rules.  Motivation &

 Emotions, 14, 195-214.

Matsumoto, D., Kasri, F., & Kooken, K. (1999). American-Japanese cultural differences in

 judgements of expression intensity and subjective experience. Cognition and

 Emotion, 13, 201–218.

Matsumoto, D., Ekman, P., & Fridlund, A. (1991). Analyzing nonverbal behavior. In P. W.

Dowrick (Ed.),  Practical guide to using video in the behavioral sciences (pp.

153–165). New York: Wiley.

Matsumoto, D., & Ekman, P. (2004). The relationship between expressions, labels, and

descriptions of contempt.  Journal of Personality and Social Psychology, 87(4),

529-540.

Matsumoto, D. (2005). Scalar ratings of contempt expressions. Journal of Nonverbal Behavior,

29(2), 91-104.

Matsumoto, D., & Willingham, B. (2009). Spontaneous facial expressions of emotion of blind

individuals. Journal of Personality and Social Psychology, 96(1), 1-10.

Matsumoto, D., Willingham, B., and Olide, A. (2009). Sequential dynamics and culturally-

moderated facial expressions of emotion. Psychological Science, Vol.20, Number 10.

Merten, J. (2001). Beziehungsregulation in Psychotherapien. Maladaptive Beziehungsmuster

und der therapeutische Prozeß. Stuttgart: Kohlhammer

Page 162: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 162/282

158

Mistschenka, M. N. (1933). Uber die mimische Gesichtsmotorik der Blinden [Facial

mimicking motor behavior in blind individuals].  Folida   Neuropathologica

 Estoniana, 13, 24–43.

Motley, M., and Camden, C. (1988). Facial expression of emotion: A comparison of posed

expressions versus spontaneous expressions in an interpersonal communication

setting. Western Journal of Speech Communication, 52, 1–22.

Motley, M.T. (1993). Facial affect and verbal context in conversations. Facial expression as

interjection. Human Communication Research (20:1), 3-40.

 Niedenthal, P.M. Auxiette, K., Nugier, A., Dalle, N., Bonin, P., & Fayol, M. (2003). A

 prototype analysis of the French category "émotion". Cognition and Emotion, 18,

289-312.

 Nowicki, S., Jr., & Duke, M. P. (1994). Individual differences in the nonverbal

communication of affect: The Diagnostic Analysis of Nonverbal Accuracy Scale.

 Journal of Nonverbal Behavior, 18, 9–36.

Otta, E., Lira, B. B. P., Delevati, N. M., Cesar, O. P., & Pires, C. S. G. (1994). The effect of

smiling and of head tilting on person perception.  Journal of Social Psychology,

128, 323–331.

Padgett, C. & Cottrell, G.W. (1996). Representing face images for emotion classification.

 Proceedings Advances in Neural Information Processing Systems, 894-900. 

Quera, V., Bakeman, R., & Gnisci, A. (2007). Observer agreement for event sequences:

Methods and software for sequence alignment and reliability estimates. Behavior

 Research Methods, 39 (1) , 39-49.

Reginald B., J. A. and Kleck, R. E. (2005). Effects of Direct and Averted Gaze on the

Perception of Facially Communicated Emotion. Emotion (5:1), 3-11.

Rhodes G, (2006). The evolutionary psychology of facial beauty.  Annual Review of

 Psychology 57 , 199-226.

Rosenthal, R., Hall, J. A., DiMatteo, M. R., Rogers, P. L., & Archer, D. (1979). Sensitivity to

nonverbal communication: The PONS test . Baltimore: Johns Hopkins University

Press.

Russell, J.A. (2005). Emotion in Human Consciousness Is Built on Core Affect.  Journal of

Consciousness Studies, 12, 26-42.

Parr, L. A., Waller, B. M., & Fugate, J. (2005). Emotional communication in primates:

Implications for neurobiology. Current Opinion in Neurobiology, 15, 716–720.

Page 163: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 163/282

159

Parr, L. A., Waller, B. M., Vick, S. J., & Bard, K. A. (2007). Classifying chimpanzee facial

expressions by muscle action. Emotion, 7, 172–181.

Ragan J. M. (1982). "Gender display in portrait photographs". Sex Roles, 8, 33-43.

Rinn, W.E. (1984) .The Neuropsychology of Facial Expression: A Review of the

 Neurological and Psychological Mechanisms for Producing Facial Expressions.

 Psychological Bulletin, vol. 95, pp. 52-77.

Russell JA. 1994. Is there universal recognition of emotion from facial expressions? A review

of cross-cultural studies. Psychol. Bull. 115:102–41

Russell, J. A. (1997). Reading emotions from and into faces: Resurrecting a dimensional-

contextual perspective. In J. A. Russelll and J. M. Fernandez-Dols (Eds.), The

 psychology of facial expression (pp. 295-320). Cambridge: Cambridge University

Press.

Russell, J.A., & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other

things called emotion: Dissecting the elephant.  Journal of Personality and Social

 Psychology, 76, 805-819.

Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological

 Review, 110, 145-172.

Roesch, E. B., Reveret, L., Grandjean, D., and Sander, D. (2006). FACSGen: Generating

synthetic, static and dynamic, FACS-based facial expressions of emotion.  Alpine

 Brain Imaging Meeting.

Rosenberg, E. L., & Ekman, P. (1994). Coherence between expressive and experiential

systems in emotion. Cognition & Emotion, 8, 201–229.

Rosenberg, E. L., Ekman, P., & Blumenthal, J. A. (1998). Facial expressions and the affective

component of cynical hostility in male coronary heart disease patients.  Health

 Psychology, 17, 376–380.

Rosenberg, E. L., Ekman, P., Jiang, W., Babyak, M., Coleman, R. E., Hanson, M., et al.

(2001). Linkages between facial expressions of anger and transient myocardial

ischemia in men with coronary heart disease. Emotion, 1, 107–115.

Rozin, P., Lowery, L., Imada, S., & Haidt, J. (1999). The CAD triad hypothesis: A mapping

 between three moral emotions (contempt, anger, disgust) and three moral codes

(community, autonomy, divinity).  Journal of Personality and Social Psychology,

75(4), 574-585.

Page 164: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 164/282

160

Sayette, M.A., Cohn, J. F. Wertz, J.M., Perrott, M.A., and Parrott, D.J. (2001). A

Psychometric Evaluation of the Facial Action Coding System for Assessing

Spontaneous Expression. Journal of Nonverbal Behaviour, 25. pp.167-186.

Scherer, K.R., (1992). What do facial expressions express? In K. Strongman (Eds.),

 International review of Studies on Emotion. Vol. 2 (pp. 293-318). Hillsdale, NJ:

Lawrence Erlbaum.

Scherer, K. R. (1999a). Appraisal theory. In T. Dalgleish & M. Power (Eds.),  Handbook of

cognition and emotion (pp. 637–663). New York: Wiley Ltd.

Scherer, K. R. (2001). Appraisal considered as a process of multilevel sequential checking. In

K. Scherer, A. Schorr, & T. Johnston (Eds.),  Appraisal processes in emotions:

Theory, methods, research: Series in affective science (pp. 92–120). New York:

Oxford University Press.

Scherer, K. R. and Ellgring, H. (2007a). Are facial expressions of emotion produced by categorical

affect programs or dynamically driven by appraisal? Emotion, (7:1), 113-130.

Scherer, K. R. and Ellgring, H. (2007b). Multimodal expression of emotion. Affect programs

or componential appraisal patterns? Emotion, (7:1), 158–171.

Scherer, K. R., & Grandjean, D. (2008). Facial expressions allow inference of both emotions

and their components. Cognition and Emotion, 22(5), 789-801.

Scherer, K. R. (2009). The dynamic architecture of emotion: Evidence for the component

 process model. Cognition and Emotion, 23(7), 1307-1351.

Schmidt, K.L., Ambadar, Z.,J.F. Cohn, and Reed, L.I. (2006). Movement differences between

deliberate and spontaneous facial expressions: Zygomaticus major action in

smiling. Journal of Nonverbal Behavior 30 (1): 37-52.

Smith, C.A., and Scott, H.S. (2007).  A componential approach to the meaning of facial

expressions. In J. A. Russelll and J. M. Fernandez-Dols (Eds.), The psychology of

 facial expression (pp. 229-254). Cambridge: Cambridge University Press.

Steimer-Krause, E., Karuse, R., & Wagner, G. (1990). Interaction regulations used by

schizophrenic and psychosomatic patients: Studies on facial behavior in dyadic

interactions. Psychiatry, 53, 209–228.

Suen, H.K., and Ary, D. (1989).  Analyzing quantitative behavioral data. Hiillsdale, NJ:

Erlbaum.

Ricci-Bitti, P. E., Brighetti, G., Garotti, P. L., & Boggi-Cavallo, P. (1989). Is contempt

expressed by pancultural facial movements? In J. P. Forgas & J. M. Innes (Eds.),

Page 165: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 165/282

161

 Recent advances in social psychology: An international perspective (pp. 329-

339). Amsterdam, NL: Elsevier.

Shiota, M. N., Campos, B., & Keltner, D. & Hertenstein, M. J. (2004). Positive emotion and

the regulation of interpersonal relationships. In P. Philippot & R. S. Feldman

(Eds.), The regulation of emotion (pp. 127-156). Mahwah, NJ: Lawrence Erlbaum

Associates.

Tcherkassof, A., Bollon, T., Dubois, M., Pansu, P., Adam, J.M. (2007). Facial expressions of

emotions: A methodological contribution to the study of spontaneous and

dynamic emotional faces.  European Journal of Social Psychology, 37 ; 1325– 

1345.

Tomkins, S. S. (1962). Affect, imagery, and consciousness: Vol. 1. The positive affects. New

York: Springer Publishing Company.

Tomkins, S. S. (1963). Affect, imagery, and consciousness: Vol. 2. The negative affects. New

York: Springer Publishing Company.

Tracy, J. L., & Robins, R. W. (2004). Show your pride: Evidence for a discrete emotion

expression. Psychological Science, 15, 194-197.

Tracy, J. L., & Robins, R. W. (2008). The nonverbal expression of pride: Evidence for cross-

cultural recognition. Journal of Personality and Social Psychology, 94, 516-530.

Van Hooff, J. A. R. A. M. (1972). A comparative approach to the phylogeny of laughter and

smiling. In R. A. Hinde (Ed.),  Non-verbal communication  (pp. 209–240).

Cambridge, United Kingdom: Cambridge University Press.

Wagner, H. L. (2000). The accessibility of the term "contempt" and the meaning of the

unilateral lip curl. Cognition & Emotion, 14(5), 689-710.

Waller, B. M., & Dunbar, R. I. M. (2005). Differential behavioural effects of silent bared

teeth display and relaxed open mouth display in chimpanzees ( Pan troglodytes).

 Ethology, 111, 129–142.

Waller, B.M., Cray, J.J. & Burrows, A.M. (2008). Selection for universal facial emotion.

 Emotion, 8(3), 435-439.

Wehrle, T., Kaiser, S., Schmidt, S. & Scherer, K. R (2000). Studying the dynamics of

emotional expression using synthesized facial muscle movements.  Journal of

 Personality and Social Psychology, 78 (1), 105-119.

Wen, Z. (January 2004). Face processing research at the University of Illinois Champaign-

Urbana.  Face Processing Meeting, Center for Multimodal Learning and

Communication, Carnegie Mellon University, Pittsburgh, PA.

Page 166: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 166/282

162

Wierzbicka, A. (1994). Emotion, language, and cultural scripts. In S. Kitayama & H. R.

Markus (Eds.),  Emotion and culture: Empirical   studies of mutual influence.

Washington, DC: American Psychological Association.

Widen, S. C. & Russell, J. A. (2008). Children’s and Adults’ Understanding of the “Disgust

Face” Cognition and Emotion, 22, 1513-1541. 

With, S. and Kaiser, S. (2009). Multimodal annotation of emotion signals in social

interactions. In E. Bänninger-Huber and D. Peham (eds), Current and Future

 Perspectives in Facial Expression Research: Topics and Methodological

Questions. Innsbruck: Innsbruck University Press.

Yacoob, Y. & Davis, L. (1996). Recognizing human facial expression from long image

sequences using optical flow.  IEEE Transactions on Pattern Recognition and

 Machine  Intelligence, 18, 636-642.

Yale, M., Messinger, D., Cobo-Lewis, A., Oller, D. K., & Eilers, R., (1999). An event-based

analysis of the coordination of early infant vocalizations and facial

actions. Developmental Psychology, 35(2), 505–513.

Yale, M. E., Messinger, D. S ., Cobo-Lewis, A. B. (2003). The temporal coordination of early

infant communication. Developmental Psychology, 39(5), 815-824.

Yik, M., Meng, Z. and Russell, J.A. (1998) Adults' freely produced emotion labels for babies'

spontaneous facial expressions. Cognition and Emotion, 12, 723-730.

Yrizarry, N., Matsumoto, D., and Wilson-Cohn, C. (1998). American-Japanese differences in

multiscalar intensity ratings of universal facial expressions of emotion. Motivation

and Emotion, 22(4), 315-327.

Zhang, Z (1999). Feature-based facial expression recognition: Sensitivity analysis and

experiments with multi-layer perceptron.  International Journal of Pattern

 Recognition and Artificial Intelligence, 13, 893-911

Zhu, Y., De Silva, L.C., & Ko, C.C. (2002). Using moment invariants and HMM in facial

expression recognition. Pattern Recognition Letters, 23, 83-91.

Page 167: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 167/282

163

Page 168: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 168/282

163

 Appendix I.

Facial Action Coding System

Figures and Definitions of Major Action Units

Page 169: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 169/282

The Upper Face Action Units according to the FACS system

AU1

AU 1 (Inner Brow Raise)

The inner corners of the brow are raised upwards. For

many people, AU1 produces an oblique shape to the

eyebrows.

In some people the brows do not take on this shape but

more of a dip in the center with a small pull up at the

inner corners. This action causes the skin in the center

of the forehead to wrinkle horizontally. These wrinkles

usually do not run across the forehead but are limited to

the center.

AU2

AU 2

This

eyebr

eyebr

In som

to app

There

 portio

latera

AU 1+2

AU 1+2 (Inner and Outer Brow Raise)

The combination of AU 1 and 2 pulls the entire

eyebrow (medial to lateral parts) upwards. It produces

an arched, curved appearance to the shape of the

eyebrow. Horizontal wrinkles appear across the entire

forehead.

AU

This

toge

the

AU4

Page 170: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 170/282

Page 171: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 171/282

The Lower Face Action Units according to the FACS system

AU9

AU9 (Nose Wrinkler)

It lowers the medial portion of the eyebrows.

