19
1 Viologen based redox switchable anion binding receptors R. Kannappan, [a] C. Bucher,* [a] E. Saint-Aman,* [a] J.-C. Moutet, [a] A. Milet, [b] M. Oltean, [b] E. Métay, [c] S. Pellet-Rostaing, [c] M. Lemaire [c] , Carole Chaix [d] , Département de chimie moléculaire, [a] laboratoire de chimie inorganique rédox, [b] laboratoire de chimie théorique, UMR-5250, ICMG FR-2607, Institut de Chimie Moléculaire de Grenoble, FR CNRS 2607, Université Joseph Fourier, BP 53, 38041 Grenoble Cédex 9, France. [c] Institut de chimie et biochimie moléculaires et supramoléculaires (ICBMS-UMR5246), Université Claude Bernard Lyon 1, Domaine Scientifique de la Doua, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France. [d] UMR des Sciences Analytiques (UMR5180), Université Claude Bernard, Bât. J. Raulin, 69622 Villeurbanne Cedex – France. 1. RMN 1 H spectrum of 2·(PF6)4 (DMSO d 6 ) ................................................................................................. 2 2. COSY 1 H- 1 H map of 2·(PF6)4 (DMSO d 6 ) ................................................................................................... 3 3. COSY 1 H- 1 H map of 2·(PF6)4 (DMSO d 6 ) ................................................................................................... 4 4. COSY 1H-1H map of 2·(PF6)4 (DMSO d6) ............................................................................................... 5 5. NOESY 1 H- 1 H map of 2·(PF6)4 (DMSO d 6 ) ................................................................................................ 6 6. NOESY 1 H- 1 H map of 2·(PF6)4 (DMSO d 6 ) ................................................................................................ 7 7. NMR titration of of 1·(PF6)2 with TBA.Cl ................................................................................................... 8 8. NMR titration of of 1·(PF6)2 with TBA.Br .................................................................................................. 9 9. NMR titration of of 2·(PF6)4 with TBA.Cl ................................................................................................ 10 10. NMR titration of of 2·(PF6)4 with TBA.Cl _Shift of Hf, Hc, He, Hd ............................................. 10 11. NMR titration of of 2·(PF6)4 with TBA.Cl _ Shift of Hi, Hg, Ha, Hb ............................................ 11 12. Cyclic voltammograms of 2.(PF6)4 ...................................................................................................... 12 13. Cyclic voltammograms of 1.(PF6)2 ...................................................................................................... 13 14. Spectroelectrochemistry experiment carried out with 1.(PF6)2 .............................................. 14 15. Spectroelectrochemistry experiment carried out with 2.(PF6)4 .............................................. 14 16. RDE experiments carried out with 2.(PF6)4 and 1.(PF6)4 in presence of Fluoride .......... 15 17. UV-Visible changes observed with 2.(PF6)4 and 1.(PF6)4 in presence of Fluoride .......... 16 18. Computational Details............................................................................................................................... 17 Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

ddddddddqdddqdddddhd9l8l Viologen based redox … · Viologen based redox switchable anion binding receptors ... .695421 Hz AQ 0.2949620 sec RG 228 DW 144.000 usec DE 6.00 usec TE

Embed Size (px)

Citation preview

1

Viologen based redox switchable anion binding receptors

R. Kannappan,[a] C. Bucher,*[a] E. Saint-Aman,* [a] J.-C. Moutet,[a]

A. Milet,[b] M. Oltean, [b] E. Métay,[c] S. Pellet-Rostaing,[c] M. Lemaire[c], Carole Chaix[d],

Département de chimie moléculaire, [a] laboratoire de chimie inorganique rédox, [b] laboratoire

de chimie théorique, UMR-5250, ICMG FR-2607, Institut de Chimie Moléculaire de Grenoble, FR

CNRS 2607, Université Joseph Fourier, BP 53, 38041 Grenoble Cédex 9, France.

[c] Institut de chimie et biochimie moléculaires et supramoléculaires (ICBMS-UMR5246),

Université Claude Bernard Lyon 1, Domaine Scientifique de la Doua, 43 Boulevard du 11

Novembre 1918, 69622 Villeurbanne Cedex, France.

