56
1/56 EECLAT light : Ce document est un extrait de la version soumise au TOSCA. Extraction des taches principalement LEFE : T1.2 / 1.3 /1.7 T2.1 /2.3 /2.5 T3.2/T3.3 T4.1/4.2/4.3 T5.2 RENSEIGNEMENTS GENERAUX 1.1 INTITULÉ DE LA PROPOSITION: EECLAT: "Expecting EarthCare, Learning from ATrain" 1.2. SCIENTIFIQUE PROPOSANT Nom : NOEL Prénom : VINCENT Téléphone : 01 69 33 51 46 email : [email protected] Nom du Laboratoire : IPSL/LMD Adresse : Ecole Polytechnique 91128 Palaiseau Organisme de tutelle : CNRS Organisme gestionnaire : DR5 CNRS Nom : DELANOË Prénom : JULIEN Téléphone : 01 80 28 52 19 email : [email protected] Nom du Laboratoire : IPSL/LATMOS Adresse : 11 Boulevard d’Alembert, 78280 Guyancourt Organisme de tutelle : UVSQ / CNRS Organisme gestionnaire : DR5 CNRS

EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

1/56

EECLAT  light  :  Ce  document  est  un  extrait  de  la  version  soumise  au  TOSCA.      Extraction  des  taches  principalement  LEFE  :  T1.2  /  1.3  /1.7  T2.1  /2.3  /2.5  T3.2/T3.3  T4.1/4.2/4.3  T5.2      

RENSEIGNEMENTS GENERAUX

1.1 INTITULÉ DE LA PROPOSITION:  EECLAT:  "Expecting  Earth-­‐Care,  Learning  from  A-­‐Train"      

1.2. SCIENTIFIQUE PROPOSANT

 Nom  :   NOEL  Prénom  :   VINCENT  Téléphone  :   01  69  33  51  46  e-­‐mail  :   [email protected]  Nom  du  Laboratoire  :   IPSL/LMD  Adresse  :   Ecole  Polytechnique  91128  Palaiseau    Organisme  de  tutelle  :   CNRS  Organisme  gestionnaire  :  

DR5  CNRS      

Nom  :       DELANOË  Prénom  :   JULIEN  Téléphone  :   01  80  28  52  19  e-­‐mail  :   [email protected]  Nom  du  Laboratoire  :   IPSL/LATMOS  Adresse  :   11  Boulevard  d’Alembert,  78280  Guyancourt  Organisme  de  tutelle  :   UVSQ  /  CNRS  Organisme  gestionnaire  :  

DR5  CNRS  

   

Page 2: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

2/56

1.3 CO-PROPOSANTSi

Personnel permanent: Par  ordre  alphabetique    

1. Ancellet,  G.,  LATMOS,  DR  2. Armante,  R.,  LMD  3. Bastin,  S.,  LATMOS,  CR  4. Bazureau,  A.,  LATMOS,  IR  5. Bony,  S.,  LMD,  DR  6. Bouniol,  D.,  CNRM,  CR  7. Chepfer,  H.,  LMD,  Pr  8. Chiriaco,  M.,  LATMOS,  MC  9. Cornet,  C.,  LOA,  MC  10. Couvreux,  F.,  CNRM,  IPC  11. Defer,  E.,  LERMA,  CR  12. Protat,  A.,  CAWCR,  DR  13. Philippe  Dubuisson,  LOA,  Pr  14. Dufresne,  J.  –  L.,  LMD,  DR  15. Dupont,  J.  –  C.,  IPSL,  Phys.  Adj.  16. Duroure,  C.,  LaMP  17. El  Amraoui,  L.,  CNRM,  CR  18. Freville,  P.,  OPGC  19. Gourbeyre,  C.,  LaMP,  IR  20. Guichard,  F.,  CNRM,  CR  21. Haeffelin,  M.,  IPSL,  IR  22. Hertzog,  A.,  LMD,  MC  23. Jourdan,  O.,  LaMP,  MC  24. Keckhut,  P.,  LATMOS,  Phys.  25. Lefevre,  F.,  LATMOS  26. Montoux,  N.,  LaMP,  MC  27. Pelon,  J.,  LATMOS,  DR  28. Pommereau,  J.-­‐P.,  LATMOS,  DR  29. Rivière,  E.,  GSMA,  MC  30. Sarkissian,  A.,  LATMOS,  Phys.  31. Schwarzenboeck,  A.,  LaMP,  Prof  32. Scott,  N.,  LMD  33. Seze,  G.,  LMD,  CR  34. Stubenrauch,  C.,  LMD,  DR  35. Szczap,  F.,  LaMP,  MC  36. G.  Tournois,  OHP  37. S.  Turquety,  LMD,  MC  38. Vidot,  J.,  CMS,  CR  

Page 3: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

3/56

 Par  Laboratoire    CMS   CNRM-­‐GAME   GSMA   IPSL   LERMA  J.  Vidot   D.  Bouniol  

F.  Couvreux  F.  Guichard  

E.  Riviere   J-­‐C.  Dupont  M.  Haeffelin  

E.  Defer  

LaMP/OPGC   LATMOS   LMD   LOA    C.  Duroure  P.  Freville  O.  Jourdan  N.  Montoux  A.  Schwarzenboeck  V.  Shcherbakov  F.  Szczap  Y.  Gour  

G.  Ancellet  S.  Bastin  A.  Buzureau  M.  Chiriaco  J.  Delanoe  J.  Jumelet  P.  Keckhut  A.  Garnier  F.  Lefevre  J.  Pelon  G.  Tournois  

R.  Armante  S.  Bony  V.  Capelle  H.  Chepfer  J.-­‐L.  Dufresne  A.  Hertzog  N.  Jacquinet  L.  Menut  V.  Noel  N.  Scott  G.  Seze  C.  Stubenrauch  S.  Turquety  

C.  Cornet  P.  Dubuisson  

 

 http://eeclat.ipsl.jussieu.fr/  

 

Page 4: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

4/56

PROJETS ENGAGESii

CONTEXTE DE LA PROPOSITIONiii

The  main  objective  of  this  proposal  is  to  optimize  coordination  of  the  research  activities  related  to   the   validation   of   the   CALIPSO   mission,   the   scientific   exploitation   of   the   A-­‐Train   (with  emphasis  on  CloudSat  and  CALIPSO),  and  the  preparation  of   the  ESA  EarthCARE  mission  to  be  launched   late   2015.   We   propose   two   scientific   meetings   per   year,   one   focused   on   scientific  exchanges   (autumn-­‐winter   meeting)   and   one   dedicated   to   the   preparation   of   the   following  year’s  proposal  (spring  meeting).    This  is  the  third  EECLAT  proposal  (first  submission  in  April  2011).  This  document  presents  our  results   obtained   in   2012-­‐2013   and  our  propositions   for   2014   and   later.  Note   that   some   tasks  span  several  years.  The  duration  of   this  proposal   is   in  adequation  with  CloudSat-­‐CALIPSO  and  EarthCare  time  plans.  Extended  CloudSat  and  CALIPSO  operations  should  be  confirmed  later  this  year   by  NASA   and  CNES,   and   the   time   left  will   be   dedicated   to   the   preparation   of   EarthCARE  algorithms.  We  also  address  the  transition  between  those  two  missions.    Summary  of  the  proposal    

I.  Introduction  II.  Description  of  the  proposed  work  in  the  mission  context  

A)  The  CALIPSO/IIR  mission  B)  Exploitation  of  A-­‐train  observations  C)  Preparation  of  the  EarthCare  mission  

III.  Scientific  projects  T0)  Follow-­‐up  of  “CALIPSO  Validation”  Proposal  T1)  Local  and  regional  cloud  studies  T2)  Large-­‐scale  and  global  cloud  studies  T3)  Aerosols  T4)  Polar  stratospheric  clouds  T5)  Radiative  transfer  for  A-­‐train  and  Earth-­‐Care  T6)  Airborne  datasets  for  preparation  of  EarthCare  

IV.  List  of  references  mentioned  in  the  text.    V.  Budget  VI.  Publications  using  CALIPSO  and  A-­‐Train  data  by  scientists  in  EECLAT  2011-­‐2013  

 This  proposal  will  be  submitted  to  both  TOSCA  (CNES)  and  LEFE  (INSU),  as  requested  by  them.  In  order   to  help  evaluate   the  different  aspects  of   this  proposal,   sections   II.A  and   II.C  are   to  be  evaluated  by  TOSCA  only,  while  section  II.B  is  to  be  evaluated  by  both  TOSCA  and  LEFE.  This  proposal  has  been  written   in  English   to  be  used  as  a   reference  document   for  discussions  with  ESA.  It   must   be   noted   that   the   scientific   exploitation   of   the   PARASOL   satellite   (which   is   another  component   of   the   A-­‐train)   is   detailed   in   a   companion   proposal.   It   is   foreseen   that   some   joint  scientific  animation  should  be  discussed  between  the  proposants.      

Page 5: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

5/56

DESCRIPTION DETAILLEE DE LA PROPOSITION iv

 I.    INTRODUCTION    The   active   remote   sensors   (lidars   and   radars)   in   orbit   since   2006   have   provided   an  unprecedented  view  of   the  troposphere,  documenting   it  along  the  vertical  dimension  at  a  high  spatial  resolution  (up  to  30m  for  CALIPSO  and  480m  for  CloudSat).  This  simple  but  key  element  for   describing   the   structure   of   the   stratified   atmosphere   was   before   2006   documented   very  indirectly  from  space.  The  vertical  dimension  alone   is,   by   itself,   cutting  edge   information  for  atmospheric  science  studies,  especially  for  clouds  and  aerosols.    As   the   lidar   and   radar   are  part   of   the   A-­‐train   constellation,   they   collect   vertical   information  simultaneously  and  in  collocation  with  mature  passive  remote  sensors  such  as  CERES,  PARASOL,  MODIS  that  provide  complementary  information  like  the  Earth  radiative  budget,  the  amount  and  directionality  of  shortwave  reflected  light,  and  infrared  emitted  radiances.  The  A-­‐train  synergy  allows   documenting   simultaneously   the   macrophysical,   radiative,   and   in   part   microphysical  properties  of  atmospheric  particles:  aerosols,  clouds  and  polar  stratospheric  clouds  (PSC).  The  synergy   of   A-­‐train   observations   opens   new   avenues   for   atmospheric   process   studies   at  regional  and  global  scales.    The   continuous   success   of   these   missions   for   7   years,   has   allowed   the   collection   of   a   large  amount   of   data,   which   can   characterize   seasonal   and   inter-­‐annual   variabilities,   key   for  climate  studies.    Building  from  this  success,   the  forthcoming  European  Space  Agency  (ESA)  Earth-­‐Care  mission  puts  in  perspective  the  following  two  important  next  steps:  (i)  acquiring  more  than  10  years  of  active  remote  sensing  observations  from  space  by  merging  the  A-­‐train  and  the  Earth-­‐Care  data,  which   will   let   us   document   the   decadal   evolution   of   clouds,   aerosols,   and   PSC,   and   (ii)  improve   lidar   and   radar   observation   capabilities   based   on   the   advanced   design   of   AtLid  (EarthCare   lidar   with   High   Spectral   Resolution,   not   included   in   Calipso)   and   CPR   (EarthCare  radar  with  Doppler  capability,  not  included  in  CloudSat)  that  will  provide  new  information  on  atmospheric  particles.    In   this   framework,   the   international   community   has   produced   an   impressive   amount   of   new  scientific   results  based  on   the  analysis  of  A-­‐train  data.  The  design  of   the  A-­‐train  as  well   as   its  scientific   exploitation   is   mostly   supported   by   NASA   and   US   scientists.   The   French   scientific  community   has   been   participating   in   this   effort   for   many   years,   through   the   involvement   of  CNES   in  CALIPSO  (and  PARASOL,  described   in  a   companion  proposal),   its   support  of  CloudSat  research  activities  in  France,  and  its  support  for  instrumental  and  infrastructure  developments  for  the  demonstration  and  validation  of  these  spaceborne  instruments  (e.  g.,  RALI,  SIRTA).  A  list  of   publications   using  CALIPSO   and  CloudSat   data   by   French   scientists   is   given   in   Sect.   V.   This  community  of  remote  sensing  experts  devises  advanced  techniques  for  core  analysis  of  low-­‐level  A-­‐Train  measurements  (with  a  special  focus  on  CALIPSO  and  CloudSat,  and  using  MODIS,  CERES  and   PARASOL).   Their   expertise   on   measurement   technologies   allows   them   to   lead   in   the  research  of  several  well-­‐identified  scientific   issues.  Moreover,   through  the  valuable  experience  gained   by   this   involvement   the   French   community   is   able   to   contribute   significantly   to   the  preparation  of  the  European  Earth-­‐Care  mission.    The  current  proposition  aims  at  presenting  the  current  and  future  work  of  the  French  scientific  community   relevant   to   the   A-­‐Train.   The   activities   presented   in   this   proposal   address   key  questions  on  the  follow-­‐up  CALIPSO  validation  activities  and  nominal  synergistic  products  (T0),  on  four  scientific  research  themes  (T1-­‐T4),  and  two  technical  themes  (T5-­‐T6):  

Page 6: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

6/56

 T0.  Follow-­‐up  of  “CALIPSO  Validation”  proposal  and  nominal  products       Products  developed   in   the   frame  of   the  CALIPSO  mission  are  now  widely  used   in   the  

scientific   community.   They   are   gaining   in   quality   and   in   perimeter   to   better   address  scientific  needs.  The  main  purpose  of  this  task  is  to  describe  follow-­‐up  activities  related  to   the   development   of   the   operational   CALIOP   /   IIR   algorithms,   some   science  algorithms,   the   validation   and   comparison   of   related   products   as   well   as   their  implications   for  ICARE   and   the   objectives   of   the   CALIPSO   mission.   This   task   now  describes,   in   its  second  half,   the   french  development  of   two  CALIPSO-­‐based  products:  DARDAR  and  CALIPSO-­‐GOCCP.  

 T1.  Local  and  Regional  Clouds  Studies  

Clouds  properties  are  macrophysical  (altitude,  spatial  extension,  water  content),  optical  (optical   depth),   microphysical   (particle   size,   shape,   orientation),   and   radiative  (shortwave  and  longwave  fluxes).  They  are  strongly  linked  to  each  other,  and  primarily  driven   by   the   atmospheric   environment   (thermodynamic   and   dynamic).   As   different  regions   provide   different   environments   (i.e.   dry   air   in   polar   regions   compared   to   the  Tropics,   deep   convection   at   low   latitude,   storm-­‐tracks   at   mid-­‐latitude,   interaction  between   surface   and   atmosphere   above   ocean   and   continent,   etc.),   the   processes  leading   to   the   formation,   maintenance   and   dissipation   of   clouds   cannot   be   simply  summed   up   in   one   picture   that   would   be   valid   everywhere.   In   this   theme,   we   take  advantage  of  new  satellite  observations  to  examine  specific  cloud  properties  in  different  regions   (Tropics,   mid-­‐latitude,   poles)   in   relation   with   their   environment   to   better  understand  regional  specificities  of  cloud  processes.    

 T2.  Large-­‐scale  and  Global  Cloud  Studies  

Here,  we  consider  clouds  at  global  scale  (more  directly  relevant  to  climate)  to  explore  large   patterns,   relating   cloud   occurrence   and   properties   to   large-­‐scale   atmospheric  circulation,  or   to   their  global  radiative   impact.  Emphasis   is  put  on  high-­‐level,  optically  thin   ice  clouds,  which   tend   to   trap   infrared  outgoing  radiation   (the  greenhouse  effect,  which   produces   a   net   heating)   and   reflect   poorly   incoming   solar   shortwave   radiation  (the   cooling  albedo  effect)  due   to   their   semi-­‐transparency   (Stephens  et   al.  1990).  The  sign  of  the  net  radiative  forcing  of  these  high  cirrus  therefore  depends  on  their  optical  depth  and  the  vertical  distribution  of  ice  water  content,  concentration,  effective  radius,  shape  and  orientation  of   their  crystals.  Another  emphasis   is  given  to  the  evaluation  of  the   description   of   tropical   boundary   layer   clouds   in   climate   models,   as   they   create  significant   uncertainty   for   estimates   of   future   climate   (Bony   et   al.   2004).   Since   they  document   simultaneously   multiple   variables   at   global   scale,   during   several   years,   at  high   spatial   resolution,   A-­‐train   observations   can   yield   significant   advances   on   these  topics.  

 T3.  Aerosols    

Our   main   purpose   here   is   to   analyze   the   information   provided   by   the   A-­‐Train   and  EarthCare   observations   on   aerosol   sources   (natural   and   anthropogenic)   and   on   the  evolution   of   aerosol   optical   properties   during   transport   on   a   regional   scale   (Euro-­‐Mediterranean  region)  and  at  the  high  latitudes  of  the  Northern  Hemisphere.  The  good  coverage   and   resolution   of   the   data   will   help   understand   and   quantify   the   relative  impact  of  long-­‐range  transport  on  regional  budgets.  Emphasis  is  placed  on  analyzing  the  relative   contribution   of   emissions   from   large   fires.   Wildfires   regularly   emit   large  amounts  of  aerosols  during  the  spring  and  summer  in  Europe  and  boreal  forests.  Their  impact  is  not  well  quantified  in  chemistry  transport  models  due  to  uncertainties  on  the  emissions   (amount   emitted,   size   of   the   particles)   but   also   on   the   injection   height   (as  pyroconvection  may   lift   emissions  above   the  boundary   layer   for   intense   fires)   and  on  the  evolution  during  transport.  Combined  analysis  of  CALIPSO  and  in  situ  observations  

Page 7: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

7/56

in  Russia  will   help   characterize   boreal   fire   plumes   and   their   impact.   Using   horizontal  and   vertical   distributions   of   aerosol   optical   properties   from   A-­‐Train   should   help  improving   the  modeling   of   fire   plumes   and   their   impact.  More   generally,  we  will   use  these  observations   to  conduct  a   full  evaluation  of   the  aerosol  simulation  by  chemistry  transport  models  (CHIMERE  and  MOCAGE).    

 T4.  Polar  stratospheric  clouds  (PSC)  

Polar  Stratospheric  Clouds  (PSC)  are  frequent  above  polar  regions  during  winter.  They  contribute  to   the   formation  of   the  ozone  hole  and  slow  down  its  recovery.  They  differ  greatly  from  tropospheric  clouds,  as  they  contain  ice,  nitric  acid  trihydrate  (NAT),  and  supercooled   ternary   solution   (STS)   particles   formed   through   various   combinations   of  water  vapour,  HNO3  and  H2SO4.  PSC  composition  determines   its   impact  on  ozone   loss.  Due   to   their   hard-­‐to-­‐reach   location,   and   their   difficult   detection   using   passive  instruments,  we  have  a  lot  to  learn  about  how  atmospheric  and  microphysical  processes  drive   their   formation   and   composition.   Here,   we   take   advantage   of   CALIOP's   high  resolution,   sensitivity   to   optically   thin   atmospheric   features   and   ability   to   identify  particle   shape   to   document   the   spatial   cover   and   composition   of   PSC,   and   their  evolution   through   polar   winters.   Using   the   synergy   between   instruments   and   the  excellent   coverage   of   polar   regions   by   the   A-­‐Train,   complemented   by   ground-­‐based  observations  and  atmospheric  modelling,  we  relate  PSC  properties  with  local  and  large-­‐scale   atmospheric   phenomena,   to   describe   processes   that   drive   their   formation   and  composition.  

 T5.  Development  of  radiative  transfer  tools  and  future  products  

For   measurement   calibration,   model   evaluation,   data   assimilation,   and   inversion  algorithm  design,  we  need  to  simulate  Level  1  observations  collected  by  the  lidar,  radar  or   radiometers   part   of   the   A-­‐train   and   EarthCare.   We   need   to   develop   and   adapt  forward   radiative   transfer  models   to   the   specificities  of   each   instrument   (wavelength,  resolution,   sensitivity,   etc.)   for   specific   scientific   applications.   Here,   we   summarize  research   that   aims   to   improve   the   tools   that   are   developed   for   dedicated   application  using  the  A-­‐train  or  EarthCare.  In  most  cases,  mature  tools  are  later  made  available  to  the  community.    

T6.  Datasets  for  EarthCare  preparation         As  the  instrumental  design  of  the  Earth-­‐Care  lidar  and  radar  are  different  from  the  A-­‐

train  counterparts,   level  1  datasets  will  be  different   for   the  two  missions.  We  need  to  examine   carefully   and   understand   properly   the   signal   produced   by   EarthCare  instruments  in  comparison  with  the  A-­‐train  ones,  in  order  to  prepare  future  analyses  of  EarthCare  data.  To  do  so,  we  can  simulate  through  code  the  signal  that  will  be  observed  by   EarthCare,   but   experience   from   previous   missions   suggests   that   acquiring   actual  data  with   actual   instruments   is  much  more   informative   about   the   signal   that  will   be  observed.   Here   our   goal   is   to   build   test   databases   to   train   our   future   analysis   of  EarthCare   data,   using   observations   from   ground   (IPRAL),   airborne   (RALI)   and  spaceborne   (CATS-­‐ISS)   instruments   that   mirror   capabilities   of   EarthCare.   Those  instruments  are  either  new,  in  the  design  stage  or  yet  to  launch,  and  using  their  data  for  Earth-­‐Care  preparation   requires  extensive  prior  analysis.  This  work  will   (i)   stimulate  new  ideas  of  geophysical  information  that  can  be  extracted  from  EarthCare  mission,  (ii)  help  future  algorithms  development,  (iii)  prepare  the  French  contribution  to  validation  plan   of   the   EarthCare   mission,   (iv)   bridge   the   gap   between   CALIOP   and   EarthCare  observations   by   providing   third-­‐party   datasets,   were   EarthCare   to   launch   after   the  CALIOP  mission  ends.    

 The  detailed  scientific  themes,  and  how  we  plan  to  use  the  CALIPSO,  A-­‐train  and  EarthCare  data  to  contribute  to  address  these  themes  are  presented  in  Sect.  III.  

Page 8: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

8/56

II.  DESCRIPTION  OF  PROPOSED  WORK  IN  MISSION  CONTEXT    In   this  section,  we  describe  the  work  to  be  done   in  the  context  of  satellite  missions,  with  the  aim   to   highlight   how   each   mission   contributes   to   the   different   scientific   themes.   We   also  describe  the  articulation  between  the  A-­‐train  and  Earth-­‐Care  missions.    

II.A.  Calipso-­‐IIR  mission      The  French  community  is  in  charge  of  the  IIR  (Infrared  Imaging  Radiometer)  within  the  CALIPSO  mission,  and  this  section  summarizes  the  work  to  be  done  to  validate  IIR  observations  (Levels  1  and   2),   and   the   ongoing   development   of   IIR   algorithms.   The   CALIPSO/IIR   measures   infrared  radiances   in   3   channels   (8.7,   10.5,   12  µm)   collocated  with   the   CALIOP   lidar.     The   algorithms  developed  in  France  and  run  operationally  at  Icare  and  NASA/DAAC  provide  ice  crystal  particle  size,  shape  ratio,  etc.    A1-­‐  Validation   from  airborne  campaigns  of   IIR/CALIOP  data  (Levels  1  and  2),   improvement   to  nominal  algorithms  L2  IIR/CNES  and  L2  CALIOP/NASA.    A2-­‐   Validation   of   CALIPSO   Level   1,   IIR   and   CALIOP   (outside   of   airborne   campaigns,   see   A1):  ground-­‐based  sites,  radiative  transfer  calculations,  satellite  sensors  intercomparisons  A3-­‐  Improvement  and  development  of  nominal  algorithms  IIR/CALIPSO  Level  2  and  3.    The  scientific  contact  for  section  II.A  is  the  CALIPSO  French  PI,  Jacques  Pelon.         II.B.  A-­‐train    The  A-­‐train  contains  6  satellites  flying  in  formation  over  the  same  point  of  the  globe  less  than  10  minutes   apart.   This   proposal   does   not   pretend   to   cover   all   the   scientific   topics   that   can   be  explored  using  A-­‐train  observations,  and  does  not  use  all  A-­‐train  observations.  We  focus  mostly  on   the   two   active   remote   sensing   instruments   for  which  most   of   us   have   a   specific   expertise  based  on  intensive  analyses  of  ground-­‐based  and  airborne  active  remote  sensing  observation  in  pre-­‐A-­‐train  period  and  analysis  of  actual  A-­‐Train  data  since  its  launch.  CALIOP   onboard   the   CALIPSO   platform   is   a   532nm   and   1064nm   lidar   with   polarization  capability,  well  suited  for  clouds,  aerosols  and  PSC  observations.  CPR  on  the  CloudSat  platform  is  a  94GHz  radar  suited  to  study  clouds  and  precipitations.  We  complete  our  scientific  analysis  as  needed  with  AIRS,  CERES,  MODIS,  PARASOL  and  MLS  data,  which  are  part  of  the  A-­‐train.    We  classify  our  A-­‐train  activities  in  four  different  categories:    B1-­‐  Development  of   research  algorithms  (except   the   IIR  nominal  algorithm  mentioned   in  Sect.  A),  from  single  or  multi-­‐sensor  observations,  leading  to  an  end  product.  

B2-­‐   Valorisation   of   A-­‐Train   observations,   using   single-­‐   or   multi-­‐sensor   datasets:   scientific  exploitation   of   A-­‐Train   data   to   improve   our   understanding   of   clouds,   aerosols   and   PSC  through  the  production  of  climatologies,  climatology  intercomparisons,  statistics,  coupling  of  observation  with  reanalyses,  case  studies,  etc.  

B3-­‐   Valorisation   of   observation   synergies:   coupling   of   ground-­‐based,   airborne   and   A-­‐Train  observations   to   improve   our   understanding   of   clouds,   aerosols,   PSC   (except   for   validation  purposes,  see  A1)  

B4-­‐  Valorisation  of  A-­‐Train  observations   to   improve   and  develop  models   (forecasting,   climate  prediction,  air  quality,  etc.),  methodological  development  at  the  model/observation  interface.    

 Scientific  contacts  for  Section  II.B  are  V.  Noel  (LMD)  and  J.  Delanoë  (LATMOS).    

Page 9: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

9/56

    II.C.  EarthCare    The  ESA/JAXA  EarthCare  mission  to  be  launched  late  2015  contains  a  lidar  named  ATLID,  which  differs   from   CALIOP   by   its   wavelength   (355nm   instead   of   532nm)   and   its   High   Spectral  Resolution   capability   (HSR),   a   94GHz   radar   which   differs   from   CloudSAT   by   its   Doppler  capability,   and   a   radiative   budget   radiometer   (MSI)  which  differs   from  CERES  by   its   scanning  capability.    In  the  framework  of  EarthCare,  our  work  mostly  aims  at    

(i) documenting  Earth  with   these   three   instruments   (two  being   active   remote   sensors)   in  continuity  with  what  we  are  doing  for  the  A-­‐train,  in  order  to  get  longer  time  series  that  make  sense  for  interannual-­‐variation  and  climate  studies  

(ii) infering  new   information  on  precipitations   based  on   the  Doppler   radar   capability,   and  new  information  on  aerosols  optical  properties  based  on  HSR  retrievals.  

 We  classify  our  EarthCare  activities  in  6  categories:    C1  -­‐  Validation  of  EarthCare  Level  1  data:  update  validation  methods  based  on  radiative  transfer  calculations  or  colocated  satellite  observations  for  the  EarthCare  mission  C2   -­‐   Algorithmic   development,   adaptation:   update   existing   A-­‐Train   algorithms   to   prepare   the  analysis   of   EarthCare   observations   (different   in   instrument   characteristics:   wavelength,   view,  etc…)  C3   -­‐  Algorithmic  development,  new:  Define  new  algorithms  EarthCare   that  break   free   from  A-­‐Train   constraints   and   are   based   on   EarthCare   specificities   (Doppler   Radar,   High   spectral  resolution  lidar,  BBR  specific  viewing  angles,  etc.)  C4  –  Building  a  pre-­‐launch  test  dataset  to  help  algorithmic  development:  Coupled  HSR  Lidar  and  Doppler  Radar  observations  (ground-­‐based  and/or  airborne)  C5   -­‐   Valorisation   of   EarthCare   observations   in   the   modeling   community:   update   observation  simulators,  comparisation  framework,  etc.  C6   -­‐   Preparation   of   EarthCare   validation   actions:   (1)   airborne  missions   and   (2)   ground-­‐based  observatories.    Scientific  contacts  for  Section  II.C  are  H.  Chepfer  (LMD)  and  J.  Delanoë  (LATMOS),  members  of  the  ESA  Mission  Advisory  Group  (EMAG)  for  Earth-­‐CARE.    