Wrinkles appear along the sides of the nose and

across the root of the nose. The infra-orbital triangle

is pulled upwards causing the infra-orbital furrow to

wrinkle and to deepen in strong actions. The eye

aperture is narrowed. This action pulls the center of

the upper lip upwards. The nostril wings may be

widened and raised.

AU10

AU10

The u

 bend

The n

raised

AU12

AU12

This

 back

adjac

up an

AU11 (Nasolabial Furrow Deepener)

The upper lip is pulled upwards and laterally. The

skin below the upper portion of the nasolabial furrow

is pulled obliquely upwards. Both the upper and

middle portion of the nasolabial furrow deepens. The

middle portion of the furrow deepens typically more

than in AU10.

AU11

Page 172: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 172/282

AU13 (Sharp Lip Puller)

The cheeks and the infra-orbital triangle become

very salient, puffing out, as the infra-orbital triangle

is lifted primarily up, more than obliquely.

This action pulls the corners of the lips up but at a

sharper angle than AU 12. While the corners of the

lips are pulled up, the red parts of the lips do not

move up with the lip corners. The lip corners appear

to be tightened, narrowed, and sharply raised.

AU15

AU15 (Lip Corner Depressor)

This action pulls the lip corners down. The shape of

the lips is angled down at the corner, and usually the

lower lip is somewhat stretched horizontally.

AU16 (25)

AU16 (Low

The lower

occurs with

of the low

teeth, and

exposed as

AU14 (Di

This actio

the corner

corners. A

lip corner

the lip cor

AU14AU13

Page 173: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 173/282

AU17

AU17 (Chin Raiser)

This action pushes the chin boss upward and the

lower lip upward. It can cause the mouth to take

on an inverted U shape.

AU20 (

The ac

corners

 but the

elongat

 by the l

chin bo

flattene

In addit

AU26 t

AU20 (16+25+26)

AU22 (25+26)AU22 (Lip Funneler)

The lips funnel outwards taking on the shape as

though the person were saying the word “flirt”. This

action pulls in medially on the lip corners. Exposes

the teeth and may expose gums.

AU23

AU23 (L

The lips

appear n

inwards

wrinkles

 parts of

may app

Page 174: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 174/282

AU24 (Lip Presser)

The lips are pressed together, without pushing up

the chin boss. This action lowers the upper lip and

raises the lower lip to a small extent. The lips are

tightened and narrowed. 

AU24AU25

A

T

m

AU26 (Jaw Drop)

The mandible is lowered by relaxation so

that separation of the teeth can at least be

inferred if AU25 is not present.

AU27

A

T

m

m

t

a

h

AU26

Page 175: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 175/282

170

 Appendix II.

Frequency Distribution Tables for Event Types in Rating

Clusters

Page 176: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 176/282

171

Cluster label AU1 AU1+2 AU4 AU5 AU6 AU7 AU9 AU10 AU10U AU12 AU12U AU14 AU14U AU15 AU17 AU20 AU23 AU24 AU25 AU26

Positive emotions 0 9 0 13 8 0 0 0 0 11 0 5 0 0 0 5 0 0 0 0

Hostility 0 7 25 7 0 15 10 2 1 3 0 2 4 5 9 4 1 1 1 0

Embarrassment 0 2 1 3 0 10 1 6 0 20 10 0 0 12 6 1 1 0 0 0

Surprise 0 15 0 15 0 2 0 0 0 0 0 0 0 0 29 0 0 0 0 0

Sadness 0 11 2 5 0 0 0 0 0 2 0 0 1 14 9 0 1 1 2 0

Table 1 FACS codes initiating T-patterns in Rating Clusters. Values are expressed in percentages

Table (). Head position and orientation codes initiating T-patterns in rating clusters. Values are expressed in percentages.

Cluster label   LH HT HD HR HRT HLT HRed HON HTA HTS Htilt Shake Nod 

Positive emotions 0 0 0 0 0 0 0 0 0 0 0 0 0

Hostility 0 0 0 0 0 0 0 0 0 0 0 0 0

Embarrassment 7 0 0 0 0 0 0 0 0 0 0 0 0

Surprise 0 0 0 0 0 0 0 16 0 0 0 0 0

Sadness 0 0 0 0 0 0 0 2 1 0 0 0 0

HTA: Head Turned Away; HTS: Head Tilted Side; HTilt: Head Tilting Side; Shake: Head Shake; Nod: Head Nod 

Legend: LH: Lower Head; HT: Head Turns; HD: Head Down; HR: Head Raises; HRT: Head Raise and Turn; HLT:

Table 2 FACS Head codes initiating T-patterns in Rating Clusters. Values are expressed in percentages

Table (). Gaze position and orientation initiating T-patterns in rating clusters. Values are expressed in percentages.

Cluster label   Blink Eyelids Droop Look At Look Away Look Down Look Up

Positive emotions 0 0 34 9 0 0

Hostility 0 0 0 0 0 0Embarrassment 0 5 0 8 7 0

Surprise 5 0 3 0 0 0

Sadness 17 2 2 2 3 0

Table 3 FACS Gaze codes initiating T-patterns in Rating Clusters. Values are expressed in percentages

Table 4. Voice and Speech codes initiating T-patterns in Rating Clusters. Values are expressed in

percentages

Cluster label   Pause Speak Hesitation Verbal Filler Word Stress False Start Laughing Crying

Positive emotions 0 6 0 0 0 0 0 0

Hostility 0 0 0 0 0 0 0 0

Embarrassment 0 0 0 0 0 0 0 0

Surprise 15 0 0 0 0 0 0 0

Sadness 22 1 0 0 0 0 0 0

Page 177: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 177/282

172

   F   i  r  s   t   i  n  p  a   t .   *   /   F   A   C   S  c  o   d  e  s

   A   U   1

   A   U   1   +   2

   A   U   4

   A   U   5

   A   U   6

   A   U   7

   A   U

   9

   A   U   1   0

   A   U   1   0   U

   A   U   1   2

   A   U   1   2   U

   A   U   1   4

   A   U   1   4   U

   A   U   1   5

   A   U   1   6

   A   U   1   7

   A   U   2   0

   A   U   2   3

   A   U   2   4

   A   U   2   5

   A   U   2   6

   T  o   t .   I  n   d .   T  -  p  a   t .   *   *

   L  o  o   k   A   t

   0

   3

   0

   4

   1

   0

   0

   0

   0

   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   7

   A   U   5

   0

   2

   0

   3

   1

   0

   0

   0

   0

   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   1   2

   0

   0

   0

   0

   2

   0

   0

   0

   0

   4

   0

   0

   0

   0

   0

   2

   0

   0

   0

   0

   0

   4

   A   U   1   +   2

   0

   2

   0

   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   L  o  o   k   A  w  a  y

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   A   U   6

   0

   0

   0

   0

   3

   0

   0

   0

   0

   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   S  p  e  a   k

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   A   U   1   4

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   0

   0

   1

   0

   0

   0

   0

   0

   2

   A   U   2   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   0

   0

   0

   2

   T  o   t  a   l

   0

   7

   0

   9

   7

   0

   0

   1

   0

   1   4

   0

   2

   0

   0

   0

   3

   2

   0

   0

   0

   0

   2   5

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e

  r  n  s

   0   %

   2   8   %

   0   %

   3   6   %

   2   8   %

   0   %

   0   %

   4   %

   0   %

   5   6   %

   0   %

   8   %

   0   %

   0   %

   0   %

   1   2   %

   8   %

   0   %

   0   %

   0   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   T  o   t .   I  n   d .

   T  -  p  a   t  =   T  o   t  a

   l   i   t  y  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -  p  a   t   t  e  r  n  s   i  n   C   l  u  s   t  e  r  s

   T  a   b   l  e   (   ) .   P  o  s   i   t   i  v  e   E  m  o   t   i  o  n  s   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   F   A   C

   S  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   5   E  n   j  o  y  m  e  n   t  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   F   A   C   S  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 178: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 178/282

173

   F   i  r  s   t   i  n  p  a   t .   *   /   G  a  z  e  c  o   d  e  s

   B   l   i  n   k   E  y  e   l   i   d  s   D  r  o  o  p

   L  o  o   k   A   t   L  o  o   k

   A  w  a  y

   L  o  o   k   D  o  w  n

   L  o  o   k   U  p

   N .   I  n   d .   T  -  p  a   t .   *   *

   L  o  o   k   A   t

   2

   0

   7

   0

   0

   0

   7

   A   U   5

   1

   0

   0

   0

   0

   0

   3

   A   U   1   2

   0

   0

   0

   0

   0

   0

   4

   A   U   1   +   2

   0

   0

   0

   0

   0

   0

   2

   L  o  o   k   A  w  a  y

   0

   0

   0

   1

   0

   0

   1

   A   U   6

   0

   0

   0

   0

   0

   0

   3

   S  p  e  a   k

   0

   0

   1

   0

   0

   0

   1

   A   U   1   4

   0

   0

   0

   0

   0

   0

   2

   A   U   2   0

   0

   0

   0

   1

   0

   0

   2

   T  o   t  a   l

   3

   0

   8

   2

   0

   0

   2   5

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e

  r  n  s

   1   2   %

   0   %

   3   2   %

   8

   %

   0   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o

   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .

   I  n   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

    T  a   b   l  e   6 .   E  n   j  o  y  m

  e  n   t  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s

  o   f   G  a  z  e  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 179: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 179/282

174   F   i  r  s   t   i  n  p  a   t .   *   /   H  e  a   d   C  o   d  e  s

   L  o  w  e  r   H  e  a   d   H

  e  a   d   T  u  r  n  s   H  e  a   d   D  o  w  n

   H  e  a   d   R  a   i  s  e

   H  e  a   d   R  a   i  s  e  a  n   d   T  u  r  n

   H  e  a   d   L  o  w  e  r  a  n   d   T  u  r  n

   H  e  a   d   R  a   i  s  e   d

   H  e  a   d   O  n

   H  e  a   d   T  u

  r  n  e   d   A  w  a  y

   H  e  a   d   T   i   l   t  e   d   S   i   d  e   H  e  a   d   T   i   l   t   i  n  g   S   i   d  e   H  e  a   d   S   h  a

   k  e

   H  e  a   d   N  o   d

   N .   I  n   d .   T  -  p  a   t .   *   *

   L  o  o   k   A   t

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   7

   A   U   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   1   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   4

   A   U   1   +   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   L  o  o   k   A  w  a  y

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   A   U   6

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   S  p  e  a   k

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   A   U   1   4

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   A   U   2   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   2

   T  o   t  a   l

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   2   5

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   4   %

   0   %

   0   %

   0   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .

   I  n   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n

   i  n   t   h  e  c   l  u  s   t  e  r .

    T  a   b   l  e   7 .   E  n   j  o  y  m  e  n   t  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p

  r  o  p  o  r   t   i  o  n  s  o   f   H  e  a   d  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

Page 180: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 180/282

175

   F   i  r  s   t   i  n

  p  a   t .   *   /   V  o   i  c  e   &   S  p  e  e  c   h

   P  a  u  s  e   S  p  e  a   k   H  e  s   i   t  a   t   i  o

  n   V  e  r   b  a   l   F   i   l   l  e  r   W  o  r   d   S   t  r  e  s  s

   F  a   l  s  e   S   t  a  r   t   L  a  u  g   h   i  n  g   C  r  y   i  n  g

   N .   I  n   d .   T  -  p  a   t .   *   *

   L  o  o   k   A

   t

   0

   0

   0

   0

   0

   0

   0

   0

   7

   A   U   5

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   1   2

   0

   0

   0

   0

   0

   0

   0

   0

   4

   A   U   1   +   2

   0

   0

   0

   0

   0

   0

   0

   0

   2

   L  o  o   k   A

  w  a  y

   0

   0

   0

   0

   0

   0

   0

   0

   1

   A   U   6

   0

   0

   0

   0

   0

   0

   0

   0

   3

   S  p  e  a   k

   0

   1

   0

   0

   0

   0

   0

   0

   1

   A   U   1   4

   0

   0

   0

   0

   0

   0

   0

   0

   2

   A   U   2   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   T  o   t  a   l

   0

   1

   0

   0

   0

   0

   0

   0

   2   5

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   0   %

   4   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .   I  n

   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

    T  a   b   l  e   8 .   E  n   j  o  y  m  e  n   t  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   V  o   i  c  e  a  n   d   S  p  e  e  c   h  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 181: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 181/282

176

   F   i  r  s   t   i  n  p  a   t .   *   /   F   A   C   S  c  o   d  e  s

   A   U   1   A   U   1   +   2   A   U   4   A   U   5   A   U   6   A   U   7   A   U   9   A   U

   1   0   A   U   1   0   U

   A   U   1   2   A   U   1   2   U

   A   U   1   4   A   U   1   4   U   A   U   1   5   A   U   1   6   A   U   1   7   A   U   2   0   A   U   2   3   A   U   2   4   A   U   2   5

   A   U   2   6

   T  o   t .   I  n   d .   T  -  p  a   t   *   *

   A   U   4

   0

   2

   3   3

   1   4

   0

   1   2

   2   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3   3

   A   U   7

   0

   1

   0

   1   2

   0

   2   0

   1   3

   0

   0

   0

   0

   2

   0

   0

   0

   4

   0

   0

   0

   1

   0

   2   0

   A   U   9

   0

   1

   0

   5

   0

   1   1

   2   4

   0

   0

   0

   0

   3

   0

   4

   0

   1   0

   0

   0

   0

   0

   1

   2   4

   A   U   1   +   2

   0

   1   4

   1

   1   4

   0

   0

   0

   0

   0

   1   2

   0

   0

   0

   1

   0

   0

   5

   0

   0

   0

   0

   1   4

   A   U   5

   0

   1   3

   2

   2   2

   0

   4

   2

   1

   0

   0

   0

   0

   0

   0

   5

   1

   1   1

   0

   0

   0

   3

   2   2

   A   U   1   5

   0

   1   2

   2

   0

   0

   1

   1

   4

   0

   0

   0

   0

   0

   1   9

   0

   8

   0

   0

   0

   0

   0

   1   9

   A   U   1   0

   0

   3

   0

   1

   0

   0

   0

   9

   0

   2

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   0

   9

   A   U   1   0   U

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   A   U   1   2

   0

   3

   0

   0

   0

   0

   0

   0

   0

   1   3

   0

   0

   0

   0

   0

   2

   0

   0

   0

   0

   0

   1   3

   A   U   1   4

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   1

   0

   0

   0

   6

   0

   4

   3

   0

   0

   1   1

   A   U   1   4   U

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   2

   0

   0

   5

   0

   0

   0

   0

   0

   1   2

   A   U   1   7

   0

   9

   0

   0

   0

   2

   0

   0

   0

   0

   0

   5

   0

   9

   0

   1   5

   0

   3

   1

   0

   0

   1   5

   A   U   2   0

   0

   8

   0

   2

   0

   0

   0

   2

   0

   0

   0

   1

   0

   0

   4

   2

   1   7

   0

   0

   0

   0

   1   7

   A   U   2   3

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   0

   3

   0

   0

   0

   2

   0

   8

   3

   0

   0

   8

   A   U   2   4

   0

   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   5

   0

   0

   5

   T  o   t  a   l

   0

   6   8

   3   8

   7   0

   0

   5   1

   6   3

   1

   6

   2

   2   7

   0

   2   6

   1   2

   3   3

   9

   5   6

   3   3

   1   5

   1   2

   1

   4

   2   2   4

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   0   %

   3   0   %

   1   7   %

   3   1   %

   0   %

   2   3   %

   2   8   %

   7

   %

   1   %

   1   2   %

   0   %

   1   2   %

   5   %

   1

   5   %

   4   %

   2   5   %

   1   5   %

   7   %

   5   %

   0   %

   2   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p

  a   t   t  e  r  n

   *   *   T  o   t .   I  n   d .