[d] UMR des Sciences Analytiques (UMR5180), Université Claude Bernard, Bât. J. Raulin, 69622

Villeurbanne Cedex – France.

1. RMN 1H spectrum of 2·(PF6)4 (DMSO d6) .................................................................................................2

2. COSY 1H-1H map of 2·(PF6)4 (DMSO d6) ...................................................................................................3

3. COSY 1H-1H map of 2·(PF6)4 (DMSO d6) ...................................................................................................4

4. COSY 1H-1H map of 2·(PF6)4 (DMSO d6) ...............................................................................................5

5. NOESY 1H-1H map of 2·(PF6)4 (DMSO d6)................................................................................................6

6. NOESY 1H-1H map of 2·(PF6)4 (DMSO d6)................................................................................................7

7. NMR titration of of 1·(PF6)2 with TBA.Cl ...................................................................................................8

8. NMR titration of of 1·(PF6)2 with TBA.Br ..................................................................................................9

9. NMR titration of of 2·(PF6)4 with TBA.Cl ................................................................................................ 10

10. NMR titration of of 2·(PF6)4 with TBA.Cl _Shift of Hf, Hc, He, Hd ............................................. 10

11. NMR titration of of 2·(PF6)4 with TBA.Cl _ Shift of Hi, Hg, Ha, Hb ............................................ 11

12. Cyclic voltammograms of 2.(PF6)4 ...................................................................................................... 12

13. Cyclic voltammograms of 1.(PF6)2 ...................................................................................................... 13

14. Spectroelectrochemistry experiment carried out with 1.(PF6)2 .............................................. 14

15. Spectroelectrochemistry experiment carried out with 2.(PF6)4 .............................................. 14

16. RDE experiments carried out with 2.(PF6)4 and 1.(PF6)4 in presence of Fluoride.......... 15

17. UV-Visible changes observed with 2.(PF6)4 and 1.(PF6)4 in presence of Fluoride .......... 16

18. Computational Details............................................................................................................................... 17