Page 10: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

10/56

III.    SCIENTIFIC  PROJECTS    

 T1  –  Local  and  Regional  Cloud  Studies                        Coordination:  D.  Bouniol  (CNRM)    As  discussed  in  the  introduction,  clouds  and  aerosols  play  a  leading  role  in  weather  and  climate  change  processes.  The  processes   involved  in  their   life  cycle  are  still  poorly  understood.  Radar-­‐Lidar   observations   from   space   analyzed   at   regional   scale   offer   new   perspectives   to   better  understand   cloud   formation,   maintenance,   and   dissipation   and   the   variability   of   dominant  processes  over  different  climatic  regions.    

By  working  at  the  regional  scale,  one  may  ensure  that  sampled  clouds  occur  in  a  given  family  of  meteorological   regime   characteristic   of   the   sampled   region.   In   addition,   a   number   of   field  deployments   (AMMA,   HYMEX,   CINDY-­‐DYNAMO,   POLARCAT...)   implementing   a   large   set   of  airborne  and  ground-­‐based  facilities  took  place  in  the  recent  years.  These  facilities  documented  local   spatial   and   temporal   variability   that   may   not   be   reachable   by   satellite   sampling   and  provide  climatological  references  for  the  satellite  retrieved  products.  

The   representation   of   clouds,   aerosols,   and   their   so-­‐called   direct,   semi-­‐direct,   and   indirect  effects   in   cloud-­‐resolving   models   (CRM),   numerical   weather   prediction   models   (NWP)   and  global   climate   models   (GCM)   is   still   deficient,   despite   a   clear   improvement   of   the   realism   of  cloud   parameterizations.   The   improvement   of   this   representation   of   clouds   and   the   cloud-­‐aerosol  interactions  in  models,  and  the  better  understanding  of  the  impact  of  cloud  and  aerosol  on   radiation   and   dynamics   are   therefore   the   two   major   objectives   for   the   coming   years   or  decades  for  the  international  science  community.  Such  improvement  in  NWP  models  and  GCMs  must   arise   from   a   better   understanding   of   the   physical,   optical,   microphysical,   and   radiative  properties  of   clouds  and   their   interactions  at   local  and  regional   scales,  which   totally  constrain  the  feedback  of  clouds  on  climate.  This  extensive  work  requires  studies  in  very  different  climatic  regions,   using   unique   features   offered   by   ground-­‐based   (long-­‐term   datasets,   cutting-­‐edge  instrumentation   with   more   capabilities   and   possible   synergies),   airborne   (detailed   in-­‐situ  observations   at   the   scale   of   individual   cloud   particles,   targeted   observations  with   in-­‐situ   and  remote  sensing),  and  spaceborne  (full  regional  coverage)  observations.  

In  the  present  proposal,  studies  will  be  conducted:  

1. in   the   Tropics   (T1.1,   T1.2,   and   T1.3),   where  water,   heat,   and   energy   are   redistributed   by  intense  deep  convective  activity,  with  considerable  impact  on  the  Earth  radiative  budget.  

2. at  mid-­‐latitudes  (T1.4  and  T1.5),  where  cutting-­‐edge  long-­‐term  ground-­‐based  data  are  being  collected  to  better  understand  cloud  properties  over  observatories  (SIRTA,  OHP,  OPGC)  and  a   field   experiment   will   identify   cloud   processes   associated   with   extreme   flood-­‐producing  precipitating  systems  (HYMEX).  

3. in  the  arctic  region  (T1.6),  where  the  effects  of  climate  change  are  expected  to  be  largest  in  terms   of   surface   warming   and   where   we   don’t   know   much   about   the   complex   cloud  processes.    

4. in  Antarctica  and  the  southern  ocean  (T1.7),  because  clouds  there  contribute  significantly  to  the  top-­‐of-­‐atmosphere  radiation  balance    and  are  poorly  represented  by  climate  models.  

 Regional   studies   such   as   those   will   allow   for   detailed   processes   to   be   identified   and   will  contribute  to  improve  our  understanding  of  how  these  processes  differ  in  response  to  different  local  or  synoptic  atmospheric  forcing.    

   T1.2  –  Statistical  properties  of  West-­‐African  clouds  and  convection  (AMMA)  using  A-­‐Train  measurements  [B2,  B3,  B4]  

Page 11: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

11/56

Coordination:  D.  Bouniol  (CNRM)  Main  contributors:  D.  Bouniol,  F.  Couvreux,  F.  Guichard,  O.  Geoffroy,  R.  Roehrig,  I.  Beau  (CNRM),  G.  Sèze,  C.  Rio  (LMD),  J.  Aublanc,  R.  Roca  (LEGOS)  

Objectives  Most  of  the  studies  on  tropical  clouds  have  been  carried  out  over  the  Ocean  with  very  little  focus  on   clouds   over   land.   Therefore,   there   is   a   lack   in   the   knowledge   of   clouds   in   the   continental  Tropics   in   particular   over   West   Africa.   Moreover,   this   region   is   particular   sensitive   to   cloud  feedbacks   that   impact   the   surface   processes   and   the   surface   energetic   budget   (e.g.   Betts   and  Viterbo  2005;  Betts  2007;  Garrat  1993).    Here,  we  propose  to  jointly  analyze  multiple  datasets  (in  particular  A-­‐Train,  Megha-­‐Tropiques,  MSG,  GERB,  ground  in-­‐situ  data)  in  order  to  document  and  better  understand  cloud  properties  (notably  their  type  and  occurrence)  and  their  radiative  impact  in  this  region  before  and  during  the  monsoon  period.  The  main  objective  is  by  the  end  to  use   the   satellite   L2   data   set   to   build   a   set   of   climatological   properties   (from   macrophysical  properties   to   heating   profile)   for   the   various   cloud   types   encountered   over   this   region.   This  climatology  may   be   used   to   evaluate   the   representation   of   clouds   in   models   as   well   as   their  associated  effects.  The  predominant  biases  in  NWP  and  climate  models  will  then  be  identified  in  this  major  continental  region  of  the  Tropics.  

By  combining  ground  and  satellite  observations  (Bouniol  et  al.  2012),  we  have  shown  that   the  Niamey   region  was   characterized   during   the   pre-­‐monsoon   and   full  monsoon   by   four   types   of  clouds   (high-­‐level   clouds,   deep   convective   clouds,   shallow   convective   clouds   and   mid-­‐level  clouds).   The   diurnal   cycle   of   each   cloud   category   and   its   seasonal   evolution   has   been  investigated.  The  A-­‐Train  data  were  used  in  order  to  demonstrate  that  these  four  cloud  types  (in  addition  to  stratocumulus  clouds  over  the  ocean)  are  not  a  particularity  of  the  Niamey  Sahelian  area  and  that  mid-­‐level  clouds  are  present  over  the  Sahara  during  most  of  the  Monsoon  season.  In  a  second  step,  the  radiative  impact  of  each  type  of  clouds  at  the  surface  has  been  quantified  in  the  shortwave  and  longwave  range  at  Niamey  with  ground-­‐based  datasets.  

We  now  propose  to  make  use  of  the  elaborated  products  (L2)  from  the  A-­‐Train  data  and  other  platforms,  in  order  to  provide  a  robust  climatology  of  cloud  properties  as  a  function  of  the  cloud  type,  taking  into  account  various  time  scales  (e.g.  Seasonal,  diurnal).    

Concerning   the   deep   convective   clouds,   we   complement   the   A-­‐Train   data   with   results   of   a  tracking  algorithm  (TOOCAN,  Fiolleau  and  Roca,  2012)  applied  to  geostationary  data  to  follow  a  convective  system  from  its  birth  up  to  its  dissipation.  This  algorithm  gives  information  about  the  life   stage  of   the   convective   system  and  allows  projecting   the  various   cloud  properties  derived  from  the  A-­‐Train  in  this  lagrangian  framework  (Fiolleau,  2010).  The  TOOCAN  dataset  exists  for  the  entire  tropical  belt  and  building  the  same  cloud  characteristic  climatology  in  other  tropical  regions   allows   inferring   physical   processes   at   play  within   various   environments   (see   Cetrone  and  Houze,  2009  for  an  illustration).  This  tracking  algorithm  let  us  discriminate,  in  the  A-­‐Train  dataset,  between  high-­‐level  clouds  and  deep  convective  clouds.  Cirrus  cloud  properties  can  then  be  unambiguously  documented.  Bouniol  et  al.  (2012)  have  identified  mid-­‐level  clouds  as  a  major  cloud   type   affecting   this   continental   region.   There   is   a   real   need   to   better   understand   the  mechanisms  involved  in  their  life  cycle  and  the  satellite  data  will  be  used  for  this  purpose.  

This  continental  region  is  particular  for  remote  radiative  budget  measurements  (in  particular  at  the   surface)   since   it   is   affected   by   strong   aerosol   loading   (dust   in   particular,   Prospero   et   al.  2002).  It  is  therefore  of  crucial  importance  to  have  ground-­‐based  measurements  as  reference  for  satellite   estimates.   Radiative   measurements   are   available   at   the   surface   for   several   years   at  various   sites   along   the  meridional   Greenwich   transect   (AMMA   CATCH,   ARM   and   BSRN   sites),  and,   interestingly,   have  also  been   selected   for   climate  model   evaluation  by   the  CFMIP  project,  conducted  within  the  frame  of  the  AR5.  High-­‐frequency  process-­‐oriented  outputs  from  the  AR5  CMIP5   simulations   are   now   available   at   those   points.   We   will   therefore   study   the   radiative  budget   (at   the   surface   and   top   of   the   atmosphere)   at   those   sites   in   relation   to   the   cloud  occurrence   in   observations   and   models   (in   link   with   the   FP-­‐7   EUCLIPSE   project).   Radiative  

Page 12: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

12/56

transfer   calculations  will   also   be   performed  with   an   offline   radiative   transfer   code   to   identify  more  precisely  the  contribution  of  aerosols  and  clouds  in  the  radiation  measurements.  

Results  since  last  update  The  combined  CloudSat-­‐CALIPSO  cloud  profiles  have  been  analysed  and  classified  according  to  the  simple  morphological  criteria  established  in  Bouniol  et  al.  (2012).  As  stressed  by  Hourdin  et  al.   (2009)   this   region   is   characterised  by  a   good   zonal   geometry  and  nearly   each  North-­‐South  sampling  by  the  A-­‐Train  between  10°W  and  10°E  may  be  representative  of  the  0°  North-­‐South  slice.   The   seasonal   evolution   of   the   various   cloud   categories   have   been   documented   and   a  climatology  based  on   five  year  of  measurements   (CloudSat/CALIPSO  measurements)  has  been  built.   Fig.   1.2.1   shows  how   the   total   cloud   cover   is   geographically   structured   according   to   the  various  cloud  categories.  

 Fig.  1.2.1:  Hovmuller  diagram  of  total,  high,  mid,  low  cloud  cover  (from  left  to  right,  rain  and  drizzle  being  excluded)  over  West-­‐Africa  between  April  and  September.  A  1.5°  latitudinal  resolution  is  used  and  a  5  days  

smoothing  is  applied.  

This   climatology   was   used   to   evaluate   the   ability   of   the   climate   models   participating   to   the  CFMIP  project   in   simulating   the  present   and   future   climate  over   this   region.  This   analysis  has  been  jointly  performed  for  the  cloud  radiative  properties  and  the  main  results  are  presented  in  Roehrig   et   al.   (2013).   Fig.   1.2.2a   highlights   the   difficulty   of   climate   models   in   simulating   the  observed  cloud  cover  even   if   the  wide  majority  of   these  models  present  a  reasonable  seasonal  cycle   of   the   West   Africa   Monsoon.   All   models   capture   to   some   extent   the   observed   cloud  structure  with  a  maximum  in  cloud   fraction  related   to   the  deep  convective  systems  collocated  with   the   mean   ITCZ   position,   although   some  models   do   not   reproduce   the   observed   vertical  extent  of  cloud  fraction.  

No  model   reproduced   the  observed  high  amount  of  mid-­‐level   clouds  between  15°N  and  30°N,  even  if  some  of  them  partly  capture  their  occurrence.  Stratocumulus  over  the  Gulf  of  Guinea  are  also  challenging  for  most  models,  as  they  are  often  not  deep  enough  when  they  occur  and  some  models  completely  miss  them.  

Fig.   1.2.2b   shows   how   the   cloud   structure   in   the  model   impacts   the   surface   radiative   budget.  Over  the  Guinea  coast,  more  than  half  of  models  underestimate  the  incoming  shortwave  flux  in  response   to   a   too   thin   and   reflective   cloud   layer.   Within   the   ITCZ,   some   models   strongly  overestimate   this   radiative   flux   and   over   the   Sahara,  most  models   overestimate   the   incoming  shortwave   flux.   Fig.   1.2.2b   pointed   a   clear   deficit   of  mid-­‐level   cloudiness,   which   has   a   strong  impact   in   the   shortwave   (Bouniol   et   al.   2012).   The  description  of   aerosols  may   also   explain   a  

Page 13: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

13/56

large  part  of   the  spread.  The  bias   in   the   incoming   longwave   flux   is  also  strong   (same  order  of  magnitude  as   the   incoming  shortwave)   in   the  Sahara  region.  The   lack  of  mid-­‐level  clouds  may  partly  explain  the  underestimation.  Finally,  one  may  also  note  the  relatively  large  spread  of  the  various  observational  datasets  (black  lines)  displayed  in  these  figures.  

 

 Fig.  1.2.2:  a)  Latitude-­‐height  diagrams  of  cloud  fraction  averaged  between  10°W-­‐10°E,  for  JAS  2006-­‐2010  for  the  CloudSat-­‐CALIPSO  dataset  and  1979-­‐2008  for  the  models.  b)  Downward  shortwave  and  longwave  radiative  flux  at  the  surface  (in  W  m−2),  averaged  over  10°W-­‐10°E,  for  JAS  1979-­‐2008.  Mean  fluxes  for  the  

ground-­‐based  sites  along  the  transect  with  their  yearly  minima  and  maxima  are  indicated.  

Deep  convection  is  an  important  source  of  cloudiness  over  this  region  and  A-­‐Train  products  are  used   to   characterize   cloud   properties   depending   of   the   stage   of   the   life   cycle.   The   convective  systems  are  tracked  using  the  TOOCAN  algorithm  (Fiolleau  and  Roca,  2012)  and  their  life  cycle  may  be  divided  in  ten  steps  using  linear  growth  and  Decay  model  (Fiolleau,  2010).  Depending  on  the  region  considered  in  the  model  (convective  core,  stratiform  or  cirriform  regions)  and  the  life  step,   one   may   examine   cloud   properties   and   the   microphysical   processes   involved   may   be  inferred,  for  instance  from  the  evolution  of  the  distribution  of  reflectivity  as  Fig.  1.2.3  shows  for  the  stratiform  region  of  the  convective  system.  

Note  that,  as  the  systems  mature,  the  reflectivity  tends  to  decrease  with  altitude  corresponding  to   the   occurrence   of   larger   particles   at   cloud   base   (above   the   freezing   level),   suggesting  aggregation   is   involved.  However,  due   to   the  proximity  of   the   convective   core   (and   thus   large  vertical  velocity),  some  growth  through  vapor  deposition  may  be  expected.  The  distribution  of  reflectivity  is  also  broader  (measured  by  the  interquartile  distance)  at  the  beginning  of  the  life  cycle,  suggesting  a  great  variety  of  processes  involved  in  producing  ice  particles.  

Page 14: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

14/56

 Fig.  1.2.3:  Distribution  of  reflectivity  in  dBZ  of  the  stratiform  region  as  a  function  of  altitude  for  the  ten  steps  of  the  convective  system  life  cycle.  Red  line  shows  the  cloud  frequency  of  occurrence  (upper  x-­‐axis),  green  is  the  mean  reflectivity  profile,  blue  is  the  median  and  dashed  blue  lines  give  the  interquartile  difference.  

Revised  work  plan  Most   of   the   work   described   above   is   ongoing   and   will   be   continued   in   the   coming   years,   in  particular:  

§ We  will  use  the  five-­‐year  cloud  climatology  already  developed  to  evaluate  the  cloud  cover  simulated   by   the   CNRM   climate   model.   A   systematic   evaluation   process   is   under  definition  (in  the  framework  of  a  M1  project)  to  make  an  optimum  use  of  the  “satellite  to  model”   or   “model   to   satellite”   approaches   (connection  with   T2.5).   It   appears   from   our  work   that   the   CloudSat/CALIPSO   climatology   is   a   good   tool   to   identify   the   major  drawbacks   of   the   model   and   the   various   A-­‐Train   simulators   are   powerful   to   diagnose  deficiencies   of   the   models   in   region   of   common   occurrence.   This   joint   approach   (still  under  definition)  will  be  used  as  a   reference   to  evaluate  and   improve   the  new  physical  package  of  the  CNRM  model.  

§ The  documentation  and  analysis   of   cloud  processes   involved   in   the  different   regions  of  the   convective   system   as   a   function   of   the   step   of   the   life   cycle   will   be   continued.   In  particular,   elaborated   products   (heating   profiles,   radiative   effect)   will   be   analysed   to  understand   how   the   evolution   of   the   microphysical   processes   modified   the   radiative  properties  at  the  surface  and  at  the  top  of  the  atmosphere,  and  hence  the  radiative  impact  of   the  clouds.  This  analysis  will  be  applied   to   the  whole   tropical  belt,   to  determine  how  the  environment  (continent/ocean,  different  surface  type)  impacts  the  convective  system  life  cycle.  

§ A  particular  attention  will  be  dedicated  to  mid-­‐level  clouds  that  occur  a  large  part  of  the  year   over   the   Sahara   region.   We   expect   that   they   originate   from   different   processes  (convective  origin,  stable  layer...)  as  found  by  e.g.  Riihimaki  et  al.  2012.  It  is  necessary  to  document   the   thermodynamical   environments   associated   with   their   occurrence.   The  FENNEC  data  will  be  particularly  interesting  for  this  purpose  since  dropsondes  have  been  launched   within   such   clouds,   simultaneously   observed   by   airborne   radar.   A   cross  validation   of   their   occurrence   from   ground-­‐based   observation   and   MSG   cloud  classification  will  be  performed,  and  once  validated  the  cloud  classification  product  will  

Page 15: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

15/56

be   used   to   study   the   diurnal   and   intraseasonal   variability   of   these  mid-­‐level   clouds.   At  these  time  scales,  the  CM  SAF  Cloud  Albedo  and  Radiation  dataset  based  on  AVHRR  GAC  data  will  be  used  in  conjunction  with  GERB  data  to  document  the  radiative  effects  of  such  clouds  at  the  surface  and  at  the  top  of  the  atmosphere.    

§ Finally,  we  will   analyze   the   radiative  budget   at   different   locations   along   the  Greenwich  meridional   transect.   For   this   purpose,   a   radiative   transfer   model   will   be   used   and  complementary   calculations   will   be   performed:   clear   and   clean   sky   (to   quantify   the  aerosol   impact   in   clear   sky   profile),   clear   sky,   cloudy   sky   (to   better   quantify   the  respective  importance  of  microphysical  and  macrophysical  properties).  This  work  will  be  done  with  additional  financial  support  from  FP-­‐7.    

 2013   2014   2015   2016  Evaluate  CNRM  model  cloud  cover         Analyze  radiative  budget  along  Greenwich  

transect    

     T1.3   –   Cloud   cover  diurnal   cycle   in   the   tropical   regions:   combined  use  of   geostationary  satellite,  A-­‐Train  and  lidar/radar  ground  station  measurements  [B2]  Coordination  :  G.  Sèze  (LMD)  Main  contributors  :    G.  Sèze  (LMD),  D.  Bouniol,  F.  Couvreux  (CNRM),  J.  Delanoë  (LATMOS)  

Objectives  In   this  work  package,  we  use  active  measurements  of   the  A-­‐train,  geostationary  data  and  LMD  AIRS  cloud  datasets  together  to  characterize  at  first  the  cloud  cover  diurnal  cycle  for  two  regions  over   land   in   the   tropics,   West   Africa/Sahel/Sahara   region   and   Northern   Australia.   When  available,  the  LMD  IASI  cloud  and  aerosol  data  sets  will  be  introduced  in  the  analysis.  Lidar  and  radar   observations   from   ARM   ground-­‐based   stations   will   also   be   introduced   to   further   the  interpretation  of  the  geostationary  dataset  to  describe  the  diurnal  cycle  of  the  cloud  cover  in  the  tropics.  

This  work,   complementary   to   those   proposed   in   T1.2,  will   be   useful   for   the   evaluation   of   the  representation  of  the  diurnal  cycle  of  the  cloud  cover  in  the  LMDZ  global  circulation  model  over  these  two  regions  and  over  some  of  the  119  instrumented  sites  retained  in  the  frame  of  CMIP5  (phase  five  of  the  Cloud  Feedback  Intercomparison  Project).  

Results  since  last  update  The  comparison  of  the  geostationary  (GEO)  cloud  type  classification  and  cloud  top  pressure  field  from   the   SAFNWC   (Satellite   Application   Facility   for   NowCasting)   algorithm   (Derrien   and  Legleau,  2005,  2009)  and  the  CALIOP  lidar  cloud  layer  product,  performed  in  collaboration  with  J.   Pelon     (LATMOS),   M.   Derrien   and   H.   Legleau   (Météo-­‐France),   in   the   frame   of   the   MEGHA-­‐TROPIQUES   mission,   has   led   to   a   paper   submitted   to   the   QJRMS   special   issue   on   MEGHA-­‐TROPIQUES  (see  the  MEGHA-­‐TROPIQUES  proposal).  

 

 

 

Page 16: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

16/56

 

 Fig.  1.3.1:  (left  column)  SEVIRI  cloud  top  pressure  frequency  distribution  for  july  2009  (top  row)  and  july  2011  (bottom  row)  and  for  January  2010  (center  column,  bottom  row),  (center  column  and  top  row)  when  the  sky  is  

cloud  covered,  frequency  of  midlevel  cloud  top  at  2100GMT,  (right  column)  CALIOP  and  SEVIRI  cloud  top  frequency  distribution  for  all  sky  cases  and  the  June  to  September  2009  period  over  the  North-­‐Sahel-­‐Sahara  region  (top  row)  

and  the  North-­‐Africa/Atlas  region  (bottom  row).  

In   collaboration   with   Nada   Sellami,   Enseignant-­‐chercheur   of   the   university   of   Mascara,   the  analysis  of  the  diurnal  cycle  observed  with  SEVIRI/MSG  over  the  North-­‐Africa/Atlas  region  and  the  North  Sahel/Sahara  region  (Fig.  1.3.1)  in  Algeria  was  continued.  The  vertical  distribution  of  cloud  cover,  its  diurnal  and  seasonal  cycles  observed  with  the  SAFNWC  cloud  classification  and  cloud   top   pressure   are   currently   evaluated   for   the   2009-­‐2012   period.   Over   the   North-­‐Sahel/Sahara   region   the   mid-­‐level   is   the   more   frequent   cloud   type   during   the   West-­‐Africa  monsoon  season.  The  top  is  close  to  450hPa  as  observed  from  CALIOP  (Fig.  1.3.1).  During  winter  these   mid-­‐level   clouds   are   rare   and   high-­‐level   clouds   are   more   frequent.   The   cloud   top  distributions  observed  from  simultaneous  and  coincident  data  in  summer  2009  for  CALIOP  and  SEVIRI   point   out   that   SEVIRI   retrievals   underestimate   the   high   cloud   top   altitude   but   more  surprisingly  overestimate  the  mid-­‐level  cloud  top  altitude  (Fig.  1.3.1-­‐  right  column).  

Revised  work  plan  For  the  North  Sahel/Sahara  and  the  Atlas  regions,  we  will  use  the  SAFNWC  SEVIRI/MSG  cloud  dataset  to  finalize  the  analysis  of  the  diurnal  cycle,  the  phases  of  the  seasonal  cycle,  and  its  inter-­‐annual   change.   To   better   interpret/evaluate   the   results,   in   addition   to   CALIOP   data,   CloudSat  data   (and   if  available  LMD  AIRS/IASI  cloud  data)  will  be   introduced   in   the  analysis.    A  similar  study  will  be  engaged  for  North-­‐Australia,  using  the  SAFNWC  MTSAT  cloud  data.  It  will  benefit  from   the   evaluation   of   the   MTSAT   cloud   cover   diurnal   cycle   described   in   the   MEGHA-­‐TROPIQUES  proposal.  

The  cloud  types  and  their  diurnal  cycle  observed  with  the  SAFNWC  SEVIRI/MSG  cloud  data  set  and  the  lidar  and  radar  observations  from  NIAMEY  ARM  ground-­‐based  station  will  be  compared.  Following   previous   work   (see   2012   EECLAT   proposal),   we   will   analyze   the   SEVIRI   radiance  dataset   associated   with   the   ARM   station   cloud   types,   to   improve   the   SEVIRI/MSG   cloud  classification.   A   special   focus  will   be   given   to   the   characterization   of   the  mid-­‐level   cloud   type  properties   as   a   function   of   the   environment   (convective   systems,   AEJ,   boundary   layer).   The  satellite  cloud  data  set  prepared  at  the  CGTD  ICARE  over  the  119  CMIP5  stations  (project  51  in  http://www.icare.univ-­‐lille1.fr/drupal/projects/status/)  will  be  added  in  the  analysis.

 2013   2014   2015   2016  Analyse  cloud  cycles         Improve  SEVIRI/MSG  cloud  classification    

         

Page 17: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

17/56

 T1.7  –  Clouds  in  Antarctica  and  in  the  Southern  Ocean  Coordination:  G.  Cesana  (LMD)    Main  contributors:  G.  Cesana,  H.  Chepfer  (LMD)  

Scientific  context  and  objectives  Climate  models  are  the  major  tool  for  understanding  and  identifying  future  cloud  processes  that  will   appear   within   the   next   century.   Yet,   cloud   feedbacks   still   constitute   the  major   source   of  uncertainties   in   climate   estimates.  Our   confidence   in   the   future   climate   change  projections  by  general   circulation   models   is   linked   to   the   ability   of   these   models   to   simulate   the   present  climate.   Trenberth   and   Fasullo   (2010)   have   shown   that   climate   models   have   large   regional  cloud-­‐related  radiation  biases  including  excessive  shortwave  absorption  in  the  extra-­‐tropics,  but  insufficient  shortwave  radiation  in  the  tropics.  These  regional  shortwave  radiation  biases  have  global   implications   because   they   affect   poleward   heat   transport   and   hemispheric   scale  atmospheric   circulation   patterns.     Indeed,   a   recent   study   (Hwang   and   Frierson,   2013)   found  excessive   shortwave  absorption  over   the  Southern  Ocean  explains  a  ubiquitous   climate  model  tropical  precipitation  bias:  the  double  Inter-­‐tropical  Convergence  Zone  (ITCZ).  

In  this  work  package,  we  want  to  evaluate  and  understand  the  processes  and  the  key  parameters  controlling   21st   century   Southern  Ocean   cloud-­‐climate   feedbacks.   Our   goal   is   to   improve   this  research   using   climate   simulations   during   the   21th   century   together   with   active   sensor   data  (CALIPSO,  Winker  et  al.   [2009];  CloudSat,  Stephens  et  al.   [2002])  and  ground-­‐based  as  well  as  ship-­‐board  observations.    Thanks  to  CALIPSO-­‐GOCCP  cloud  observations  (Chepfer  et  al.,  2010),  it  is  now  possible   to  observe  cloud  vertical  structure  over  reflective  surface  during  a  substantial  period  of  7  years  at  a  high  resolution  and  with  additional  information  on  cloud  phase  and  cloud  optical  depth.    Combining  with  CERES  (Wielicki,  1996)  data  on  TOA  radiative  fluxes  will  allow  us  to   determine   the   statistical   relationships   between   cloud   amount,   cloud  height   and   impacts   on  the   radiation   budget.   This   will   help   to   augment   our   understanding   of   Southern   Ocean  climatology.  

