43
Conservation Agriculture & Carbon Sequestration

Conservation Agriculture & Carbon Sequestration Srinivas.pdf · Chester Conrad E Conrad W Ft. Benton St. Johns Simpson SOC (t ha-1) 35 30 25 20 15 10 NT CT a b a a a a a a b b b Tillage

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Co

nse

rv

ati

on

Ag

ricu

ltu

re

&

Ca

rbo

n S

equ

estr

ati

on

Con

serv

ati

on

Agri

cult

ure

is a

conce

pt fo

r re

sou

rce-

savin

g

agricu

ltura

l cr

op p

roduct

ion that

striv

es to a

chie

ve

acc

epta

ble

pro

fits

toget

her

with h

igh a

nd s

ust

ain

ed p

rod

ucti

on

lev

elsw

hile

concu

rren

tly c

onse

rvin

g the

envir

on

men

t-FA

O 2

007

Co

nse

rva

tio

n A

gri

cult

ure

It ref

ers to

pra

ctic

es w

hic

h p

erm

it the

man

agem

ent of th

e so

il

for ag

rarian

use

s w

hile

alte

ring its

com

posi

tion, stru

cture

and

nat

ura

l bio

div

ersity

as little

as poss

ible

, an

d d

efen

din

g it from

deg

radat

ion p

roce

sses

(e.

g. so

il e

rosion a

nd c

om

pac

tion)

It is th

e in

tegra

tion o

f ec

olo

gic

al m

anag

emen

t w

ith m

oder

n,

scie

ntific,

agricu

ltura

l pro

duct

ion

Pri

nci

ple

s o

f C

A

1. M

inim

um

mec

han

ical

soil d

istu

rban

ce

Ero

sion c

ontrol

Soil C

buildup

2. M

anag

ing the

top soil to c

reat

e a

per

man

ent org

anic

soil c

over

Ero

sion c

ontrol

Mois

ture

and tem

per

ature

3. Cro

p rota

tion w

ith m

ore

than

tw

o c

rop spec

ies

Pes

t an

d d

isea

se c

ontrol

Soil infras

truct

ure

Bio

div

ersity

Use

of

inte

gra

ted

pes

t m

an

agem

ent

tech

nolo

gie

s

Red

uce

req

uirem

ents

for pes

tici

des

and h

erbic

ides

Control off-s

ite

pollution

Enhan

ce b

iodiv

ersity

Ap

pli

cati

on

of

fert

iliz

ers

an

d a

gro

chem

icals

in

bala

nce

wit

h c

rop

req

uir

emen

ts

Fee

din

g the

soil rat

her

than

fer

tilizi

ng the

crop

Red

uce

chem

ical

pollution o

f th

e en

vironm

ent

Impro

ve

wat

er q

ual

ity

Optim

izin

gcr

op p

roduct

ivity a

nd the

econom

ic ret

urn

s

Pro

moti

ng p

reci

sion

pla

cem

ent

of

crop

in

pu

ts

Tre

atin

g the

pro

ble

ms

when

and w

her

e th

ey o

ccur, r

ather

than

bla

nket

tre

atm

ent

Incr

ease

d e

conom

ic a

nd fie

ld o

per

atio

n e

ffic

ienci

es

Impro

ved

environm

enta

l pro

tect

ion

Red

uce

d (optim

ized

) in

put co

sts

Com

post

ing a

nd

th

e u

se o

f m

an

ure

s an

d o

ther

org

an

ic s

oil

am

end

men

ts

Impro

ves

soil fer

tility

Red

uce

s th

e nee

d for in

org

anic

fer

tilize

rs

Agro

fore

stry

for

fod

der

,fi

ber

, fr

uit

an

d m

edic

inal

pu

rpose

s Val

ue

added

pro

duct

ion

Conse

rve

and e

nhan

ce b

iodiv

ersity

Soil c

arbon seq

ues

trat

ion

Key features of conservation agriculture systems

•N

o p

loughin

g, dis

kin

g o

r so

il c

ultiv

atio

n (i.e.