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

2

1. RMN 1H spectrum of 2 ·(PF6)4 (DMSO d6)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

ppm

2.7552.7732.791

3.321

4.8084.8264.844

5.514

7.795

8.124

8.7948.8128.8578.8749.2759.2939.3779.395

2.021

4.027

4.000

1.901

1.897

4.0054.014

4.0074.022

Current Data Parameters

NAME CB8X80FX

EXPNO 1

PROCNO 1

F2 - Acquisition Parameters

Date_ 20090126

Time 22.02

INSTRUM spect

PROBHD 5 mm PABBI 1H/

PULPROG zg30

TD 32768

SOLVENT DMSO

NS 70

DS 2

SWH 8223.685 Hz

FIDRES 0.250967 Hz

AQ 1.9923444 sec

RG 228

DW 60.800 usec

DE 6.00 usec

TE 298.0 K

D1 1.00000000 sec

TD0 1

======== CHANNEL f1 ========

NUC1 1H

P1 8.00 usec

PL1 -1.00 dB

PL1W 9.67656994 W

SFO1 400.1324710 MHz

F2 - Processing parameters

SI 16384

SF 400.1300000 MHz

WDW EM

SSB 0

LB 0.30 Hz

GB 0

PC 1.00

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

3

2. COSY 1H-1H map of 2 ·(PF6)4 (DMSO d6)

ppm

23

45

67

89

10

ppm

2 3 4 5 6 7 8 9

10

Current Data Parameters

NAME CB8X80FX

EXPNO 3

PROCNO 1

F2 - Acquisition Parameters

Date_ 20090126

Time 22.06

INSTRUM spect

PROBHD 5 mm PABBI 1H/

PULPROG cosygpqf

TD 2048

SOLVENT DMSO

NS 4

DS 8

SWH 3472.222 Hz

FIDRES 1.695421 Hz

AQ 0.2949620 sec

RG 228

DW 144.000 usec

DE 6.00 usec

TE 298.0 K

D0 0.00000300 sec

D1 1.35213399 sec

D13 0.00000400 sec

D16 0.00020000 sec

IN0 0.00028800 sec

======== CHANNEL f1 ========

NUC1 1H

P0 8.00 usec

P1 8.00 usec

PL1 -1.00 dB

PL1W 9.67656994 W

SFO1 400.1322935 MHz

====== GRADIENT CHANNEL =====

GPNAM1 SINE.100

GPZ1 10.00 %

P16 1000.00 usec

F1 - Acquisition parameters

ND0 1

TD 200

SFO1 400.1323 MHz

FIDRES 17.361111 Hz

SW 8.678 ppm

FnMODE QF

F2 - Processing parameters

SI 1024

SF 400.1300000 MHz

WDW SINE

SSB 0

LB 0.00 Hz

GB 0

PC 1.40

F1 - Processing parameters

SI 1024

MC2 QF

SF 400.1300000 MHz

WDW SINE

SSB 0

LB 0.00 Hz

GB 0

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

4

3. COSY 1H-1H map of 2 ·(PF6)4 (DMSO d6)

ppm

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

ppm

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Current Data Parameters

NAME CB8X80FX

EXPNO 3

PROCNO 1

F2 - Acquisition Parameters

Date_ 20090126

Time 22.06

INSTRUM spect

PROBHD 5 mm PABBI 1H/

PULPROG cosygpqf

TD 2048

SOLVENT DMSO

NS 4

DS 8

SWH 3472.222 Hz

FIDRES 1.695421 Hz

AQ 0.2949620 sec

RG 228

DW 144.000 usec

DE 6.00 usec

TE 298.0 K

D0 0.00000300 sec

D1 1.35213399 sec

D13 0.00000400 sec

D16 0.00020000 sec

IN0 0.00028800 sec

======== CHANNEL f1 ========

NUC1 1H

P0 8.00 usec

P1 8.00 usec

PL1 -1.00 dB

PL1W 9.67656994 W

SFO1 400.1322935 MHz

====== GRADIENT CHANNEL =====

GPNAM1 SINE.100

GPZ1 10.00 %

P16 1000.00 usec

F1 - Acquisition parameters

ND0 1

TD 200

SFO1 400.1323 MHz

FIDRES 17.361111 Hz

SW 8.678 ppm

FnMODE QF

F2 - Processing parameters

SI 1024

SF 400.1300000 MHz

WDW SINE

SSB 0

LB 0.00 Hz

GB 0

PC 1.40

F1 - Processing parameters

SI 1024

MC2 QF

SF 400.1300000 MHz

WDW SINE

SSB 0

LB 0.00 Hz

GB 0

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

5

4. COSY 1H-1H map of 2·(PF 6)4 (DMSO d6)

ppm

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.2

9.4

9.6

ppm

7.6

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.2

9.4

9.6

Current Data Parameters

NAME CB8X80FX

EXPNO 3

PROCNO 1

F2 - Acquisition Parameters

Date_ 20090126

Time 22.06

INSTRUM spect

PROBHD 5 mm PABBI 1H/

PULPROG cosygpqf

TD 2048

SOLVENT DMSO

NS 4

DS 8

SWH 3472.222 Hz

FIDRES 1.695421 Hz