The  use  of   active   sensor   to   improve  our  understanding  of  model   representation  of   cloudiness  and  radiation  has  been  already  used  in  previous  studies  (Kay  et  al  2012;  Cesana  et  al.  2012).  In  the   arctic   region,   most   reliable   observations   of   clouds   were   collected   by   ground-­‐based   sites  (Shupe  et  al.,  2006;  de  Boer  et  al.,  2009)  that  do  not  provide  a  complete  view  of  the  region.  The  new   cloud  product   CALIPSO-­‐GOCCP  derived   from   the  CALIOP   lidar   onboard  CALIPSO   satellite  flying  in  the  A-­‐Train  constellation  can  observe  directly  some  of  the  key  missing  cloud  properties  like   the   cloud   vertical   distribution   at   high   spatial   resolution   (480m),   and   detect   clouds   over  reflective   surfaces   and   over   the   polar   region   equatorward   of   82°.   In   addition   with   the   lidar  simulator   (Chepfer   et   al.,   2008)   it   appears   to   be   a   useful   dataset   to   reveal   systematic   cloud  model   biases   at   regional   and   global   scale   (e.g.   Barton   et   al.,   2012;   Bodas-­‐Salcedo   et   al.,   2012;  Cesana  and  Chepfer,  2012;  Dufresne  et  al.,  2012;  Hourdin  et  al.,  2012;  Kay  et  al.,  2012;  Stephens  et   al.,   2013;  Wang   and   Su,   2013)   and   better   suited   to   model   evaluation   than   other   CALIPSO  products   (Chepfer   et   al.,   2012).  Using   the  new  cloud  phase  diagnosis   of  CALIPSO-­‐GOCCP  used  along   with   a   lidar   simulator   (Cesana   and   Chepfer,   2013),   Cesana   et   al.   (2012)   have  demonstrated:  1)   the   inability  of   a   climate  model   to   accurately   recreate   the   amount  of   liquid-­‐containing   Arctic   clouds   and   2)   liquid   phase   biases   in   this   climate   model   limit   its   ability   to  reproduce  observed  distributions  of  net  surface  radiative  fluxes.  

 

Work  plan  Here   after   a   list   of   the  main   tasks   that  will   be   performed  within   the   next   3   years   listed   as   a  function  of  their  priority  level,  the  year  is  given  for  indication:  

1) Begin  running  and  analyzing  LMDZ  simulations  (2013)  2) Identifying   key   parameters   controlling   21st   century   Southern   Ocean   cloud-­‐climate  

feedbacks  through  simulations  and  observations  (2014)  

Page 18: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

18/56

3) Analyze   CALIPSO/CloudSat/CERES   datasets   over   the   Southern   Ocean   and   compare   to  simulations  on  actual/past  climate  (2014)  

4) Finish  running  and  analyzing  simulations  using  these  satellite  observations  (2014)  5) Publish  results  from  the  simulation  analysis  and  evaluation  against  observations  (2015)  6) Extend  the  analysis  to  other  models  and  other  observations  such  as  ground-­‐based,  in  situ  

and  other  passive/active  sensors  available  at  this  time  (2015-­‐2016)    

2013   2014   2015   2016  LMDZ  runs              

   Analysis  and  evaluation  of  simulations  using  CALIPSO/CloudSat/CERES  datasets      

     

Extension  of  the  analysis  to  other  models  and  observations  

       T2  -­‐  Clouds  at  Large  and  Global  Scale  Coordinator:  V.  Noel  (LMD)    This  theme  groups  projects  that  aim  at  improving  our  knowledge  of  clouds  and  cloud  processes  on   large   and   global   scales   using  A-­‐Train   observations.  Here   several   years   of   observations   are  used   statistically   to   highlight   patterns   in   clouds   behavior   that   make   climatic   sense:   how   do  clouds  at  global  scale  contribute  to  regulate  the  global  climate?  Our  main  scientific  objectives  are  summarized   in   the   figure  below.  Our  work   is   to   (i)  build  new,  or   improving  existing   large  and  global-­‐scale   cloud   climatologies   from   A-­‐train   observations,   taking   advantage   of   synergies  between   instruments,  and  (ii)  analyze   these  climatologies.  Since  building  advanced  algorithms  cannot  be   separated   from   the   scientific   statistical   analysis,   a   constant  back-­‐and-­‐forth   iterative  process  between  level  1  data  and  a  scientific  analysis  of  climatologies  is  required  to  extract  the  best  scientific  information  out  of  A-­‐train  observations.  

As  a  consequence,  work  packages   in  this  theme  contain  heavy  algorithm  development,  applied  to   several   years   of   A-­‐train   observations,   and   pluri-­‐annual,   global-­‐scale   statistical   scientific  analysis   related   to   key  questions   on   the   role   of   clouds   in   climate   and   large-­‐scale   atmospheric  dynamics.   Most   WPs   prepare   analyses   of   Earth-­‐Care   observations   with   the   objectives   (i)   to  merge  A-­‐Train  and  Earth-­‐Care  data  for  long-­‐term  cloud  monitoring  (the  practical  goal  being  to  adapt  our  current  algorithms   to  EarthCare)  and   (ii)   to  explore  advances  offered  by  Earth-­‐care  specificities  compared  to  the  A-­‐train  (i.e.  what  retrievals  are  possible  from  EarthCare  that  were  not  from  the  A-­‐Train).  

Page 19: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

19/56

Recent  observations  of  ice  clouds  from  the  A-­‐Train,  thanks  in  part  to  the  improved  sensitivity  of  the  CALIOP  lidar,  have  deeply  modified  our  understanding  of  their  space  and  time  distributions.  For  instance,  they  revealed  a  considerable  amount  of  subvisible  cirrus  clouds  (SVC)  in  areas  that  were  previously   thought  devoid  of   clouds   (SVC  are   invisible   to  most  passive   remote   sensors).  The  multi-­‐instrument  dataset  from  the  A-­‐Train  let  us  document  in  a  coherent  way  the  properties  of   ice  clouds  at  a  global  scale  (T2.1,  2.2,  2.4)  and  evaluate  the  importance  of  high  tropospheric  ice   clouds   in   the   global   radiative   budget   (T2.4).   Moreover,   in   recent   years   flaws   have   been  progressively   recognized   in   our   understanding   of   ice   cloud   formation.   In   the   traditional   view,  clouds   form  when  water   vapor   levels   rise   above   saturation,  with   a   decrease  below   saturation  after   cloud   formation.   This   is   challenged   by   lots   of   evidence   from   in-­‐situ  measurements   (e.g.  from   the   MOZAIC   experiment)   that   document   stable   supersaturation   in   clear-­‐sky   areas   and  persisting   supersaturation   during   and   after   cloud   formation   (Peter   et   al.   2006),   especially   at  temperatures  below  200K.  While  today  no  consensus  explains  these  observations,  they  suggest  that   atmospheric   models   based   on   the   traditional   view   overestimate   upper   tropospheric   ice  clouds   formation.   Since   these   clouds   are   the  main   dehydration   pathway   for   air  masses   in   the  main   area   of   troposphere-­‐to-­‐stratosphere   transport   (Fueglistaler   et   al.   2009),   wrongly  predicting   their   formation   creates   major   uncertainty   when   investigating   the   unexplained  variations   in   stratospheric  water  vapor   (Fueglistaler   et   al.,   2005),  with  potentially  dire   effects  for   climate   prediction.   In   parallel,   recent   studies   showed   that   requiring   high   supersaturation  (>140%)   before   cloud   formation   in   models   led   to   improved   water   vapor   representation  compared  to  observations  (James  et  al.  2008),  in  line  with  the  in-­‐situ  observed  supersaturation.  Here   we   investigate   the   relevancy   of   several   scenarios   of   ice   cloud   formation   in   regard   with  water  vapor  levels  (T2.2,  2.3).  

 T2.1  –  Ice  clouds:  Statistical  properties  and  forecast  model  evaluation  at  global  scale  [B1,  B2,  B3,  C2,  C3]  Coordination:  J.  Delanoë  (LATMOS)  Main  contributors:  M.  Ceccaldi,  J.  Delanoë  (LATMOS),  R.  Hogan  (U.  Reading),  A.  Protat  (CAWCR),  R.  Forbes  (ECMWF)  

Objectives  Large-­‐scale  models  have  reached  a  high  level  of  complexity,  leading  to  obvious  improvements  in  the  realism  of  the  model  physics  through  the  introduction  of  complex  processes,  which  however  makes   the   evaluation   and   improvement   of   models   increasingly   difficult   (Jakob   2003).   These  models  have  also   large  grid-­‐boxes  (from  15  km  for  the   latest  global  ECMWF  (European  Centre  for   Medium   Range  Weather   Forecasts)   model   to   300   km   for   some   climate  models),   which   is  incompatible  with  a  detailed  description  of  cloud  processes  happening  at  a  much  smaller  scale.  We  need   to  understand   if,   despite   their   limitations,   these  models   can  accurately   represent   ice  cloud   properties,   especially   the   vertical   distribution   of   ice.   Further   evaluations   and  improvements  of  model  performances  and  development  of  new  cloud  parameterizations  must  now   rely   not   only   on   a   better   understanding   of   cloud   processes   (using   detailed   in-­‐situ  microphysical   observations   of   the   nucleation   and   growth   processes),   but   also   on   a   better  understanding  of   the   statistical   properties   of   clouds   and  deep   convection   and   their   variability  (regional,  temporal,  vertical,  or  as  a  function  of  large-­‐scale  atmospheric  or  cloud  regimes,  e.g.,  Su  et  al.  2008;  Marchand  et  al.  2006;  Mace  et  al.  2006b;  Sassen  et  al.  2008;   Jakob  and  Tselioudis,  2003).  

The  main  objective  of  this  work  is  to  characterize   the  statistical  properties  of   clouds  using  unique   radar-­‐lidar   products   developed   at   global   scale   by   LATMOS.   Delanoë   et   al.   (2011)  evaluated   the   statistical   distributions   of   ice   water   content   and   ice   cloud   fraction   from   the  ECMWF   and   UK   Met   Office   models,   exploiting   the   synergy   between   the   CloudSat   radar   and  CALIPSO  lidar.  They  compared  the  global  ice  cloud  occurrence  as  a  function  of  temperature  and  latitude  and  a  global  statistical  comparison  of  the  occurrence  of  grid-­‐box  mean  (IWC)  at  different  temperatures  derived  from  models  and  observations.  Unfortunately,  they  have  been  using  only  

Page 20: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

20/56

the   last   three   weeks   of   July   2006,   which   is   rather   short   to   analyze   annual   and   seasonal  variations.  However  they  have  already  highlighted  model  weaknesses.  

Our  main  objectives  are  1)   to  characterize  these  statistical  properties  using  unique  radar-­‐lidar  products  developed  at  global  scale  by  LATMOS,  2)  to  evaluate  ice  cloud  representation  in  GCMs  using  these  properties  (focusing  on  ECMWF  and  UK  Met  Office  models).  

Description  of  work  The  current  ice  cloud  products  available  from  the  CloudSat  and  CALIPSO  missions  are  either  not  not  accurate  enough  (CloudSat  2B-­‐CWC-­‐RO,  see  Mioche  et  al.  2010;  Protat  et  al.  2010)  or  limited  in  the  amount  of  clouds  included  (no  thick  ice  clouds  for  CALIPSO,  no  thin  cirrus  and  not  much  low-­‐level   clouds   for   CloudSat).   The   strength   of   the   CloudSat-­‐CALIPSO   synergy   has   clearly   not  been   exploited   yet   to   characterize   the   statistical   properties   of   ice   clouds   at   global   scale.   The  DARDAR   product   has   been   developed   by   LATMOS   and   University   of   Reading   (Delanoë   et   al.  2010),  made  operational  by  the  CGTD  ICARE  (Lille),  and  is  now  available  to  registered  users.  A  major  objective  in  this  WP  is  to  develop  the  first   global-­‐scale   radar-­‐lidar   climatology  of   ice  cloud  properties  using  DARDAR.  

To   reach   this   objective,   spaceborne   microphysical   retrievals   will   be   first   refined   using   the  knowledge   gained   in   WP1.1   and   1.7   about   the   statistical   properties   of   the   particle   size  distribution,   and   the   relationships  between   crystal  density,   fall   speed,   and  projected  area  as   a  function   of   maximum   crystal   dimension.   Second,   global-­‐scale   microphysics   retrievals   will   be  obtained   by  modifying   the   current   version   of   the  Delanoë   and  Hogan   (2010)  method   used   at  CGTD   ICARE   (and   possibly   other   simpler   retrieval   methods).   This   part   will   be   addressed   in  WP0.B.  

Our   second   activity   will   be   the   evaluation   of   forecast   models   at   global   scale   using   CloudSat/  CALIPSO.   We   propose   to   evaluate   the   ice   water   content   and   ice   cloud   fraction   statistical  distributions   from   the  ECMWF  and  UK  Met  Office  models,   exploiting   the   synergy  between   the  CloudSat  radar  and  CALIPSO   lidar.  We  will   cooperate  with  R.  Forbes   from  ECMWF  and  extend  the   study   from   Delanoë   et   al.   (2011)   who   were   using   only   the   last   3   weeks   of   July   2006   to  analyze   the   global   ice   cloud   occurrence   as   a   function   of   temperature   and   latitude   in   other  seasons.    We  will   look   at   inter-­‐annual   variability   in   data   already   collected   from  CloudSat   and  CALIPSO  (over  6  years).  We  will  address  aspects  of  the  comparison  not  investigated  in  detail  in  Delanoë  et  al.  (2011),  including:  

1. Assessing   the   representativeness   of   observations.   The   satellite   track   represents   only   a   2D  slice   through  a  3D  model  grid-­‐box  and   there   is  uncertainty  as   to   the  representativeness  of  these  observations  for  a  model  3D  grid-­‐box.  A  statistical  approach  could  be  used  to  evaluate  the   variability   of   the   cloud   properties   and   estimate   an   error   due   to   non-­‐   uniform   filling  (Stiller   2010).   To   do   so   we   will   use   the   IIR   and  WFC   (onboard   CALIPSO)   information   to  describe   the   horizontal   filling   of   the  model   grid-­‐box.   Note   that   radar-­‐lidar  measurements  already  perfectly  describe  the  vertical  properties  of  clouds.  

2. Extending   the   time  period   for   seasonal   and   inter-­‐annual   variations.   In  Delanoe  et   al.   2011  the  focus  was  on  three  weeks  of  data  from  the  observations  and  re-­‐runs  of  the  global  model  simulations   for   July  2006,  sufficient   to   identify   the  main   features  of   the  model-­‐observation  comparison   in   terms  of   global   statistics   and  a  break  down   into   latitude  bands.  We  plan   to  extend  this  study  to  different  seasons  and  different  years  to  assess  seasonal  and  inter-­‐annual  variations.  

 These  tasks  have  not  been  addressed  yet.    2013   2014   2015   2016  DARDAR  evolutions   Model  evaluation  

Page 21: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

21/56

Ice  cloud  statistics      

 

         T2.3  –  Ice  clouds  and  interaction  with  water  vapor  [B2,  B3]  Coordination:  C.  Hoareau  (LMD/Post-­‐doc  CNES)  Contributors:  V.  Noel,  C.  Hoareau,  H.  Chepfer  (LMD)  

Objectives  In   Martins   et   al.   (2011),   we   showed   Subvisible   Cirrus   (SVC)   are   ubiquitous   in   CALIOP  observations  over  the  Tropics,  in  conflict  with  our  current  understanding  of  ice  cloud  formation  that   posits   their   crystals   should   immediately   convert   back   to   water   vapor.   Coupled   with  accumulating   evidence   from   in-­‐situ   measurements   for   sustained   high   supersaturation   inside  cirrus   clouds   and   in   clear-­‐sky   conditions   (Peter   et   al.   2006),   this   suggests   that   unidentified  constituents   and   mechanisms   interfere   with   the   formation   and   growth   of   ice   crystals   (e.g.  Murray,   2008).   This   limits   improvements   in   the   representation   of   ice   clouds   in   atmospheric  models,  and  our  capacity  to  realistically  predict  their  role  as  dehydrators  of  air  before  it  enters  the   stratosphere,  where  water   vapor   is   of   foremost   climatic   importance.   Our   purpose   here   is  thus   to   better   understand   the   mechanisms   driving   the   balance   between   water   vapor  supersaturation  and  ice  cloud  formation  in  the  Tropics.  

Last  year,  our  objectives  were  to  identify  the  formation  mechanisms  of  SVC,  and  to  study  how  they   interact   with   water   vapor,   the   idea   being   that   SVC   form   at   the   absolute   minimum  supersaturation  required  for  nucleation.  Our  results  since  (cf.  below)  suggested  that  SVC  share  formation   mechanisms   with   generic   cirrus   clouds.   Based   on   this   conclusion,   we   stopped   our  investigations  of  SVC  as  a  specific  cloud  family  and  refocused  this  WP.  Our  current  objective  is  now   to   study   how   cirrus   clouds   in   general   interact   with   water   vapor,   by   documenting   how  supersaturation   fluctuate   along   their   lifetime,   and   identify   the   mechanisms   responsible   for  supersaturation  persistence.  

Results  since  last  update  We   extended   and   finalized   the   SVC   study   presented   in   the   last   proposal,   by   investigating   the  relationship   between   all   SVC   observed   by   CALIOP   and   convective   activity   derived   from   the  global   Brightness   Temperature   dataset   MERG,   which   combines   observations   from   5  geostationary  imagers  at  4km  resolution  between  ±60°  since  February  2000.  These  results  were  published  in  Reverdy  et  al.  (2012).  According  to  the  revised  objectives  of  this  WP  (cf.  above),  this  line   of   research   is   dropped,   and   work   to   relate   SVC   formation   with   atmospheric   waves  abandoned.  

The   second   line   of   research   described   last   year,   now   our   main   focus,   proposed   the   study   of  simultaneous   high-­‐resolution   profiles   of   ice   clouds   and   water   vapor   concentration   retrieved  from  the  analysis  of  ground-­‐based  Raman  lidar  observations  in  the  Tropics  (La  Reunion  Island)  to   inform  and   force   simulations   of   supersaturation.   Successfully   conducting   this   simultaneous  retrieval  requires  a  deep  understanding  of  the  new  challenges  posed  by  the  analysis  of  Raman  signal.   Water   vapor   profiles   must   be   carefully   calibrated   using   stable   external   sources   (e.g.  Cryogenic  Frost  point  Hygrometer  sondes),  while  the  simultaneous  retrieval  of  water  vapor  and  cloud   cover   in   the   upper   troposphere   requires   innovative   methodology   that   involves   the  averaging  of  Raman  signals  over  variable   time  periods,   long  enough  to  reach  the  best  possible  signal-­‐to-­‐noise  ratio  but  short  enough  to  still  document  the  temporal  variability  of  atmospheric  layers   (Hoareau   et   al.   2009).  Over   the   past   year,  we   thusly   analyzed   and  documented   several  cirrus  cases  over  La  Reunion.  

Page 22: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

22/56

In   parallel   to   data   analysis,   we   ran   the  Weather   Research   and   Forecasting  model   (WRF)   in   a  domain  centered  at  La  Reunion  to  reproduce  the  prior  observations.  We  used  two-­‐way  nesting  (15,  5  and  1.6km  resolutions)  and  forced  the  model  with  ERA-­‐Interim  reanalysis  every  6h.  We  experimented   with   several   nudging/nesting   configurations   and   microphysical   schemes,  converging  on  choices  that  let  the  model  best  reproduce  our  observations  (Fig.  2.3.1).  

     

 Fig.  2.3.1:  Cirrus  observations  from  Raman  lidar  as  a  function  of  time  and  altitude  (left)  and  simulated  cloud  cover  from  WRF  in  three  configurations  among  those  considered  (rows  2  to  4).  Configuration  2  (row  3)  was  

selected  as  the  most  appropriate.  

 From   there,   we   were   able   to   simultaneously   document   the   evolution   of   water   vapor  supersaturation  and  cloud  cover  from  Raman  observations  and  compare  it  to  simulations.  This  is,  to  our  knowledge,  the  first  time  this  is  attempted.  Although  the  model  correctly  predicts  ice  at  the   altitude   and   period   of   the   observed   cloud,   it   fails   to   reproduce   the   measured   high  supersaturation   (~140%   vs.   a   maximum   of   95%   in   the  model).  We   attribute   this   to   how   ice  cloud  formation  in  the  model  is  based  on  a  subgrid-­‐scale  redistribution  of  water  vapor  based  on  standardized  PDFs  that  fail  to  take  into  account  the  existence  of  high  supersaturation  and  do  not  reflect  reality.  

Revised  work  plan  Ongoing  activities  (2013)  include:  simulating  lidar  observations  from  the  WRF  output  (ACTSIM  tool)  to  provide  a  consistent  basis  for  comparisons  with  measurements,  finalizing  our  choices  of  model  configuration  and  microphysical  scheme.  Future  work  (2014)  involves  extrapolating  our  results   to   the   entire   tropical   belt,   by   identifying   in   the   CALIOP   6-­‐years   dataset   cirrus  observations   that   take  place   in  similar   thermodynamical  contexts  and  synoptic  conditions.  We  also   intend  to  port   this  study  from  La  Reunion  to  the  midlatitudes,  using  the  new  Raman  lidar  IPRAL,   whose   installation   at   the   SIRTA   (Site   Instrumental   de   Recherche   par   Télédétection  Atmosphérique)   is   planned   in   2013   and   which   will   mirror   the   one   from   La   Reunion.   Such  measurements   that   allow   the   parallel   retrieval   of   high-­‐resolution   cloud   properties   and  water  vapor  in  the  UTLS  do  not  yet  exist  in  France.  

 2013   2014   2015   2016  Simulate   lidar   obs  from   WRF   with  ACTSIM  

Extrapolate   results   to  global  

   

  Port  study  to  midlatitudes      

   T2.5   -­‐  Evaluation  of  clouds   in  climate  models  using  A-­‐train/EarthCare  observations   [B1,  B2,  B4,  C2,  C5]  Coordinator:  H.  Chepfer  (LMD)  Contributors:   H.   Chepfer,   S.   Bony,   J.-­‐L.   Dufresne,   G.   Cesana,   M.   Reverdy   (LMD),   D.   Winker  (NASA/LaRC,  PI  CALIOP),  D.  Tanré  (LOA,  PI  Parasol)  

Page 23: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

23/56

Objectives  The  Fourth  Assessment  Report  (AR4)  of  the  Intergovernmental  Panel  on  Climate  Change  (IPCC)  reaffirms  that  cloud-­‐climate  feedbacks  remain  one  of  the  largest  sources  of  uncertainty  in  global  climate   model   projections   for   the   21st   century   response   to   anthropogenic   radiative   forcing.  Climate  models   still   predict   a  wide   range  of   cloud   radiative   feedbacks   (Soden   and  Held  2006,  Webb   et   al.   2006,   Ringer   et   al.   2006).   Differences   in   the   strength   and   even   sign   of   these  feedbacks   are   the   dominant   contributor   (by   a   factor   of   three   or   more)   to   the   uncertainty   in  model-­‐based  estimates  of  climate  sensitivity,  both  for  equilibrium  and  transient  climate  changes  (Dufresne  and  Bony  2008).    

Our  objective  is  to  reduce  uncertainties  in  the  representation  of  cloud  processes  and  feedbacks  in   climate   models.   We   will   achieve   this   by   first   developing   systematic   evaluations   of   the  representation  of  clouds  by  models  in  the  CMIP-­‐5  intercomparison  project  in  support  of  the  next  IPCC  assessment   report.  These  process-­‐based  evaluations  make   innovative  use  of   space-­‐based  active   remote   sensing.   They   clarify   which   cloud   types   and   processes   are   responsible   for   the  climate  sensitivity  spread  in  current  climate  models,  help  target  process-­‐level  understanding  to  improve  the  representation  of  these  key  cloud  types  and  processes,  and  guide  the  development  of  new  climate  model  experiments  to  test  our  understanding.    

Evaluating   model   output   in   a   process-­‐oriented   manner   is   complicated,   particularly   when  satellite  retrievals  are  the  primary  evaluation  dataset.  There  is  no  unique  definition  of  clouds  or  cloud   types   in  models   or   in   observations.   To   compare  models  with   observations,   and   even   to  compare  models  with  each  other,  we  must  use  a  consistent  definition  of  clouds.  By  using  model  outputs  to  define  quantities  that  are  actually  observed  (rather  than  inferred)  from  satellites  (e.g.  visible/infrared  radiances,  radar  reflectivities  or  lidar  backscattered  signals),  software  packages  known   as   simulators   let  models   and   observations   speak   the   same   language   and  be   compared  quantitatively.   The   ISCCP   simulator,   now   routinely   used   by  many  modelling   groups,   has   been  very  valuable   to   compare  models  with  each  other  and  with  observations   from  passive   remote  sensing   instruments,   to   point   out   systematic   biases   of   climate   models,   and   to   analyse   cloud  feedbacks  (e.g.  Webb  et  al.  2001,  Zhang  et  al.  2005,  Webb  et  al.  2006,  Williams  and  Tselioudis  2007,  Williams  and  Webb  2008).  Comparing  GCM  outputs  with  CALIPSO  observations  (Chepfer  et  al.  2008)  and  CloudSat  radar  reflectivities  (Haynes  et  al.  2007,  Bodas-­‐Salcedo  et  al.  2008)  has  shown   the   great   potential   of   these   measurements   for   revealing   systematic   biases   in   the  simulated  clouds.    To  take  advantage  of  these  new  measurements,  new  simulators  are  required.  For   this   purpose,   CFMIP   has   been   developing   the   CFMIP   Observational   Simulator   Package  (COSP),   a   package   that   currently   consists   of   three   simulators:   ISCCP,   CloudSat   and   CALIPSO-­‐PARASOL.   The   CALIPSO-­‐PARASOL   simulator   (CAPSIM)   is   developed   at   LMD   (see   T5.4   in   this  proposal).  http://www.cfmip.net/  

LMD  also  produces  and  distributes  to  the  model  community  “GCM-­‐oriented  products”  based  on  observations   from   CALIPSO   (Chepfer   et   al.   2010;   see   T0B)   and   PARASOL,   that   are   fully  consistent  with  diagnostics  derived  from  COSP  CALIPSO  and  PARASOL  simulators  (Chepfer  et  al.  2008,   http://climserv.ipsl.polytechnique.fr/cfmip-­‐atrain.html),   e.g.   3D   cloud   fraction   on   40  vertical   levels   from   CALIPSO   or   mono-­‐directional   reflectance   associated   with   several   solar  zenith  angles  from  PARASOL.  

Results  since  last  update  Numerous  results  were  obtained  based  on  COSP  and  CALIPSO-­‐GOCCP.  Most  significant  are:  

i)  We  evaluated  the  LMDZ5  tropical  boundary  layer  clouds  against  A-­‐train  observations  (Konsta  et  al.  2012,  and  Konsta  et  al.  in  revision)  

ii)  We  evaluated  the  transition  between  liquid  and  ice  clouds  in  LMDZ5  against  CALIPSO-­‐GOCCP  observations   (Cesana   and   Chepfer   2013).   We   showed   that   phase   transition   is   about   10°   too  warm   in   LMDZ5.   Moreover,   CALIPSO-­‐GOCCP   has   pointed   out   that   many   low-­‐level   liquid-­‐containing   Arctic   clouds   above   continental   surfaces   are   not   reproduced   by   climate   models  (Cesana  et  al.  2012)  and  bias  the  radiative  fluxes  reaching  the  surface.  