   T  -  p  a   t  =   T  o   t  a   l   i   t  y  o   f   i  n   d

  e  p  e  n   d  e  n   t   T  -  p  a   t   t  e  r  n  s   i  n   C   l  u  s   t  e  r  s

   T  a   b   l  e   (   ) .   H  o  s   t   i   l   i   t  y   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   F   A   C   S  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   9 .   H  o  s   t   i   l   i   t  y  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o

  p  o  r   t   i  o  n  s  o   f   F   A   C   S  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

Page 182: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 182/282

177

   F   i  r  s   t   i  n  p  a   t .   *   /   G  a  z  e  c  o   d  e  s

   B   l   i  n   k

   E  y  e   l   i   d  s   D  r  o  o  p

   L  o  o

   k   A   t

   L  o  o   k   A  w  a  y

   L  o  o   k   D  o  w  n

   L  o  o   k   U  p

   N .   I  n   d .   T  -  p  a   t .   *   *

   A   U

   4

   0

   0

   0

   1   8

   0

   0

   3   3

   A   U

   7

   0

   1

   7

   0

   0

   0

   2   0

   A   U

   9

   5

   0

   0

   0

   0

   0

   2   4

   A   U

   1   +   2

   0

   0

   1

   0

   0

   0

   1   4

   A   U

   5

   0

   0

   0

   2

   0

   0

   2   2

   A   U

   1   5

   0

   1

   0

   0

   0

   0

   1   9

   A   U

   1   0

   0

   0

   0

   0

   0

   0

   9

   A   U

   1   0   U

   0

   0

   0

   0

   0

   0

   2

   A   U

   1   2

   0

   4

   0

   0

   0

   0

   1   3

   A   U

   1   4

   0

   0

   0

   0

   0

   0

   1   1

   A   U

   1   4   U

   0

   1

   0

   0

   0

   0

   1   2

   A   U

   1   7

   0

   0

   0

   0

   0

   0

   1   5

   A   U

   2   0

   0

   0

   0

   0

   0

   0

   1   7

   A   U

   2   3

   0

   0

   0

   0

   0

   0

   8

   A   U

   2   4

   0

   0

   0

   0

   0

   0

   5

   T  o   t  a   l

   5

   7

   8

   2   0

   0

   0

   2   2   4

   P  r  o

  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   2   %

   3   %

   4

   %

   9   %

   0   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N

 .   I  n   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

   T  a   b   l  e   (   )   H  o  s   t   i   l   i   t  y   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n

   d   P  r  o  p  o  r   t   i  o  n  s  o   f   "   G  a  z  e   "   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   1   0 .   H  o  s   t   i   l   i   t  y  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   G  a  z  e  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 183: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 183/282

178

   F   i  r  s   t   i  n  p  a   t .   *   /   H  e  a   d   C  o   d  e  s

   L  o  w  e  r   H  e  a   d

   H  e  a   d   T  u  r  n  s   H  e  a   d   D  o  w  n

   H  e  a   d   R  a   i  s  e

   H  e  a   d   R  a

   i  s  e  a  n   d   T  u  r  n

   H  e  a   d   L  o  w  e  r  a  n   d   T  u  r  n

   H  e  a   d   R  a   i  s  e   d

   H  e  a   d   O  n

   H  e  a   d   T  u  r  n  e   d   A  w  a  y

   H  e  a   d   T   i   l   t  e   d   S   i   d  e

   H  e  a   d   T   i   l   t   i  n  g   H  e  a   d   S   h

  a   k  e   H  e  a   d   N  o   d

   N .   I  n   d .   T  -  p  a   t .   *   *

   A   U   4

   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3   3

   A   U   7

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2   0

   A   U   9

   2

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2   4

   A   U   1   +   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   4

   A   U   5

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   2   2

   A   U   1   5

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   9

   A   U   1   0

   0

   0

   0

   0

   0

   0

   3

   0

   1

   0

   0

   1

   0

   9

   A   U   1   0   U

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   A   U   1   2

   0

   0

   0

   0

   1

   0

   0

   0

   3

   0

   0

   0

   0

   1   3

   A   U   1   4

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   1

   A   U   1   4   U

   2

   0

   0

   0

   0

   0

   0

   0

   4

   0

   5

   0

   0

   1   2

   A   U   1   7

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   1   5

   A   U   2   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   7

   A   U   2   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   8

   A   U   2   4

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   5

   T  o   t  a   l

   8

   0

   0

   2

   1

   0

   3

   0

   1   0

   0

   5

   3

   0

   2   2   4

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   4   %

   0   %

   0   %

   1   %

   0   %

   0   %

   1   %

   0   %

   4   %

   0   %

   2   %

   1   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .

   I  n   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

   T  a   b   l  e   (   )   H  o  s   t   i   l   i   t  y   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d   P  r  o  p  o  r   t   i  o  n  s  o   f   H  e  a   d  c  o   d  e  s   i  n   I  n   d  e  p  e  n   d  e  n   t   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   1   1 .   H  o  s   t   i   l   i   t  y  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   H  e  a   d  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 184: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 184/282

179

   F   i  r  s   t   i  n  p  a   t .   *

   /   V  o   i  c  e   &   S  p  e  e  c   h

   P  a  u  s  e   S  p  e  a   k   H  e  s   i   t  a   t   i  o  n   V  e  r   b  a   l   F   i   l   l  e  r   W  o  r   d   S   t  r  e  s  s   F  a   l  s  e   S   t  a  r   t   L  a  u  g   h   i  n  g   C  r  y   i  n  g   N .   I  n   d .   T  -  p  a   t .   *   *

   A   U   4

   0

   0

   0

   0

   1

   2

   0

   0

   3   3

   A   U   7

   0

   0

   0

   0

   0

   0

   0

   0

   2   0

   A   U   9

   0

   0

   0

   0

   0

   0

   0

   0

   2   4

   A   U   1   +   2

   0

   0

   0

   0

   0

   0

   0

   0

   1   4

   A   U   5

   0

   0

   0

   0

   0

   0

   0

   0

   2   2

   A   U   1   5

   0

   0

   0

   0

   0

   0

   0

   0

   1   9

   A   U   1   0

   0

   0

   0

   0

   0

   0

   0

   0

   9

   A   U   1   0   U

   0

   0

   0

   0

   0

   0

   0

   0

   2

   A   U   1   2

   0

   0

   0

   0

   1

   0

   0

   0

   1   3

   A   U   1   4

   0

   0

   0

   0

   0

   0

   0

   0

   1   1

   A   U   1   4   U

   0

   0

   0

   0

   3

   0

   0

   0

   1   2

   A   U   1   7

   0

   0

   0

   0

   0

   0

   0

   0

   1   5

   A   U   2   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   7

   A   U   2   3

   0

   0

   0

   0

   0

   0

   0

   0

   8

   A   U   2   4

   0

   0

   0

   1

   0

   0

   0

   0

   5

   T  o   t  a   l

   0

   0

   0

   1

   5

   2

   0

   0

   2   2   4

   P  r  o  p  o  r   t   i  o  n  s   i

  n   T  -  p  a   t   t  e  r  n  s

   0   %

   0   %

   0   %

   0   %

   2   %

   1   %

   0   %

   0   %

   T  a   b   l  e   (   )   H  o  s   t   i   l   i   t  y   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d   P  r  o  p  o  r   t   i  o  n  s  o   f   "   V  o   i  c  e  a  n   d   S  p  e  e  c   h   "   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   1   2 .   H  o  s   t   i   l   i   t  y  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   V  o   i  c  e  a  n   d   S  p  e  e  c   h  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 185: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 185/282

180

   F   i  r  s   t   i  n  p  a   t .   *   /   F   A

   C   S  c  o   d  e  s

   A   U   1   A   U   1   +   2   A   U   4   A   U   5   A   U   6   A   U   7   A   U   9   A   U   1   0   A   U   1   0   U

   A   U   1   2   A   U   1   2   U

   A   U   1   4   A   U   1   4   U

   A   U   1   5   A   U   1   6   A   U   1   7   A   U   2   0   A   U   2   3   A   U   2   4   A   U   2   5   A   U   2   6

   T  o   t .   I  n   d .   T  -  p  a   t .   *   *

   A   U   1   2

   0

   4

   0

   3

   0

   0

   0

   1

   0

   9

   0

   0

   0

   0

   0

   3

   0

   0

   0

   0

   2

   9

   A   U   1   5

   0

   1

   0

   2

   0

   0

   0

   0

   0

   1

   0

   0

   0

   8

   0

   2

   0

   0

   0

   0

   0

   8

   A   U   1   2   U

   0

   2

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   0

   0

   0

   1

   7

   A   U   7

   0

   2

   0

   3

   0

   1   2

   0

   3

   0

   3

   1

   0

   0

   0

   0

   2

   0

   0

   0

   0

   0

   1   2

   L  o  o   k   A  w  a  y

   0

   4

   0

   2

   0

   0

   0

   1

   0

   4

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   1

   5

   L  o  w  e  r   H  e  a   d

   0

   1

   0

   3

   0

   0

   0

   0

   0

   6

   1

   0

   0

   1

   0

   1

   0

   0

   0

   0

   0

   7

   L  o  o   k   D  o  w  n

   0

   5

   0

   6

   0

   2

   0

   0

   0

   3

   4

   0

   0

   4

   0

   2

   0

   0

   0

   0

   1

   1   2

   A   U   1   7

   0

   1

   0

   0

   0

   1

   0

   4

   0

   2

   1

   0

   0

   1

   0

   6

   0

   0

   0

   0

   0

   6

   A   U   1   0

   0

   3

   0

   0

   0

   0

   0

   7

   0

   3

   0

   0

   0

   0

   0

   4

   0

   0

   0

   0

   0

   6

   E  y  e   l   i   d  s   D  r  o  p

   0

   3

   0

   1

   0

   2

   0

   0

   0

   2

   2

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   7

   A   U   5

   0

   0

   0

   5

   0

   0

   0

   0

   0

   4

   1

   0

   0

   1

   0

   0

   0

   0

   0

   0

   2

   5

   A   U   1   +   2

   0

   5

   0

   2

   0

   2

   0

   2

   0

   1

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   0

   5

   A   U   4

   0

   0

   3

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   9

   0

   0

   0

   1

   0

   0

   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   2   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   0

   0

   0

   0

   3

   A   U   2   3

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   0

   0

   2

   T  o   t  a   l

   0

   3   2

   3

   3   0

   0

   1   9

   3

   1   8

   0

   3   8

   1   0

   0

   0

   1   7

   0

   2   3

   3

   2

   0

   0

   7

   1   0   0

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   0   %

   3   2   %

   3   %

   3   0   %

   0   %

   1   9   %

   3

   %

   1   8   %

   0   %

   3   8   %

   1   0   %

   0   %

   0   %

   1   7   %

   0   %

   2   3   %

   3   %

   2   %

   0   %

   0   %

   7   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r

  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   T  o   t .   I  n   d .

   T  -  p  a   t  =

   T  o   t  a   l   i   t  y  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -  p  a   t   t  e  r  n  s   i  n   C   l  u  s   t  e  r  s

   T  a   b   l  e   (   ) .   E  m

   b  a  r  r  a  s  s  m  e  n   t   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   F   A   C   S  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   1   3 .

   E  m   b  a  r  r  a  s  s  m  e  n   t  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o

  p  o  r   t   i  o  n  s  o   f   F   A   C   S  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 186: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 186/282

181

   F   i  r  s   t   i  n  p  a   t .   *   /   G  a  z  e  c

  o   d  e  s

   B   l   i  n   k

   E  y  e   l   i   d  s   D  r  o  o  p

   L  o  o   k   A   t

   L  o  o   k   A  w  a  y

   L  o  o   k   D  o  w  n

   L  o  o   k   U  p

   N .   I  n   d .   T  -  p  a   t .   *   *

   A   U   1   2

   0

   6

   0

   0

   2

   0

   9

   A   U   1   5

   0

   0

   0

   0

   2

   0

   8

   A   U   1   2   U

   0

   1

   0

   0

   0

   0

   7

   A   U   7

   0

   2

   0

   0

   5

   0

   1   2

   L  o  o   k   A  w  a  y

   0

   1

   0

   5

   0

   0

   5

   L  o  w  e  r   H  e  a   d

   0

   1

   0

   2

   0

   0

   7

   L  o  o   k   D  o  w  n

   0

   1

   0

   0

   1   2

   0

   1   2

   A   U   1   7

   0

   0

   0

   0

   0

   0

   6

   A   U   1   0

   0

   0

   0

   0

   1

   0

   6

   E  y  e   l   i   d  s   D  r  o  p

   0

   7

   0

   0

   2

   0

   7

   A   U   5

   0

   2

   0

   0

   1

   0

   5

   A   U   1   +   2

   0

   1

   0

   1

   0

   0

   5

   A   U   4

   0

   0

   0

   0

   0

   0

   3

   A   U   9

   0

   1

   0

   0

   1

   0

   3

   A   U   2   0

   0

   0

   0

   1

   0

   0

   3

   A   U   2   3

   0

   0

   0

   0

   0

   0

   2

   T  o   t  a   l

   0

   2   3

   0

   9

   2   6

   0

   1   0   0

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e

  r  n  s

   0   %

   2   3   %

   0   %

   9   %

   2   6   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o

   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .

   I  n   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

   T  a   b   l  e   (   )   E  m   b  a  r  r  a  s  s  m  e  n   t   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o

  r   t   i  o  n  s  o   f   "   G  a  z  e   "   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   1   4 .   E  m   b  a  r  r  a  s  s  m  e  n   t  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   G  a  z  e  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 187: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 187/282

182

   F    i   r   s   t    i   n   p   a   t .    *

    /   H   e   a    d   C   o    d   e   s

   L   o  w   e   r   H   e   a    d

   H   e   a    d   T  u   r   n   s   H   e   a    d   D   o  w   n

   H   e   a    d   R   a    i   s   e

   H   e   a    d

   R   a    i   s   e   a   n    d   T  u   r   n

   H   e   a    d   L   o  w   e   r   H   e   a    d   R   a    i   s   e    d

   H   e   a    d   O   n

   H   e   a    d   T  u   r   n   e    d   A  w   a  y

   H   e   a    d   T    i    l   t   e    d   S    i    d   e

   H   e   a    d   T    i    l   t    i   n   g   H   e   a    d   S    h   a    k   e

   H   e   a    d   N   o    d

   N .   I   n    d .   T  -   p   a   t .    *

    *

   A   U   1   2

      1

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

   9

   A   U   1   5

      4

      0

      0

      0

      0

      0

      0

      0

      2

      0

      0

      0

      0

   8

   A   U   1   2   U

      1

      0

      0

      0

      0

      0

      0

      0

      0

      0

      1

      0

      0

   7

   A   U   7

      1

      0

      0

      0

      0

      0

      0

      0

      3

      0

      0

      0

      0

   1   2

   L   o   o    k   A  w   a  y

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

   5

   L   o  w   e   r   H   e   a    d

      5

      0

      0

      0

      0

      0

      0

      0

      1

      0

      0

      0

      0

   7

   L   o   o    k   D   o  w   n

      2

      0

      0

      0

      0

      0

      0

      0

      1

      0

      0

      0

      0

   1   2

   A   U   1   7

      1

      0

      0

      0

      1

      0

      0

      0

      0

      0

      0

      0

      0

   6

   A   U   1   0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

   6

   E  y   e    l    i    d   s   D   r   o   p

      2

      0

      0

      0

      0

      0

      0

      0

      1

      0

      0

      0

      0

   7

   A   U   5

      2

      0

      0

      0

      0

      0

      0

      0

      1

      0

      0

      0

      0

   5

   A   U   1   +   2

      1

      0

      0

      0

      0

      0

      0

      0

      2

      0

      0

      0

      0

   5

   A   U   4

      0

      0

      0

      1

      0

      0

      0

      0

      0

      0

      0

      0

      0

      3

   A   U   9

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      3

   A   U   2   0

      1

      0

      0

      0

      0

      0

      0

      0

      1

      0

      0

      0

      0

      3

   A   U   2   3

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      0

      2

   T   o   t   a    l

      2      1

      0

      0

      1

      1

      0

      0

      0

      1      2

      0

      1

      0

      0

      1      0      0

   P   r   o   p   o   r   t    i   o   n   s    i   n   T  -   p   a   t   t   e   r   n   s

      2      1      %

      0      %

      0      %

      1      %

      1      %

      0      %

      0      %

      0      %

      1      2      %

      0      %

      0      %

      0      %

      0      %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o

    d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .

   I  n    d .

   T  -  p  a   t .  =   N  u  m

    b  e  r  o   f   i  n    d  e  p  e  n

    d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t    h  e  c    l  u  s   t  e  r .

   T   a    b    l   e    (    )   E   m    b   a   r

   r   a   s   s   m   e   n   t   C    l  u   s   t   e   r .   N  u   m    b   e   r   a   n    d   P   r   o   p   o   r   t    i   o   n   s   o    f   H   e   a    d   c   o    d   e   s    i   n   I   n    d   e   p   e   n    d   e   n   t   T  -   p   a   t   t   e   r   n   s .

    T   a    b    l   e   1   5 .   E   m    b   a

   r   r   a   s   s   m   e   n   t   c    l  u   s   t   e   r .   N  u   m    b   e   r   a   n    d   p   r   o   p   o   r   t    i   o   n   s   o    f   H

   e   a    d   c   o    d   e   s    i   n   T  -   p   a   t   t   e   r   n   s

 

Page 188: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 188/282

183

   F    i   r   s   t    i   n   p   a   t .    *

    /   V   o    i   c   e   &   S   p   e   e   c    h

   P   a  u   s   e   S   p   e   a    k

   H   e   s    i   t   a   t    i   o   n   V   e   r    b   a    l   F    i    l    l   e   r   W   o   r    d   S   t   r   e   s   s

   F   a    l   s   e   S   t   a   r   t   L   a  u   g    h    i   n   g   C   r  y    i   n   g

   N .   I   n    d .   T  -   p   a   t .    *

    *

   A   U

   1   2

   0

   0

   0

   0

   0

   0

   0

   0

   9

   A   U

   1   5

   0

   0

   0

   0

   0

   0

   0

   0

   8

   A   U

   1   2   U

   0

   0

   0

   0

   0

   0

   0

   0

   7

   A   U

   7

   0

   0

   0

   0

   0

   0

   0

   0

   1   2

   L   o

   o    k   A  w   a  y

   0

   0

   0

   0

   0

   0

   0

   0

   5

   L   o

  w   e   r   H   e   a    d

   0

   0

   0

   0

   0

   0

   0

   0

   7

   L   o

   o    k   D   o  w   n

   1

   0

   0

   0

   0

   0

   0

   0

   1   2

   A   U

   1   7

   0

   1

   0

   0

   0

   0

   0

   0

   6

   A   U

   1   0

   0

   0

   0

   0

   0

   0

   0

   0

   6

   E  y

   e    l    i    d   s   D   r   o   p

      1

      0

      0

      0

      0

      0

      0

      0

   7

   A   U

   5

      0

      0

      0

      0

      0

      0

      0

      0

   5

   A   U

   1   +   2

      0

      0

      0

      0

      0

      0

      0

      0

   5

   A   U

   4

      0

      0

      0

      0

      0

      0

      0

      0

      3

   A   U

   9

      0

      0

      0

      0

      0

      0

      0

      0

      3

   A   U

   2   0

      0

      0

      0

      0

      0

      0

      0

      0

      3

   A   U

   2   3

      0

      0

      0

      0

      0

      0

      0

      0

      2

   T   o

   t   a    l

      2

      1

      0

      0

      0

      0

      0

      0

      1      0      0

   P   r   o   p   o   r   t    i   o   n   s    i   n   T  -   p   a   t   t   e   r   n   s

      2      %

      1      %

      0      %

      0      %

      0      %

      0      %

      0      %

      0      %

   T   a    b    l   e    (    )   E   m    b   a   r   r   a   s   s   m   e   n   t   C    l  u   s   t   e   r .   N  u   m

    b   e   r   a   n    d   P   r   o   p   o   r   t    i   o   n   s   o    f   "   V   o    i   c   e   a   n    d   S   p   e   e   c    h   "   C   o    d   e   s    i   n   T  -   p   a   t   t   e   r   n   s .

 

   T   a    b    l   e   1   6 .   E   m    b   a   r   r   a   s   s   m   e   n   t   c    l  u   s   t   e   r .   N  u   m    b   e   r   a   n    d   p   r   o   p   o   r   t    i   o   n   s   o    f   V   o    i   c   e   a   n    d   S   p   e   e   c    h   c   o    d   e   s    i   n   T  -   p   a   t   t   e   r   n   s

 

Page 189: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 189/282

184

   F   i  r  s   t   i  n  p  a   t .   *   /   F   A   C   S  c  o   d  e  s

   A   U   1   A   U   1   +   2   A   U   4   A   U   5   A   U   6   A   U   7   A   U   9   A   U   1   0   A   U   1   0   U

   A   U   1   2   A   U   1   2   U

   A   U   1   4   A   U   1   4   U

   A   U   1   5

   A   U   1   6   A   U   1   7   A   U   2   0   A   U   2   3   A   U   2   4   A   U   2   5   A   U   2

   6

   T  o   t .   I  n   d .   T  -  p  a   t   *   *

   A   U   1   7

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   9

   0

   0

   3

   0

   0

   9

   H  e  a   d   O  n

   0

   1

   0

   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   3

   3

   A   U   5

   0

   1

   0

   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   P  a  u  s  e

   0

   1

   0

   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   3

   4

   A   U   1   +   2

   0

   4

   0

   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   4

   B   l   i  n   k

   0

   0

   0

   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   L  o  o   k   A   t

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   A   U   7

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   T  o   t  a   l

   0

   7

   0

   1   7

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   9

   0

   0

   3

   7

   6

   2   7

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   0   %

   2   6   %

   0   %

   6   3   %

   0   %

   4   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   3   3   %

   0   %

   0   %

   1   1   %

   2   6   %

   2   2   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   T  o   t .   I  n   d .

   T  -  p  a   t  =   T  o   t  a   l   i   t  y  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -  p  a   t   t  e  r  n  s   i  n   C   l  u  s   t  e  r  s

   T  a   b   l  e   (   ) .   S  u  r  p  r   i  s  e   C

   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   F   A   C   S  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   1   7 .   S  u  r  p  r   i  s  e  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   F   A   C   S

  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 190: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 190/282

Page 191: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 191/282

186   F   i  r  s   t   i  n  p  a   t .   *   /   H  e  a   d   C  o   d  e  s   L  o  w  e  r   H  e  a   d   H

  e  a   d   T  u  r  n  s   H  e  a   d   D  o  w  n

   H  e  a   d   R  a   i  s  e   H  e  a   d   R  a   i  s  e  a  n   d   T  u  r  n

   H  e  a   d   L  o  w  e  r   H  e  a   d   R  a   i  s  e   d   H  e  a   d   O  n

   H  e  a   d   T  u  r  n  e   d   A  w  a  y

   H  e  a   d   T   i   l   t  e   d   S   i   d  e

   H  e  a   d   T   i   l   t   i  n  g   S   i   d  e   H  e  a   d   S   h  a   k  e   H  e  a   d   N  o   d

   N .   I  n   d .   T  -  p  a   t .   *   *

   A   U   1   7

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   9

   H  e  a   d   O  n

   0

   0

   0

   0

   0

   0

   0

   3

   0

   0

   0

   0

   0

   3

   A   U   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   P  a  u  s  e

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   4

   A   U   1   +   2

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   4

   B   l   i  n   k

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   L  o  o   k   A   t

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   A   U   7

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   T  o   t  a   l

   0

   0

   0

   1

   0

   0

   0

   3

   0

   0

   0

   0

   0

   2   7

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   0   %

   0   %

   0   %

   4   %

   0   %

   0   %

   0   %

   1   1   %

   0   %

   0   %

   0   %

   0   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .

   I  n   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

    T  a   b   l  e   1   9 .   S  u  r  p  r   i  s  e  c   l  u

  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   H  e  a   d  c  o   d  e  s

   i  n   T  -  p  a   t   t  e  r  n  s

Page 192: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 192/282

187

   F   i  r  s   t   i  n  p  a   t .   *   /   V  o

   i  c  e   &   S  p  e  e  c   h

   P  a  u  s  e   S  p  e  a   k   H  e  s   i   t  a   t   i  o  n   V  e  r   b  a   l   F   i   l   l  e  r   W  o  r   d   S   t  r  e  s  s

   F  a   l  s  e   S   t  a  r   t   L  a  u  g   h   i  n  g   C  r  y   i  n  g

   N .   I  n   d .   T  -  p  a   t .   *   *

   A   U   1   7

   2

   0

   0

   0

   0

   0

   0

   0

   9

   H  e  a   d   O  n

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   5

   0

   0

   0

   0

   0

   0

   0

   0

   3

   P  a  u  s  e

   4

   0

   0

   0

   0

   0

   0

   0

   4

   A   U   1   +   2

   2

   0

   0

   0

   0

   0

   0

   0

   4

   B   l   i  n   k

   0

   0

   0

   0

   0

   0

   0

   0

   2

   L  o  o   k   A   t

   0

   0

   0

   0

   0

   0

   0

   0

   1

   A   U   7

   0

   0

   0

   0

   0

   0

   0

   0

   1

   T  o   t  a   l

   8

   0

   0

   0

   0

   0

   0

   0

   2   7

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   3   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .

   I  n   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

 

   T  a   b   l  e   2   0 .   S  u  r  p  r   i  s  e  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f

   V  o   i  c  e  a  n   d   S  p  e  e  c   h  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 193: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 193/282

188

   F   i  r  s   t   i  n  p  a   t .   *   /   F   A   C   S  c  o   d  e  s

   A   U   1

   A   U   1   +   2

   A   U   4

   A   U   5

   A   U   6

   A   U   7

   A   U   9

   A   U   1

   0

   A   U   1   0   U

   A   U   1   2

   A   U   1   2   U

   A   U   1   4

   A   U   1   4   U

   A   U   1   5

   A   U   1   6

   A   U   1   7

   A   U   2   0

   A   U   2   3

   A   U   2   4

   A   U   2   5

   A   U   2   6

   T  o   t .   I  n   d .   T  -  p  a   t   *   *

   P  a  u  s  e

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   8

   0

   0

   0

   0

   0

   0

   0

   8

   B   l   i  n   k

   0

   6

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   5

   0

   0

   0

   0

   0

   1   3

   A   U   1   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   2

   0

   0

   0

   0

   0

   1

   1

   1   2

   A   U   1   +   2

   0

   1   6

   0

   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   6

   A   U   1   7

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   4

   0

   1   6

   0

   0

   0

   0

   0

   1   6

   A   U   5

   0

   0

   0

   7

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   7

   L  o  o   k   D  o  w  n

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   5

   0

   0

   0

   0

   0

   0

   0

   5

   A   U   2   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   5

   0

   0

   0

   0

   0

   5

   0

   5

   H  e  a   d   O  n

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   1

   0

   0

   0

   0

   0

   4

   L  o  o   k   A  w  a  y

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   1   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   L  o  o   k   A   t

   0

   0

   0

   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   1

   0

   0

   0

   0

   0

   4

   A   U   4

   0

   0

   3

   0

   0

   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   E  y  e   l   i   d  s   D  r  o  p

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   0

   0

   0

   2

   S  p  e  a   k

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   4

   0

   1

   0

   0

   0

   2

   0

   4

   A   U   1   4   U

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   1

   0

   0

   0

   0

   0

   0

   0

   2

   H  e  a   d   T  u  r  n  e   d   A  w  a  y

   0

   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   2   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   0

   3

   0

   0

   0

   3

   A   U   2   4

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   3

   0

   0

   3

   T  o   t  a   l

   0

   2   5

   3

   1   5

   0

   2

   0

   0

   0

   3

   0

   0

   2

   5   0

   0

   2   6

   0

   3

   3

   8

   1

   1   1   6

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   0   %

   2   2   %

   3   %

   1   3   %

   0   %

   2   %

   0   %

   0   %

   0   %

   3   %

   0   %

   0   %

   2   %

   4   2   %

   0   %

   2   2   %

   0   %

   3   %

   3   %

   7   %

   1   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   T  o   t .   I  n   d .