AQ 0.2949620 sec

RG 228

DW 144.000 usec

DE 6.00 usec

TE 298.0 K

D0 0.00000300 sec

D1 1.35213399 sec

D13 0.00000400 sec

D16 0.00020000 sec

IN0 0.00028800 sec

======== CHANNEL f1 ========

NUC1 1H

P0 8.00 usec

P1 8.00 usec

PL1 -1.00 dB

PL1W 9.67656994 W

SFO1 400.1322935 MHz

====== GRADIENT CHANNEL =====

GPNAM1 SINE.100

GPZ1 10.00 %

P16 1000.00 usec

F1 - Acquisition parameters

ND0 1

TD 200

SFO1 400.1323 MHz

FIDRES 17.361111 Hz

SW 8.678 ppm

FnMODE QF

F2 - Processing parameters

SI 1024

SF 400.1300000 MHz

WDW SINE

SSB 0

LB 0.00 Hz

GB 0

PC 1.40

F1 - Processing parameters

SI 1024

MC2 QF

SF 400.1300000 MHz

WDW SINE

SSB 0

LB 0.00 Hz

GB 0

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

6

5. NOESY 1H-1H map of 2 ·(PF6)4 (DMSO d6)

Current Data Parameters

NAME CB8X80FX

EXPNO 4

PROCNO 1

F2 - Acquisition Parameters

Date_ 20090126

Time 22.32

INSTRUM spect

PROBHD 5 mm PABBI 1H/

PULPROG noesyph

TD 2048

SOLVENT DMSO

NS 32

DS 16

SWH 3472.222 Hz

FIDRES 1.695421 Hz

AQ 0.2949620 sec

RG 228

DW 144.000 usec

DE 6.00 usec

TE 298.0 K

D0 0.00013381 sec

D1 1.86524200 sec

D8 0.60000002 sec

IN0 0.00028800 sec

======== CHANNEL f1 ========

NUC1 1H

P1 8.00 usec

PL1 -1.00 dB

PL1W 9.67656994 W

SFO1 400.1322935 MHz

F1 - Acquisition parameters

ND0 1

TD 350

SFO1 400.1323 MHz

FIDRES 9.920635 Hz

SW 8.678 ppm

FnMODE States-TPPI

F2 - Processing parameters

SI 1024

SF 400.1300000 MHz

WDW QSINE

SSB 2

LB 0.00 Hz

GB 0

PC 1.00

F1 - Processing parameters

SI 1024

MC2 States-TPPI

SF 400.1300000 MHz

WDW QSINE

SSB 2

LB 0.00 Hz

GB 0

ppm

34

56

78

910

ppm

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

7

6. NOESY 1H-1H map of 2 ·(PF6)4 (DMSO d6)

ppm

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

ppm

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Current Data Parameters

NAME CB8X80FX

EXPNO 4

PROCNO 1

F2 - Acquisition Parameters

Date_ 20090126

Time 22.32

INSTRUM spect

PROBHD 5 mm PABBI 1H/

PULPROG noesyph

TD 2048

SOLVENT DMSO

NS 32

DS 16

SWH 3472.222 Hz

FIDRES 1.695421 Hz

AQ 0.2949620 sec

RG 228

DW 144.000 usec

DE 6.00 usec

TE 298.0 K

D0 0.00013381 sec

D1 1.86524200 sec

D8 0.60000002 sec

IN0 0.00028800 sec

======== CHANNEL f1 ========

NUC1 1H

P1 8.00 usec

PL1 -1.00 dB

PL1W 9.67656994 W

SFO1 400.1322935 MHz

F1 - Acquisition parameters

ND0 1

TD 350

SFO1 400.1323 MHz

FIDRES 9.920635 Hz

SW 8.678 ppm

FnMODE States-TPPI

F2 - Processing parameters

SI 1024

SF 400.1300000 MHz

WDW QSINE

SSB 2

LB 0.00 Hz

GB 0

PC 1.00

F1 - Processing parameters

SI 1024

MC2 States-TPPI

SF 400.1300000 MHz

WDW QSINE

SSB 2

LB 0.00 Hz

GB 0

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

8

7. NMR titration of of 1·(PF 6)2 with TBA.Cl (8 mM, 300 mHz, DMSO d6, 2% D2O) 1-determination of the binding constant from ∆δ(NHa) = f (CChloride) According to the equilibrium L + S = LS ∆δ=( ∆δmax /(2*L))*((L+S+(1/K))-(sqrt(((L+S+(1/K))^2)-4*L*S))) With L : total concentration in L

S : total concentration in S K : binding constant ∆δ = δobs-δ0

[ppm]9.5 9.0 8.5 8.0

CB8X121 2 1 d:\ Christobald

CB8X121 3 1 d:\ Christobald

CB8X121 4 1 d:\ Christobald

CB8X121 5 1 d:\ Christobald

CB8X121 6 1 d:\ Christobald

CB8X121 7 1 d:\ Christobald

1(PF6)2

+T

BA

.Cl

+2.75 eq.

+4 eq.

+6 eq.

+8 eq.

+1.5 eq.

+0.5 eq.

[ppm]9.5 9.0 8.5 8.0

CB8X121 2 1 d:\ Christobald

CB8X121 3 1 d:\ Christobald

CB8X121 4 1 d:\ Christobald

CB8X121 5 1 d:\ Christobald

CB8X121 6 1 d:\ Christobald

CB8X121 7 1 d:\ Christobald

1(PF6)2

+T

BA

.Cl

+2.75 eq.