Page 24: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

24/56

iii)  We  evaluated  the  cloud  cover  and  the  3D  distribution  of  clouds  simulated  by  climate  models  (Cesana  and  Chepfer,  2012).  Fig.  2.5.1  shows  an  example.  

iv)  We  identified  systematic  errors  in  the  simulation  of  clouds  and  radiation,  and  compensating  errors  (e.g.  between  predicted  cloud  fraction  and  optical  thickness)  in  the  simulation  of  top-­‐of-­‐atmosphere  radiative  fluxes  (Nam  et  al.  2012).  

 

Fig.  2.5.1:  Arctic  low  level  cloud  cover  (a)  observed  by  CALIPSO-­‐GOCCP  (b-­‐f)  simulated  by  five  climate  models+COSP  simulator.  From  Cesana  and  Chepfer,  GRL,  2012.  

Revised  Work  plan  Process-­‐oriented  evaluation  

Process-­‐oriented  evaluations  of  the  description  of  clouds  in  GCMs  using  A-­‐train  observations  are  under  way.  Some  focus  on  the  representation  of  the  boundary  layer  clouds  in  the  tropics,  others  are  related  to   the  description  of   the   ice-­‐liquid   transition   in  polar   tropospheric  clouds.   In   these  studies,   we   use   statistical   relationships   between   different   clouds   variables   at   high   spatio-­‐temporal   resolution   to   mimic   the   behavior   supposed   to   be   produced   by   the   model’s  parameterization.   These   observational   relationships   are   built   by   accumulating   years   of  instantaneous   data   (no   averaging   in   time)   at   a   ~hundreds   meters   spatial   resolution   (no  averaging   in   space).   By   doing   so,   observations   not   only   evaluate   the   cloud   description   in   the  model,   but   also   improve   the   clouds   scheme   in   GCMs,   and   propose   inputs   for   model  developments.  Thus  observations  contribute  to  improve  the  realism  of  GCM  cloud  schemes.  

Inter-­‐annual  variability  

The  10-­‐years  CALIPSO  data  that  will  be  collected  allow  studying  the   inter-­‐annual  variability  of  cloud   properties   (detailed   vertical   structure,   clouds   above   continents   and   snow/ice   surfaces,  etc.)  that  were  not  observed  with  passive  remote  sensing.  We  will  analyze  these  observations  i)  

Page 25: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

25/56

to   understand   cloud   natural   variability   and   ii)   to   explore   which   observed   cloud   variables   on  what  minimum  period  would  be  required  to  identify  a  signature  of  atmospheric  change  due  to  anthropogenic  forcing.    

 

2013   2014   2015   2016                                      Process-­‐oriented  evaluation                                                        Interannual  variability  studies    T3.  Aerosols    Coordination:  S.  Turquety  (LMD),  G.  Ancellet  (LATMOS)    The   main   purpose   of   this   task   is   to   analyze   the   information   provided   by   the   A-­‐Train   and  EarthCare  observations  on  aerosol  sources  (natural  and  anthropogenic)  and  on  the  evolution  of  aerosol  optical  properties  during  transport  on  a  regional  scale  (Euro-­‐Mediterranean  region)  and  at  the  high  latitudes  of  the  Northern  Hemisphere.  The  good  coverage  and  resolution  of  the  data  will  help  better  understand  and  quantify  the  relative  impact  of  long-­‐range  transport  on  regional  budgets.   A   particular   emphasis   will   be   placed   on   the   analysis   of   the   relative   contribution   of  emissions  from  large  fires.  Wildfires  regularly  emit  large  amounts  of  aerosols  during  the  spring  and  summer  in  Europe  and  in  boreal  forests.  However,  their  impact  is  still  not  well  quantified  in  chemistry  transport  models  due  to  uncertainties  on  the  emissions  (amount  emitted,  size  of  the  particles)   but   also   on   the   injection   height   (as   pyroconvection   may   lift   emissions   above   the  boundary   layer   for   intense   fires)   and  on   the  evolution  during   transport.  Combined  analysis  of  CALIPSO  and  in  situ  observations  in  Russia  will  help  characterizing  boreal  fire  plumes  and  their  impact.  Using  both  horizontal  and  vertical  distributions  of  aerosol  optical  properties  from  the  A-­‐Train   observations   should   then   help   improving   the  modeling   of   fire   plumes   and   their   impact.  More   generally,   these   observations   will   be   used   to   conduct   a   full   evaluation   of   the   aerosol  simulation  by  chemistry  transport  models  (CHIMERE  and  MOCAGE).  

This  task  proposes  three  work  packages  to:    

1. Analyze   transport   from   different   sources   (wildfires,   anthropogenic   and   dust)   towards  the  high  latitudes  of  the  Northern  Hemisphere  using  a  combination  of  satellite  and  in  situ  observations,  and  with  transport  model  simulations  to  attribute  sources  (3.1)  

2. Analyze  the  capabilities  of  a  state-­‐of-­‐the-­‐art  air  quality  model  (CHIMERE)  to  simulate  the  distributions  observed   from  space,   and  quantifying   the   relative   contributions   from   the  different  sources  (anthropogenic,  biogenic,  dust,  fires)  (3.2)  

3. Validate   the   aerosol   version   of   the   MOCAGE   global   chemistry-­‐transport   model   and  quantify  the  impact  of  the  long  range  transport  towards  the  Euro-­‐Mediterranean  region  (3.3)  

The  analysis  of  satellite  observations  with  models  requires  the  development  of  comparison  tools  (observation   simulation).   Databases   of   in-­‐situ   aerosol   measurements   will   be   obtained   from  existing   and   forthcoming   airborne   campaigns.   Complementary   with   other   missions  (IASI/METOP  for  instance)  will  be  also  be  used.    

Page 26: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

26/56

       T3.2       Evaluation   of   aerosol   description   in   a   regional   chemistry-­‐transport   model  (CHIMERE)  using  remote-­‐sensing  observations  [B1,  B2,  B3,  B4,  C2,  C5]  Coordinators:  S.  Turquety  (LMD)  Main  Contributors:  S.  Turquety,  L.  Menut  (LMD),  Y.  Kim  (CDD  CNES),  G.  Rea  (PhD  KIC/UPMC)  

Objectives  Our   scientific   objective   is   to   take   advantage   of   the   complementary   observations   from  passive  and   active   remote   sensors   to   better   understand   and   quantify   the   relative   impact   of   the  main  aerosol  sources  on  regional  air  quality  in  the  Euro-­‐Mediterranean  region.  An  emphasis  is  placed  on   the   large   emissions   from   fires   and   dust,  which   are   particularly   difficult   to   simulate   due   to  their  sporadic  nature  and  large  uncertainties  on  the  driving  processes.    

For   this   purpose,   regional  model   simulations  will   be   compared  with   the   aerosol   distributions  retrieved   from   complementary   instruments,   taking   advantage   of   both   the   good   horizontal  coverage   and   resolution   of   passive   instrumentation   (MODIS,   PARASOL   in   the   A-­‐Train,  MSI   on  EarthCare),  and  the  vertical  profiling  capabilities  of  the  lidars  (CALIOP  and  ATLID).  In  addition,  ground-­‐based  observations  (AERONET  network  sunphotometers  and  EARLINET  network  lidars)  will   be   used.   This  will   allow   the   evaluation   and   improvement   of   current   parameterizations   of  aerosol   transport   (advection,   convection),  but  also  of   their  evolution  during   the   transport.  We  will  study  the  link  between  meteorology,  aerosol  transport  and  properties,  in  order  to  infer  the  impact   of   different   sources   (both   local   sources   and   from   long   range   transport)   on   regional  particulate  matter  pollution  budgets  (PM2.5,  PM10).  The  main  objectives  are  to  evaluate:  

• Regional  emissions;  • The  transport  and  evolution  of  aerosol  plumes  in  the  model  (size  distributions  in  particular);    • The   temporal  variability  of   the   impact  of   the  main  sources   (especially  natural   sources   like  

mineral  dust  and  wildfires).  The  comparison  using  A-­‐Train  observations  provides  insights  on  current  capabilities  of  satellite-­‐based  passive  and  active  remote  sensing  to  help  constrain  chemistry-­‐transport  models.  Based  on  these  analyses,   the  expected  additional  scientific  contribution  of   the  EarthCare  mission  will  be  analyzed,  and  the  methods  developed  adapted  for  the  preparation  of  systematic  analysis  of  the  data  as  soon  as  they  are  available.  This  study  also  allows  a  complete  intercomparison  of  aerosol  properties  derived  from  complementary  instrumentation.  

This  study  is  based  on  the  CHIMERE  chemistry  transport  model  (Menut  et  al.,  2013).  This  model  allows   a   full   simulation   of   the   aerosol   impacts   on   pollution   budgets   and   radiative   forcing   for  

Page 27: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

27/56

regions   combining   several   contributions   (anthropogenic,   biogenic,   mineral   dust   and   biomass  burning)  for  primary  emissions  and  secondary  aerosol  formation,  extending  from  the  surface  to  200hPa   (~   top  of   the   troposphere).   In   addition   to   the   improvement  of   the  model   simulations,  our  objective  is  to  work  on  methods  for  accurate  comparisons  between  model  simulations  and  satellite  observations,  fully  accounting  for  the  instrumental  characteristics.    

We   will   also   work   on   the   constraint   provided   by   observations   alone   on   surface   PM  concentrations  in  a  context  of  air  quality  monitoring.  This  work  will  be  done  in  the  framework  of  the   PhD   thesis   of   Geraldine   Rea   (ED129,   UPMC,   Climate-­‐KIC   fellowship   in   collaboration   with  Hygeos).    

Results  since  last  update  

OPTSIM  Software  development  

We   have   developed   software   to   compare   model   aerosol   simulation   to   the   available   satellite  observations   that   can   be   adapted   to   several   instruments   and   models.   Our   approach   aims   at  directly  comparing  to  the  level  1  lidar  observations,  hence  rather  simulating  observations  from  the  model  outputs  than  using   level  2  retrievals  (which  may  rely  on  conflicting  assumptions  on  aerosol  properties).  This  tool  builds  on  work  previously  done  in  the  group  (Hodzic  et  al.,  2007;  Vuolo   et   al.,   2009)   fully   described   in   Stromatas   et   al.   (2012).   It   is   easily   adaptable   to   the  EarthCare  mission,  once  the  corresponding  characteristics  are  known  precisely.  A  user’s  guide  is  currently   being   written   by   Y.   Kim   (CDD   CNES   on   this   proposal)   and   the   software   will   be  distributed  via  a  dedicated  web  page  (www.lmd.polytechnique.fr/optsim).  

The  development  of  OPTSIM  and  most  of  the  analyses  described  below  have  been  undertaken  in  the  framework  of  the  thesis  of  Stavros  Stromatas  (CNES/ADEME  fellowship),  to  be  defended  in  May  2013.    

Analysis  of  aerosol  variability  in  the  Euro-­‐Mediterranean  region  

The  spatial  and   temporal  variability  of  aerosol  observations   in   the  Euro-­‐Mediterranean  region  has  been  analyzed  using  both  surface  measurements  from  the  AIRBASE  network,  ground-­‐based  remote  sensing  from  the  AERONET  network,  and  satellite  measurements  from  MODIS.  Fig.  3.2.1  shows  the  seasonal  AOD  from  MODIS.  This  analysis  has  highlighted  the  general  seasonal  cycle  of  the  AOD,  with  values  between  0.1  and  0.5,  reaching  a  maximum  during  summer  (while  surface  concentrations  reach  a  maximum  in  winter).  Higher  values  are  observed  North  of  40°N  with  a  dominance  of  the  fine  mode  fraction  (more  than  50%  of  the  total  AOD),  while  AOD  South  of  40°N  are  mainly  in  the  coarse  mode.  The  coarse  mode  is  also  predominant  in  the  Western  part  of  the  domain,  and  smaller  particles  are  observed  in  Eastern  Europe.  About  half  of  the  highest  values  are  observed  in  the  Mediterranean  area  and  are  associated  to  the  long-­‐range  transport  of  dense  plumes   (dust   and   fires).   Finally,   while   AIRBASE   observations   have   shown   an   apparent  decreasing  trend  in  surface  concentrations,  due  to  decreasing  anthropogenic  emissions,  no  trend  is  observed  for  the  AOD  from  either  AERONET  or  MODIS,  again  suggesting  a  significant  impact  of  natural  extreme  events.    

 

Page 28: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

28/56

Fig.  3.2.1  –  Seasonal  average  of  the  MODIS  total  AOD  at  550nm  based  on  the  2004-­‐2010  observations.    

Work   is   currently   ongoing   to   analyze   aerosol   layers   properties   in   the   Euro-­‐Mediterranean  region  based  on  the  lidar  observations  from  the  EARLINET  network  and  the  CALIPSO  mission.    

Evaluating  fire  plume  modeling  in  the  CHIMERE  model  

A   particular   focus   during   the   past   year   was   the   evaluation   and   understanding   of   aerosol  properties   in   fire  plumes,  using  the  case  study  of   the  summer  2007  during  which   intense  fires  burned  in  Southern  and  Eastern  Europe.  Comparisons  to  surface  and  satellite  observations  show  that  the  fire  plumes  general  transport  pathways  are  well  captured  but  that  the  emissions  tend  to  be  overestimated  in  Eastern  Europe,  and  underestimated  in  the  Mediterranean  area  during  the  most  intense  events.  A  slight  temporal  shift  is  the  fire  activity  can  also  have  consequences  on  the  conclusions   since   the   core   of   the   plume  may   be   displaced.   Comparisons   to   lidar   observations  have  shown  that,  although  plumes  are  simulated  at  correct  altitudes,  too  large  diffusivity  (both  horizontally  and  vertically)  in  the  model  may  explain  part  of  the  underestimate.    

 Fig.  3.2.2  –  Comparisons  between  CHIMERE  and  CALIOP  attenuated  backscatter  during  the  long-­‐range  

transport  from  Greek  fires  in  August  2007.    

In   complement,   a   complete   evaluation   of   the   importance   of   pyroconvection   in   the   Euro-­‐Mediterranean   region   has   been   started   (part   of   the   thesis   of   Geraldine   Rea),   combining   the  information   on   aerosol   plume   height   observations   from  MISR   and   CALIOP  with   fire   detection  from  MODIS.  This  database  will  be  used  to  evaluate  parameterizations  of  thermal  plume  lofting  in  the  CHIMERE  CTM.      

Revised  work  plan    

Analysis  of  aerosol  budget  in  the  Euro-­‐Mediterranean  region  using  CHIMERE    

We   will   conduct   a   full   sensitivity   analysis   with   the   CHIMERE   CTM   to   evaluate   the   driving  contributions   to   surface   concentrations   and   to   total   and   fine  mode  AOD.  This   analysis  will   be  undertaken   based   on   simulations   for   one   winter,   one   spring   and   one   summer   month,   and  turning  off  one  source  at  a  time  (anthropogenic,  biogenic,  fire  emissions,  secondary  production,  

Page 29: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

29/56

etc.)   Intra-­‐model   comparisons   and   comparisons   with   the   observations   for   both   surface  concentrations,  AOD  and  lidar  attenuated  backscattered  signal  will  allow  us  to  fully  evaluate  the  capabilities  of  CHIMERE  in  representing  the  main  driving  processes.  This  work  will  be  focused  on  the  Mediterranean  region  and  done  in  the  framework  of  the  thesis  of  Geraldine  Réa.    

Constrain  surface  PM  from  satellite  observations  

Another  underlying  objective  of  the  CHIMERE  sensitivity  study  described  above  is  to  analyze  the  link  between  surface  concentrations  and  total  AOD  in  order  to  evaluate  the  possibilities  to  use  satellite  observations  to  constrain  surface  PM,  that  are  monitored  for  air  quality.  As  a  first  step,  the   PM/AOD   relationships   in   the   model   simulations   will   be   confronted   to   the   satellite  observations.  The  complementary  constrain  from  lidar  observations  will  also  be  explored.      

EarthCare  

The   observation   to   model   comparison   tool   will   be   adapted   to   the   new   instrumental  characteristics  as  they  become  available.  The  additional  scientific  return  will  then  be  evaluated  using   an  observation   system  simulation  experiment   (OSSE)   approach,   i.e.   simulating   synthetic  observations.    

2013   2014   2015   2016  

  Aerosol   budget   using  CHIMERE  

Earth-­‐Care  adaptation    

  Constrain  surface    PM  from  satellite  

   

   T3.3   Improvement   of   aerosol   representation   in   the   chemistry   and   transport   model  MOCAGE  [B3,  B4]  Coordinators:  L.  El  Amraoui  (CNRM-­‐GAME)  Contributors:  L.  El  Amraoui,  B.  Sic  (PhD),  CDD-­‐IR  (to  be  financed  within  this  project)  

Objectives  MOCAGE   is   the   chemistry-­‐transport   model   (CTM)   of   Météo-­‐France,   able   to   represent   the  distribution   of   chemical   species   and   aerosols   simultaneously   in   the   troposphere   and  stratosphere.    

The   current   version   of   MOCAGE-­‐aerosol   contains   several   types   of   primary   aerosols:   black  carbon,  dust  and  sea  salt,  plus  one  secondary  type:  sulfate.  In  addition  to  turbulent  diffusion  and  convective  and  large-­‐scale  transport,  aerosols  are  usually  subject  to  specific  phenomena,  which  take   into   account   the   size   and   nature   of   the   considered   particles.   Gravity,   precipitations   and  erosion  induce  the  removal  of  particles  from  the  atmosphere  and  are  considered  in  MOCAGE.  On  the  other  hand,  some  phenomena  cause  the  physical  and  chemical  processing  of  aerosols.  In  this  regard,   only   the   hygroscopicity   of   marine   aerosols   is   parameterized   in   MOCAGE.   Finally,  emissions   are   taken   into   account   by   cadastres   or   fixed   models   to   calculate   the   particle   flux  entering   the   atmosphere   based   on   meteorological   conditions   and   the   state   of   the   vegetation  (Martet,   2009).   MOCAGE   assumes   aerosols   are   externally   mixed.   The   individual   species   are  assumed  to  coexist  in  the  considered  air  volume  as  a  first  approximation.    

The  overall  goal  of  this  project  is  to  improve  the  representation  of  different  aerosol  components  in   MOCAGE   at   regional   and   global   scales.   The   approach   will   consist   on   2   steps:   i)   Compare  MOCAGE  outputs   to  A-­‐train  observations   in   terms  of  Aerosol  Optical  Depth   (AOD)   in  order   to  evaluate  the  model  with  respect  to  the  aerosol  load.  This  will  give  an  idea  about  the  behaviour  of  MOCAGE   depending   on   different   aerosol   types.   ii)   Compare   MOCAGE   fields   to   CALIOP  measurements   in   terms  of  backscatter  profile.  This  will   evaluate  how  the  model   simulates   the  

Page 30: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

30/56

aerosol   vertical   concentrations   during   a   dust   outbreak   event   or   a   volcanic   eruption.   These  results  will  be  useful  to  authorities  that  take  decisions  regarding  the  air  quality  standards,  and  to  civil  aviation  safety.  

Results  since  last  update  Insertion  of  volcanic  aerosol  into  MOCAGE  

Volcanic  emissions  are  an   important  source  of  aerosol   in  the  troposphere,  and  have   important  implications   for   the   Earth’s   radiation   budget   at   various   temporal   and   spatial   scales.  Volcanogenic   aerosol   can   also   transport   trace   metals   and   other   pollutants,   with   impacts   on  terrestrial  ecosystems  and  human  health  on  local  to  regional  scales  (e.g.,  Delmelle,  et  al.,  2001).  Besides,   airborne   volcanic   ash   from   eruptions   is   a   major   threat   to   aviation   (e.g.,   Miller   and  Casadevall  1999;  Simpson  et  al.  2000).   It   can  provide  direct  aerosol   transport   into   the  middle  and  upper  troposphere  in  larger  concentrations,  which  may  be  harmful  to  aircraft.  It  is  thus  very  important  to  understand  the  evolution  and  the  long-­‐range  transport  of  these  pollutants  in  order  to  assess  their  impact  on  the  tropospheric  chemistry  and  on  aviation  safety.  In-­‐situ  and  satellite  observations   can   be   assimilated   into   chemistry   and   transport  models.   This   leads,   on   the   one  hand,   to   a   feedback   that   is   expected   to   improve   forecasting,   and,   on   the   other   hand,   provides  more   consistent   datasets.   Météo-­‐France   is   the   ninth   VAAC   (Volcanic   Ash   Advisory   Centre),  designated   by   the   International   Civil   Aviation   Organization   to   provide   their   expertise   to   civil  aviation   in   case  of   significant   volcanic   eruptions.  This  project  well   fit   into   efforts  deployed  by  Météo-­‐France   to   accurately   predict   the   evolution   of   volcanic   aerosol   in   case   of   huge   volcanic  eruptions.  

We  have  worked  on  the   insertion  of   the  volcanic  aerosol   into  the  MOCAGE-­‐aerosol  model.  The  first   step   consisted   of   comparing   the   outputs   from   MOCAGE-­‐aerosol   to   those   of   MOCAGE-­‐Accident,   which   is   used   operationally   for   predicting   atmospheric   dispersion   of   accidental  atmospheric   releases   (plumes  and   retro-­‐plumes)  or  volcanic   effluents.   Fig.  3.3.1   compares   the  volcanic   aerosol   from   both   models.   The   difference   between   the   two   concerning   the   volcanic  aerosol   does   not   exceed   1.5%   which   very   satisfactory   and   validates   the   aerosol   volcanic   in  MOCAGE  as  a  primary  aerosol.    

 Fig.  3.3.1  –  Volcanic  aerosol  within  MOCAGE  (top-­‐left)  compared  to  the  operational  forecast  of  volcanic  aerosol  (top-­‐right).  The  absolute  difference  is  bottom-­‐left.  The  relative  difference  (bottom-­‐right)  doesn’t  

exceed  1.5%.    

Improvement  of  aerosol  parameterisations  

Page 31: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

31/56

We  have  also  improved  aerosol  parameterisations:  wet  deposition,  sedimentation  and  emissions  of  sea  salt.  Here  we  focus  only  on  the  wet  deposition  since   its   impact   is  very   important  on  the  aerosol   concentrations.   The   new   wet   deposition   scheme   in   MOCAGE   takes   into   account   the  following  processes:  Collection  efficiency,  Diffusion,   Interception,   Impaction,  Thermo-­‐phoresis,  Diffusion-­‐phoresis,  Electric   charges,  and  snow/ice  melting.  The  new  wet  deposition  gives  very  good  results  compared  to  the  old  one.  Fig.  3.3.2  shows  these  improvements  validated  by  MODIS  data.  

 Fig.  3.3.2  –  AOD  of  MOCAGE  with  the  old  scheme  of  wet  deposition  (left),  and  with  the  new  scheme  (right).  MODIS  AOD  is  at  bottom.  The  improvement  is  clear  for  the  sea-­‐salt  signature  over  UK  and  also  for  the  desert  

dust  signature  over  The  Arabian  Peninsula.  

Revised  work  plan  Validation  during  TRAQA  campaign  

In  the  framework  of  the  TRAQA  campaign  (June-­‐July  2012)  over  the  Mediterranean  basin,  many  measurements   of   the   optical   properties   and   distributions   of   aerosols   have   been   conducted.  During   this   campaign   an   important   aerosol   dust   transport   over   the  Mediterranean   basin   has  been   identified  on   late   June  2012.   In   this   context,  we  will   take  part  on   the   study  of   this   event  using  MOCAGE.  We  will   use   the   aerosol   measurements   recorded   in-­‐situ   during   this   event,   in  conjunction  with  other  datasets,   to   validate   aerosol   outputs   given  by  MOCAGE.  The  validation  will  consists  on  the  AOD,  the  concentrations  and  also  the  aerosol  distributions.    

Assimilation  of  AOD  satellite  measurements  in  MOCAGE  

This   task   has   the   objective   to   improve   the   aerosol   representation   in  MOCAGE  by   assimilating  satellite   measurements.   This   is   very   important   for   air   quality   forecasts   and   aviation   safety.  During   this   year,   the   first   tests   of   AOD   assimilation   have   been   successful   in   MOCAGE,  considering  AOD  as  the  control  variable.  The  next  step  is  to  consider  aerosol  concentrations  as  the  control  variable.  In  this  sense,  we  are  working  on  the  modification  and  the  implementation  of  the  observation  operator  within  MOCAGE.  Such  an  implementation  will  give  us  the  possibility  to  improve  further  the  aerosol  concentrations  in  the  model.    

 2013   2014   2015   2016  

MOCAGE  validation   Assimilation   of  satellite  data  

   

       

Page 32: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

32/56

T4  –  Polar  Stratospheric  Clouds  (PSC)                    Coordination:  V.  Noel  (LMD)   PSC  form  during  polar  winter  night,  when  the  stratosphere  becomes  cold  enough  for  nucleation,  even   at   its   extremely   low   concentrations   of   chemical   species.   Their   impact   on   stratospheric  chemistry   is   important,  as  1)  sun-­‐activated  chemical  reactions  on  the  surface  of   their  particles  when  winter  ends  activate  passive  reservoir  species   (e.g.  Chlorine,  Bromine),   leading   to  ozone  loss,  and  2)  sedimentation  of  PSC  particles  scavenge  nitric  acid  compounds,  this  denitrification  slows  down  the  reconversion  of  active  species  into  passive  (Mann  et  al.  2005).  PSC  also  influence  stratospheric   heating   rates.   These   poorly   understood   effects   limit   our   ability   to   represent  accurately   the   influence   of   PSCs   in   chemical   transport   and   general   circulation   models   that  predict   trends   in   the   future  evolution  of  polar  ozone  and  climate.  This   is  especially   true   in   the  Arctic   stratosphere,   where   temperatures   are   near   the   nucleation   threshold   and   even   a   slight  cooling  can  trigger  PSC  formation  and  ozone  loss,  but   is  also  relevant  in  the  Antarctic.  A  major  scientific  project   is   thus  to  accurately  portray  the  evolution  of  PSC  cover  during  polar  winters,  and  how  it  reacts  to  temperature  fluctuations  e.g.  during  Sudden  Stratospheric  Warming  events.  

Further  complication   is   that  PSC  composition   is  heterogeneous,  generally  dominated  by   liquid  droplets  of  Sulfate  Ternary  Solution  (STS,  HNO3,  H2O  and  H2SO4)  mixed  with  solid  crystals  of  ice   or   Nitric   Acid   Trihydrate   (NAT,   HNO3   and   H2O).   Chemical   compounds   follow   various  pathways   leading   to   particle   formation,   depending   on   their   individual  mixing   ratios,   ambient  temperature   and   pressure,   and   the   availability   of   formation   nuclei.   These   pathways   and   their  relative  importance  are  still  poorly  understood,  especially  the  nucleation  processes  responsible  for   the   formation   of   NAT   crystals,   which   are   critical   for   stratospheric   denitrification.   As   each  particle  type  influences  differently  ozone  loss  through  nitric  acid  captation,  another  endeavour  is  therefore  to  1)  evaluate  the  ability  of  different  types  of  observations  to  identify  PSC  types;  2)  document   how   their   cloud   cover   relates   to   and   influences   available   mixing   ratios   of  stratospheric   species   to   better   understand   the   formation   processes;   and   3)   relate   PSC  occurrence   with   documented   ozone   loss   above   the   polar   regions.   These   major   questions   are  summarized  in  Fig.  T4.  

Since   the   last   proposal,   most   of   the   objectives   of   T4.1,   investigating   how   PSC   interact   with  atmospheric   waves,   were   reached.   Its   results   were   published   as   three   articles   (Noel   et   al.   2008,  2009  and  recently  Noel  and  Pitts,  2012).  Some  of  the  questions  that  remained  in  its  work  plan  were  integrated  in  the  new  T4.1,  mostly  based  on  the  previous  T4.2.  