   T  -  p  a   t  =   T  o   t  a   l   i   t  y  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -  p  a   t   t  e  r  n  s   i  n   C   l  u  s   t  e  r  s

   T  a   b   l  e   (   ) .   S  a   d  n  e  s  s   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   F   A   C   S  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   2   1 .   S  a   d  n  e  s  s  c   l  u  s   t

  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   F   A   C   S  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 194: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 194/282

189

   F   i  r  s   t   i  n  p  a   t .   *   /   G  a  z  e  c  o   d  e  s

   B   l   i  n   k

   E  y  e   l   i   d  s   D  r  o  o  p

   L  o  o   k   A   t

   L  o  o   k   A  w  a  y

   L  o  o   k   D  o  w  n

   L  o  o   k   U  p

   N .   I  n   d .   T  -  p  a   t .   *   *

   P  a  u  s  e

   0

   7

   0

   6

   7

   0

   8

   B   l   i  n   k

   1   3

   5

   0

   9

   5

   0

   1   3

   A   U   1   5

   0

   6

   0

   6

   6

   0

   1   2

   A   U   1   +   2

   1

   9

   0

   7

   1   0

   0

   1   6

   A   U   1   7

   0

   7

   0

   1   2

   4

   0

   1   6

   A   U   5

   5

   1

   0

   4

   3

   0

   7

   L  o  o   k   D  o  w  n

   0

   4

   0

   5

   5

   0

   5

   A   U   2   5

   0

   2

   0

   3

   0

   0

   5

   H  e  a   d   O  n

   0

   0

   3

   0

   0

   0

   4

   L  o  o   k   A  w  a  y

   0

   2

   0

   3

   1

   0

   3

   A   U   1   2

   0

   0

   2

   0

   0

   0

   3

   L  o  o   k   A   t

   2

   0

   4

   1

   1

   0

   4

   A   U   4

   0

   0

   0

   0

   0

   0

   3

   E  y  e   l   i   d  s   D  r  o  p

   0

   2

   0

   2

   1

   0

   2

   S  p  e  a   k

   0

   1

   0

   1

   0

   0

   4

   A   U   1   4   U

   0

   0

   0

   0

   1

   0

   2

   H  e  a   d   T  u  r  n  e   d   A

  w  a  y

   0

   0

   0

   1

   1

   0

   3

   A   U   2   3

   0

   0

   0

   0

   0

   0

   3

   A   U   2   4

   0

   0

   0

   0

   0

   0

   3

   T  o   t  a   l

   2   1

   4   6

   9

   6   0

   4   5

   0

   1   1   6

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   1   8   %

   4   0   %

   8   %

   5   2   %

   3   9   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .

   I  n   d .

   T  -  p  a   t .

  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

   T  a   b   l  e   (   )   S  a   d  n  e  s  s   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d   P  r  o  p  o

  r   t   i  o  n  s  o   f   "   G  a  z  e   "   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e

   2   2 .   S  a   d  n  e  s  s  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   G  a  z  e  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 195: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 195/282

190

   F   i  r  s   t   i  n  p  a   t .   *   /   H  e  a   d   C  o   d  e  s

   L  o  w  e  r   H

  e  a   d

   H  e  a   d   T  u  r  n  s

   H  e  a   d   D  o  w  n

   H  e  a   d   R  a   i  s  e

   H  e  a   d   R  a   i  s  e  a  n   d   T

  u  r  n

   H  e  a   d   L  o  w  e  r  a  n   d   T  u  r  n

   H  e  a   d   R  a   i  s  e   d

   H  e  a   d   O  n

   H  e  a   d   T

  u  r  n  e   d   A  w  a  y

   H  e  a   d   T   i   l   t  e   d   S   i   d  e

   H  e  a   d   T   i   l   t   i  n  g   H  e  a   d   S   h  a   k  e

   H  e  a   d   N  o   d

   N .   I  n   d .   T  -  p  a   t .   *   *

   P  a  u  s  e

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   8

   B   l   i  n   k

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   3

   A   U   1   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   2

   A   U   1   +   2

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   6

   A   U   1   7

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   1   6

   A   U   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   7

   L  o  o   k   D  o  w  n

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   5

   A   U   2   5

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   5

   H  e  a   d   O  n

   0

   0

   0

   0

   0

   0

   0

   4

   2

   0

   0

   0

   0

   4

   L  o  o   k   A  w  a  y

   0

   0

   0

   0

   0

   0

   0

   0

   1

   0

   0

   0

   0

   3

   A   U   1   2

   0

   0

   0

   0

   0

   0

   0

   2

   0

   0

   1

   0

   0

   3

   L  o  o   k   A   t

   0

   0

   0

   0

   0

   0

   0

   1

   1

   0

   0

   0

   0

   4

   A   U   4

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   E  y  e   l   i   d  s   D  r  o  p

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   S  p  e  a   k

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   4

   A   U   1   4   U

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   2

   H  e  a   d   T  u  r  n  e   d   A  w  a  y

   0

   0

   0

   0

   0

   0

   0

   0

   3

   0

   0

   0

   0

   3

   A   U   2   3

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   2   4

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   0

   3

   T  o   t  a   l

   0

   0

   0

   0

   0

   0

   0

   7

   7

   0

   1

   0

   0

   1   1   6

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   6   %

   6   %

   0   %

   1   %

   0   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n

   *   *   N .

   I  n   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

   T  a   b   l  e   (   )   S  a   d  n  e  s  s   C

   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d   P  r  o  p  o  r   t   i  o  n  s  o   f   H  e  a   d  c  o   d  e  s   i  n   I  n   d  e  p  e  n   d  e  n   t   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   2   3 .   S  a   d  n  e  s  s  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f   H  e  a   d  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 196: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 196/282

191

   F   i  r  s   t   i  n  p  a   t .   *   /   V  o   i  c  e   &   S  p  e  e

  c   h

   P  a  u  s  e   S  p  e  a   k   H  e  s   i   t  a   t   i  o  n   V  e  r   b  a   l   F   i   l   l  e  r   W  o

  r   d   S   t  r  e  s  s

   F  a   l  s  e   S   t  a  r   t   L  a  u  g   h   i  n  g   C  r  y   i  n  g

   N .   I  n   d .   T

  -  p  a   t .   *   *

   P  a  u  s  e

   8

   0

   0

   0

   0

   0

   0

   0

   8

   B   l   i  n   k

   0

   0

   0

   0

   0

   0

   0

   0

   1   3

   A   U   1   5

   3

   1

   0

   0

   0

   0

   0

   0

   1   2

   A   U   1   +   2

   0

   0

   0

   0

   0

   0

   0

   0

   1   6

   A   U   1   7

   8

   2

   0

   0

   0

   0

   0

   0

   1   6

   A   U   5

   0

   0

   0

   0

   0

   0

   0

   0

   7

   L  o  o   k   D  o  w  n

   2

   0

   0

   0

   0

   0

   0

   0

   5

   A   U   2   5

   4

   0

   0

   0

   0

   0

   0

   0

   5

   H  e  a   d   O  n

   2

   0

   0

   0

   0

   0

   0

   0

   4

   L  o  o   k   A  w  a  y

   1

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   1   2

   1

   0

   0

   0

   0

   0

   0

   0

   3

   L  o  o   k   A   t

   2

   0

   0

   0

   0

   0

   0

   0

   4

   A   U   4

   0

   0

   0

   0

   0

   0

   0

   0

   3

   E  y  e   l   i   d  s   D  r  o  p

   1

   0

   0

   0

   0

   0

   0

   0

   2

   S  p  e  a   k

   4

   4

   0

   0

   0

   0

   0

   0

   4

   A   U   1   4   U

   0

   0

   0

   0

   0

   0

   0

   0

   2

   H  e  a   d   T  u  r  n  e   d   A  w  a  y

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   2   3

   0

   0

   0

   0

   0

   0

   0

   0

   3

   A   U   2   4

   0

   0

   0

   0

   0

   0

   0

   0

   3

   T  o   t  a   l

   3   6

   7

   0

   0

   0

   0

   0

   0

   1   1

   6

   P  r  o  p  o  r   t   i  o  n  s   i  n   T  -  p  a   t   t  e  r  n  s

   3   1   %

   6   %

   0   %

   0   %

   0   %

   0   %

   0   %

   0   %

   *   F   i  r  s   t   i  n  p  a   t .  =   F   i  r  s   t   C  o   d  e  s   i  n   T

  -  p  a   t   t  e  r  n

   *   *   N .

   I  n   d .

   T  -  p  a   t .  =   N  u  m   b  e  r  o   f   i  n

   d  e  p  e  n   d  e  n   t   T  -   P  a   t   t  e  r  n   i  n   t   h  e  c   l  u  s   t  e  r .

   T  a   b   l  e

   (   )   S  a   d  n  e  s  s   C   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d   P  r  o  p  o  r   t   i  o  n  s  o   f   "   V  o   i  c  e  a  n   d   S  p  e  e  c   h   "   C  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s .

    T  a   b   l  e   2   4 .   S  a   d

  n  e  s  s  c   l  u  s   t  e  r .   N  u  m   b  e  r  a  n   d  p  r  o  p  o  r   t   i  o  n  s  o   f

   V  o   i  c  e  a  n   d   S  p  e  e  c   h  c  o   d  e  s   i  n   T  -  p  a   t   t  e  r  n  s

 

Page 197: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 197/282

192

Codes / Clusters Positive Emotions Hostility Embarrassment Surprise Sadness

AU1 0% 0% 0% 0% 0%

AU1+2 28% 30% 32% 26% 22%

AU4 0% 17% 3% 0% 3%

AU5 36% 31% 30% 63% 13%

AU6 28% 0% 0% 0% 0%

AU7 0% 23% 19% 4% 2%

AU9 0% 28% 3% 0% 0%

AU10 4% 7% 18% 0% 0%AU10U 0% 1% 0% 0% 0%AU12 56% 12% 38% 0% 3%

AU12U 0% 0% 10% 0% 0%

AU14 8% 12% 0% 0% 0%

AU14U 0% 5% 0% 0% 2%

AU15 0% 15% 17% 0% 42%

AU16 0% 4% 0% 0% 0%

AU17 12% 25% 23% 33% 22%

AU20 8% 15% 3% 0% 0%

AU23 0% 7% 2% 0% 3%AU24 0% 5% 0% 11% 3%

AU25 0% 0% 0% 26% 7%

AU26 0% 2% 7% 22% 1%

 Table 25. Proportions of FACS Action Units in Independent T-patterns

Gaze / Clusters Positive Emotions Hostility Embarrassment Surprise Sadness

Blink  12% 2% 0% 4% 18%

Eyelids Droop 0% 3% 23% 19% 40%

Look At 32% 4% 0% 22% 8%

Look Away 8% 9% 9% 4% 52%

Look Down 0% 0% 26% 7% 39%

Look Up 0% 0% 0% 0% 0%

Table () Proportions of Gaze codes in Independent T-patterns across the five ClustersTable 26. Proportions of Gaze codes in Independent T-patterns

Head Codes / Cluster Positive Emotions Hostility Embarrassment Surprise Sadness

Lower Head  0% 4% 21% 0% 0%

Head Turns 0% 0% 0% 0% 0%

Head Down 0% 0% 0% 0% 0%

Head Raise 0% 1% 1% 4% 0%

Head Raise and Turn 0% 0% 1% 0% 0%

Head Lower and Turn 0% 0% 0% 0% 0%

Head Raised  0% 1% 0% 0% 0%

Head On 0% 0% 0% 11% 6%

Head Turned Away 4% 4% 12% 0% 6%

Head Tilted Side 0% 0% 0% 0% 0%

Head Tilting Side 0% 2% 0% 0% 1%

Head Shake 0% 1% 0% 0% 0%

Head Nod  0% 0% 0% 0% 0%

 Table 27. Proportions of Head codes in Independent T-patterns

Page 198: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 198/282

193

Codes / Cluster Positive Emotions Hostility Embarrassment Surprise Sadness

Pause 0% 0% 2% 30% 31%

Speak 4% 0% 1% 0% 6%

Hesitation 0% 0% 0% 0% 0%

Verbal Filler 0% 0% 0% 0% 0%

Word Stress 0% 2% 0% 0% 0%

False Start 0% 2% 0% 0% 0%Laughing 0% 0% 0% 0% 0%

Crying 0% 0% 0% 0% 0%

Table 28. Proportions of Voice and Speech codes in Independent T-patterns

Page 199: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 199/282

194

 Appendix III.

Transition Graphs for T-patterns.

Page 200: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 200/282

195

T-patterns found in the « Enjoyment » Cluster 

Initiating event is: « Look At ».

Percentage next to the arrow coming out of the green block indicates the

 proportion of T-patterns in the cluster starting with the event typeinscribed in the orange box.

STARTSTART

Look AtLook At

AU12AU12

34%

22%

AU5AU5

56%

AU6AU6

22%

AU5AU5

ENDEND

100%

48%

52%Stop

AU5

Stop

AU5   Blink Blink 

ENDEND

AU1+2AU1+2

Blink Blink 

AU12AU12

AU12AU12

100%

100% 100%

100%

100%

57%20%

23%

33%

67%

AU1+2AU1+2   AU12AU12

Stop

AU6

Stop

AU6

ENDEND

100%

100%

100%

100%

 

Page 201: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 201/282

196

T-patterns found in the «Enjoyment » Cluster 

Initiating event is :« AU5».

STARTSTART

13%

AU1+2AU1+2

AU12AU12

Blink Blink 

Stop

AU5

Stop

AU5

AU6AU6

Stop

AU1+2

Stop

AU1+2   ENDEND

Stop

AU5

Stop

AU5

Stop

AU5

Stop

AU5

AU1+2AU1+2

AU12AU12

55%

18%

27%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

AU5AU5

 

Page 202: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 202/282

197

T-patterns found in the « Enjoyment » ClusterInitiating event is « AU12».

STARTSTART

AU12AU12

11%

StopAU12

StopAU12AU17AU17

AU6AU6

Stop

AU6

StopAU6

51%27% 22%

ENDEND

100%

100%

100%43%

57%

Stop

AU17

Stop

AU17

AU6AU6

Stop

AU6

Stop

AU6

Stop

AU12

Stop

AU12

100%

100%

100%

100%

 

Page 203: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 203/282

198

STARTSTART

AU1+ 2AU1+ 2

AU5AU5

100 %

Stop

AU1+2

Stop

AU1+2

36 %

Stop

AU5

Stop

AU5

64%

100%

ENDEND

100%

9%

 

T-patterns found in the « Enjoyment » Cluster

Initiating event is : « AU1+2».

Page 204: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 204/282

199

Look awayLook away

STARTSTART

9%

AU10AU10

Stop

AU10

Stop

AU10

ENDEND

100%

100%

100%

 

T-patterns found in the « Enjoyment » Cluster

Initiating event is: « Look Away».