+4 eq.

+6 eq.

+8 eq.

+1.5 eq.

+0.5 eq.

0,00 0,02 0,04 0,06 0,08 0,10 0,12-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

Data: Data1_H

Chi^2/DoF = 7.5638E-6R^2 = 0.99952 M 0.51442 ±0.01059L 0.00792 ±0K 18.76628 ±0.80358

NHa

∆δ (

ppm

)

TBACl (mol.l-1)

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

9

8. NMR titration of of 1·(PF 6)2 with TBA.Br (8 mM, 300 mHz, DMSO d6, 2% D2O)

determination of the binding constant from ∆δ(NHa) = f (CChloride)

According to the equilibrium

L + S = LS

∆δ=( ∆δmax /(2*L))*((L+S+(1/K))-(sqrt(((L+S+(1/K))^2)-4*L*S)))

With L : total concentration in L

S : total concentration in S

K : binding constant

∆δ = δobs-δ0

0,00 0,05 0,10 0,15 0,20

0,00

0,02

0,04

0,06

0,08 NHa

Data: Data1_deltaModel: RMN1Weighting: y No weighting Chi^2/DoF = 1.0056E-6R^2 = 0.99767 M 0.13033 ±0L 0.00792 ±0K 8.12991 ±0.06304

∆δ (

ppm

)

TBABr (mol.l-1)

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

10

9. NMR titration of of 2·(PF 6)4 with TBA.Cl (3.9 mM, 300 mHz, DMSO d6, 2% D2O)

CB8X113 2 1 d:\ Christobald

CB8X113 3 1 d:\ Christobald

CB8X113 4 1 d:\ Christobald

CB8X113 5 1 d:\ Christobald

CB8X113 6 1 d:\ Christobald

[ppm]9.5 9.0 8.5 8.0

2(PF6)4

+TB

A.C

l

+2.5 eq.

+5.5 eq.

+7.75 eq.

+10.2 eq.

+15.75 eq.

CB8X113 2 1 d:\ Christobald

CB8X113 3 1 d:\ Christobald

CB8X113 4 1 d:\ Christobald

CB8X113 5 1 d:\ Christobald

CB8X113 6 1 d:\ Christobald

[ppm]9.5 9.0 8.5 8.0

2(PF6)4

+TB

A.C

l

+2.5 eq.

+5.5 eq.

+7.75 eq.

+10.2 eq.

+15.75 eq.

10. NMR titration of of 2 ·(PF6)4 with TBA.Cl _Shift of Hf, Hc, He, Hd (3.9 mM, 300 mHz, DMSO d6, 2% D2O)

0 5 10 15 20

0,00

0,05

0,10

0,15

0,20

0,25

0,30

Hf Hc He Hd∆δ

(ppm

)

TBACl (molar equivalents)

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

11

11. NMR titration of of 2 ·(PF6)4 with TBA.Cl _ Shift of Hi, Hg, Ha, Hb (3.9 mM, 300 mHz, DMSO d6, 2% D2O)

0 5 10 15 20

0,00

0,05

0,10

0,15

0,20

0,25

0,30

NHaNHbHg Hi

∆δ (

ppm

)

TBACl (molar equivalents)

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

12

12. Cyclic voltammograms of 2.(PF 6)4 10A→ (10-3 M, 20mV/s, Pt Ø=2 mm, CD3CN 0.1 MTBAPF6)

10B→ (10-3 M, 20mV/s, Pt Ø=2 mm, DMF 0.1 MTBAPF6)

10C→ (10-3M + Ferrocene as int. ref., 100mV/s, Pt Ø=2 mm, DMF 0.1 MTBAPF6)

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

13

13. Cyclic voltammograms of 1.(PF 6)2 11A→ (10-3 M, Pt Ø=2 mm, 20mV/s, CD3CN 0.1 MTBAPF6)

11B→ (10-3 M, CV Pt Ø=2 mm, 20mV/s, DMF 0.1 MTBAPF6)

11C→ (10-3M + Ferrocene as int. ref., 100mV/s, Pt Ø=2 mm, DMF 0.1 MTBAPF6)

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

14

14. Spectroelectrochemistry experiment carried out with 1.(PF 6)2 Evolution of the UV-vis abs. spectum during the 1e– reduction of 1.(PF6)2 at – 1.0 V