     WP4.1  -­‐  Microphysical  modelling  of  PSC  case  studies  [B1,  B2,  B4]  Coordination:  E.  Rivière  (GSMA),  V.  Noel  (LMD)  Contributors:  E.  Rivière  (GSMA),  F.  Lefebvre  (LATMOS),  H.  Chepfer,  A.  Hertzog,  V.  Noel  (LMD)    

Page 33: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

33/56

Activity   on   this   WP   was   delayed   due   to   the   coordination   by   E.   Rivière   of   the   TRO-­‐pico   project,  including  a   field  campaign   in  Brazil   in  2012  and  2013,  and   the  absence  of  manpower   funding   in  previous  evaluations.  However,  the  main  tool  for  this  WP,  the  MiPLaSMO  model,  has  been  installed  on   Climserv   at   LMD/Polytechnique   and   successfully   applied   on   mesoscale   trajectories   during   a  well-­‐understood  case  study  during  a  kickstart  week  in  summer  2012.    

 Objectives  Mesoscale  processes  such  as  waves  play  an   important  role   in  both  polar  hemispheres  (Noël  et  al.,  2009;  Hopfner  et  al.,  2006;  Rivière  et  al.,  2000),  and  their  impact  in  the  Arctic  may  be  crucial  for   the  global  PSC  coverage  since   temperatures   there  are  often  above  or  at   the  PSC  nucleation  threshold  and  cannot  alone  explain  the  PSC  statistics  of  the  whole  winter.  Our  aim  is  to  simulate  specific   PSC   case   studies   considering   several   nucleation   processes   and   compare   them   with  observations,   to   learn   more   about   the   conditions   that   activate   PSC   formation   mechanisms,  especially  for  NAT  nucleation.  Our  approach  follows  the  Match-­‐satellite  technique  (Terao  et  al.,  2002),  which  consists   in  analyzing  at   least  a  pair  of   satellite  measurements   that  belong   to   the  same  airmass  as  shown  by  trajectory  analysis.  At  least  one  of  the  measurements  shall  document  a  PSC,  so  we  can  follow  its  formation  and  dissipation.  

Work  plan  From  a  climatology  of  2009-­‐2010  Arctic  winter  PSC  provided  by  CALIPSO,  we  will  select  specific  cases.   We   will   give   precedence   to   PSC   cases   sampled   during   the   RECONCILE   campaign   (see  CALIPSO  PSC  statistics  in  Pitts  et  al.,  2011)  that  took  place  the  same  season,  so  that  more  than  CALIOP  information  can  be  used  in  our  analysis.  If  possible,  we  will  select  cases  that  have  been  sampled  several  times  from  satellite,  to  obtain  precious  information  about  the  PSC  lifetime  and  evolution.  We  will  select  several  cases  of  synoptic  PSCs,  and  several  cases  of  gravity  wave  PSCs,  which  may  not  form  in  the  same  manner.  Following  Hopfner  et  al.  (2006)  conclusions  based  on  MIPAS  observations,  our  recent  work  in  the  Antarctic  confirms  the  possibility  of  NAT  formation  on  ice  nuclei  in  mountain  waves  (Noël  et  al.,  2009,  2012).  During  the  EUPLEX  campaign,  Voigt  et  al.  (2005)  suggested  another  explanation  of  fast  NAT  formation  at  low  saturation  with  respect  to  HNO3:  heterogeneous  nucleation  on  meteoritic  particles.  We  hope  here  to  check  the  importance  of  these  mechanisms  in  the  Arctic.  

We  will  perform  microphysical  modeling  of  the  selected  case  studies  with  MiPLaSMO  (Rivière  et  al.,   2000;   Brogniez   et   al.,   2003;   Rivière   et   al.,   2003).   This   PSC   model   is   coupled   with   a  stratospheric  chemistry  model   to  be  run  along  trajectories.   Its  spectral  microphysical  model   is  adapted   from   the   Danish   meteorological   institute   model   (Larsen   et   al.,   2000),   and   uses   50  particle  size  bins   from  0.001  μm  to  100  μm.   It  simulates  size-­‐dependent  processes  such  as  the  homogeneous   nucleation   of   NAT   and   sedimentation,   and   includes   the   description   of   liquid  particles   (binary   aerosols   and  PSC  1b),   solid   aerosols   such  as   SAT   (sulfuric   acid   tetrahydrate)  and  ice  PSC.  The  chemistry  model  includes  heterogeneous  reactions  on  PSCs  and  binary  solution  aerosols  involving  chlorine  and  bromine  reservoirs  as  well  as  N2O5.  Formation  mechanisms  can  be  activated  to  test  microphysical  processes.  The  heterogeneous  nucleation  of  NAT  on  ice  is  not  included  yet,  but  we  plan  to  test  its  importance  in  gravity  wave  PSCs.  Initializing  MIPLASMO  will  require  finding  the  best  source  able  to  document  during  the  2009-­‐2010  winter  the  stratospheric  concentrations  of   species:  H2O  and  HNO3   for   the  microphysics,   other   compounds   for   chemical  simulations.   Considered   sources   include   the   REPROBUS   CTM  model   simulation   performed   at  LATMOS,  or  retrievals  based  on  spaceborne  observations  from  the  Microwave  Limb  Sounder  in  the   A-­‐Train.   Depending   on   the   chemical   data   available   for   the   selected   cases,   we   will   run  MiPLaSMO  in  its  fully  coupled  microphysics/chemistry  mode  or  only  in  its  microphysical  mode.  

We  will   run  MiPLaSMO   along   trajectories   from   the   FLEXTRA  model   (Stohl   et   al.,   1998)   using  ECMWF  analyses,  and  from  vortex-­‐scale  mesoscale  simulations  from  the  WRF  model,  in  order  to  check  the  importance  of  gravity  wave  processes  in  triggering  PSC  nucleation.  Typical  horizontal  grid  spacing  of  10  km  and  a  vertical  resolution  of  500  m  will  be  needed  to  correctly  describe  the  

Page 34: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

34/56

propagation  of   the  gravity  waves.  We  have   run  successfully  MiPLaSMO  on  such   trajectories   to  model  the  PSC  case  study  from  Noël  et  al.  (2009).  

As  mentioned,  we  will  give  preference  to  PSC  sampled  several  times  by  satellite.  We  will  check  that   samples   belong   to   the   same   air  mass   through   the  match   technique,  which   compares   the  concentrations   of   trace   gases   measured   at   least   twice   at   different   times   and   locations   but  belonging  to  the  same  air  parcel  (Rex  et  al.,  1998).  We  will  identify  “Match  satellite  trajectories”,  by  first  computing  a  cluster  of  forward  trajectories  from  the  first  sample  and  check  if  they  pass  through   the   second   sample   at   the   correct   time.   Reciprocally,   we   will   compute   backward  trajectories   from   the   second   sample   and   check   if   they   pass   through   the   location   of   the   first  sample  at  the  correct  time.  We  successfully  used  this  technique,  adapted  to  satellite  by  Terao  et  al.  (2002),  in  Rivière  et  al.,  (2003)  to  study  the  denitrification  observed  by  ILAS  onboard  ADEOS  with  MiPLaSMO.  

 2013   2014   2015   2016  

  Run  WRF  simulations   Run  MiPLaSMO    

  Identify   best  initialization   dataset  for  each  species  

Test   several   microphysical  schemes    

 

  Identify   promising  case   studies   in  CALIPSO  dataset  

Compare   simulated   PSC   cover   and  particle  types  with  observations  

 

     T4.2   -­‐   Improving   heterogeneous   ozone   in   chemistry   climate   models   using   PSC   lidar  observations  from  ground  and  space  [B1,  B2,  B4]  Coordinator:  J.  Jumelet  (LATMOS)  Contributors:   P.   Keckhut,   J.   Jumelet,   A.   Hauchecorne,   S.   Bekki,   M.   Marchand,   A.   Sarkissian  (LATMOS),  F.-­‐J.  Lubken,  G.  Baumgarten,  J.  Fiedler  (IAP),  R.  Neuber,  C.  Ritter,  M.  Maturilli  (AWI)  

Objectives  To  refine  model  parameterization  for  polar  stratospheric  chemistry  and  cloud  microphysics,  we  will   investigate   the  accuracy  of   case  study  comparisons  between  observations   (and  associated  inverse  modeling)  and  direct  model  results.  This  can  be  made  at  different  levels:  Ground-­‐based  and   satellite   lidar   measurements   provide   reference   optical   datasets   for   direct   models   to   be  compared   to.  This  optical   comparison  can  be  complemented  with  a   lower   level   comparison  of  microphysical  quantities  derived  from  multiwavelength  lidar  measurements.  

Stratospheric  aerosols  provide  surfaces  for  the  well-­‐known  heterogeneous  chemistry  leading  to  polar  ozone  destruction.  Besides,   the   radiative   effect   linked   to   changes   in   global   stratospheric  aerosol   load   is   still   uncertain.   For   this   reason,   and   also   because   they   show   a   lower   optical  response  than  clouds,  aerosols,  as  PSC  precursors,  present  a  high  scientific  interest.  Studying  the  coincidences   between   small   aerosol   particle   filaments   and   lidar  measurements  will   provide   a  valuable  insight  in  gathering  both  accurate  modeling  and  detection  capabilities.    

Updated  work  plan  Our  efforts  will  be   in   two  parts.  First  we  will   finalize  a  case  study  of  a  smoke  aerosol   filament  originating  from  the  southern  tropics  and  transported  southwards  down  to  Antarctica  after  the  2009   Australian   bushfires.   The   lidar   backscatter   signal   associated   to   aerosol   plumes   and  particles  in  the  upper  troposphere  and  lower  stratosphere  is  weaker  than  the  one  produced  by  

Page 35: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

35/56

ice  clouds  and  (most  of  the  time,  especially  in  Antarctica)  by  PSCs.  In  our  study,  we  coupled  the  DDU   aerosol   lidar   and   the   spaceborne   CALIPSO   lidar  measurements,   assimilated   in   the   high-­‐resolution  microphysical   transport  model  MIMOSA-­‐µφ,   to   characterize   the  particle   plume,   the  optical   properties   observed   by   lidar   and   directly   modelled   from   the   size   distribution   being  highly  consistent.  After  nearly  a  month  of  transport  the  plume  has  been  observed  on  the  ground-­‐based  measurements  and  successfully  characterized  by   the  model  despite   the  very  small   scale  (around   100km).   Aerosol   plumes,   if   repeatedly   observed   above   the   polar   region,  may   have   a  strong   impact   on   the   background   load   and   PSC   occurrences   as   their   microphysics   is   closely  related  to  the  one  of  the  latter  clouds.    

Second  we  plan  to  keep  on  classifying  PSC  observations  acquired  at  the  Dumont  d’Urville  station  to   strengthen   the   classification   against   the  one  using  CALIPSO  observations.  The  Backscatter/  depolarization   classification   (Fig.   4.2.1   and   4.2.2)   allows   for   PSC   type   discrimination   and  comparing   the   ground-­‐based   and   satellite   classifications   may   lead   to   a   sensitivity   threshold,  something  critical  when  studying  PSCs  as  these  clouds  have  temperature  formation  thresholds  with   rapid   composition   changes   (cf.  T4.3).   Small   temperature  variations   lead   to  very  different  particle  properties  and  a  comprehensive  dataset  is  really  valuable.  

 Fig.  4.2.1.  2006/2010  CALIOP  data  averaged  in  a  ~1°  lat/lon  box.  Black  lines  separate  different  PSC  types.  Low  1-­‐1/BR  means  only  aerosol  presence,  stronger  values  are  associated  to  geometrically  or  optically  larger  

particles.  

 Fig.  4.2.2.  Same  as  Fig.  4.2.1  for  2008/2010  DDU  data.    

Page 36: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

36/56

We  will   also   further   investigate   the  modeling   of   volcanic   aerosol   transport   and  microphysics,  using   recent   eruptions,   especially   the   2011   eruption   from   the   Nabro   volcano   in   Eritrea.  Successful   modeling   of   the   plume   at   the   global   scale   has   been   performed   last   year   and  comparisons  of   the  simulated  optical  properties  against  ground-­‐based   lidar  measurements  are  still  in  progress  following  the  results  of  last  year.  The  goal  is  twofold:  assess  the  global  sulphuric  load  within  the  plume  from  the  aerosol  geometrical  properties  and  concentrations;  characterize  any  influence  of  these  low  latitude  eruptions  on  the  high  latitude  and  polar  aerosol  load  through  the  transport.  

2013   2014   2015   2016  Finalize  smoke  filament  study  

Develop  PSC  classification  from  DDU  lidar    

  Model  volcanic  aerosol  transport        T4.3  –  Arctic  Polar  stratospheric  clouds  [B2,  B3]  Coordination:  J.-­‐P.  Pommereau  (LATMOS)  Contributors:   A.   Sarkissian,   J.   Pelon   (LATMOS),   P.   Rannou,   D.   Toledo   (GSMA),   R.   Kivi   (Finish  Meteorological  Institute)  

Objectives  Polar   Stratospheric   Clouds   forming   during   the   cold   winter   stratosphere   are   responsible   for  chlorine  activation  leading  to  ozone  depletion  inside  the  vortex  which  amplitude  varies  between  5  and  38  %  from  one  year  to  another  depending  on  the  meteorology  of  the  stratosphere.  Since  PSCs  are  forming  below  a  given  temperature  threshold,  the  key  issue  for  predicting  the  further  evolution   of   ozone   in   the   Arctic   during   the   next   decades   before   ozone   depleting   substances  (chlorine  and  bromine)  will  disappear  around  2060,  is  the  understanding  of  the  possible  trend  of  PSC  formation.    

According   to   ECMWF   reanalysis   the   temperature   of   the   Arctic   cold   stratospheric   winter   is  getting   colder,   a   suspected   impact   of   climate   change   (WMO   2011).   In   addition,   although   the  mechanism   responsible   is   not   understood,   an   increase   of   water   vapour   concentration   is   also  observed  which,  if  continued,  will  favour  the  formation  of  PSCs.  A  long-­‐term  observation  of  PSCs  along   with   the   temperature   at   which   they   form   (highly   dependent   on   the   water   vapour  concentration)   is   thus  mandatory   to   better   understand   the   relationship   between   climate   and  ozone  depletion.    

Currently,   the   best   PSC   measurements   available   are   those   of   the   CALIPSO   lidar   launched   in  2006.  But  although   its  operation  will  be   likely  extended   for   two  more  years,   it  will   stop   in   the  near  future  without  replacement.  

The  proposal   is   to  perform   long-­‐term  twice  daily  automatic  PSC  altitude  and  optical   thickness  observations   using   an   ODS   (Optical   Depth   Sensor)   of   Latmos   at   the   Finish   Meteorological  Institute  (FMI)  station  of  Sodankyla  in  Northern  Finland,  where  two  daily  radiosonde  and  lidar  PSC  profiles  are  available,   and  a  SAOZ  spectrometer  deployed   there   since  1991   for  measuring  total  ozone  and  NO2  indicative  of  state  of  denitrification  of  the  stratosphere  (Pommereau  et  al.  2013),  as  well  as  PSCs,  but  until  93°  SZA  only  because  of  its  lesser  sensitivity  and  thus  missing  altitude  clouds    above  25  km.    

Instrumentation  A  PSC  above  the  station  results   in  a  reddening  of  the  sky  at  zenith  at  twilight  (Sarkissian  et  al.  1991).   Its   altitude   and   optical   thickness   are   derived   from   the   solar   zenith   angle   (SZA)   of   the  maximum   reddening   and   the   amplitude   of   the   signal.   Since   low   clouds   are   already   in   the  darkness,  the  measurements  can  be  performed  on  all  weather  conditions.    

Our  Optical  Depth  Sensor  (ODS)  was  originally  developed  by  LATMOS  for  detecting  high  altitude  clouds   from   a   meteorological   station   on   the   Mars   planet.   It   was   further   selected   for   several  

Page 37: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

37/56

missions  on  Earth  for  the  detection  of  cirrus  clouds  and  aerosols  optical  thickness  in  the  tropics  and   recently   for   equipping  a   series  of  buoys  drifting   in   the  Arctic   in   the   frame  of   the  Equipex  project   IAOOS   (Ice   Atmosphere   Ocean   Observing   System).   The   main   advantage   of   this   two-­‐wavelengths  instrument  is  its  logarithmic  amplifier  allowing  solar  zenith  sky  observations  up  to  96°  SZA  and  even  moon  zenith  measurements  at  night  (Maria  et  al.,  2005).  

The  retrieval  of  PSC  altitude  and  optical  thickness  is  performed  with  radiative  transfer  models  in  spherical  geometry.  A  Monte-­‐Carlo  model  was  specifically  developed  for  ODS  (Tran  et  al.,  2006)  and  now  operated  in  GSMA  in  Reims  along  with  other  standard  models  (single  scattering  models  in  spherical  shell,  SPSDISORT,  SHDOMPP).  

We  propose  to  install  the  available  ODS  scientific  model  permanently  in  Sodankyla  in  Northern  Finland  whose  data  will  be  transmitted  automatically  daily  to  GSMA  and  LATMOS.  

Work  plan  We  plan  to  deploy  the  instrument  at  the  meteorological  station  of  Sodankyla,  as  soon  as  possible  and   preferably   before   the   coming   winter.   We   plan   to   include   a   real   time   display   of   PSC  information   allowing   the   local   staff   to   decide  when   performing   COBALD   diode   laser   /   FLASH  water  vapour  radiosonde  flights  providing  size  and  nature  of  the  PSC  particles  and  operate  the  lidar.  Our   immediate  objective   in  2014  is   to   finalize  and  validate  the  retrieval  procedure  using  these   sondes   and   CALIPSO   observations   These   comparisons   will   be   continued   as   long   as  CALIPSO  will  be  operating  to  ensure  the  robustness  of  the  ODS  data  on  the  long  term.    Radiative  transfer  modeling  and  data  interpretation  will  be  performed  at  GSMA  by  a  PhD  student,  Daniel  Toledo,  under  the  supervision  of  P.  Rannou  in  cooperation  with  LATMOS.  

 2013   2014   2015   2016  Deploy  ODS  at  Sodankyla  

Finalize  and  validate  retrieval  procedure  vs.  CALIPSO  

 

     

Page 38: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

38/56

T5  –  Radiative  transfer  tools  for  A-­‐train  and  EarthCare                      Coordination:  H.  Chepfer  (LMD)    This  theme  groups  work  to  further  improve  or  develop  existing  radiative  transfer  tools  used  to  analyse   and   validate   the   Level   1   A-­‐train   and   EarthCARE   satellite   missions   in   the   visible  (CALIOP),   infrared   (MSI,   MODIS,   IIR),   and   microwave   (CloudSat,   AMSR-­‐E).   For   each   science  objective,  dedicated  versions  of  the  radiative  transfer  tools  are  already  under  validation  or  must  be  developed.   In  most  cases   these   tools  or  outputs   from  these   tools  are  made  available   to  our  scientific  community  when  reaching  a  mature  stage.  

A   number   of   these   community   radiative   transfer   tools   exist   in   the   community.   This   proposal  only  mentions  those  specifically  developed  in  the  A-­‐train  and  EarthCare  frameworks  (as  defined  in  the  introduction  to  this  proposal)  and  for  well-­‐identified  scientific  objectives.  

The  contributions  to  this  theme  are  summarized  below.  

 

       T5.2:   Validation   of   the  RTTOV   cloud   and   aerosol   parameterizations   in   the   visible,   near  infrared  and  infrared  with  CALIPSO  and  EarthCare  [B2,  B4]  Coordination  and  main  contributor:  J.  Vidot  (CMS,  Lannion)  

Objectives  To   date,   the   assimilation   of   satellite  measurements   into   numerical  weather   prediction   (NWP)  models  has  mainly  focused  on  the  clear  atmosphere.  In  order  to  improve  NWP,  the  assimilation  of   cloud-­‐affected   radiances   is  now  recognized  as  a  major   issue.  The  new  generation  of  visible,  infrared  and  microwaves  meteorological  satellites  will  provide  a  great  deal  of  information  about  clouds  and  aerosols.  The  fast  radiative  transfer  model  RTTOV  has  been  developed  since  1991  in  order  to  assimilate  satellite  observations  into  various  European  and  International  NWP  models.  RTTOV   is   able   to   simulate   top   of   atmosphere   radiances   in   infrared   and  microwaves   spectral  ranges   but   it   is   planned   to   extend   RTTOV   to   visible   and   near   infrared   in   close   future.   To  assimilate  cloud  and  aerosol  affected  radiances  into  NWP  models,  RTTOV  make  use  of  cloud  and  aerosol  parameterizations  to  convert  the  cloud  and  aerosol  properties  predicted  in  NWP  models  into   optical   properties   mandatory   for   radiative   transfer   calculations   [Saunders   et   al.,   2010].  Nevertheless,  these  clouds  and  aerosols  parameterizations  have  not  been  validated.    

Page 39: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

39/56

The   objective   of   this  WP   is   to   use   CALIPSO   and  EarthCare   products   to   validate   the   cloud   and  aerosol   parameterizations   of   RTTOV.   CALIPSO   and   EarthCare   products   are   very   interesting  because   of   their   high   accuracy   compared   with   clouds   or   aerosols   products   from   classical  meteorological   satellites.  The  validation  will   be  done  by   comparing  CALIPSO  Level  2  products  with   optical   properties   calculated   by   RTTOV   as   well   as   by   comparing   top   of   atmosphere  radiances   in  presence  of  various  types  of  cloud  and  aerosol   in  both  thermal   infrared  and  solar  spectral  domains.    

Results  since  last  update  Following  the  previous  proposal,  the  first  year  of  the  project  has  been  devoted  to  the  validation  of   the  RTTOV   ice   cloud   parameterizations.   To   simulate   radiances   at   the   top   of   atmosphere   in  presence  of  ice  clouds,  RTTOV  needs  the  cloud  temperature  TC  and  the  ice  water  content  IWC  of  each  cloud  layer  (see  Saunders  et  al.  (2010)  for  details).  The  next  version  of    RTTOV  (version  11)  will  feature  eleven  options  to  parameterize  ice  cloud  optical  properties:  

§ Eight  parameterizations  of  ice  cloud  optical  properties  as  functions  of  IWC  and  ice  crystal  effective   diameter   (Deff).  Deff   is   estimated   through   four   empirical   relationships   of   IWC  and/or  TC  (from  the  works  of  Ou  and  Liou,  1995;  Wyser,  1998;  Boudala  et  al.,  2002  and  McFarqhuar   et   al.,   2003).   Furthermore,   the   parameterizations   of   ice   cloud   optical  properties  were  calculated  for  two  ice  crystal  shapes  (hexagonal  or  aggregates).    

§ Two  options  to  input  Deff  in  RTTOV  instead  of  using  empirical  relationships.  Here  again,  hexagonal  or  aggregates  ice  crystals  are  possible.    

§ One   new   parameterization   of   the   ice   cloud   optical   properties   in   the   thermal   infrared  from  the  most  recent  ensemble  database  from  A.  Baran  (Baran  et  al.,  2009;  Baran  et  al.,  2011)   have   been   implemented   into   RTTOV-­‐11   (Vidot   et   al.,   2013).   This   new   database  solves   the   problem   of   choosing   between   the   eight   parameterizations   described   above  because  (1)  it  allows  a  direct  parameterization  of  the  optical  properties  from  the  RTTOV  inputs  for  ice  cloud  (TC  and  IWC)  without  the  need  of  estimating  the  effective  size  of  ice  cloud   particle   through   the   four   different   empirical   relationships,   and   (2)   the   optical  properties  of  the  Baran  database  where  simulated  for  an  ensemble  of  different  ice  cloud  particle  shapes  which  is  expected  to  be  more  realistic  than  the  two  RTTOV  ice  particles  shapes  (hexagonal  or  aggregates).    

 

We   used   one  week   (25-­‐31/08/2010)   of   combined   CloudSat-­‐CALIOP   ice   cloud   products   (from  operational   CloudSat   data   center   and   from   DARDAR).   We   compared   IIR   observations   with  RTTOV   simulations.   As   RTTOV   inputs,   we   used   the   ECMWF   atmospheric   profiles   and   surface  temperature  information  contained  in  the  ECMWF-­‐AUX  file.  For  clouds,  we  tested  two  products:  the  DARDAR  product  and  the  2C-­‐ICE  product.    

We  firstly  selected  ice  cloud  profiles  by  considering  only  situations  where:  

§ the  visible  cloud  optical  depth  is  between  0.5  and  5  (from  DARDAR),  § there  are  only  ice  cloud  layers  in  the  profile  (from  DARDAR  mask),  § the  CloudSat  spot  is  considered  homogeneous  (according  to  the  MODIS  cloud  mask  in  the  

vicinity  of  the  CloudSat  Field-­‐Of-­‐View),  § the  cloud  is  monolayer.  

 Within   these   assumptions,  we   get   3393   ice   cloud  profiles   to   use   for   simulating   IIR-­‐like   top   of  atmosphere   brightness   temperature   (BT).   Fig.   5.2.1   maps   (left)   the   IIR   BT   at   12   μm   of   the  selected  profiles,   and   (right)   the  DARDAR  visible   cloud  optical   depth.  BTs   range  between  223  and  292  K   and  most   profiles   have   visible   cloud  optical   depths  below  2.  Note   that   profiles   are  well  distributed  all  over  the  globe.  

 

Page 40: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

40/56

 Fig.  5.2.1.  Left:  IIR  TOA  BT  at  12μm  for  selected  ice  cloud  profiles.  Right:  Visible  cloud  optical  depth  for  

selected  ice  cloud  profiles.  

Fig.   5.2.2   displays   histograms   of   difference   between   IIR   and   simulated   BT   at   12   μm   for   the  selected  profiles.  We  compare  only  possible  parameterizations  for  hexagonal  ice  crystal  shapes  because  the  parameterizations  based  on  aggregates  produced  non  physical  thermal  IR  spectra.    

 

 

 Fig.  5.2.2.  Histograms  of  IIR-­‐RTTOV  BT  at  12  μm  of  selected  profiles  for  ice  cloud  parameterizations  of  (a)  Ou  and  Liou  (1995),  (b)  Wyser  (1998),  (c)  Boudala  et  al.  (2002),  (d)  McFarquhar  et  al.,  (2003)  and  (e)  when  Deff  is  used  as  input  from  combined  CloudSat-­‐CALIOP  ice  cloud  products.  For  (a)  to  (e),  the  hexagonal  ice  crystal  shape  was  used.  (f)  new  ice  cloud  parameterization  from  Baran  database.  IWC  and/or  Deff  products  from  DARDAR  (in  red)  and  from  2C-­‐ICE  (in  blue)  were  used  as  RTTOV  input.  Biases  and  RMSE  are  provided.    

 Overall,  the  2C-­‐ICE  ice  clouds  product  provides  better  statistics  in  terms  of  both  bias  and  RMSE  for  any  parameterizations  compared  with  DARDAR  product.  This  might  be  explained  by  the  fact  that  the  DARDAR  products  are  provided  with  a  much  higher  vertical  resolution  than  the  2C-­‐ICE  product  (419  vs.  105  layers,  respectively).  Then  the  DARDAR  ice  cloud  is  described  with  much  layer   than   the  2C-­‐ICE.   If  we   overestimate   the   cloud  optical   properties  with   parameterizations  (especially  the  extinction  in  each  layer),  the  total  optical  depth  will  be  much  over  estimated  from  DARDAR  IWC  than  from  2C-­‐ICE  IWC.  A  possible  way  to  see  this  effect  will  be  to  interpolate  the  DARDAR  profile  at  the  2C-­‐ICE  vertical  resolution.  Lowest  biases  are  with  the  parameterization  of  

Page 41: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

41/56

Wyser  (1998)  with  a  mean  overestimation  from  RTTOV  of  1.54  K.  The  lowest  RMSE  are  obtained  with   the   input   Deff   (9.19   K).   The   use   of   the   new   parameterization   from   Baran   database  overestimate  the  BT  by  5.69  K  with  an  RMSE  of  11.9  K,  that  makes  this  parameterizations  better  than  2  of  older  parameterizations   (OL95  and  B02)  and   in   the  same  order  of  magnitude  as   the  MF03.   Interestingly,   the   distribution   of   BT   differences   with   2C-­‐ICE   product   and   the   B02  parameterization  exhibits  two  modes.  At  8.7  and  10.2  μm,  results  are  similar.        