Page 205: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 205/282

200

STARTSTART

AU6AU6

8%

Stop

AU6

Stop

AU6

Stop

AU12

Stop

AU12AU12AU12

ENDEND

38%

30%32%

100%

100%100%

 

T-patterns found in the « Enjoyment » Cluster

Initiating event is : « AU6».

Page 206: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 206/282

201

STARTSTART

Speak Speak 

Look AtLook At

AU12AU12

6%

100%

100%

ENDEND

100%

 

T-patterns found in the «Enjoyment » Cluster

Initiating event is : «Speak».

Page 207: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 207/282

202

STARTSTART

AU14AU14

5%

AU17AU17StopAU14

StopAU14

ENDEND

50%50%

100%100%

 

T-patterns found in the « Enjoyment » Cluster

Initiating event is : «AU14».

Page 208: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 208/282

203

STARTSTART

AU20AU20

LookAwayLookAway

Head

Turned 

Away

Head

Turned Away

45%  55%

StopAU20

StopAU20

100%100%

ENDEND

100%

5%

 

T-patterns found in the « Enjoyment » Cluster

Initiating event is : «AU20».

Page 209: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 209/282

Page 210: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 210/282

205

STARTSTART

AU7AU7

15%

AU9AU9

Look AtLook At

Stop

AU7

Stop

AU7

31%

26%

43%

Look AtLook At

25%

AU1+2AU1+25%

AU5AU5

Stop

AU5

Stop

AU5

ENDEND

100%

100%

100%

AU5AU5

46%

AU17AU17

25%

ENDEND

33%

42% Stop

AU5

Stop

AU5

100% 100%

StopAU9

StopAU9

35%

ENDEND13%

Stop

AU7

Stop

AU7

22%

AU5AU5

14%

AU17AU17

11%58%

42%

AU14AU14

Stop

AU7

Stop

AU7

AU5AU5

Stop

AU5

Stop

AU5

ENDEND

32%

18%

32%

100%100%

18%

100%

100%

AU5AU5

81%

19% AU14AU14

AU17AU17

100%

ENDEND

100%

10%

StopAU5

StopAU5

71%

Eyelids

Drop

Eyelids

Drop AU25AU25

100%

100%

56% 44%

Stop

AU7

Stop

AU7

AU5AU5

AU5AU5

ENDEND

AU17AU17

51%

49%

100%

36%

64%

100%

100%

100%

 

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU7».

Page 211: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 211/282

206

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU9».

Page 212: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 212/282

207

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU1+2».

Page 213: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 213/282

208

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU5».

Page 214: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 214/282

209

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU15».

Page 215: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 215/282

210

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU10 or AU10U».

Page 216: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 216/282

211

STARTSTART

AU12AU12   AU12AAU12A

2%   1%

StopAU12StopAU12

40%

AU1+2AU1+2

25%

EyelidsDrop

EyelidsDrop

18%AU17AU17

17%

StopAU12A

StopAU12A41%

Eyelids

Drop

Eyelids

Drop

34%

Head

Turned 

Away

Head

Turned 

Away

25%

ENDEND

72%

15%

Stop

AU20

Stop

AU20

13%

Stop

AU1+2

Stop

AU1+2

100%

100%

100%

AU17AU17

100%

Stop

AU17

Stop

AU17

100%

ENDEND100%

Stop

AU17

Stop

AU17

100%

StopAU12StopAU12

100%

ENDEND

100%

ENDEND100%

25%35%

Head Raise

& Turn

Head Raise

& Turn

40%

StopAU12A

StopAU12A

100%

ENDEND

100%

37%

Word

Stress

Word

Stress

26%

StopAU12A

Stop

AU12A

26%

100%

100%

 

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU12 or AU12A».

Page 217: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 217/282

212

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU14 or AU14U».

Page 218: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 218/282

213

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU17».

Page 219: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 219/282

214

STARTSTART

4%

Stop

AU20

Stop

AU20

35%

AU21AU21

23%AU1+2AU1+2

AU20AU20

22%

AU16AU1620%

ENDEND

31%35%

AU1+2AU1+2

Stop

AU16

Stop

AU16

20%

27%

AU10AU10

19%

Stop

AU1+2

Stop

AU1+2

54%

Stop

AU10

Stop

AU10

100%

100%

100%

Stop

AU1+2

Stop

AU1+2

StopAU20

StopAU20

StopAU5

StopAU5

AU5AU5

AU10AU10

ENDEND41%

100%

25%

11%

33%

Stop

AU10

Stop

AU10

100%

100%

100%

46%54%

100%

Stop

AU21

Stop

AU21

StopAU20

StopAU20

Stop

AU17

Stop

AU17

ENDEND

67%33%

57%

18%100%

25%

100%

AU17AU17

18%

AU14AU14

Stop

AU17

Stop

AU17

ENDEND

StopAU20

StopAU20

  Stop

AU16

Stop

AU1650%

100%

100%

32%

100%

100%

100%

ENDEND

100%

 

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU20».

Page 220: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 220/282

215

STARTSTART

AU23AU23

1%

Stop

AU23

StopAU23

AU7AU7

AU14AU14

Stop

AU24

Stop

AU24

43%

22%

14%21%

77%ENDEND

StopAU17

StopAU17

33% 100%

Stop

AU7

Stop

AU7

100%

ENDEND100%

Stop

AU14

Stop

AU14Stop

AU23

Stop

AU23Stop

AU24

Stop

AU24

33%33%33%

ENDEND

100%100%  100%

Stop

AU17

Stop

AU17

ENDEND

  57%

43%100%

 

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU23».

Page 221: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 221/282

216

STARTSTART

AU24AU24

1%

StopAU24StopAU24

AU14AU14

47%53%

50%

ENDEND

AU1+2AU1+2

15%

Stop

AU1+2

Stop

AU1+2

100%

100%

Head

Shake

Head

Shake

30%

55%

Verbal

Filler

Verbal

Filler

50%

ENDEND100%

Stop

AU14

Stop

AU14

ENDEND

100%

100%

 

T-patterns found in the « Hostility » Cluster

Initiating event is : «AU24».

Page 222: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 222/282

217

STARTSTART

AU12AU12

20%

AU1+2AU1+2

15%

AU10AU10   AU17AU17

47%   53%

ENDEND

Stop

AU1+2

Stop

AU1+2

100%100%

100%

AU17AU17

26%

11%

Eyelids

Drop

Eyelids

Drop

24%

Look

Down

Look

Down

35%

AU1+2AU1+2

14%

Lower 

Head 

Lower 

Head 

ENDEND

19%

AU5AU5

20%

16%

Look

Down

Look

Down

17%

Stop

AU17

Stop

AU17

14%

AU5AU5

AU26AU26

Stop

AU1+2

Stop

AU1+2

100%

100%

100%

100%

100%

100%

100%

AU5AU5

AU26AU26

ENDEND

100%

100%

100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is: «AU12».

Page 223: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 223/282

218

STARTSTART

AU15AU15

AU12AU12

12%

24%

AU17AU17

20%

Look

Down

Look

Down

16%

Lower 

Head 

Lower 

Head 

21%

Head 

Turned 

Away

Head Turned 

Away

19%

AU5AU5

Stop

AU5

Stop

AU5

ENDEND

Lower 

Head 

Lower 

Head 

ENDEND

AU1+2AU1+2

Head 

Turned Away

Head 

Turned Away

57%

100%

100%

100%

100%100%

20%23%

LookDown

LookDown

41%

59%

100%

100%

100%

Stop

AU5

Stop

AU5

100%

100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU15».

Page 224: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 224/282

219

STARTSTART

AU12UAU12U

10%

AU1+2AU1+2

PausePause   AU17AU17Head

Tilting

Head

Tilting

Stop

AU1+2

Stop

AU1+2

Eyelids

Drop

Eyelids

Drop

18%

AU5AU5

17%14%

11%14%

12%

14%

ENDEND

100%

100%

100%

AU26AU26

100%

100%

100%

100%

Lower 

Head 

Lower 

Head 

100%

100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU12 Unilateral».

Page 225: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 225/282

220

STARTSTART

AU7AU7

10%

AU10AU10

18%

Head 

Turned Away

Head 

Turned 

Away

33%

AU12UAU12U

14%

LookDown

LookDown

18%

AU5AU517%

AU1+2AU1+2

Speak Speak 

ENDEND

23%

100%

100%

AU17AU17

AU12AU12

29%

100%

48%

100%

AU12AU12

AU17AU17

30%

100%

ENDEND

100%

39%

Lower Head 

Lower Head 

31%

100%

AU12AU12

Eyelids

Drop

Eyelids

Drop

Look Down

Look Down

ENDEND

AU5AU5

StopAU7

StopAU7

100%

100%

100%

100%

100%

46% 15%

39%

100%

EyelidsDrop

EyelidsDrop

LookDown

LookDown

ENDEND

100%

52%100%

48%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU7».

Page 226: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 226/282

221

Look AwayLook Away

STARTSTART

8%

AU5AU5

13%

AU1+2AU1+2

11%

AU12AU12

23%   AU26AU26

43%

AU15AU1510%

AU5AU5

AU12AU12

AU1+2AU1+2

100%

100%

100%

ENDEND

100%

Eyelids

Drop

Eyelids

Drop

100%

Stop

AU1+2

Stop

AU1+2

100%

100%

100%

AU12AU12

Stop

AU5

Stop

AU5

AU1+2AU1+2

AU10AU10

AU12AU12

100%

100%

100%

100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is: «Look Away».

Page 227: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 227/282

Page 228: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 228/282

223

STARTSTART

AU12AU12

Look DownLook Down

7 %

30 %

AU12UAU12U

29%

AU5AU5

15%

Stop

AU1+2

Stop

AU1+2

AU7AU7

16%10%

AU5AU5

ENDEND

24%

100%

PausePause

26%

100%

Stop

AU1+2

Stop

AU1+2

50%

AU5AU5

AU26AU26

100%

100%

100%

Lower Head 

Lower Head 

Eyelids

Drop

EyelidsDrop

ENDEND100%

39%31%

30%

100%

AU15AU15

100%

AU17AU17

AU1+2AU1+2

ENDEND

67%33%

100%

100%

AU15AU15

Head 

Turned 

Away

Head 

Turned 

Away

AU5AU5

ENDEND

100%

50%

50% 100%

100%

StopAU1+2

StopAU1+2AU5AU5

AU17AU17 ENDEND

100%

100%

100%

52%48%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is: «Look Down».

Page 229: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 229/282

224

STARTSTART

AU10AU10

6%

AU10AU10

15%

AU12AU12

45%

AU17AU17

15%

Look

Down

Look

Down

25%

AU17AU17

AU1+2AU1+2

ENDEND

100%

100%

100%

AU12AU12

StopAU10

StopAU10

Stop

AU12

Stop

AU12

100%

100%

100%

100%

34%36%

30%

100% 100%

Stop

AU1+2

Stop

AU1+2Stop

AU12

Stop

AU12

100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU10».

Page 230: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 230/282

225

STARTSTART

AU17AU17

6%

AU10AU10

31%

AU1+2AU1+2

40%

60%

AU12AU12

Stop

AU12

Stop

AU12

ENDEND

Speak Speak 

100%

100%100%

100%

69%

Head 

Raise

Head 

Raise

AU7AU7

AU15AU15Stop

AU12

Stop

AU12

ENDEND

AU12UAU12U

Lower 

Head 

Lower 

Head 

AU10AU10

AU10AU10

100%

100%

100%

100%

100%

100%

14%

16%

100%

56% 14%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU17».

Page 231: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 231/282

226

STARTSTART

Eyelids DropEyelids Drop

LookDown

LookDown

34%

Lower Head 

Lower Head 

22%

AU12UAU12U

23%

Stop

AU1+2

Stop

AU1+2

21%

5%

ENDEND

100%

AU12UAU12U

AU7AU7

ENDEND

AU5AU5

70%

30%

100%

100%

100%

AU12AU12

100%

PausePauseStop

AU1+2

Stop

AU1+2

50%50%

ENDEND

100%100%

AU15AU15   AU7AU7

Head Turned 

Away

Head Turned 

Away

100%

50%50%

100%

100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «Eyelids Drop».

Page 232: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 232/282

227

STARTSTART

AU5AU5

3%

AU12AU12

AU15AU15   Lower 

Head 

Lower 

Head 

Head

Turned 

Away

Head

Turned 

Away

Eyelids

Drop

Eyelids

Drop

17%

17%23%

18%

30%

Lower 

Head 

Lower 

Head    AU12AU12

Stop

AU12

Stop

AU12

100%

100%

100%

ENDEND100%

AU12AU12

AU26AU26

ENDEND

AU12UAU12U

ENDEND   100%

100%

100%

100%

100%

Eyelids

Drop

Eyelids

Drop

Look 

Down

Look 

Down

AU12AU12

ENDEND

100%

100%

100%

100%

AU26AU26

100%

100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU5».

Page 233: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 233/282

Page 234: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 234/282

229

STARTSTART

AU4AU4

1%

AU4AU4

38%

ENDEND

100%

AU5AU5

30%

100%

Head 

Raise

Head 

Raise

32%

100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU4».

Page 235: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 235/282

230

STARTSTART

AU9AU9

1%

LookDownLookDown   AU5AU5 Eyelids

DropEyelidsDrop

32%34%34%

ENDEND

100%100%100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU9».

Page 236: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 236/282

231

STARTSTART

AU20AU20

1%

Lower Head 

Lower Head 

34%

LookAway

LookAway

Head

Turned Away

Head

Turned Away

32%34%

ENDEND

100%100%

100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU20».

Page 237: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 237/282

232

STARTSTART

AU23AU23

1%

Stop

AU1+2

Stop

AU1+2

Stop

AU23

Stop

AU23

53% 47%

ENDEND

100%100%

 

T-patterns found in the « Embarrassment » Cluster

Initiating event is : «AU23».

Page 238: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 238/282

233

STARTSTART

AU17AU17

AU24AU24

29%

Look AtLook At

Stop

AU17

Stop

AU17

23%

21%

51%

ENDEND

46%Stop

AU24

Stop

AU24

Stop

AU17

Stop

AU17

27%27%

100%100%

Speak Speak 

76%

24%

100%

EyelidsDrop

EyelidsDrop

Stop

AU17

Stop

AU17

Speak Speak 

ENDEND

Look

Away

Look

Away

Stop

AU17

Stop

AU17

29%

100%

100%100%

100%

22%

38%

40%

71%

 

T-patterns found in the « Surprise» Cluster

Initiating event is : «AU17».