(E vs Ag/Ag+, 2.5 × 10−4 M, V= 25 mL DMF 0.1 M TBAP). Spectra were recorded at ca. 10 s intervals . Arrows indicate the directions of absorbance change

400 600 800 10000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Abs

Wavelength/nm

15. Spectroelectrochemistry experiment carried out with 2.(PF 6)4 Evolution of the UV-vis abs. spectum during the 2e– reduction of 2.(PF6)4 at – 1.0 V

(E vs Ag/Ag+, 2.5 × 10−4 M, V= 25 mL DMF 0.1 M TBAP). Spectra were recorded at ca. 10-s intervals .

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

15

16. RDE experiments carried out with 2.(PF 6)4 and 1.(PF 6)4 in presence of Fluoride Rotating disc measurements conducted in glove box on (left) 1.(PF6)4 and (right) 2.(PF6)4 in

DMF at 1 × 10 – 3 M in presence of increasing amounts of fluoride ( TBAF).

a: 12+

b: 12+ + 1 eq. F�

c: 12+ + 2 eq. F�

a

b

c

-0.2-0.4-0.6-0.8-1.0-1.2-1.4 (E, V)

a: 12+

b: 12+ + 1 eq. F�

c: 12+ + 2 eq. F�

a

b

c

-0.2-0.4-0.6-0.8-1.0-1.2-1.4 (E, V)

a : 24+

b : 24+ + 1 eq. F�

a

b

(Cur

rent

; A)

(Cur

rent

; A)

-0.4-0.6-0.8-1.0-1.2-1.4 (E, V)-1.6

a: 12+

b: 12+ + 1 eq. F�

c: 12+ + 2 eq. F�

a

b

c

-0.2-0.4-0.6-0.8-1.0-1.2-1.4 (E, V)

a: 12+

b: 12+ + 1 eq. F�

c: 12+ + 2 eq. F�

a

b

c

-0.2-0.4-0.6-0.8-1.0-1.2-1.4 (E, V)

a : 24+

b : 24+ + 1 eq. F�

a

b

a : 24+

b : 24+ + 1 eq. F�

a

b

(Cur

rent

; A)

(Cur

rent

; A)

-0.4-0.6-0.8-1.0-1.2-1.4 (E, V)-1.6

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

16

17. UV-Visible changes observed with 2.(PF 6)4 and 1.(PF 6)4 in presence of Fluoride

15A→ Color changes observed before and after addition of 0.2 equiv. of F− or 2 equiv. of

representative anions or base in DMF solutions of the receptors (R) and 1.(PF6)4 or 2.(PF6)4

(1mM, Argon atm) (from the left to the right: R, R+F−, R+Cl−, R+Br−, R+I−, R+Di-isopropylamine)

1.(PF6)4 2.(PF6)4

15B→ Changes in the Absorption spectrum of 2.(PF6)4 and 1.(PF6)4 (1mM) in DMF under

argon atmosphere upon addition of various amounts of tetra-n-butylammonium salts of F– (0.2

equiv.) or Cl–, Br–, I– and Di-isopropylamine (2 equiv.).

400 600 800 10000,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

Free

2.0 eq. Cl-,Br- and I-

2.0 eq. base

0.2 eq.F-

Abs

Wavelength/nm400 600 800 1000

0,0

0,5

1,0

1,5

2,0

2,5

Free

2.0 eq. Cl-,Br- and I-

2.0 eq. base

0.2 eq.F-

Abs

Wavelength/nm

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

17

18. Computational Details The quantum chemistry calculations were carried out with both the CP2KQuickStep program and

the Gaussian031 program. With this latter code, we used the BLYP, B3LYP2, B3LYP-CP3

(Corrected Potential) and MP24 functional with the 6-31+G(d,p)5 basis sets.

Solvent effects have been evaluated using the polarizable continuum model (PCM)6 in which the

cavity is created via a series of overlapping spheres.