This   validation   exercise   shows   that   the   best   parameterization   of  RTTOV   to   simulate   IIR  BT   is  when  the  effective  diameter  profile  is  input  together  with  the  IWC  profile.  However,  the  effective  diameter  is  not  a  prognosticated  parameter  from  NWP  model.  We  found  that  the  Wyser  (1998)  parameterization   with   hexagonal   ice   crystal   shows   the   best   agreement.  We  will   soon   test   an  improved  database  from  A.  Baran.  

 2013   2014   2015  Validation   of   RTTOV   ice   cloud  parameterization   by   using   ice  cloud   profiles   from   combined  CloudSat-­‐Caliop  product.  

Improvements   of   the   Baran  database  parameterization.    Validation   of   RTTOV   aerosol  parameterization.  

Simulation   of   MSI-­‐like   TOA  radiances   (especially   in   VIS,  NIR   and   SWIR   bands)   and  comparison  with  SEVIRI.  

   IV.  References    • Adam de Villiers, R., G. Ancellet, J. Pelon, B. Quennehen, A. Scharwzenboeck, J. F. Gayet, and K. S. Law,

Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic, Atmos. Chem. Phys., 10, 11, 5011-5030, 2010.  

• Baran  AJ,  Connolly  PJ,  Heymsfield  AJ,  Bansemer  A.  2011.  Using  in  situ  estimates  of  ice  water  content,  volume  extinction  coefficient,  and  the  total  solar  optical  depth  obtained  during  the  tropical  ACTIVE  campaign  to  test  an  ensemble  model  of  cirrus  ice  crystals.  Q.  J.  R.  Meteorol.  Soc.  137:  199–218.  

• Baran  AJ,  Connolly  PJ,  Lee  C.  2009.  Testing  an  ensemble  model  of  cirrus  ice  crystals  using  midlatitude  in  situ  estimates  of  ice  water  content,  volume  extinction  coefficient  and  the  total  solar  optical  depth.  J.  Quant.  Spectrosc.  Radiat.  Transfer  110:  1579–1598.  

• Barton,  N.  P.,  et  al.  (2012),  Arctic  Synoptic  Regimes:  Comparing  domain  wide  Arctic  cloud  observations  with  CAM4  and  CAM5  during  similar  dynamics,  J.  Geophys.  Res.,  doi:10.1029/2012JD017589.  

• Battaglia,  A.,  S.  Tanelli,  S.  Kobayashi,  D.  Zrnic,  R.J.  Hogan,  C.  Simmer,  Multiple-­‐scattering  in  radar  systems:  a  review,  J.  Quant.  Spec.  Rad.  Transf.,  2010,  111  (6),  917-­‐94  

• Belhaj,  J.,  Étude  de  la  variabilité  des  systèmes  convectifs  de  mousson  à  l’échelle  globale  :  Relation  entre  extension  des  enclumes  et  propriétés  du  noyau  convectif,  rapport  de  stage  de  IENM,  pp.  71  (2007).  

• Bennett,  A.,  N.  Atkinson,  and  E.  Kyte,  Potential  Synergy  of  Global  Scale  ATDnet  Measurements  and  the  MTG  LI,  Final  report  for  a  EUMETSAT  study,  EUM/CO/09/4600000704/KJG,  Met  Office,  2010.  

• Betts,  A.  K.,  2007:  Coupling  lof  water  vapor  convergence,  clouds,  precipitation,  and  land  surface  processes.  J.  Geophys.  Res.,  112,  D10108,  doi:10.1029/2006JD008191.  

• Betts,  A.K.,  Vierbo,  P.,  2005  :  Land-­‐surface,  boundary  layer,  and  cloud-­‐field  coupling  over  the  southwestern  Amazon  in  ERA-­‐40.  J.  Geophys.  Res.,  110,  D14108,  doi:10.1029/2004JD005702.  

• Betz,  H.-­‐D.,  K.  Schmidt,  P.  Laroche,  P.  Blanchet,  W.  P.  Oettinger,  E.  Defer,  Z.  Dziewit,  and  J.  Konarski  (2009),  LINET  -­‐  An  International  Lightning  Detection  Network  in  Europe,  Atmos.  Res.,  91(2-­‐4),  564-­‐573.  

• Bodas-­‐Salcedo  A.,  M.  J.  Webb,  S.  Bony,  H.  Chepfer,  J.-­‐L.  Dufresne,  S.  A.  Klein,  Y.  Zhang,  R.  Marchand,  J.  M.  Haynes,  R.  Pincus,  V.  O.  John,  2011:  COSP:  satellite  simulation  software  for  model  assessment,  Bull.  Am.  Meteo.  Soc.,  10.1175/2011BAMS2856.1  

• Bodas-­‐Salcedo,  A,  M.  J.  Webb,  S.  Bony,  H.  Chepfer,  J.-­‐L.  Dufresne,  S.  A.  Klein,  Y.  Zhang,  R.  Marchand,  J.  M.  Haynes,  R.  Pincus,  and  V.  O.  John,  2011:  COSP:  Satellite  simulation  software  for  model  assessment.  Bull.  Amer.  Meteor.  Soc.,  92,  1023–1043.  doi:  10.1175/2011BAMS2856.  

• Bojan  Sič,  Laaziz  El  Amraoui,  Virginie  Marecal,  Mathieu  Joly,  Béatrice  Josse,  Joaquim  Arteta,  Jonathan  Guth,  Jean-­‐Louis  Roujean,  and  Dominique  Carrer,  Evaluation  of  the  performances  of  different  aerosol  

Page 42: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

42/56

physical  parameterisations  in  the  chemical  transport  model  MOCAGE.,  Geophysical  Research  Abstracts,  Vol.  15,  EGU2013-­‐801-­‐2,  2013,  EGU  General  Assembly  2013,  7-­‐12  April,  Vienna  -­‐  Austria  

• Boudala  F.,  Isaac  G.,  Fu  Q.,  Cober  G.,  Parametrization  of  effective  ice  particle  size  for  hight  latitude  clouds,  Int.  J.  of  Climatology,  2002.  

• Bouniol,  D.,  Couvreux,  F.,  Kamsu-­‐Tamo,  P.-­‐H.,  Leplay,  M.,  Guichard,  F.,  Favot,  F.,  O'Connor,  E.,  2011:  Diurnal  and  saesonal  cycles  of  cloud  occurrences,  types  and  radiative  impact  over  West  Africa.  .J.  Appl.  Meteor.  Climatol.,  51,  534–553.  doi:  http://dx.doi.org/10.1175/JAMC-­‐D-­‐11-­‐051.1  

• Bouniol,  D.,  Couvreux,  F.,  Kamsu-­‐Tamo,  P.-­‐H.,  Leplay,  M.,  Guichard,  F.,  Favot,  F.,  O'Connor,  E.,  2012:  Diurnal  and  saesonal  cycles  of  cloud  occurrences,  types  and  radiative  impact  over  West  Africa.  J.  Appli.  Meteor.  Climat.,  46,(10),  1682-­‐1698  doi:  http://dx.doi.org/10.1175/JAM2543.1  

• Brogniez,  C.,  N.  Huret,  S.  Eckermann,  E.  D.  Rivière,  M.  Pirre,  M.  Herman,  J.-­‐Y.  Balois,  C.  Verwaerde,  N.  Larsen,  et  B.  Knudsen:  Polar  stratospheric  cloud  microphysical  properties  measured  by  the  microRADIBAL  instrument  on  25  January  2000  above  Esrange  and  modeling  interpretation,  J.  Geophys.  Res.,  108(D6),  8332,  2003.  

• Buras  R.  and  B.  Mayer,  J.  Quant.  Spectrosc.  Rad.  Transfer  112,  434-­‐447  (2010).  • Ceccaldi  M.,  J.  Delanoë,  R.  J.  Hogan  ,  N.  Pounder  ,  A.  Protat  ,  J.  Pelon,  2013  :From  CloudSat-­‐CALIPSO  to  

Earth-­‐Care  :  Evolution  of  the  DARDAR  cloud  classication  and  its  validation  using  airborne  radar-­‐lidar  observations.  J.  Geophys.  Res.,  in  revision  

• Cesana  G.  and  H.  Chepfer,  2013:  Evaluation  of  the  cloud  water  phase  in  a  climate  model  using  CALIPSO-­‐GOCCP,  J.  Geophys.  Res.,  DOI:  10.1002/jgrd.50376  

• Cesana  G.,  and  H.  Chepfer,  2012:  How  well  do  climate  models  simulate  cloud  vertical  structure?  a    comparison  between  CALIPSO-­‐GOCCP  satellite  observations  and  CMIP5  models,  Geophys.  Res.  Let.,  39,  20,  doi:10.1029/2012GL053153.  

• Cesana  G.,  J.  Kay,  H.  Chepfer,  J.  English,  G.  DeBoer,  2012:  Ubiquitous  low-­‐level  liquid-­‐containing  Arctic  clouds:  New  observations  and  climate  model  constraints  from  CALIPSO-­‐GOCCP,  Geophys.  Res.  Lett.,  39,  20,  doi:10/1029/2012GL053385.  

• Cetrone,  J.,  Houze,  R.A.Jr,  2009:  Anvil  clouds  of  tropical  mesoscale  convective  systems  in  monsoon  regions.  Quart.  J.  Roy.  Meteor.  Soc.,  135,  305-­‐317.  

• Chepfer  H.,  G.  Cesana,  D.  Winker,  B.  Getzewich,  and  M.  Vaughan,  2012:  Comparison  of  two  different  cloud  climatologies  derived  from  CALIOP  Level  1  observations:  the  CALIPSO-­‐ST  and  the  CALIPSO-­‐GOCCP,  J.  Atmos.  Ocean.  Tech.,  doi.10.1175/JTECH-­‐D-­‐12-­‐00057.1  

• Chepfer  H.,  M.  Chiriaco,  R.  Vautard,  J.  Spinhirne,  2007  :  Evaluation  of  the  ability  of  MM5  meso-­‐scale  model  to  reproduce  optically  thin  clouds  over  Europe  in  fall  using  ICE/SAT  lidar  space-­‐born  observations,  Month.  Weath.  Rev.,  135,  7,  2737–2753  

• Chepfer  H.,  S.  Bony,  D.  Winker,  M.  Chiriaco,  J-­‐L.  Dufresne,  G.  Sèze,  2008:  Use  of  CALIPSO  lidar  observations  to  evaluate  the  cloudiness  simulated  by  a  climate  model,  Geophys.  Res.  Let.,  35,  L15704.  

• Chepfer  H.,  S.  Bony,  M.  Chiriaco,  J-­‐L  Dufresne,  2009  :  «  A  CALIPSO  lidar  simulator  to  improve  cloud  representation  in  climate  models”,  Article  présenté  au  CEOS  (Committee  on  Earth  Observation  Satellites)  par  le  CNES  en  juin  2009.  

• Chepfer  H.,  S.Bony,  D.  M.  Winker,  G.  Cesana,  JL.  Dufresne,  P.  Minnis,  C.J.  Stubenrauch,  S.  Zeng,  2010:  "The  GCM  Oriented  CALIPSO  Cloud  Product  (CALIPSO-­‐GOCCP)",  J.  Geophys.  Res.,  105,  D00H16.  

• Chiriaco  M.,  R.  Vautard,  H.  Chepfer,  M.  Haeffelin,  Y.  Wanherdrick,  Y.  Morille,  A.  Protat,  J.  Dudhia,  C.  F.  Mass,  2006:    The  ability  of  MM5  to  simulate  thin  ice  clouds  :  Systematic  comparisons  with  lidar/radar  and  fluxes  measurements,    Month.  Weath.  Rev.,  134,  897-­‐918.  

• Collins,  M.,  et  al  (2012),  The  use  of  ATDnet  data  for  MTG-­‐LI  processing:  an  initial  concept  evaluation,  Final  report  of  EUMETSAT  contract.  

• Cornet,  C.;  Labonnote,  L.C.;  Szczap,  F.,  2010,  Three-­‐dimensional  polarized  Monte  Carlo  atmospheric  radiative  transfer  model  (3DMCPOL):  3D  effects  on  polarized  visible  reflectances  of  a  cirrus  cloud,  J.  Quant.  Spectrosc.  Rad.  Transfer  Vol.  111,  No.  1,  p.  174-­‐186  

• de  Boer,  G.,  Eloranta,  E.  W.  and  M.  D.  Shupe  (2009),  Arctic  Mixed-­‐Phase  Stratiform  Cloud  Properties  from  Multiple  Years  of  Surface-­‐Based  Measurements  at  Two  High-­‐Latitude  Locations,  J.  Atmos.  Sci.,  66:9,  2874-­‐2887  

• Defer,  E.,  and  H.-­‐D.  Betz  (2010),  Properties  of  convective  clouds  and  associated  lightning  activity  over  Western  Europe  as  sensed  by  A-­‐Train  and  LINET,  AE21A-­‐0264,  AGU  Fall  Meeting,  San  Francisco,  USA.  

• Delanoë  J.,  Hogan  R.  J.,  Forbes  R.  M.,  Bodas-­‐Salcedo  A.  and  Stein  T.  H.  M.  ,  2011:  Evaluation  of  ice  cloud  representation  in  the  ECMWF  and  UK  Met  Office  models  using  CloudSat  and  CALIPSO  data.  Quart.  J.  of  the  Royal  Met.  Soc.  137,  661  (2011)  2064-­‐2078.  

• Delanoë,  J.  ,  A.  Protat,  O.  Jourdan,  J.  Pelon,  M.  Papazzoni,  R.  Dupuy,  J.-­‐F.  Gayet  and  C.  Jouan,(2013),  

Page 43: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

43/56

Retrieval  of  polar  ice  cloud  properties  using  RALI  platform  during  POLARCAT  campaign.,  J.  Atmos.  Ocean.  Technol.,  30,  57-­‐73,  doi:10.1175/JTECH-­‐D-­‐11-­‐00200.1  

• Delanoë,  J.  and  R.  J.  Hogan,  Combined  CloudSat-­‐CALIPSO-­‐MODIS  retrievals  of  the  properties  of  ice  clouds,  J.  Geophys.  Res.,  115,  D00H29,  doi:10.1029/2009JD012346  (2010).  

• Delanoë,  J.,  A.  J.  Heymsfield,  A.  Protat,  A.  Bansemer,  R.  J.  Hogan,  2013:  Normalized  Particle  Size  Distribution  for  remote  sensing  application.  JGR,  to  be  submitted.  

• Delanoë,  J.,  A.  Protat,  J.  Testud,  D.  Bouniol,  A.  J.  Heymsfield,  A.  Bansemer,  P.  R.  A.  Brown,  and  R.  M.  Forbes  (2005),  Statistical  properties  of  the  normalized  ice  particle  size  distribution,  J.  Geophys.  Res.,  110,  10201,  doi:10.1029/2004JD005405.  

• Delanoë,  J.,  and  R.  J.  Hogan,  2008:  A  variational  scheme  for  retrieving  ice  cloud  properties  from  combined  radar,  lidar,  and  infrared  radiometer,  J.  Geophys.  Res.,  113,  D07204,  doi:10.1029/2007JD009000.  

• Delanoë,  J.,  and  R.  J.  Hogan,  2010:  Combined  CloudSat-­‐CALIPSO-­‐MODIS  retrievals  of  the  properties  of  ice  clouds.  J.  Geophys.  Res.,  115,  D00H29,  doi:10.1029/2009JD012346.  

• Delmelle,  P.,  J.  Stix,  C.  P-­‐A.  Bourque,  P.  J.  Baxter,  J.  Garcia-­‐Alvarez  and  J.  Barquero,  Dry  deposition  and  heavy  acid  loading  in  the  vicinity  of  Masaya  Volcano,  a  major  sulfur  and  chlorine  source  in  Nicaragua,  Env.  Sci.  Tech.,  35,  1289-­‐1293,  2001.  

• Derrien,  M.  and  H.  Le  Gléau,  2005,  MSG/SEVIRI  cloud  mask  and  type  from  SAFNWC.  International  Journal  of  Remote  Sensing,  26,  4707-­‐4732.  

• Derrien,  M.,  and  Le  Gléau,  H.,(2010)  Improvement  of  cloud  detection  near  sunrise  and  sunset  by  temporal-­‐differencing  and  region-­‐growing  techniques  with  real-­‐time  SEVIRI,  International  Journal  of  Remote  Sensing    ,  31,  7,  pp  1765–1780    DOI:  10.1080/01431160902926632  

• Dionisi,  D.  et  al.,  Cirrus  crystal  fall  velocity  estimated  with  a  lagrangian  match  approach  using  2  lidar  sites,  in  prep.  

• Dubuisson, P., V. Giraud, O. Chomette, H. Chepfer and J. Pelon, 2005: “Fast radiative transfer modeling for infrared imaging radiometry”, JQSRT, 95, 201–220, doi: 10.1016/j.jqsrt.2004.09.034.  

• Dupont,  J.-­‐C.,  M.  Haeffelin,  Y.  Morille,  V.  Noël,  P.  Keckhut,  D.  Winker,  J.  Comstock,  P.  Chervet,  and  A.  Roblin  (2010),  Macrophysical  and  optical  properties  of  midlatitude  cirrus  clouds  from  four  ground-­‐based  lidars  and  collocated  CALIOP  observations,  J.  Geophys.  Res.,  115,  D00H24,  doi:10.1029/2009JD011943.  

• Feofilov  A.,  Stubenrauch.,  C.,  Guignard,  A.,  Synergetic  Analysis  of  High-­‐level  Clouds  Using  AIRS,  CALIPSO,  and  CloudSat  Data.  CALIPSO,  CloudSat,  EarthCARE  Joint  Workshop,  Paris,  France,  18-­‐22  June  2012.  

• Feofilov,  A.,  Stubenrauch.,  C.,  Armante,  R.,  Classifying  ice  water  content  profiles  of  high-­‐level  clouds  from  AIRS/CALIPSO/CloudSat  observations  to  better  assess  cloud  radiative  effects,  European  Geosciences  Union,  General  Assembly,  Wien,  Austria,  8-­‐12  April  2013.  

• Fiolleau,  T.,  2010:  Cycle  de  vie  des  systèmes  convectifs  de  mousson  dans  les  régions  tropicales:  préparation  à  la  mission  Mhega-­‐Tropiques.  Thèse  de  doctorat  de  l'école  polytechnique.  

• Fiolleau,  T.,  Roca,  R.,  2012:  Algorithm  for  the  detection  and  tracking  of    tropical  mesoscale  convective  systems  using  infrared  images  from  geostationary  satellite.  IIEEE  Trans.  Geosc.  Remote  Sensing,  DOI:  10.1109/TGRS.2012.2227762.  

• Flamant C., J. Pelon, P. H. Flamant, P. Durand, 1997.: “On the determination of the entrainment zone thickness at the top of the unstable boundary layer in clear air by lidar and in-situ measurements”, Boundary Layer Meteorology, 83, 247-284,  

• Fueglistaler,  S.,  A.  E.  Dessler,  T.  J.  Dunkerton,  I.  Folkins,  Q.  Fu,  and  P.  W.  Mote  (2009),  Tropical  Tropopause  Layer,  Rev.  Geophys.,  47,  RG1004.  

• Fueglistaler,  S.,  M.  Bonazzola,  P.  Haynes,  and  T.  Peter  (2005),  Stratospheric  water  vapor  predicted  from  the  Lagrangian  temperature  history  of  air  entering  the  stratosphere  in  the  tropics,  J.  Geophys.  Res.,  110,  D08107.  

• Gaffard,  C.,  Nash,  J.,  Atkinson,  N.C.,  Bennett,  A.J.,  Callaghan,  G.,  Hibbett,  E.,  Taylor,  P.L.,  Turp,  M,  Schulz,W.,  2008.  Observing  Lightning  Around  the  Globe  from  the  Surface,  20th  International  Lightning  Detection  Conference,  21-­‐23  April,  Tucson,  Arizona,  USA.  

• Garratt,  J.  R.,  1993:  Sensitivity  of  Climate  Simulations  to  Land-­‐Surface  and  Atmospheric  Boundary-­‐Layer  Treatments-­‐A  Review.  J.  Climate,  6,  419–448.  

• Garrett,  T.  J.,  P.  V.  Hobbs,  and  H.  Gerber  (2001),  Shortwave,  single-­‐scattering  properties  of  arctic  ice  clouds,  J.  Geophys.  Res  .,  106(D14),  15,155-­‐15,172.  

• Gayet  J-­‐F,  G.  Mioche,  A.  Dörnbrack,  A.  Ehrlich,  A.  Lampert  and  M.  Wendisch  (2009b),  Microphysical  and  optical  properties  of  Arctic  mixed-­‐phase  clouds.  The  9  April  2007  case  study,  Atmos.  Chem.  Phys.,  9,  1-­‐

Page 44: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

44/56

15.  • Gayet  J.-­‐F.,  R.  Treffeisen,  A.  Helbig,  J.  Bareiss,  A.  Matsuki,  A.  Herber  and  A.  Schwarzenboeck  (2009a),  

On  the  onset  of  the  ice  phase  in  boundary-­‐layer  Arctic  clouds,  J.  Geophys.  Res.,  114,  D19201.  • Guignard  A.,  Stubenrauch,  C.  J.,  Baran,  A.,  and  Armante,  R.:  Bulk  microphysical  properties  of  semi-­‐

transparent  cirrus  from  AIRS:  a  six  year  global  climatology  and  statistical  analysis  in  synergy  with  geometrical  profiling  data  from  CloudSat-­‐CALIPSO,  Atmos.  Chem.  Phys.,  12,  503-­‐525,  2012.  

• Guignard,  A.,  C.  J.  Stubenrauch,  N.  Lamquin,  and  A.  Baran  :  Microphysical  properties  of  semi-­‐transparent  cirrus  from  AIRS,  CALIPSO,  CloudSat,  EarthCARE  Joint  Workshop,  Paris,  France,  18-­‐22  June  2012.  

• Guignard,  A.:  Propriétés  microphysiques  des  cirrus  :  Restitution  a  partir  du  sondage  IR  depuis  l'espace  et  études  en  lien  avec  la  structure  verticale  (Exploitation  de  la  synergie  du  A-­‐Train  :  AIRS,  CALIPSO  et  CloudSat),  Thèse  de  doctorat,  Université  Pierre  et  Marie  Curie,  Paris  VI,  Mars  2012.  

• Heymsfield,  A.  J.,  C.  Schmitt,  A.  Bansemer,  and  C.  H.  Twohy  (2010),  Improved  representation  of  ice  particle  masses  based  on  observations  in  natural  clouds,  J.  Atmos.  Sci.,  67(doi:  10.1175/2010JAS3507.1),  3303–3318.  

• Hoareau  C.,  P.  Keckhut,  A.  Sarkissian,  J.-­‐L.  Baray  and  Durry  G.,  2009:  Methodology  for  Water  monitoring  in  the  Upper  Troposphere  with  Raman  Lidar  at  Observatory  of  Haute-­‐Provence,  J.  Atmos.  Ocean.  Technol.,  26,  2149-­‐2160,  doi:  http://dx.doi.org/10.1175/2009JTECHA1287.1,  2009  

• Hodzic,  A.,  R.  Vautard,  H.  Chepfer,  P.  Goloub,  L.  Menut,  P.  Chazette,  J.L.  Deuzé,  A.  Apituley,  and  P.  Couvert,  Evolution  of  aerosol  optical  thickness  over  Europe  during  the  August  2003  heat  wave  as  seen  from  CHIMERE  model  simulations  and  POLDER  data,  Atmos.  Chem.  Phys.,  6,  1853-­‐1864,  2006.  

• Hogan,  R.  J.,  and  A.  Battaglia,  Fast  lidar  and  radar  multiple-­‐scattering  models  -­‐  2.  Wide-­‐angle  scattering  using  the  time-­‐dependent  two-­‐stream  approximation,  2008,.  J.  Atmos.  Sci.,  65,  3636-­‐3651  

• Hogan,  R.  J.,  D.  P.  Donovan,  C.  Tinel,  M.  A.  Brooks,  D.  Bouniol,  A.  J.  Illingworth  and  J.  P.  V.  Poiares  Baptista,  2006,  Independent  evaluation  of  the  ability  of  spaceborne  radar  and  lidar  to  retrieve  the  microphysical  and  radiative  properties  of  ice  clouds,  J.  Atmos.  Oceanic  Technol.,  23,  211-­‐227  

• Hogan,  R.  J.,  Fast  lidar  and  radar  multiple-­‐scattering  models  -­‐  1.  Small-­‐angle  scattering  using  the  photon  variance-­‐covariance  method,  2008,  J.  Atmos.  Sci.,  65,  3621-­‐3635  

• Höpfner,  M.,  N.  Larsen,  R.  Spang,  B.  P.  Luo,  J.  Ma,  S.  H.  Svendsen,  S.  D.  Eckermann,  B.  Knudsen,  P.  Massoli,  F.  Cairo,  G.  Stiller,  T.  v.  Clarmann,  and  H.  Fischer,  MIPAS  detects  Antarctic  stratospheric  belt  of  NAT  PSCs  caused  by  mountain  waves,  Atmos.  Chem.  Phys.,  6,  1221-­‐1230,  2006.  

• Hourdin  F.,  et  al.  (2012),  LMDZ5B:  the  atmospheric  component  of  the  IPSL  climate  model  with  revisited  parameterizations  for  clouds  and  convection,  Climate  Dynamics,  accepted,  DOI:  10.1007/s00382-­‐012-­‐1343-­‐y  

• Hourdin,  F.  Musat,  I.;  Guichard,  F.,  Ruti,  P.M.,  Favot,  F.,  Filiberti,  M.-­‐A.,  Pham,  M.,  Granpeix,  J.-­‐Y.,  Polcher,  J.,  Marquet,  P.,  Boone,  A.,  Lafore,  J.-­‐P.,  Redelsperger,  J.-­‐L.,  Dell'Aquila,  A.,  Doval,  T.L.,  Traore,  A.K.,  Gallée,  H.,  2010:  AMMA-­‐Model  Intercomparison  Project.  Bull.  Amer.  Meteor.  Soc.,  91,  95–104.  doi:  dx.doi.org—2009BAMS2791.1  

• Hwang,  Y.-­‐T.  and  D.  M.  W.  Frierson.  A  link  between  the  double  intertropical  convergence  zone  problem  and  cloud  biases  over  the  Southern  Ocean.  in  press,  Proc.  Nat.  Acad.  Sci.,  doi:  10.1073/pnas.1213302110  

• IPCC,  Intergovernmental  Panel  on  Climate  Change  (2007),  Climate  Change  2007  -­‐  the  Fourth  Assessment  Report  of  the  IPCC,  Cambridge  University  Press,  New  York.  

• Jakob,  C.,  and  G.  Tselioudis,  2003:  Objective  identification  of  cloud  regimes  in  the  Tropical  Western  Pacific.  Geophys.  Res.  Lett.,  30,  no.  21,  2082,  doi:10.1029/2003GL018367.  

• Jakob,  C.:  An  improved  strategy  for  the  evaluation  of  cloud  parameterizations  in  GCMs,  B.  Am.  Met.  Soc.,  84,  1387–1401,  2003.  

• James,  R.,  M.  Bonazzola,  B.  Legras,  K.  Surbled,  and  S.  Fueglistaler  (2008),  Water  vapor  transport  and  dehydration  above  convective  outflow  during  Asian  monsoon,  Geophys.  Res.  Lett.,  35,  L20810.  

• Josset,  D.  B.,  J.  Pelon,  A.  Garnier,  Y.  Hu,  M.  A.  Vaughan,  P.-­‐W.  Zhai,  R.  E.  Kuehn,  and  P.  Lucker,  Cirrus  optical  depth  and  lidar  ratio  retrieval  from  combined  CALIPSO-­‐CloudSat  observations  using  ocean  surface  echo,  J.  Geophys.  Res.,  2012,  doi:10.1029/2011JD016959.  

• Josset, D., Pelon, J., Hu, Y., 2010: “Multi-Instrument Calibration Method Based on a Multiwavelength Ocean Surface Model”, IEEE Geoscience and Remote Sensing Letters, 7, 1, 195-199, DOI: 10.1109/LGRS.2009.2030906.  