, no turn

ing

over

of th

e so

il)

•Cro

p a

nd c

over

cro

p res

idues

sta

y o

n the

surfac

e

•N

o b

urn

ing o

f cr

op res

idues

•Per

man

ent cr

op a

nd w

eed res

idue

mulc

h p

rote

cts th

e so

il

•The

close

d-n

utrie

nt re

cycl

ing o

f th

e fo

rest

is re

plica

ted

•Spec

ialize

d e

quip

men

t

•Continuous cr

opla

nd u

se

•Cro

p rota

tions an

d c

over

cro

ps to

max

imiz

e

bio

logic

al c

ontrols

(i.e.

, m

ore

pla

nt an

d c

rop d

iver

sity

)

Once

estab

lish

ed, CA

giv

es h

igher

yie

lds an

d h

igher

outp

uts

than

conven

tional

agricu

lture

over

long p

erio

ds of tim

e

Kee

ps so

ils at

a p

roduct

ive

for an

exte

nded

per

iod o

f tim

e

Pro

ble

ms

wit

h C

A

•N

ot en

ough p

eople

that

can

turn

fro

m a

conven

tional

far

mer

to a

conse

rvat

ionis

t

•Y

ield

red

uct

ion

•Purc

has

ing o

f new

equip

men

t

•Pro

duci

ng e

nough food a

t th

is m

om

ent to

fee

d a

ll the

peo

ple

in the

world a

t th

is m

om

ent

Zer

o t

illa

ge

is a

“co

rner

ston

e”of

CA

Can

be

pra

ctic

ed in b

oth

lar

ge

and sm

all fa

rmin

g syst

ems.

Most

of th

e ag

ricu

ltura

l ben

efits of ze

ro tilla

ge

rela

te to

incr

ease

d o

rgan

ic m

atte

r in

the

soil

Min

imu

m m

ech

an

ica

l d

istu

rba

nce

of

the

soil

Conse

rvat

ion tilla

ge

> 3

0%

surfac

e re

sidue

Red

uce

d tilla

ge

> 1

5-3

0%

surfac

e re

sidue

Soil

til

lage,

part

icu

larl

y i

nver

sion

til

lage

dra

stic

ally

alter

s origin

al struct

ure

bre

aks up a

ggre

gat

es

buries

cro

p res

idues

bar

es/e

xpose

s so

il to the

elem

ents

reduce

s bio

div

ersity

incr

ease

s CO

2em

issi

ons

Sim

pli

fied

so

il C

ba

lan

ce

Eff

ect

of

till

ag

e o

n s

oil

org

an

ic c

arb

on

Roth

amst

ed --par

t of th

e w

orld's o

ldes

t ex

isting a

gro

nom

ic

exper

imen

t, sta

rted

in 1

843

Conver

ting g

rass

land to a

rable

lan

d c

ut th

e so

il c

arbon c

onte

nt

by 5

5 p

erce

nt over

20 y

ears

due

to tilla

ge

Evolu

tion

of

con

serv

ati

on

til

lage

1930s

Dust

bow

l phen

om

enon in U

S

WW

II

2,4

–D

, oth

er h

erbic

ides

1980s

No till eq

uip

men

t

2000s

Pay

men

ts for co

nse

rvat

ion

Country

1973/74

1983/84

1999/2000

U.S.A.

Canada

United Kingdom

France

Netherlands

Japan, Malaysia, Sri Lanka

Australia

New Zealand

Brazil

Argentina

Mexico

Paraguay

Uruguay+Chile+Bolivia

2 200 000 -

200 000

50 000

2 000

200 000

100 000

75 000

1 000 - - - -

4 800 000 -

275 000

50 000

5 000

250 000

400 000

75 000

400 000 - - - -

19 750 000

4 080 000 - - - -

8 640 000 -

13 470 000

9 250 000

650 000

800 000

350 000

Are

a u

nd

er n

o t

illa

ge

In the

US, co

nse

rvat

ion tilla

ge

incr

ease

d fro

m 1

% in 1

963

to 3

7%

in 1

998 a

nd is pro

ject

ed to e

xce

ed 5

0%

by 2

008

Ou

t of

95 m

ha o

f ze

ro t

ill

farm

lan

d i

n t

he

worl

d

47%

is in

South

Am

eric

a

39%

is in

North A

mer

ica

9%

is in

Aust

ralia

3.9

% is in

Euro

pe,

Asi

a an

d A

fric

a

Zer

o t

illa

ge

in A

rgen

tin

a

Emissions of CO2into atm

osphere due to tillage

Tim

e in

hrs

Chester

Conrad E

Conrad W

Ft. Benton

St. Johns

Simpson

SOC (t ha-1)