The ab initio Born-Oppenheimer dynamics calculations were performed using the CP2K- QuickStep

program7 at the DFT level with the BLYP8 + D9 functional. QuickStep is an implementation of the

Gaussian Plane Waves (GPW) method based on the Kohn- Sham formulation of the density

functional theory (DFT). It is a hybrid method using a linear combination of Gaussian-type orbitals

to describe the Kohn-Sham orbitals, whereas an auxiliary plane waves basis set is employed to

expand the electronic charge density.

The basis set used was a double-ζ valence set of Gaussian orbitals10 in conjunction with the

Goedecker-Teter-Hutter11 pseudopotentials. The auxiliary PW basis set was defined by a cubic box

of 25 Å3 and by a density cutoff of 360 Ry.

Metadynamics12 has been used to overcome the problem of observing rare events in conventional

molecular dynamics and determining the energy barrier of our system. The method consist in a series

1 M. J. Frisch et all ; Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.

2 Becke, A. D. J. Chem. Phys. 1993, 98, 5648

3 Gino A. DiLabio; Chem. Phys. Lett. , 2008,455, 348-353

4 C. Moller and M. S. Plesset, Phys. Rev. 1934, 46, 618

5 (a) M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. , 1984, 80, 3265 ; (b) T. Clark, J. Chandrasekhar, G. W.

Spitznagel, and P. v. R. Schleyer, J. Comp. Chem. , 1983, 4, 294

6 (a)M. T. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys. 1997,107, 3032; (b) M. Cossi, V. Barone, B. Mennucci,

and J. Tomasi, Chem. Phys. Lett. 1998,286, 253; (c) B. Mennucci and J.Tomasi, J. Chem. Phys. 1997, 106, 5151; (d)

M. Cossi, G. Scalmani, N. Rega, and V. Barone, J. Chem. Phys. 2002, 117, 43

7 (a) CP2K, http://cp2k.berlios.de, 2000-2009. (b) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.;

Chassaing T.; Hutter, J. Comput. Phys. Commun. 2005, 167, 103. 8 (a) Becke, A. D. Phys Rev. A 1988, 38, 3098. (b) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. 9 S. Grimme; J. Comput. Chem. , 2006, 27, 1787-1799

10 VandeVondele, J.; Hutter, J. J. Chem. Phys. ,2007, 127, 114105 11 (a)Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703. (b) Hartwigsen et all., J. Phys. Rev. B 1998, 58, 3641 (c) Krack, M. THEORETICAL CHEMISTRY ACCOUNTS, 2005, 114 (1-3), 145-152

12 A. Laio and M. Parrinello Proc. Natl Acad. Sci. USA, 2002, 99, 12562–6 (b) A. Laio and F. L. Gervasio Rep. Prog.

Phys. 2008, 71, 126601 (c) C. Michel, A. Laio, F. Mahomed, M. Krack, M. Parrinello and A. Milet, Organometallics 2007, 26, 1241-1249

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

18

of small repulsive Gaussian potentials, centered on the values of some collective variables, added

during the dynamics, preventing the system from revisiting the same points in configurational space

and creating a historydependent multidimensional biasing potential. A time step of 1 fs is used for

the dynamics, and the deposition rate of the hills is every τG=20 fs. The height (w) and with (δs) of

the Gaussians-shaped potential hills added are 0.6 kcal/mol and 1 Bohr respectively.

In the present study, we considered distances R1 and R2 as collective variables. The definition of R1

and R2 can be seen in the figure 1. Velocity rescaling algorithm was used to enforce the system to a

given temperature T, of 300 Kelvin. The Hydrogen atoms are changed to Deuterium in conjunction

with integration step of 1 fs. The duration of our simulation is approximately 5 ps of Metadynamics

and after 3 ps the system starts to opening. This is clearly emphasized by the variation of the

collective variable R1 showed in the figure 2.

The free energy surface F(S(R)) is then reconstructed on a 100 × 100 grid in the (1.052Å < R1 <

6.843Å) × (1.362Å < R2<16.560Å) region with an integration step of 0.111Å and 0.290Å

respectively see figure 3.

Fig.1 Collective variable R1 and R2, which represents the distances between the nitrogen atoms.

Fig.2 Time evolution of collective variable R1

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

19

Fig. 3 Free energy surface reconstructions from Metadynamics run at T=300K with the bottom

representations of the Free Energy Surface depth.

Supplementary Material (ESI) for New Journal of ChemistryThis journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010