• Josset D., R. Rogers, J. Pelon, Y. Hu, Z. Liu, A. Omar, and P.-W. Zhai, 2011: “CALIPSO lidar ratio retrieval over the ocean”, Optics Express, 19(19), 18696-18706, 2011, doi:10.1364/OE.19.018696.  

• Jourdan,  O.  ;  Mioche,  G.;  Garrett,  T.J.;  Schwarzenböck,  A.  ;  Vidot,  J.  ;  Xie,  Y.  ;  Shcherbakov,  V.  N.  ;  Yang,  P.  

Page 45: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

45/56

;  Gayet,  J.-­‐F.  2010  ,  Coupling  of  the  microphysical  and  optical  properties  of  an  Arctic  nimbostratus  cloud  during  the  ASTAR  2004  experiment:  Implications  for  light-­‐scattering  modeling  ,  J.  Geophys.  Res.  Vol.  115  ,  No.  D23  ,  D23206.  

• Jourdan,  O.,  S.  Oshchepkov,  V.  Shcherbakov,  J.-­‐F.  Gayet,  and  H.  Isaka  (2003),  Assessment  of  cloud  optical  parameters  in  the  solar  region  :  retrievals  from  airborne  measurements  of  scattering  phase  functions,  J.  Geophys.  Res.,  108  (D18),  4572,  doi:10.1029/2003JD003493.  

• Kay,  J.  E.,  et  al.  (2012),  Exposing  global  cloud  biases  in  the  Community  Atmosphere  Model  (CAM)  using  satellite  observations  and  their  corresponding  instrument  simulators,  J.  Climate,  in  press,  doi:  10.1175/JCLI-­‐D-­‐11-­‐00469.1  

• Keckhut,  P.  et  al.,  Subgrid-­‐scale  cirrus  variability  observed  with  lidar  at  mid-­‐latitude  and  their  solar  attenuation  effects  at  ground,  submitted  in  JARS  

• Keckhut,  P.,  F.  Borchi,  S.  Bekki,  A.  Hauchecorne,  and  M.  SiLaouina  (2006),  Cirrus  Classification  at  Midlatitude  from  Systematic  Lidar  Observations,  J.  Appl.  Meteo.  Clim.,  45,  249-­‐258.  

• Konsta  D.,  H.  Chepfer,  JL  Dufresne,  2012:  A  process  oriented  description  of  tropical  oceanic  clouds  for  climate  model  evaluation,  based  on  a  statistical  analysis  of  daytime  A-­‐train  high  spatial  resolution  observations,  Climate  Dynamics,  DOI:  10.1007/s00382-­‐012-­‐1533-­‐7  

• Konsta  D.,  JL.  Dufresne,  H.  Chepfer,  A.  Idelkali,  G.  Cesana,  2013:  Evaluation  of  clouds  simulated  by  the  LMDZ5  GCM  using  A-­‐train  satellite  observations  (CALIPSO-­‐PARASOL-­‐CERES),  Climate  Dynamics,  under  review  

• Korolev,  A.  V.,  I.  P.  Mazin,  2003:  Supersaturation  of  Water  Vapor  in  Clouds.  J.  Atmos.  Sci.,  60,  2957–2974.  

• Lawson,  R.  P.,  E.  Jensen,  D.  L.  Mitchell,  B.  Baker,  Q.  Mo,  and  B.  Pilson,  Microphysical  and  radiative  properties  of  tropical  clouds  investigated  in  TC4  and  NAMMA.,  2010:  J.  Geophys.  Res.,  115,  D00J08,  doi:10.1029/2009JD013017  

• Liu,  C.,  E.  J.  Zipser  and  S.  W.  Nesbitt  (2007),  Global  distribution  of  tropical  deep  convection:  different  perspectives  from  TRMM  infrared  and  radar  data,  Journal  of  Climate,  20,  489-­‐503.  

• Mace,  G.  G.,  Benson,  S.,  and  Vernon,  E.:  Cirrus  Clouds  and  the  Large-­‐Scale  Atmospheric  State:  Relationships  Revealed  by  Six  Years  of  Ground-­‐Based  Data,  J.  Climate,  19,  3257–3278,  2006b.  

• Mace,  G.  G.,  Zhang,  Q.,  Vaughan,  M.,  Marchand,  R.,  Stephens,  G.,  Trepte,  C.,  and  Winker,  D.:  A  description  of  hydrometeor  layer  occurrence  statistics  derived  from  the  first  year  of  merged  Cloudsat  and  CALIPSO  data,  J.  Geophys.  Res.,  114,  D00A26,  doi:10.1029/2007JD009755  (2009).  

• Marchand,  R.  T.,  G.  G.  Mace,  and  T.  P.  Ackerman,  2008:  Hydrometeor  detection  using  CloudSat-­‐an  earth  orbiting  94  GHz  cloud  radar.  J.  Atmos.  Oceanic.  Technol.,  25,  519-­‐533.  

• Marchand,  R.  T.,  J.  Haynes,  G.G.  Mace,  T.Ackerman,  G.Stephens,  2009:  "A  comparison  of  simulated  cloud  radar  output  from  the  multiscalemodeling  framework  global  climate  model  with  CloudSat  cloud  radar  observations",  JOURNAL  OF  GEOPHYSICAL  RESEARCH,  VOL.  114,  D00A20.  

• Marchand,  R.,  Beagley,  N.,  Thompson,  S.  E.,  Ackerman,  T.  P.,  and  Schultz,  D.  M.:  A  Bootstrap  Technique  for  Testing  the  Relationship  between  Local-­‐Scale  Radar  Observations  of  Cloud  Occurrence  and  Large-­‐Scale  Atmospheric  Fields,  J.  Atmos.  Sci.,  63,  2813–2830,  2006  

• Maria  J-­‐L.,  Tran  T-­‐T.,  Pommereau  J-­‐P.,  Rannou  P.,  Malique  C.,  Correia  J-­‐J.  and  Porteneuve  J.,  2005,  Technical  aspect  of  the  optical  depth  sensor,  Adv.  Space  Res.,  38,  726-­‐729,  doi:10.1016/j.asr.2005.07.079,  2006.  

• Martet,  M.,  Introduction  des  différentes  composantes  de  l’aérosol  dans  le  modèle  MOCAGE,  Thèse  de  Doctorat,  Université  Paul  Sabatier,  Toulouse,  2008.  

• Martins,  E.,  V.  Noel,  and  H.  Chepfer  (2011),  Properties  of  cirrus  and  subvisible  cirrus  from  nighttime  Cloud-­‐Aerosol  Lidar  with  Orthogonal  Polarization  (CALIOP),  related  to  atmospheric  dynamics  and  water  vapor,  J.  Geophys.  Res.,  116(D2),  doi:10.1029/2010JD014519.  

• Mc  Farquhar  G.,  Iacobellis  S.,  Somerville  R.,  Single  colum  model  simulations  of  tropical  ice  clouds  using  observationally  based  paramétrisations  of  microphysics,  J.  Climate,  2003.  

• McFarquhar,  G.  M.,  G.  Zhang,  M.  R.  Poellot,  G.  L.  Kok,  R.  McCoy,  T.  Tooman,  A.  Fridling,  and  A.  J.  Heymsfield  (2007),  Ice  properties  of  single-­‐layer  stratocumulus  during  the  Mixed-­‐Phase  Arctic  Cloud  Experiment:  1.  Observations,  J.  Geophys.  Res,  112,  D24201,  doi:10.1029/2007JD008633.  

• Menut,  L.,  B.  Bessagnet,  D.  Khvorostyanov,  M.  Beekmann,  A.  Colette,  I.  Coll,  G.  Curci,  G.  Foret,  A.  Hodzic,  S.  Mailler,  F.  Meleux,  J.L.  Monge,  I.  Pison,  S.  Turquety,  M.  Valari,  R.  Vautard  and  M.G.  Vivanco,  Regional  atmospheric  composition  modeling  with  CHIMERE,  Geoscientific  Model  Development  Discussion,  2013.  

• Miller,  T.  P.,  and  T.  J.  Casadevall,  Volcanic  ash  hazards  to  aviation.  Encyclopedia  of  Volcanoes,  H.  Sigurdsson  et  al.,  Eds.,  Academic  Press,  925–930,  1999.  

Page 46: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

46/56

• Mioche,  G.,  D.  Josset,  J.-­‐F.  Gayet,  J.  Pelon,  A.  Garnier,  A.  Minikin,  and  A.  Schwarzenböck,  2010:  Validation  of  the  CALIPSO-­‐CALIOP  extinction  coefficients  from  in  situ  observa-­‐  tions  in  midlatitude  cirrus  clouds  during  the  CIRCLE-­‐2  experiment.  J.  Geophys.  Res.,  115  D00H25..  

• Montoux,  N.,  P.  Keckhut,  A.  Hauchecorne,  J.  Jumelet,  H.  Brogniez,  and  C.  David  (2010),    Isentropic  modeling  of  a  cirrus  cloud  event  observed  in  the  midlatitude  upper  troposphere  and  lower  stratosphere,  J.  Geophys.  Res.,  115,  D02202,  doi:10.1029/2009JD011981.  

• Nam  C.,  S.  Bony,  JL  Dufresne,  H.  Chepfer,  2012:  The  'too  few,  too  bright'  tropical  low-­‐cloud  problem  in  CMIP5  models,  Geophys.  Res.  Lett.,  39,  21,  idoi:10.1029/2012GL053421.  

• Nesbitt,  S.  W.,  E.  J.  Zipser  and  D.  J.  Cecil  (2000),  A  census  of  precipitation  features  in  the  Tropics  using  TRMM:  Radar,  ice  scattering,  and  lightning  observations,  Journal  of  Climate,  13,  4087-­‐4106,  2000.  

• Noel  V.,  A.  Hertzog,  H.  Chepfer:  CALIPSO  observations  of  wave-­‐induced  PSCs  with  near-­‐unity  optical  depth  over  Antarctica  in  2006-­‐2007.  J.  Geophys.  Res.  114  D05202,  2009.  

• Noel,  V.,  A.  Hertzog,  H.  Chepfer,  and  D.  Winker  (2008),  Polar  Stratospheric  Clouds  over  Antarctica  from  the  CALIPSO  spaceborne  lidar,  J.  Geophys.  Res.,  113,  D0225.  

• Noel,  V.,  and  M.  C.  Pitts:  Gravity  wave  events  from  mesoscale  simulations,  compared  to  polar  stratospheric  clouds  observed  from  spaceborne  lidar  over  the  Antarctic  Peninsula,  J.  Geophys.  Res.  117,  D11207,  2012.    

• Omar, A., D. Winker, C. Kittaka, M. Vaughan, Z. Liu, Y. Hu, C. Trepte, R. Rogers, R. Ferrare, K.-P. Lee, R. Kuehn, and C. Hostetler, 2009: “The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm”, J. Atmos. Oceanic Technol., 26, 1994–2014, doi:10.1175/2009JTECHA1231.1  

• Ou  SC,  Liou  K.  N.,  Ice  microphysics  and  climatic  temperature  feedback,  Atm.  Res.,  1995.  • Péré,  J.  C.,  M.  Mallet,  B.  Bessagnet,  and  V.  Pont,  Evidence  of  the  aerosol  core-­‐shell  mixing  state  over  

Europe  during  the  heat  wave  of  summer  2003  by  using  CHIMERE  simulations  and  AERONET  inversions,  Geophys.  Res.  Lett.,  36,  L09807,  2009.  

• Peter,  T.,  C.  Marcolli,  P.  Spichtinger,  T.  Corti,  M.  B.  Baker,  and  T.  Koop  (2006),  When  dry  air  is  too  humid,  Science,  314,  1399-­‐1402.  

• Pitts,  M.  C.,  Poole,  L.  R.,  Dörnbrack,  A.,  and  Thomason,  L.  W.:  The  2009–2010  Arctic  polar  stratospheric  cloud  season:  a  CALIPSO  perspective,  Atmos.  Chem.  Phys.,  11,  2161-­‐2177,  2011.  

• Pommereau,  J.-­‐P.,  Goutail,  F.,  Lefèvre,  F.,  Pazmino,  A.,  Adams,  C.,  Dorokhov,  V.,  Eriksen,  P.,  Kivi,  R.,  Stebel,  K.,  Zhao,  X.,  and  van  Rozendael,  M.:  Why  unprecedented  ozone  loss  in  the  Arctic  in  2011?  Is  it  related  to  climatic  change?,  Atmos.  Chem.  Phys.  Discuss.,  13  (1),  311-­‐343,  2013,  doi:10.5194/acpd-­‐13-­‐311-­‐2013,  

• Prigent,  C.,  E.  Defer,  J.  R.  Pardo,  C.  Pearl,  W.  Rossow,  J.-­‐P.  Pinty,  Relations  of  polarized  scattering  signatures  observed  by  the  TRMM  Microwave  Instrument  with  electrical  processes  in  cloud  systems,  Geophys.  Res.  Lett.,  32,  No.  4,  2005.  

• Prospero,  J.M.,  Ginoux,  P.,  Torres,  O.,  Nicholson,  S.E.,  Gill,  T.E.,  2002:  Environnemental  characterization  of  global  sources  of  atmospheric  soil  dust  identified  with  the  Nimbus  7  total  ozone  mapping  spectrometer  (TOMS)  absorbing  aerosol  product,  Rev.  Geophys.,  40(1),  1002,  doi:10.1029/2000RG000095.  

• Protat,  A.,  Bouniol,  D.,  Delanoë,  J.,  May,  P.,  Plana-­‐Fattori,  A.,  Hasson,  A.,  O'Connor,  E.,  Görsdorf,  U.,  Heymsfield,  A.,  2009:  Assessment  of  CloudSat  reflectivity  measurements  and  ice  cloud  properties  using  ground-­‐based  and  airborne  cloud  radar  observations.  J.  Atmos.  Oceanic  Technol.,  26,  1717-­‐1741.  

• Protat,  A.,  Delanoë,  J.,  O’Connor,  E.,  and  L’Ecuyer,  T.:  The  evaluation  of  CloudSat-­‐derived  ice  microphysical  products  using  ground-­‐based  cloud  radar  and  lidar  observations,  J.  Atmos.  Ocean.  Tech.,  27,  793–810,  2010.  

• Protat,  A.,  G.  McFarquhar,  J.  Um,  and  J.  Delanoë,  2011a:  Obtaining  best  estimates  for  the  microphysical  and  radiative  properties  of  tropical  ice  clouds  from  TWP-­‐ICE  in-­‐situ  microphysical  observations.  J.  Appl.  Meteor.  Clim.,  doi:  10.1175/2010JAMC2401.1.  

• Quaas,  J.  (2012),  Evaluating  the  “critical  relative  humidity”  as  a  measure  of  subgrid-­‐scale  variability  of  humidity  in  general  circulation  model  cloud  cover  parameterizations  using  satellite  data,  J.  Geophys.  Res.,  117,  D09208,  doi:  10.1029/2012JD017495/  

• Reverdy,  M.,  V.  Noel,  H.  Chepfer,  and  B.  Legras  (2012),  On  the  origin  of  subvisible  cirrus  clouds  in  the  tropical  upper  troposphere,  Atmos.  Chem.  Phys.,  12(24),  12081–12101,  doi:10.5194/acp-­‐12-­‐12081-­‐2012.  

• Rex,  M.  et  al.,  In-­‐situ  measurements  of  stratospheric  ozone  depletion  rates  in  the  Arctic  winter  1991/92:  A  Lagrangian  approach,  J.  Geophys.  Res.,  103,  5843-­‐5853,  1998.  

• Riihimaki,  L.D.,  McFarlane,  S.,  Comstock,  J.,  2012:  Climatology  and  formation  of  tropical  midlevel  

Page 47: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

47/56

clouds  at  the  Darwin  ARM  site.  J.  Climate,  25,  6835-­‐6850.  • Rivière,  E.  D.,  N.  Huret,  F.  G.-­‐Taupin,  J.-­‐B.  Renard,  M.  Pirre,  S.  D.  Eckermann,  N.  Larsen,  T.  Deshler,  F.  

Lefèvre,  S.  Payan,  et  C.  Camy-­‐Peyret,  Role  of  lee  waves  in  the  formation  of  solid  polar  stratospheric  clouds:  Case  studies  from  February  1997,  J.  Geophys.  Res.,  105,  6845-­‐6853,  2000.  

• Rivière,  E.  D.,  Y.  Terao,  et  H.  Nakajima,  A  Lagrangian  method  to  study  stratospheric  nitric  acid  variations  in  the  polar  regions  as  measured  by  the  Improved  Limb  Atmospheric  Spectrometer,  J.  Geophys.  Res.,  108(D23),  4718,  2003.  

• Roehrig,  R.,  Bouniol,  D.,  Guichard,  F.,  Hourdin,  F.,  Redelsperger,  J.-­‐L.,  2013:  The  present  and  future  of  the  West  African  monsoon:  a  process-­‐oriented  assessment  of  CMIP5  simulations  along  the  AMMA  transect.  J.  Climate,  in  press.  

• Sarkissian  A.,  J.P.  Pommereau  and  F.  Goutail,  Identification  of  polar  stratospheric  clouds  from  the  ground  by  visible  spectrometry,  Geophys.  Res.  Lett.,  18,  779-­‐782,  1991.  

• Sassen,  K.,  Wang,  Z.,  and  Liu,  D.:  Global  distribution  of  cirrus  clouds  from  CloudSat/Cloud-­‐Aerosol  Lidar  and  Infrared  Pathfinder  Satellite  Observations  (CALIPSO)  measurements,  J.  Geophys.  Res.,  113,  D00A12,  doi:10.1029/2008JD009972,  2008.  

• Saunders  R,  Matricardi  M,  Geer  A,  Rayer  P,  Embury  O,  Merchant  C.  2010:  RTTOV-­‐9  Science  and  Validation  Report,  NWP  Tech.  Report  NWPSAF-­‐MO-­‐TV.  Available  at  http://research.metoffice.gov.uk/research/interproj/rtm/rtm_rttov9.html  

• Sèze,  G.,  H.  Legleau,  M.  Derrien,  B.  Six  and  J.  Pelon:  Evaluation  of  the  global  cloud  cover  parameters  obtained  from  geostationnary  data  in  the  frame  of  the  MEGHA-­‐tropiques  mission  with  CALIPSO  lidar  observations.  Proc.  of  the  2009  EUMETSAT  Meteorological  Satellite  Conference,  Bath,  England,  21-­‐25  September  2009.  

• Sèze,  G.,  J.  Pelon,  H.  Legleau,  M.  Derrien,  B.  Six:  Evaluation  of  the  Global  Cloud  Cover  Distribution  obtained  from  Multi-­‐geostationary  data  in  the  frame  of  the  MEGHA-­‐TROPIQUES  mission  using  CALIPSO  lidar  observations.  (submitted  to  QJRMS)  

• Shupe,  M.D.  and  J.M.  Intrieri,  (2004),  Cloud  radiative  forcing  of  the  Arctic  surface:  The  influence  of  cloud  properties,  surface  albedo,  and  solar  zenith  angle,  ,  J.  Climate.,  17,  616-­‐628.  

• Shupe,  M.D.,  (2011),  Clouds  at  Arctic  atmospheric  observatories,  part  II  :  Thermodynamic  phase  characteristics,  J.  Appl.  Meteorol.  Climatol.,  50,  645-­‐661,  doi:10.1175/2010JAMC2468.1.1  

• Shupe,  M.D.,  S.  Y.  Matrosov  and  T.  Uttal  (2006),  Arctic  Mixed-­‐Phase  Cloud  Properties  Derived  from  Surface-­‐Based  Sensors  at  SHEBA,  J.  Atmos.  Sci.,  63:2,  697-­‐711  

• Simpson,  J.  J.,  G.  L.  Hufford,  D.  C.  Pieri,  and  J.  Berg,  Failures  in  detecting  volcanic  ash  from  satellite  based  technique.  Remote  Sens.  Environ.,  72,  191–217,  2000.  

• Stephens  GL,  Vane  DG,  Boain  RJ,  Mace  GG,  Sassen  K,  Wang  Z,  Illingworth  AJ,  O’Connor  EJ,  Rossow  WB,  Durden  SL,  Miller  SD,  Austin  RT,  Benedetti  A,  Mitrescu  C,  the  CloudSat  Science  Team.  2002.  The  Cloudsat  Mission  and  the  A-­‐Train.  Bull.  Am.  Met.  Soc.  83:  1771–1790.  

• Stephens,  G.L.,  et  al.  (2002),  The  CloudSat  mission  and  the  A-­‐Train:  A  new  dimension  of  space-­‐based  observations  of  clouds  and  precipitation,  Bull.  Amer.  Meteorol.  Soc.,  83,  1771-­‐1790,  doi:  10.1175/BAMS-­‐83-­‐12-­‐1771  

• Stevenson,  D.  S.,  C.  E.  Johnson,  W.  J.  Collins,  and  R.  G.  Derwent,  The  tropospheric  sulphur  cycle  and  the  role  of  volcanic  SO2,  in  Volcanic  Degassing  edited  by  C.  Oppenheimer,  D.  M.  Pyle  and  J.  Barclay,  Geol.  Soc.  Lond.  Spec.  Pub.,  213,  295-­‐305,  2003.  

• Stiller,  O.  (2010),  A  flow-­‐dependent  estimate  for  the  sampling  error,  J.  Geophys.  Res.,  115,  D22206.  • Stohl,  A.,  and  P.  Seibert:  Accuracy  of  trajectories  as  determined  from  the  conservation  of  

meteorological  tracers.  Q.  J.  Roy.  Met.  Soc.  124,  1465-­‐1484,  1998.  • Stromatas,  S.,  Turquety,  S.,  Menut,  L.,  Chepfer,  H.,  Péré,  J.  C.,  Cesana,  G.,  and  Bessagnet,  B.:  Lidar  signal  

simulation  for  the  evaluation  of  aerosols  in  chemistry  transport  models,  Geosci.  Model  Dev.,  5,  1543-­‐1564,  2012.  

• Stubenrauch,  C.  J.,  A.  Feofilov,  A.  Guignard,  N.  Lamquin  and  R.  Armante  :  Cirrus  properties  from  IR  Sounders  and  analyses  in  synergy  with  other  instruments,  International  Radiation  Symposium,  Berlin,  Germany,  6-­‐10  August  2012.  

• Stubenrauch.  C.  J..  S.  Cros.  A.  Guignard,  and  N.  Lamquin,  A  six-­‐year  global  cloud  climatology  from  the  Atmospheric  InfraRed  Sounder  aboard  the  Aqua  Satellite:  statistical  analysis  in  synergy  with  CALIPSO  and  CloudSat.  Atmos.  Chem.  Phys.,  10,  7197−7214  (2010).  

• Su,  H.,  J.  H.  Jiang,  D.  G.  Vane,  and  G.  L.  Stephens  (2008),  Observed  vertical  structure  of  tropical  oceanic  clouds  sorted  in  large  scale  regimes,  Geophys.  Res.  Lett.,  35,  L24704,  

• Szczap  F.,  C.  Cornet,  A.  Alkasem,  Y.  Gour,  L.  C.-­‐Labonnote  and  O.  Jourdan,  2013,  A  3D  Polarized  Monte  Carlo  LIDAR  System  Simulator  for  Studying  Effects  of  Cirrus  Inhomogeneities  on  CALIOP/CALIPSO  

Page 48: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

48/56

Measurements,  IRS2012  Proceedings  • Terao,  Y.,  Y.  Sasano,  H.  Nakajima,  H.L.  Tananka  and  T.  Yasunari,  Stratospheric  ozone  loss  in  the  

1996/1997  Arctic  winter:  Evaluation  based  on  multiple  trajectory  analysis  for  double-­‐sounded  air  parcels  by  ILAS,  J.  Geophys.  Res.,  107,  doi:10.1029/2001JD000615,  2002.  

• Thomas,  R.  J.,  P.  R.  Krehbiel,  W.  Rison,  T.  Hamlin,  D.  J.  Boccippio,  S.  J.  Goodman,  and  H.  J.  Christian,  Comparison  of  ground-­‐based  3-­‐dimensional  lightning  mapping  observations  with  satellite-­‐based  LIS  observations  in  Oklahoma,  GRL,  27(12),  1703-­‐1706,  2000.  

• Tran  T.-­‐T.,  Pommereau  J-­‐P.,  Rannou  P.  and  Maria  J-­‐L.,  Scientific  aspects  of  the  optical  depth  sensor,  Adv.  Space  Res.,  36,  2182-­‐2186.  doi:  10.1016/j.asr.2005.08.021,  2006.  

• Vavrus,  S.  (2004),  The  impact  of  cloud  feedbacks  on  arctic  climate  under  greenhouse  forcing,  J.  Climate,  17,  603-­‐615.  

• Verlinde,  J.,  J.  Y.  Harrington,  G.  M.  McFarquhar,  V.  T.  Yannuzzi  ,  A.  Avramov,  S.  Greenberg,  N.  Johnson,  G.  Zhang,  M.  R.  Poellot,  J.  H.  Mather,  D.  D.  Turner,  E.  W.  Eloranta,  B.  D.  Zak,  A.  J.  Prenni,  J.  S.  Daniel,  G.  L.  Kok,  D.  C.  Tobin,  R.  Holz,  K.  Sassen,  D.  Spangenberg,  P.  Minnis,  T.  P.  Tooman,  M.  D.  Ivey,  S.  J.  Richardson,  C.  P.  Bahrmann,  M.  Shupe,  P.  J.  Demott,  A.  J.  Heymsfield,  and  R.  Schofield  (2007),  The  mixed-­‐phase  Arctic  cloud  experiment  (M-­‐PACE),  Bull.  Amer.  Meteor.  Soc.,  88,  205-­‐221.  

• Vidot  J.,  Brunel  P.,  Baran  A,  2013.  A  new  ice  cloud  optical  properties  database  in  RTTOV  for  IASI.  Third  International  IASI  Conference,  Hyères,  France,  4-­‐8  February  2013.  

• Voigt,  C.  et  al.:  Nitric  Acid  Trihydrate  (NAT)  formation  at  low  NAT  supersaturation  in  Polar  Stratospheric  Clouds  (PSCs).  Atmos.  Chem.  Phys.  5,  1371-­‐1380,  2005.  

• Von  der  Gathen,  P.,  M.  Rex,  N.  R.  P.  Harris,  D.  Lucic,  B.  J.  Knudsen,  G.  O.  Braathen,  H.  de  Backer,  R.  Fabian,  H.  Fast,  M.  Gil,  E.  Kyrö,  I.  S.  Mikkelsen,  M.  Rummukainen,  J.  Stähelin  and  C.  Varotsos  (1995),  Observational  evidence  for  chemical  ozone  depletion  over  the  Arctic  in  winter  1991–92,  Nature,  375,  131–134.  

• Vuolo,  M.  R.,  H.  Chepfer,  L.  Menut,  and  G.  Cesana,  2009:  Comparison  of  mineral  dust  layers  vertical  structures  modelled  with  Chimere-­‐Dust  and  observed  with  the  Caliop  lidar.,  J.  Geophys.  Res.,  2009.  

• Welton  J.,  2012:  CATS-­‐ISS  Science  Overview,  available  at  http://bobcat.aero.und.edu/jzhang/ICAP/AERP/MeetingPDFs/RemoteSensing/Welton_CATS(NXPowerLite).pdf  

• Winker,  D.  and  C.  Trepte  (2007),  Distribution  and  Characteristics  of  Polar  Clouds  from  CALIOP,    A-­‐Train-­‐Lille  07  symposium,  22-­‐25  October  2007.  

• Winker D., J. Pelon, C. Trepte and T. Barroso, CALIPSO Extension 2014-2015: Senior Review Proposal, NASA-CNES document, 2013.  

• WMO  (World  Meteorological  Organisation):  Scientific  assessment  of  ozone  depletion:  2010,  Global  Ozone  Research  and  Monitoring  Project,  Report  52,  516  pp,  Geneva,  Switzerland,  2011.  

• Wyser  K,  The  effective  radius  in  the  ice  clouds,  J.  Climate,  1998.              