Page 239: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 239/282

234

STARTSTART

AU1+2AU1+2

15%

AU5AU5

StopAU5

StopAU5

58%

PausePause

AU25AU25

ENDEND

Stop

AU1+ 2

Stop

AU1+ 2

Head 

Raises

Head 

Raises

Stop

AU1+ 2

StopAU1+ 2

42%

11%

100%

100%

100%

100%

100%

39%

61%

100%

 

T-patterns found in the « Surprise» Cluster

Initiating event is : «AU1+2».

Page 240: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 240/282

235

STARTSTART

AU5AU5

15%

Stop

AU5

Stop

AU5AU1+2AU1+2

Stop

AU5

Stop

AU5

Stop

AU1+2

Stop

AU1+2

Blink Blink 

ENDEND

37%  63%

51%

49%

100%

100%

100%

100%

 

T-patterns found in the « Surprise» Cluster

Initiating event is : «AU5».

Page 241: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 241/282

236

STARTSTART

Head OnHead On

17%

AU1+2AU1+2   AU25AU25   AU5AU5

27%41%

  32%

AU26AU26AU5AU5

ENDEND

100%

100%

100%100%

100%

 

T-patterns found in the « Surprise» Cluster

Initiating event is : «Head On».

Page 242: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 242/282

237

STARTSTART

PausePause

15%

AU25AU25   AU26AU26

62% 38%

AU26AU26   AU5AU5

Stop

AU5

Stop

AU5ENDEND

37%   63%

100%

100%

42%

58%

Stop

AU1+2

Stop

AU1+2

Stop

AU5

Stop

AU5

100%

100%

100%

 

T-patterns found in the « Surprise» Cluster

Initiating event is : «Pause».

Page 243: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 243/282

238

STARTSTART

Blink Blink 

5%

Eyelids

Drop

Eyelids

Drop

Look

Down

Look

Down

Look 

At

Look 

At

100%

59% 41%

AU5AU5

ENDEND

100%

100%

100%

 

T-patterns found in the « Surprise» Cluster

Initiating event is : «Blink».

Page 244: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 244/282

239

STARTSTART

AU7AU7

2%

ENDEND

StopAU7

StopAU7

100%

100%

STARTSTART

Look AtLook At

3%

Eyelids

Drop

Eyelids

Drop

Look

Down

Look

Down

ENDEND

100%

100%

100%

 

T-patterns found in the « Surprise» Cluster

Initiating event is: «AU7».

T-patterns found in the « Surprise» Cluster

Initiating event is: « Look At».

Page 245: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 245/282

240

STARTSTART

PausePause

22%

AU15AU15

100%

52% 48%

EyelidsDrop

Eyelids

Drop

Look

Away

LookAway

Look

Away

Look

AwayLook

Down

Look

Down

59%41%

ENDEND

StopAU15StopAU15

ENDEND

38%

Look

Down

Look

Down

Stop

AU15

Stop

AU15

100%

100%

100%

62%

13%   87%

Eyelids

Drop

Eyelids

DropLook

Down

Look

Down

36%64%

LookDown

LookDown

StopAU15StopAU15

ENDEND

Eyelids

Drop

Eyelids

Drop

StopAU15StopAU15

100%

100%

100%

84%

16%

64%

36%

100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «Pause».

Page 246: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 246/282

241

STARTSTART

Blink Blink 

17%

AU1+2AU1+2   AU17AU17

51% 49%

Eyelids

Drop

Eyelids

Drop

Look

Down

Look

Down

Look 

Away

Look 

Away

53%

33%

14%

Look 

Away

Look 

Away

63%

25%Look

Down

Look

Down  AU17AU17

ENDEND

100%

100%

Eyelids

Drop

Eyelids

Drop

10%

AU15AU15

21%

LookDown

LookDown

11%

Stop

AU17

Stop

AU17

ENDEND

100%

100%

Stop

AU15

Stop

AU15

100%

37%

48%

StopAU17

StopAU17

63%

100%

100%

Look

Down

Look

Down

81%

Look 

Away

Look 

Away

ENDEND

19%

100%

100%14%

Eyelids

Drop

Eyelids

Drop

Stop

AU1+2

Stop

AU1+2

24%

38%

Look

Down

Look

Down

62%

100%

100%

Look 

Away

Look 

Away

100%

100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is: «Blink».

Page 247: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 247/282

242

T-patterns found in the « Sadness» Cluster

Initiating event is: «AU15».

Page 248: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 248/282

243

T-patterns found in the « Sadness» Cluster

Initiating event is: «AU1+2».

Page 249: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 249/282

244

STARTSTART

AU17AU17

9%

Look Away

Look Away   PausePause

54% 46%

LookDown

LookDown

AU15AU15

ENDEND6%

63%

9%StopAU17

StopAU17

3%

Eyelids

Drop

Eyelids

Drop

17%

ENDEND

18%

Stop

AU17

Stop

AU17

10%

AU15AU15

28%

Look Away

Look Away

44%

EyelidsDrop

EyelidsDrop

100%

54%   46%

Look Away

Look Away

StopAU17

StopAU17

ENDEND

100%100%

Speak Speak    100%

100%

LookDown

LookDown

Eyelids

Drop

Eyelids

Drop

ENDEND

StopAU17

StopAU17

Speak Speak 

EyelidsDrop

EyelidsDrop

Look

Down

Look

Down

100% 100%

100%

100%

48%

100%

18%  15%

15%

100%

Stop

AU17

Stop

AU17

ENDEND

Look

Down

Look

Down

27%

40%

33%

100%

100%Stop

AU17

Stop

AU17  ENDEND

40%60%

100%

AU15AU15

Stop

AU15

Stop

AU15

ENDEND

100%

100%

100%

100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «AU17».

Page 250: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 250/282

245

STARTSTART

AU5AU5

5%

StopAU5

StopAU5

100%

ENDEND

8%

Blink Blink 

92%

Look

Away

Look

Away

20%

Look 

Down

Look 

Down

61%

19%

61%

41%

LookAway

LookAway

59%

100%

Look 

Down

Look 

Down

ENDEND

22%EyelidsDrop

EyelidsDrop

17%

100%100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «AU5».

Page 251: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 251/282

246

STARTSTART

Look DownLook Down

3%

AU15AU15

17%

Look 

Away

Look 

Away

100%

Eyelids

Drop

Eyelids

Drop

100%

Stop

AU15

Stop

AU15

ENDEND

100%

100%

Eyelids

Drop

Eyelids

Drop

48%

Look Away

Look 

Away

100%

AU15AU15   PausePause

36%   64%

Stop

AU15

Stop

AU15

100%

100%

100%

35%

Look 

Away

Look 

Away

PausePause   EyelidsDrop

EyelidsDrop

AU15AU15

Stop

AU15

Stop

AU15

100%

100%

100%100%

12% 88%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «Look Down».

Page 252: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 252/282

247

STARTSTART

2%

AU25AU25

PausePause   AU15AU15

93% 7%

AU15AU15  Stop

AU15

Stop

AU15

Eyelids

Drop

Eyelids

DropLook

Away

Look

Away  ENDEND

StopAU15

StopAU15

Eyelids

Drop

Eyelids

DropLookAway

LookAway

ENDEND

100%100%

100%19%

44%

35%

55%45%

100%

100%100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «AU25».

Page 253: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 253/282

248

STARTSTART

Head OnHead On

2%

Head

Turned Away

Head

Turned Away

Look AtLook At

59% 41%

PausePause   AU17AU17

AU15AU15

Stop

AU15

StopAU15

ENDEND

StopAU17

StopAU17

Look AtLook At   PausePause

AU15AU15

Stop

AU15

Stop

AU15

82% 18%

100%

100%

100%

100%

100%

100%

100%

100%

100%

51%69%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «Head On».

Page 254: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 254/282

249

STARTSTART

Look AwayLook Away

2%

AU15AU15   EyelidsDrop

EyelidsDrop

Head Turned Away

Head Turned Away

29%13%

58%

Look 

Down

Look 

Down

AU15AU15

AU15AU15

PausePause

Eyelids

Drop

Eyelids

Drop

Stop

AU15

Stop

AU15

ENDEND

Stop

AU15

Stop

AU15

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is: «Look Away».

Page 255: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 255/282

250

STARTSTART

AU12AU12

2%

HeadOn

HeadOn

Head

Tilted 

Side

Head

Tilted 

Side

StopAU12

Stop

AU12

ENDEND

Look 

At

Look 

At  PausePause

Look 

At

Look 

At

24%

20%

56%

100%

100%

100%

100%

100%100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «AU12».

Page 256: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 256/282

251

STARTSTART

Look AtLook At

2%

AU5AU5HeadOn

Head

On   PausePause

41%51%

8%

Stop

AU5

Stop

AU5

Blink Blink 

Look

Down

Look

DownLook 

Away

Look 

Away

ENDEND

HeadTurned 

Away

HeadTurned 

Away

PausePause

AU15AU15

Stop

AU15

Stop

AU15

Stop

AU17

Stop

AU17

AU17AU17

ENDEND

100%

100%

100%

100%

100%

100%

100%

100%

100%100% 100%

61%39%

100%

100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «Look At».

Page 257: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 257/282

252

STARTSTART

AU4AU4

2%

AU7AU7   StopAU4

StopAU4

StopAU7

StopAU7

61%22%

17%

StopAU4

StopAU4

ENDEND

100%

100%

100%

100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «AU4».

Page 258: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 258/282

253

STARTSTART

Eyelids

Drop

Eyelids

Drop

2%

Look

Away

Look

AwayLook

Down

Look

Down

82%  18%

Look

Away

Look

Away

PausePause

AU15AU15

Stop

AU15

Stop

AU15

ENDEND

AU5AU5

StopAU5

StopAU5

100%

100%

100%

100%

100%

100%

100%

100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : « Eyelids Drop».

Page 259: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 259/282

254

STARTSTART

Speak Speak 

1%

PausePause

100%

AU17AU17

36%

AU25AU25

18%

AU15AU15

46%

AU25AU25  Look

Away

Look

Away

AU15AU15

Stop

AU15

Stop

AU15

StopAU15

StopAU15

ENDEND

EyelidsDrop

EyelidsDrop

100%

100%

100%

100%44%   56%

100%100%

100% 100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «Speak».

Page 260: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 260/282

255

STARTSTART

AU14UAU14U

1%

Look 

Down

Look 

Down

Stop

AU14U

Stop

AU14U

AU15AU15

ENDEND

65% 35%

100%

100%

100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «14U».

Page 261: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 261/282

256

STARTSTART

Head Turned AwayHead Turned Away

100%

AU1+2AU1+2

1%

StopAU1+2

StopAU1+2

Look

Away

Look

Away

ENDEND

21%

56%

23%

LookDown

LookDown

100%

100%

100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «Head Turned Away».

Page 262: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 262/282

257

STARTSTART

AU23AU23

1%

Stop

AU17

Stop

AU17

Stop

AU23

Stop

AU23

StopAU17

StopAU17ENDEND

31%   69%

100%

100% 59% 41%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «AU23».

Page 263: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 263/282

258

STARTSTART

AU24AU24

1%

Stop

AU24

Stop

AU24

ENDEND

25%

100%

Stop

AU15

Stop

AU15AU26AU26

50%25%

100%100%

 

T-patterns found in the « Sadness» Cluster

Initiating event is : «AU24».

Page 264: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 264/282

259

 Appendix IV.

Instructions and questionnaires

Page 265: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 265/282

260

Adjectifs Définitions

Gênée /

embarrasséeSe dit d'une personne qui donne l'impression d'être mal à l'aise.

SoulagéeSe dit d'une personne qui donne l'impression d'être soudainement délivrée d'une souffrance

(morale ou physique).

Dégoutée /

révulsée

Se dit d'une personne qui donne l'impression de ressentir de l'aversion, de l'écœurement ou de la

répulsion.

Ironique Se dit d'une personne qui dit le contraire de ce qu'elle veut faire comprendre.

Fière Se dit d'une personne qui donne l'impression d’être satisfaite d’elle-même ou d’un proche

Surprise / étonnée Se dit d'une personne qui donne l'impression d'être étonnée, surprise ou stupéfaite.

Tendue /

nerveuseSe dit d'une personne qui donne l'impression d’être crispée, tendue ou stressée.

Amusée Se dit d'une personne qui donne l'impression d'être agréablement divertie.

Triste Se dit d'une personne qui donne l'impression d'être chagrinée, affligée ou malheureuse.

Dédaigneuse /

méprisante

Se dit d'une personne qui donne l'impression de juger quelqu'un ou quelque chose comme

indigne de son estime et de son attention.

JoyeuseSe dit d'une personne qui donne l'impression d'être dans un état de bien être général, de

contentement ou de bonheur profond.

Irritée / agaçée en

colèreSe dit d'une personne qui se montre mécontente, énervée ou en colère.

EnthousiasméeSe dit d'une personne qui donne l’impression d'être fascinée, captivée ou passionnée par quelque

chose ou quelqu’un

Préoccupée /

InquièteSe dit d'une personne qui donne l'impression d’être soucieuse, anxieuse ou craintive.

AffectueuseSe dit d'une personne qui donne l'impression d'être généreuse, bienveillante et pleine d'attention

envers quelqu'un

Perplexe Se dit d'une personne qui se montre interrogative, indécise ou hésitante.

Déçue Se dit d'une personne donne l'impression d'être désenchantée, désillusionnée ou dépitée.

Page 266: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 266/282

261

General instructions for emotion narratives eliciting task

Je vais vous demander de me raconter en détail pendant environ 5 minutes le souvenir d'un

évènement que vous avez vécu personnellement et qui a déclenché chez vous une forte réaction

émotionnelle. L'évènement peut être récent ou ancien mais il est nécessaire de l'avoir réellement

vécu.

Pour vous aider à retrouver des situations précises, je vais vous donner des indices qu'il s'agira

d'utiliser pour vous rappeler d'évènements qui ont déclenchés une émotion forte et dont les

caractéristiques correspondent très exactement à l'ensemble des indications données.

 Nous allons répéter cette procédure pour 5 souvenirs différents, et je vous donnerai à chaque fois

de nouveaux indices.

Une fois que vous aurez clairement retrouvé le souvenir d'un évènement qui correspond aux

indices que j'aurai donné, je vous demanderai de prendre quelques instants pour essayer de vous

remettre le plus possible dans la situation, en pensant aux personnes qui étaient impliquées dans

l'évènement et à la manière dont il s'est déroulé. Le but est pour vous de retrouver le plus de

détails concernant cet évènement.

Une fois que vous serez prêt à le faire, vous commencerez à me raconter cet évènement en détail

comme vous le feriez si vous le partagiez avec un ou une ami(e) à qui vous souhaiteriez raconter

un évènement qui a déclenché une émotion forte.