10

15

20

25

30

35

NT

CT

a

b

a

a

a

a

a

a

b

b

b

b

Measured SOC (0 to 20-cm)

Tillage effect on soil organic carbon

Bricklemyer 2003

α= 0.1

0

0.51

1.52

2.53

3.54

19

74

19

87

19

90

19

97

20

00

SO

M %

Ch

an

ges

in

SO

M o

ver

tim

e in

un

der

a n

o t

ill

syst

em i

n I

llin

ois

Aver

age

ener

gy c

on

sum

pti

on

of

som

e ti

llage

op

erati

on

s

Pro

duce

rs c

an sav

e 30%

to 4

0%

of tim

e an

d lab

or by p

ract

icin

g the

no-till pro

cess

(FA

O 2

007)

Fuel

use

and tra

ctor hours

are

red

uce

d u

p to 7

5%

No

til

l m

ak

es e

con

om

ic s

ense

ZT

in

In

dia

ZT for w

hea

t star

ted 3

dec

ades

bac

k

Fai

led d

ue

to tec

hnic

al d

ifficu

ltie

s su

ch a

s la

ck o

f eq

uip

men

t

1990 C

IMM

YT introduce

d inver

ted T

open

ers

1991 F

irst

pro

toty

pe

of ZT see

d d

rill d

evel

oped

by G

BPU

AT

1992-9

3 R

WC took u

p Z

T, distrib

ute

d d

rills in

Har

yan

a

Bec

ame

popula

r in

Har

yan

a due

to c

ircu

mst

ance

s, support

2 m

ha

zero

till w

hea

t in

ric

e-w

hea

t co

nso

rtiu

m a

rea

-2004-0

5

RW

C e

stim

ates

a C

O2em

issi

on red

uct

ion o

f 91 k

g/h

a/yr from

ZT

Wh

eat

pro

du

ctiv

ity i

n U

P–

NA

TP

Pro

ject

7730

622

2205

Conven

tional

tillag

e

8350

707

2595

Min

imum

tillag

e w

ith c

rop

resi

due

Net

ret

urn

s

(Rs/

ha)

Toria

yie

ld

(kg/h

a)

Mai

ze

yie

ld

(kg/h

a)

Pra

ctic

e

MT w

ith C

R red

uce

d runoff b

y 1

1%

and

soil loss

by 2

1%

com

par

ed to c

onven

tional

tilla

ge

Con

serv

ati

on

agri

cult

ure

un

der

rain

fed

con

dit

ion

s at

Doon

vall

ey

Lo

ng

ter

m t

illa

ge

stu

die

s a

t C

RID

A (

eig

ht

yea

rs)

6.0

06.1

6M

inim

um

5.2

65.4

2Conven

tional

5 –

20

cm

0 –

5 c

m

Org

an

ic C

(g

/kg

)

Til

lag

e

277 k

g C

/ha/y

r

Potential sources of carbon sequestration in

US agricultural soils (Lal, 2003)