Page 49: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

49/56

V.  BUDGET  2014    Références  financières:    1  PC  =  2.5kE  1  mission  hors  Europe  =  3kE  1  mission  Europe  =  2.5kE  1  gratification  =  2.274kE      

Petit  Matériel,  consommables,  publications,  informatique  2014  Labo   Tache   Responsable   Description   kE  LATMOS   0.A   J.  Pelon   1  Publication     2.5  

Hardware   5  License   2.5  

LATMOS   1.1   J.  Delanoe   2  Publications   5  CNRM   1.2   D.  Bouniol   Publication   2.5  LAMP   1.4   N.  Montoux   Publication   2.5  

License  IDL   1  LMD   1.5   V.  Noel   Publication   2.5  LATMOS   1.5   J.  Delanoe   1  PC   2.5  LAMP   1.6   O.  Jourdan   2  licenses   1.9  

2  publis   5  LMD   1.7   G.  Cesana   1  publi   2.5  

Stockage   5  LMD   2.2   C.  Stubenrauch   1  publi   2.5  LMD   2.3   C.  Hoareau   1  PC   2.5  

2  publications   5  LERMA   2.4   E.  Defer   1  publi   2.5  LMD     2.5   H.  Chepfer   2  publis   5  LATMOS   3.1   G.  Ancellet   Entretien  materiel  lidar   2  LMD   3.2   S.  Turquety   Stockage   4  GSMA   4.1   E.  Riviere   License   0.5  LATMOS   4.2   J.  Jumelet   Entretien  (jeton  Alomar)   11.5  

1  PC   2.5  1  publi   2.5  

LATMOS   4.3   J.-­‐P.  Pommereau   1  PC   2.5  LAMP   5.2   F.  Szczap   1  jeton  matlab   0.7  

1  publi   2.5  1  PC   2.5  

LMD   5.3   H.  Chepfer   1  publi   2.5  LMD   5.4   M.  Reverdy   1  publi   2.5  LATMOS   6.1   J.  Delanoe   Entretien  materiel   10  LMD   6.3   V.  Noel   1  publi   2.5         Stockage   3  

Total   109.6      

Missions  2014  Labo   Tache   Responsable   Description   kE  IPSL     V.  Noel   Workshop   15  

Page 50: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

50/56

LATMOS   0A   J.  Pelon   4  missions  US  2  missions  France  

14.4  

LMD   0B   H.  Chepfer   1  mission  US   3  

CNRM   1.2   D.  Bouniol   3  missions  France  2  missions  US  

9.6  

LAMP   1.4   N.  Montoux   1  mission  France   1.2  LATMOS   1.5   J.  Delanoe   2  missions  US   6  LMD   1.5   V.  Noel   2  missions  France   2.4  

1  mission  Europe   2.5  LAMP   1.6   O.  Jourdan   5  missions  France   6  

1  mission  US   3  LMD   1.7   G.  Cesana   2  missions  US   6  LMD  LMD  

2.2  2.2  

C.  Stubenrauch  C.  Stubenrauch  

1  mission  Europe   2.5  1  mission  US   3  

LMD   2.3   C.  Hoareau   1  mission  US   3  LMD   2.5   H.  Chepfer   2  missions  Europe   5  

1  mission  US   3  LATMOS   3.1   G.  Ancellet   1  mission  Europe   2.5  LMD   3.2   S.  Turquety   2  missions  US   6  CNRM   3.3   L.  El  Amraoui   2  missions  US   6  GSMA   4.1   E.  Riviere   3  missions  France   3.6  

1  mission  Europe   2.5  LATMOS   4.2   J.  Jumelet   2  missions  Europe   5  LATMOS   4.3   J.-­‐P.  Pommereau   1  mission  US   3  

2  missions  Europe   5  CMS   5.1   J.  Vidot   1  mission  Europe   2.5  LAMP   5.2   F.  Szczap   1  mission  France   1.2  

1  mission  Europe   2.5  LMD   5.3   H.  Chepfer   1  mission  US   3  

1  mission  Europe   2.5  LMD   5.4   M.  Reverdy   1  mission  Japon   3  

1  mission  Europe   2.5  IPSL   6.2   M.  Haeffelin   1  mission  France   1.2  LMD   6.3   V.  Noel   2  missions  US   6  

Total   143.6      

Personnel  2014  Labo   Tache   Responsable   Description   kE  LATMOS   0A   J.  Pelon   CDD   54  

Stage  etudiant   2.274  LMD   0B   H.  Chepfer   CDD   54  CNRM   1.2   D.  Bouniol   Stage  etudiant   2.274  LMD   1.3   G.  Ceze   Stage  etudiant   2.274  LAMP   1.4   N.  Montoux   Stage  etudiant   2.274  LAMP   1.6   O.  Jourdan   CDD   54  LERMA   2.4   E.  Defer   Stage  etudiant  (2)   4.548  LMD   2.5   H.  Chepfer   Stage  etudiant   2.274  LMD     3.2   S.  Turquety   Stage  etudiant   2.274  CNRM   3.3   L.  El  Amraoui   CDD   54  GSMA   4.1   E.  Riviere   Stage  etudiant   2.274  

Page 51: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

51/56

LMD   5.4   M.  Reverdy   Stage  etudiant   2.274  LATMOS   6.1   J.  Delanoe   CDD   54  

Total   319.74      

Page 52: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

52/56

VI.  LIST  OF  PUBLICATIONS  USING  CALIPSO  AND  CLOUDSAT  DATA  BY  FRENCH  SCIENTISTS    

Cette   liste   n’est   probablement   pas   exhaustive  mais   regroupe   au  moins   toutes   les   publications  des   proposants   inclus   dans   la   présente   demande.   Elle   montre   la   forte   implication   de   la  communauté   française   dans   la   préparation,   la   validation,   et   l’exploitation   scientifique   de   l’A-­‐Train,  à  travers  49  publications  pendant  les  2  dernieres  annees  (2011-­‐2013).  

 

Submitted  (10)  

1. Ceccaldi  M.,  J.  Delanoë,  R.  J.  Hogan  ,  N.  Pounder  ,  A.  Protat  ,  J.  Pelon:  From  CloudSat-­‐CALIPSO  to  Earth-­‐Care  :  Evolution  of  the  DARDAR  cloud  classication  and  its  validation  using  airborne  radar-­‐lidar  observations.  J.  Geophys.  Res.,  in  revision  

2. Chiriaco  M.,  H.  Chepfer  :  Inter-­‐annual  variability  of  tropical  cloud  cover  in  a  subsidence  area,  using  23  years  of  ISCCP  observations:  a  dynamical  regime  analysis.  J.  of  Geophys.  Res.,  in  revision.  

3. Couvreux  F.,  F  Guichard,  A  Gounou,  D  Bouniol,  P  Peyrillé  and  M  Kohler:  Modelling  of  the  thermodynamical  diurnal  cycle  in  the  lower  atmosphere;  a  joint  evaluation  of  four  contrasted  regimes  in  the  Tropics  over  land.  Boundary  Layer  Meteorology,  in  revision  

4. Defer,  E.,  and  H.-­‐D.  Betz:  Properties  of  convective  cloud  and  associated  lightning  activity  over  Western  Europe  as  sensed  by  A-­‐Train  and  LINET,  submitted  to  JGR.    

5. Garnier,  A.,  J.  Pelon,  P.  Dubuisson,P.  Yang,  M.  Faivre,  O.  Chomette,  P.  Lucker,  2013  :  Retrieval  of  cloud  properties  using  CALIPSO  Imaging  Infrared  Radiometer.  Part  II:  effective  diameter  and  ice  water  path,  J.  Appl.  Meteor.  Climatol.,  submitted  

6. Konsta  D.,  JL.  Dufresne,  H.  Chepfer,  A.  Idelkali,  G.  Cesana,  2012:  Evaluation  of  clouds  simulated  by  the  LMDZ5  GCM  using  A-­‐train  satellite  observations  (CALIPSO-­‐PARASOL-­‐CERES),  Climate  Dynamics,  in  review  

7. Hoareau,  C.,  P.  Keckhut,  V.  Noel,  H.  Chepfer  and  J.-­‐L.  Baray:  A  decadal  cirrus  clouds  climatology  from  ground-­‐based  and  spaceborne  lidars  above  south  of  France  (43.9°N-­‐5.7°E).  submitted  to  Atmos.  Chem.  Phys.  

8. Protat,  A.,  S.  A.  Young,  S.  McFarlane,  T.  L'Ecuyer,  G.  G.  Mace,  J.  Comstock,  C.  Long,  E.  Berry,  and  J.  Delanoë,  2013:  Reconciling  Ground-­‐Based  and  Space-­‐Based  Estimates  of  the  Frequency  of  Occurrence  and  Radiative  Effect  of  Clouds  around  Darwin,  Australia,  J.  Appl.  Meteor.  Clim.,  submitted,  March  2013  

9. Sèze,  G.,  J.  Pelon,  H.  Legleau,  M.  Derrien,  B.  Six:  Evaluation  of  the  Global  Cloud  Cover  Distribution  obtained  from  Multi-­‐geostationary  data  in  the  frame  of  the  MEGHA-­‐TROPIQUES  mission  using  CALIPSO  lidar  observations.  submitted  to  QJRMS  

10. Vernier  J.P.,  T.  D.  Fairlie,  J.  J.  Murray,  A.  Tupper,  C.  Trepte,  D.  Winker,  J.  Pelon,  A.  Garnier,  J.  Jumelet,  M.  Pavolonis,  A.H.  Omar  and  K.A.  Powell,  2013  :An  advanced  system  to  monitor  the  3D  structure  of  diffuse  volcanic  ash  clouds,  J.  Appl.  Meteor.  Climatol.,  submitted.  

 

2013  (12)  

1. Bardosa  J.,  M.  Haeffelin,  H.  Chepfer,  2013:  Scales  of  spatial  and  temporal  variation  of  solar  irradiance  on  Reunion  Tropical  Island,  Solar  Energy  88,  42-­‐56,  doi:10.1016/j.solener.2012.11.007.  

Page 53: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

53/56

2. Battaglia  A.  and  J.  Delanoë,  2013  :  Synergies  and  complementarities  of  CloudSat-­‐CALIPSO  snow  observations.  J.  Geophys.  Res.  118  721-­‐731,  doi:10.1029/2012JD018092  

3. Cesana  G.  and  H.  Chepfer,  2013:  Evaluation  of  the  cloud  water  phase  in  a  climate  model  using  CALIPSO-­‐GOCCP,  J.  Geophys.  Res.,  doi:  10.1002/jgrd.50376.  

4. Delanoë,  J.,  A.  Protat,  O.  Jourdan,  J.  Pelon,  M.  Papazzoni,  R.  Dupuy,  J.-­‐F.  Gayet,  C.  Jouan,  2013  :  Comparison  of  airborne  in-­‐situ,  airborne  radar-­‐lidar,  and  spaceborne  radar-­‐lidar  retrievals  of  polar  ice  cloud  properties  sampled  during  the  POLARCAT  campaign.  J.  Atmos.  Oceanic  Technol.,  30,  57–73.  

5. Keckhut,  P.,  J-­‐M.  Perrin,  G.  Thuillier,  C.  Jeannot,  and  C.  Hoareau,  N.  Montoux,  2013:  Subgrid-­‐scale  cirrus  observed  by  lidar  at  mid-­‐latitude:  variability  of  the  cloud  optical  depth,  J.  Atmos.  Rem.  Sens.  in  press  

6. Dionisi,  D.,  P.  Keckhut,  C.  Hoareau,  N.  Montoux,  and  F.  Congeduti,  2013:  Cirrus  crystal  fall  velocity  estimates  using  the  Match  method  with  ground-­‐based  lidars:  first  investigation  through  a  case  study,  Atmos.  Meas.  Tech.,  6,  457–470,  doi:10.5194/amt-­‐6-­‐457-­‐2013.  

7. Roehrig,  R.,  Bouniol,  D.,  Guichard,  F.,  Hourdin,  F.,  Redelsperger,  J.-­‐L.  2013:  The  present  and  future  of  the  West  African  monsoon:  a  process-­‐oriented  assessment  of  CMIP5  simulations  along  the  AMMA  transect.  Journal  of  Climate,  in  press.    

8. Sourdeval,  O.,  C.-­‐  Labonnote,  L.,  Brogniez,  G.,  Jourdan,  O.,  Pelon,  J.,  and  Garnier,  A.:  A  variational  approach  for  retrieving  ice  cloud  properties  from  infrared  measurements:  application  in  the  context  of  two  IIR  validation  campaigns,  Atmos.  Chem.  Phys.  Discuss.,  13,  5553-­‐5599,  2013,  doi:10.5194/acpd-­‐13-­‐5553-­‐2013,  2013.    

9. Sourdeval  O.,  G.  Brogniez,  J.  Pelon,    L.  C.-­‐Labonnote,  P.  Dubuisson,  F.  Parol,  D.  Josset,  A.  Garnier,  M.  Faivre,  A.  Minikin,  2013,  Validation  of  IIR/Calipso  level  1  measurements  by  comparison  with  collocated  airborne  observations  during  'Circle-­‐2'  and  'Biscay  08'  campaigns,  J.  Atmos.  Oceanic  Technol.,    doi:  10.1175/JTECH-­‐D-­‐11-­‐00143.1,  in  press.  

10. Stubenrauch,  C.J.,  W.  B.  Rossow,  S.  Kinne,  S.  Ackerman,  G.  Cesana,  H.  Chepfer,  L.  Di  Girolamo5,B.  Getzewich,  A.  Guignard,  A.  Heidinger,  B.  Maddux,  W.  P.  Menzel,  P.  Minnis,  C.  Pearl,  S.  Platnick,  C.  Poulsen,    J.  Riedi,  S.  Sun-­‐Mack,  A.  Walther,  D.  Winker,  S.  Zeng,  G.  Zhao,  2013:  Assesment  of  global  cloud  datasets  from  satellites:  Project  and  Database  initiated  by  the  GEWEX  Radiation  Panel,  Bull.  Am.  Met.  Soc.,  doi:10.1175/BAMS-­‐D-­‐12-­‐00117.  in  press.  

11. Szczap  ,  C.  Cornet  ,  A.  Alqassem  ,  Y.  Gour  ,  L.  C.-­‐Labonnote  and  O.  Jourdan,  2013:  A  3D  Polarized  Monte  Carlo  LIDAR  System  Simulator  for  Studying  Effects  of  Cirrus  Inhomogeneities  on  CALIOP/CALIPSO  Measurements.  in  Proceedings  of  the  Int.  Rad.  Symp.  2012.  In  press  

12. Thuillier,  G.,  J-­‐M.  Perrin,  P.  Keckhut,  and  F.  Huppert,  2013:  Local  enhanced  solar  irradiance  on  the  ground  generated  by  cirrus:  measurements  and  interpretation,  J.  Atmos.  Rem.  Sens.  in  press  

 

2012  (19)  

1. Bouniol,  D.,  Couvreux,  F.,  Kamsu-­‐Tamo,  P.-­‐H.,  Leplay,  M.,  Guichard,  F.,  Favot,  F.,  O’Connor,  E.J.,  2012:  Diurnal  and  Seasonal  Cycles  of  Cloud  Occurrences,  Types,  and  Radiative  Impact  over  West  Africa.  J.  Appl.  Meteorol.  Climat.  51  (3),  534-­‐553.  

2. Cesana,  G.,  J.E.  Kay,  H.  Chepfer,  J.M.  English  and  G.  de  Boer  (2012),  Ubiquitous  low-­‐level  liquid-­‐containing  Arctic  cloud:  New  observations  and  climate  model  constraints  

Page 54: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

54/56

from  CALIPSO-­‐GOCCP,  Geophys.  Res.  Lett.  39,  L20804,  doi:10/1029/2012GL053385.  3. Cesana  G.  and  H.  Chepfer  (2012),  How  well  do  climate  models  simulate  the  cloud  

vertical  structure?  –  a  comparison  between  CALIPSO-­‐GOCCP  satellite  observations  and  CMIP5  simulations,  Geophys.  Res.  Lett.,  doi:10.1029/2012GL053153.  

4. Chepfer  H.,  G.  Cesana,  D.  Winker,  B.  Getzewich,  and  M.  Vaughan,  2012:  Comparison  of  two  different  cloud  climatologies  derived  from  CALIOP  Level  1  observations:  the  CALIPSO-­‐ST  and  the  CALIPSO-­‐GOCCP,  J.  Atmos.  Ocean.  Tech.,  in  press  

5. Garnier,  A.,  J.  Pelon,  P.  Dubuisson,  M.  Faivre,  O.  Chomette,  N.  Pascal,  D.  P.  Kratz,  2012:  Retrieval  of  cloud  properties  using  CALIPSO  Imaging  Infrared  Radiometer.  Part  I:  effective  emissivity  and  optical  depth,  J.  Appl.  Meteor.  Climatol.,51,  1407-­‐1425.  

6. Gazeaux,  J.,  Bekki,  S.,  Naveau,  P.,  Keckhut,  P.,  Jumelet,  J.,  Parades,  J.,  and  David,  C.  2012:  Detection  of  particle  layers  in  backscatter  profiles:  application  to  Antarctic  lidar  measurements,  Atmos.  Chem.  Phys.,  12,  3205-­‐3217,  doi:10.5194/acp-­‐12-­‐3205-­‐2012  

7. Guignard,  A.,  C.  J.  Stubenrauch,  A.  J.  Baran,  and  R.  Armante,  2012:  Bulk  microphysical  properties  of  semi-­‐transparent  cirrus  from  AIRS:  a  six  year  global  climatology  and  statistical  analysis  in  synergy  with  geometrical  profiling  data  from  CloudSat-­‐CALIPSO,  Atmos.  Chem.  Phys.,  12(1),  503–525,  doi:10.5194/acp-­‐12-­‐503-­‐2012.  

8. Hoareau,  C.,  Keckhut,  P.,  Baray,  J.-­‐L.,  Robert,  L.,  Courcoux,  Y.,  Porteneuve,  J.,  Vömel,  H.,  and  Morel,  B.:  A  Raman  lidar  at  La  Reunion  (20.8°  S,  55.5°  E)  for  monitoring  water  vapour  and  cirrus  distributions  in  the  subtropical  upper  troposphere:  preliminary  analyses  and  description  of  a  future  system,  Atmos.  Meas.  Tech.,  5,  1333-­‐1348,  doi:10.5194/amt-­‐5-­‐1333-­‐2012,  2012.  

9. Huang,  Y.,  S.  T.  Siems,  M.  J.  Manton,  A.  Protat,  and  J.  Delanoë,  A  study  on  the  low-­‐altitude  clouds  over  the  Southern  Ocean  using  the  DARDAR-­‐MASK,  J.  Geophys.  Res.  117  (D18),2012,  doi:10.1029/2012JD017800.  

10. Josset,  D.,  J.  Pelon,  A.  Garnier,  Y-­‐X.  Hu,  M.  Vaughan,  P.  Zhai,  R.  Kuehn,  and  P.  Lucker,  2012:  Cirrus  optical  depth  and  lidar  ratio  retrieval  from  combined  CALIPSO-­‐CloudSat  observations  using  ocean  surface  echo,  J.  Geophys.  Res.  117,  D05207,  doi:10.1029/2011JD016959.  

11. Jouan  C.,  E.  Girard,  J.  Pelon,  I.  Gultepe,  J.  Delanoë,  and  J.-­‐P.  Blanchet,  2012:  Characterization  of  Arctic  ice  cloud  properties  observed  during  ISDAC.  J.  Geophys.  Res.  117  (D23),  doi:  10.1029/2012JD017889.  

12. Konsta  D.,  H.  Chepfer,  JL  Dufresne,  2012:  A  process  oriented  characterization  of  tropical  oceanic  clouds  for  climate  model  evaluation,  based  on  a  statistical  analysis  of  daytime  A-­‐train  observations,  Climate  Dynamics  39  2091-­‐2108,  DOI:  10.1007/s00382-­‐012-­‐1533-­‐7  

13. Nam  C.,  S.  Bony,  JL  Dufresne,  H.  Chepfer,  2012:  The  'too  few,  too  bright'  tropical  low-­‐cloud  problem  in  CMIP5  models,  Geophys.  Res.  Lett.  39  (21),  doi:10.1029/2012GL053421.  

14. Noel,  V.  and  M.  Pitts.  2012.  Gravity  wave  events  from  mesoscale  simulations,  compared  to  polar  stratospheric  clouds  observed  from  spaceborne  lidar  over  the  Antarctic  Peninsula.  J.  Geophys.  Res.  117,  D11207.  

15. Noel  V.,  H.  Chepfer,  C.  Stubenrauch,  2012:  Calipso,  des  cristaux  dans  le  ciel.  La  Météorologie,  77,  41-­‐47.  

16. Quennehen  B.,  A.  Schwarzenboeck,  A.  Matsuki,  J.  F.  Burkhart,  A.  Stohl,  Gérard  Ancellet,  K.  S.  Law,  2012:  Anthropogenic  and  forest  fire  pollution  aerosol  transported  to  the  Arctic:  observations  from  the  POLARCAT-­‐France  spring  campaign,  Atmos.  Chem.  Phys.,  12(4),  6437-­‐6454,  doi:  10.5194/acp-­‐12-­‐6437-­‐2012  

17. Reverdy  M.,  V.  Noel,  H.  Chepfer,  B.  Legras,  2012:  On  the  origins  of  subvisible  cirrus  

Page 55: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

55/56

clouds  in  the  tropical  upper  troposphere.  Atmos.  Chem.  Phys.  12  12081-­‐12101,  doi:  10.5194/acp-­‐12-­‐12081-­‐2012  

18. Stromatas  S.,  S.  Turquety,  L.  Menut,  H.  Chepfer,  G.  Cesana,  J.-­‐C.  Pere,  and  B.  Bessagnet  2012:  Lidar  Signal  Simulation  for  the  Evaluation  of  Aerosols  in  Chemistry-­‐Transport  Models,  Geosci.  Model  Dev.  5,  1543-­‐1564.  

19. Zhao,  C.,  S.  Xie,  S.  A.  Klein,  A.  Protat,  M.  D.  Shupe,  S.  A.  McFarlane,  J.  M.  Comstock,  J.  Delanoë,  M.  Deng,  M.  Dunn,  R.  J.  Hogan,  D.  Huang,  M.  P.  Jensen,  G.  G.  Mace,  R.  McCoy,  E.  J.  O'Connor,  D.  D.  Turner,  and  Z.  Wang,  Toward  understanding  of  differences  in  current  cloud  retrievals  of  ARM  ground-­‐based  measurements,  J.  Geophys.  Res.,  117,  D10206,  2012,  doi:10.1029/2011JD016792.  

 

2011  (8)  

1. Bodas-­‐Salcedo  A.,  M.  J.  Webb,  S.  Bony,  H.  Chepfer,  J.-­‐L.  Dufresne,  S.  A.  Klein,  Y.  Zhang,  R.  Marchand,  J.  M.  Haynes,  R.  Pincus,  V.  O.  John,  2011:  COSP:  satellite  simulation  software  for  model  assessment,  Bull.  Am.  Meteo.  Soc.,  10.1175/2011BAMS2856.1  

2. Chaboureau  JP,  Richard  E,  Pinty  JP,  Cyrille  Flamant,  Paolo  Di  Girolamo,  Christoph  Kiemle,  Andreas  Behrendt,  Hélène  Chepfer,  Marjolaine  Chiriaco  and  Volker  Wulfmeyert,  2011:  Long-­‐range  transport  of  Saharan  dust  and  its  radiative  impact  on  precipitation  forecast:  a  case  study  during  the  Convective  and  Orographically-­‐induced  Precipitation  Study  (COPS),  Q.  J.  Roy.  Met.  Soc.,  Vol.  137,  DOI:  10.1002/qj.719  

3. Delanoë  J.,  Hogan  R.  J.,  Forbes  R.  M.,  Bodas-­‐Salcedo  A.,  Stein  T.  H.  M.  2011:  Evaluation  of  ice  cloud  representation  in  the  ECMWF  and  UK  Met  Office  models  using  CloudSat  and  CALIPSO  data.  Q.  J.    Roy.  Met.  Soc.  137,  661  2064-­‐2078  

4. Martins,  E.,  V.  Noel,  and  H.  Chepfer,  2011:  Properties  of  cirrus  and  subvisible  cirrus  from  nighttime  CALIOP,  related  to  atmospheric  dynamics  and  water  vapor,  J.  Geophys.  Res.,  116,  D02208,  doi:10.1029/2010JD014519.  

5. Protat,  A.,  D.  Bouniol,  E.  J.  O'Connor,  H.  K.  Baltink,  J.  Verlinde,  and  K.  Widener,  2011:  CloudSat  as  a  Global  Radar  Calibrator.  J.  Atmos.  Oceanic  Tech.,  28  (3),  445-­‐452  

6. Stein,  T.  H.  M.,  D.  J.  Parker,  J.  Delanoë,  N.  S.  Dixon,  R.  J.  Hogan,  P.  Knippertz,  R.  I.  Maidment,  and  J.  H.  Marsham,  2011:  The  vertical  cloud  structure  of  the  West  African  monsoon:  A  4  year  climatology  using  CloudSat  and  CALIPSO,  J.  Geophys.  Res.,  116,  D22205,  doi:10.1029/2011JD016029  

7. Stein,  T.H.M.,  Delanoë,  J.,  and  Hogan,  R.J.,  2011:  A  comparison  between  four  different  retrieval  methods  for  ice  cloud  properties  using  data  from  CloudSat,  CALIPSO,  and  MODIS,  J.Appl.Met.Clim.,  Vol.50,  pp.1952-­‐1969.  

8. Vernier,  J.-­‐P.,  Pommereau,  J.-­‐P.,  Thomason,  L.  W.,  Pelon,  J.,  Garnier,  A.,  Deshler,  T.,  Jumelet,  J.,  and  Nielsen,  J.  K.,  2011:  Overshooting  of  clean  tropospheric  air  in  the  tropical  lower  stratosphere  as  seen  by  the  CALIPSO  lidar,  Atmos.  Chem.  Phys.,  11,  9683-­‐9696,  doi:10.5194/acp-­‐11-­‐9683-­‐2011  

 

                                                                                                                 i Ajouter des lignes si nécessaire

Page 56: EECLAT light -LEFEnoel/EECLAT_LEFE2014/EECLAT...1/56 EECLATlight&:Cedocumentestunextraitdela& version&soumiseau&TOSCA.& & & Extraction&des&taches&principalement&LEFE&:& T1.2/1.3/1.7&

56/56

                                                                                                                                                                                                                                                                                                                                                         ii Les actions engagées entrent dans le cadre de projets ayant déjà fait l'objet d'une décision positive

de soutien par le CNES. Tout projet engagé doit faire l’objet d’une demande de financement chaque année. Si les objectifs du projet et/ou son contenu ont été modifiés par rapport à la proposition acceptée, ou si les résultats intermédiaires diffèrent sensiblement des objectifs initiaux, il est demandé d'envoyer une proposition révisée. Le CNES se réserve le droit de présenter à nouveau l'expérience concernée au groupe de travail thématique correspondant, au CERES ou au TOSCA et au Comité des Programmes Scientifiques, pour juger de l'opportunité de ces modifications. S'agissant des expériences en cours de développement pour lesquelles une structure de projet a été mise en place au centre de Toulouse, la présente demande de financement doit concerner les activités d'accompagnement scientifique, le financement des activités de développement étant couvertes en principe par le projet.

iii A renseigner avec attention pour la bonne compréhension des comités d'évaluation, en particulier sur les avancées obtenues par rapport à l'an dernier, et en précisant si les objectifs du projet et/ou son contenu ont été modifiés par rapport à la proposition acceptée par le CNES ou si les résultats intermédiaires diffèrent sensiblement des objectifs initiaux.

iv Le CNES doit être en mesure de justifier auprès de ses Tutelles le financement des propositions qu'il a engagées. Un bilan des activités de l’année précédente doit être fourni à chaque fin d’année. Ce bilan qualitatif a pour objet d'exposer l'état d'avancement du projet, les étapes franchies, les difficultés rencontrées (par exemple, les évolutions éventuelles du contexte scientifique et/ou du cadre de réalisation). Pour les propositions comportant la réalisation d'un dispositif expérimental : exposer son état de réalisation. Indiquer ici l’état d’avancement du projet au moment de la demande.