Page 267: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 267/282

262

Consignes Colère

Un évènement fortement injuste survenu de manière très soudaine et difficilement prévisible qui

a constitué une menace évidente et importante pour la poursuite de vos buts ou la satisfaction de

vos besoins importants dans la situation. C’est un évènement qui a été provoqué

intentionnellement par le comportement d’une autre personne ou d’un groupe de personnes.

Vous n’aviez pas ou peu souvent été confronté à ce type de situation par le passé. Il était tout à

fait possible d’agir sur la situation pour la modifier, et vous aviez les ressources personnelles

 pour le faire. Par ailleurs, vous aviez facilement la possibilité de vous adapter aux conséquences

de la situation qui ne pouvaient être modifiées par la suite. Néanmoins, pour le faire il était

important de réagir rapidement. 

Indices de récupération: Colère chaude

Evènement fortement injuste

Survenu de manière très soudaine et imprévisible

Evènement peu familier

Menace la poursuite de vos buts ou la satisfaction de vos besoins dans la situation

Provoqué intentionnellement par le comportement d’une autre personne ou d’un groupe de

 personnes

Evènement qu'il était possible d'influencer

Vous aviez des ressources suffisantes pour modifier la situation

Page 268: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 268/282

263

Consignes Culpabilité

Un évènement durant lequel vous ne vous êtes pas montré correct avec une autre personne ou un

groupe de personne. Vous avez causé l’évènement de manière intentionnelle car vous saviez que

vous pourriez ainsi atteindre un but important ou satisfaire un besoin fondamental. Vous étiez

tout à fait conscient des conséquences négatives probables de votre comportement pour autrui.

Dans la situation, vous n’avez pas respecté vos propres valeurs et l’image que vous aviez de vous

même.

Indices de récupération: Culpabilité

Vous ne vous êtes pas comporté(e) de manière correcte

Vous avez causé l'évènement de manière intentionnelle

Pour satisfaire un besoin ou atteindre un but personnel

Vous étiez conscient des conséquences négatives probables de votre comportement pour autrui

au moment d'agir

Vous n'avez pas respecté vos propres valeurs

Vous n'avez pas été à la hauteur de l'image que vous aviez de vous-même

Page 269: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 269/282

264

Consignes Dédain / Mépris

Un évènement clairement injuste provoqué de manière intentionnelle par le comportement d’une

 personne ou un groupe de personnes. Même si les conséquences de cet évènement n’ont pas

affectées vos propres intérêts dans la situation, le comportement de cette personne ou de ce

groupe de personnes était fortement incompatible avec vos sens des valeurs. La situation ou

l’évènement aurait facilement pu être modifié en agissant relativement rapidement. Mais à titre

 personnel, il n’y a pas grand-chose que vous auriez pu faire dans cette situation pour changer les

choses.

Indices de récupération : Dédain / Mépris

Evènement injuste

Causé intentionnellement

Par une autre personne ou un groupe de personne

Pas de conséquences pour vous

Evènement très fortement incompatible avec vos sens des valeurs

La situation aurait pu être influencée facilement en agissant rapidement

Personnellement vous ne pouviez pas faire grand-chose

Page 270: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 270/282

265

Consignes Peur

Un évènement très déplaisant survenu de manière soudaine et imprévisible. L’évènement

impliquait une menace évidente et importante pour la poursuite de vos buts ou la satisfaction

d’un besoin fondamental. L’évènement ou la situation a été causé soit par une autre personne, un

groupe de personnes, soit par des causes naturelles. Vous n’aviez pas ou relativement peu

souvent été confronté(e) à ce type d’évènement par le passé, et vous ne vous attendiez pas à ce

qu’il arrive à ce moment. Il aurait été urgent d’agir mais vous n’aviez pas la possibilité de faire

tourner la situation à votre avantage. Vous saviez qu’il serait difficile de vous adapter aux

conséquences de la situation qui ne pourraient être modifiée par la suite.

Indices de récupération: Peur

Un évènement très déplaisant

Causé par une autre personne, un groupe de personnes ou des causes naturelles

Survenu de manière soudaine et imprévisible

Evènement peu familier

Auquel vous ne vous attendiez pas à ce moment

Menace la poursuite de vos buts ou la satisfaction de vos besoins dans la situation

Il était urgent de réagir

Vous n'aviez pas le pouvoir de modifier la situation

Vous avez tout de suite su qu'il serait difficile pour vous de vous adapter aux conséquences

irréversibles de l'évènement

Page 271: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 271/282

266

Consignes: Tristesse

Un évènement auquel vous n’aviez pas ou relativement peu souvent été confronté par le passé.

Cet évènement implique l’impossibilité de continuer à poursuivre un but personnel ou à satisfaire

un besoin fondamental très important. L’évènement a été provoqué soit : par les circonstances

hasardeuses de la vie, soit par négligence ; la votre ou celle d’une autre personne. Au moment ou

se déroule l’évènement, les conséquences et les implications pour l’avenir étaient très clairs pour

vous. Vous saviez qu’il n’y avait plus rien à faire pour changer la situation et vous-même étiez

impuissant face aux circonstances. Bien que possible, vous saviez qu’il serait difficile

d’apprendre à vivre avec les conséquences de cet évènement.

Indices de récupération: Tristesse

Peu familier

Impossibilité de continuer à poursuivre un but très important ou à satisfaire un besoin

fondamental

Causé par: les hasards de la vie / votre négligence ou celle d'une autre personne

Les conséquences de l'évènement pour l'avenir vous apparaissaient clairement

La situation ne pouvait pas humainement être influencée

Vous étiez impuissant face aux circonstances

Vous saviez qu'il serait difficile de vous adapter aux conséquences irréversibles de l'évènement

Page 272: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 272/282

267

Written instructions presented on the screen before the start of the rating study.

Vous allez évaluer une centaine d´extraits de séquences vidéo dans lesquelles des personnes font

le récit d´expériences personnelles. Avant de commencer, veuillez lire attentivement les

consignes qui suivent. Pour chaque séquence réponses seront données sur des échelles continues

et sans gradation en déplaçant un curseur à l´endroit approprié sur chaque échelle.'

Pour déplacer le curseur, bougez la souris à l´endroit de l´échelle qui correspond à la réponse que

vous souhaitez donner. Pour valider votre choix appuyez sur le bouton gauche de la souris.'

Les jugements portent sur les impressions que vous fait la personne sur la vidéo.

Il n y a pas de réponses justes ou fausses, ce qui nous importe ce sont vos impressions.

Vos jugements porteront sur des adjectifs. Ex: triste, perplexe, etc.

Enthousiasmée vous placez le curseur vers la gauche, plus vous indiquez que l´adjectif vous

semble peu correspondre à votre impression de la personne dans la séquence vidéo.

Plus vous placez le curseur vers la droite, plus vous indiquez que l´adjectif vous semble

 beaucoup correspondre à votre impression de la personne dans la séquence vidéo.

La validité des résultats de cette étude dépend de votre capacité à maintenir votre attention sur la

tâche. Il est important que vous regardiez attentivement la totalité de la séquence vidéo avant de

répondre. Si vous vous sentez fatigué(e), prenez une pause entre deux séquences.

 N´hésitez pas à poser des questions au chercheur si vous avez besoin de clarifications.

Page 273: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 273/282

268

GENEVA EMOTION WHEEL

Joie

Bonheur

Savourer 

Plaisir

Soulagement

Apaisement

Se languirNostalgie

IrritationColère

DédainMépris

CulpabilitéRemords

InquiétudePeur

TristesseDésespoir

EmerveillementAdmiration 

AffectionÊtre amoureux 

DéceptionRegrets

PitiéCompassion

AmusementRire

DégoûtRépulsion

Etre envieux

Jalousie

EmbarrasHonte

FiertéExaltation

Etonnementsurprise 

IntérêtEnthousiasme

Aucuneémotionressentie

Autreémotionressentie

Sujet: _________

Item: _________

N° : _________

Page 274: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 274/282

269

 Appendix V.

Consent Form

Page 275: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 275/282

270

Forme de consentement du participant

Responsables du projet :

Prof. Susanne Kaiser- FAPSE / 022 379.92.16. / Unimail : 5132

[email protected] 

Stéphane With, assistant – FAPSE / 022. 379.92.06. / Unimail : 5135

[email protected] 

Objectifs de la recherche: L’objectif du projet, qui constitue une part essentielle du travail de

thèse de Monsieur Stéphane With, est d’étudier la narration d’événements émotionnels

autobiographiques. Ce projet est dirigé par les professeur Susanne Kaiser

Procédure:

Si j’accepte de participer à cette recherche, je suis conscient(e) que je prendrai part à une

expérience de psychologie dans laquelle il me sera demandé de me souvenir et de raconter des

événements de ma vie personnelle dans laquelle j’ai ressenti des émotions négatives.

L’expérience dure environ 1h 45 minutes et ma participation est rémunérée CHF 25.-

Toutes les informations me concernant qui seront recueillis pendant l’expérience resteront

strictement confidentielles et seront utilisées uniquement à des fins de recherches et de

 présentations scientifiques.

Ma participation est volontaire et je suis libre d’arrêter l’étude à tout moment.

 _________________________________ ________________________

 Nom du / de la participant(e) en majuscule Signature et Date

 _________________________

Signature du chercheur et date Stéphane With

Page 276: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 276/282

271

 Appendix VI.

Normality tests for Act ion Units Distribution in Database

Page 277: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 277/282

272

 Normality tests for Action Units Distribution in Database

(Kolmogorov-Smirnov & Lilliefors tests for normality)

Histogram: AU1

K-S d=.49192, p<.01 ; Lil liefors p<.01

 Expected Normal

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

X <= Category Boundary

0

20

40

60

80

100

120

140

160

180

200

   N  o .  o   f  o   b  s .

Histogram: AU1_2

K-S d=.22097, p<.01 ; Lil liefors p<.01

 Expected Normal

-1 0 1 2 3 4 5 6 7

X <= Category Boundary

0

10

20

30

40

50

60

70

80

   N  o .  o   f  o   b  s .

Histogram: AU4

K-S d=.42777, p<.01 ; Lil liefors p<.01

 Expected Normal

-1 0 1 2 3 4 5 6

X <= Category Boundary

0

20

40

60

80

100

120

140

160

180

   N  o .  o   f  o   b  s .

Histogram: AU5

K-S d=.23288, p<.01 ; Lill iefors p<.01

 Expected Normal

-1 0 1 2 3 4 5 6 7

X <= Category Boundary

0

10

20

30

40

50

60

70

80

   N  o .  o   f  o   b  s .

Page 278: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 278/282

273

Histogram: AU6

K-S d=.37462, p<.01 ; Lill iefors p<.01

 Expected Normal

-1 0 1 2 3 4 5 6

X <= Category Boundary

0

20

40

60

80

100

120

140

160

   N  o .  o   f  o   b  s .

Histogram: AU7

K-S d=.38899, p<.01 ; Lil liefors p<.01

 Expected Normal

-1 0 1 2 3 4 5

X <= Category Boundary

0

20

40

60

80

100

120

140

160

   N  o .  o   f  o   b  s .

Histogram: AU9

K-S d=.45158, p<.01 ; Lil liefors p<.01

 Expected Normal

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

X <= Category Boundary

0

20

40

60

80

100

120

140

160

180

   N  o .  o   f  o   b  s .

Histogram: AU10

K-S d=.29073, p<.01 ; Lil liefors p<.01

 Expected Normal

-1 0 1 2 3 4 5 6 7

X <= Category Boundary

0

20

40

60

80

100

120

   N  o .  o   f  o   b  s .

Page 279: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 279/282

274

Histogram: AU11

K-S d=.53523, p<.01 ; Lill iefors p<.01

 Expected Normal

-0.5 0.0 0.5 1.0 1.5 2.0

X <= Category Boundary

0

20

40

60

80

100

120

140

160

180

200

220

   N  o .  o   f  o   b  s .

Histogram: AU12

K-S d=.24838, p<.01 ; Lil liefors p<.01

 Expected Normal

-1 0 1 2 3 4 5 6

X <= Category Boundary

0

10

20

30

40

50

60

70

80

   N  o .  o   f  o   b  s .

Histogram: AU13

K-S d=.52787, p<.01 ; Lil liefors p<.01

 Expected Normal

-0.5 0.0 0.5 1.0 1.5 2.0

X <= Category Boundary

0

50

100

150

200

250

300

   N  o .  o   f  o   b  s .

Histogram: AU14

K-S d=.26595, p<.01 ; Lil liefors p<.01

 Expected Normal

-2 0 2 4 6 8 10

X <= Category Boundary

0

20

40

60

80

100

120

140

160

   N  o .  o   f  o   b  s .

Page 280: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 280/282

275

Histogram: AU15

K-S d=.29175, p<.01 ; Lill iefors p<.01

 Expected Normal

-1 0 1 2 3 4 5

X <= Category Boundary

0

20

40

60

80

100

120

   N  o .  o   f  o   b  s .

Histogram: AU16

K-S d=.43928, p<.01 ; Lil liefors p<.01

 Expected Normal

-1 0 1 2 3 4 5

X <= Category Boundary

0

20

40

60

80

100

120

140

160

180

   N  o .  o   f  o   b  s .

Histogram: AU17

K-S d=.22096, p<.01 ; Lil liefors p<.01

 Expected Normal

-1 0 1 2 3 4 5 6

X <= Category Boundary

0

10

20

30

40

50

60

70

80

   N  o .  o   f  o   b  s .

Histogram: AU18

K-S d=.53683, p<.01 ; Lill iefors p<.01

 Expected Normal

-0.5 0.0 0.5 1.0 1.5 2.0

X <= Category Boundary

0

20

40

60

80

100

120

140

160

180

200

220

   N  o .  o   f  o   b  s .

Page 281: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 281/282

276

Histogram: AU20

K-S d=.38512, p<.01 ; Lill iefors p<.01

 Expected Normal

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

X <= Category Boundary

0

20

40

60

80

100

120

140

160

   N  o .  o   f  o   b  s .

Histogram: AU22

K-S d=.53556, p<.01 ; Lil liefors p<.01

 Expected Normal

-0.5 0.0 0.5 1.0 1.5 2.0

X <= Category Boundary

0

20

40

60

80

100

120

140

160

180

200

220

   N  o .  o   f  o   b  s .

Histogram: AU23

K-S d=.41669, p<.01 ; Lil liefors p<.01

 Expected Normal

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X <= Category Boundary

0

20

40

60

80

100

120

140

160

   N  o .  o   f  o   b  s .

Histogram: AU24

K-S d=.39460, p<.01 ; Lill iefors p<.01

 Expected Normal

-1 0 1 2 3 4 5 6

X <= Category Boundary

0

20

40

60

80

100

120

140

160

   N  o .  o   f  o   b  s .

Page 282: Cluster Fac s

8/12/2019 Cluster Fac s

http://slidepdf.com/reader/full/cluster-fac-s 282/282