C s

equ

estr

ati

on

po

ten

tia

l w

ith

im

pro

ved

ma

na

gem

ent

of

US

cro

pla

nd

Glo

bal

conver

sion o

f al

l cr

opla

nd to c

onse

rvat

ion tilla

ge

can

seques

ter 25 G

t C o

ver

50 y

ears

CCX

pay

men

ts b

ased

on p

rem

ise

that

CT seq

ues

ters

0.3

t

C/h

a/yr

Wes

t an

d P

ost

(2002) an

alyse

d g

lobal

dat

abas

e of 67 long

term

exper

imen

ts a

nd found that

Chan

ge

from

conven

tional

to n

o till se

ques

ters

570 k

g C

/ha/

yr

The

seques

trat

ion rat

es p

eak in 5

-10 y

ears

and a

new

equilib

rium

C lev

el is re

ached

in 1

5-2

0 y

ears

Bak

er e

t al

(2007) ques

tion the

C seq

ues

trat

ion e

stim

ates

Per

ma

nen

t so

il c

over

Cro

p res

idues

Cover

cro

ps

Cover

cro

p

Any a

nnual

, bie

nnia

l or per

ennia

l cr

op g

row

n a

s a

mono c

ulture

or poly

culture

to fulfill se

ver

al o

bje

ctiv

es o

f su

stai

nab

le

agricu

lture

Cover crops

control erosion

reduce surface water pollution

add organic matter

improve soil structure and tilth

fix atmospheric nitrogen

recycle unused soil nitrogen

increase soil productivity

help control weeds

0.2

81.3

71.3

3Control

1.5

31.5

31.3

0Centrosema

2.1

11.5

71.2

0Psophocarpus

1.8

01.5

71.3

0Stizolobium

2.1

91.6

31.3

0Stylosanthes

1.5

21.5

01.2

7Pureria

2.6

01.7

01.3

0Cynodon

1.4

91.4

51.2

3Paspalum

2.4

11.5

71.2

1Brachiara

C s

eq r

ate

(t/h

a/y

r)

Aft

erB

efore

Cover

cro

p

So

il C

seq

ues

tra

tio

n w

ith

so

me

cov

er c

ro

ps

Eff

ect

of

po

st r

ain

y s

easo

n c

ov

er c

rop

on

so

il o

rga

nic

C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0-15

15-30

30-45

Soil depth (cm)

SOC (%)

No horsegram

Horsegram

0.3

4 t

C/h

a/y

r u

p t

o a

dep

th o

f 30 c

m

Rota

tions ca

n lea

d to seq

ues

tering o

f 0.0

1 -

0.0

3 P

g C

/yea

r in

the

mai

ze/s

oybea

n-g

row

ing reg

ion o

f th

e U

S

Effec

tiven

ess likel

y to b

e gre

ates

t w

her

e co

mbin

ed w

ith

conse

rvat

ion tilla

ge

pra

ctic

es.

Cro

p r

ota

tio

n

Rota

tions, e

spec

ially leg

um

e-bas

ed o

nes

, ar

e gen

eral

ly reg

arded

as

extrem

ely v

aluab

le for m

ainta

inin

g soil fer

tility

and h

ave

a ver

y

good p

ote

ntial

for se

ques

tering C

in

dry

land

system

s.

Wes

t an

d P

ost

(2002) glo

bal

dat

abas

e -67 long ter

m

exper

imen

ts

Incr

easing rota

tional

com

ple

xity seq

ues

ters

200 k

g C

/ha/

yr

Equilib

rium

is re

ached

in 5

0-6

0 y

ears

Res

toring w

etla

nds

Dra

inin

g w

etla

nd

Inte

gra

ted w

ater

shed

man

agem

ent

Lan

d u

se a

long p

over

ty lin

es a

nd

politica

l boundar

ies

Impro

ved

far

min

g system

s w

ith sev

eral

cro

p

rota

tions

Monocu

lture

Conver

sion o

f m

argin

al lan

ds to

nat

ure

conse

rvat

ion

Fen

ce-to-f

ence

cultiv

atio

n

Wat

er m

anag

emen

t/co

nse

rvat

ion, irrigat

ion,

wat

er tab

le m

anag

emen

t

No w

ater

control

Soil-s

ite

spec

ific

man

agem

ent

Reg

ula

r fe

rtiliz

er u

se

Gro

win

g c

over

cro

ps

Sum

mer

fal

low

Res

idue

retu

rn a

s m

ulc

h

Res

idue

rem

oval

or burn

ing

Conse

rvat

ion till or no-till

Plo

ugh till

Rec

om

men

ded

T

rad

itio

na

l p

ract

ices

Agri

cult

ura

l p

ract

ices

for

enh

an

cin

g p

rod

uct

ivit

y a

nd

incr

easi

ng t

he

am

ou

nt

of

carb

on

in

soil

s