37
Electronique moléculaire: Electronique moléculaire: état de l'art & perspectives état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular Nanostructures & Devices” group SiO 2 1nm Si highly doped SiO 2 1nm Si highly doped Al SiO 2 1nm Si highly doped hydrogen carbon oxygen sulfur silicon Au Au -(CH2) 3-SH or C3-SH -(CH2) 3-CH3 or C3 -(CH2) 6-CH =CH2 or C8 1.0µ m

Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Embed Size (px)

Citation preview

Page 1: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Electronique moléculaire:Electronique moléculaire:état de l'art & perspectivesétat de l'art & perspectives

D. Vuillaume

Institute for Electronics, Microelectronics

& Nanotechnology – CNRS, Lille“Molecular Nanostructures & Devices” group

SiO2 1nm Si highly doped

SiO2 1nm Si highly doped

Al

SiO2 1nm Si highly doped

hydrogen carbon oxygen

sulfur

silicon

Au Au

-(CH2)3-SH or C3-SH -(CH2)3-CH3 or C3 -(CH2)6-CH=CH2 or C8 1.0µm

Page 2: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

PlanPlan

• Définition, quelques repères historiques

• Principes de base, structure et transport électronique dans une jonction moléculaire

• Exemples de composants à l'échelle moléculaire

Page 3: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Definition, introduction, Definition, introduction, foundations of the fieldfoundations of the field

Page 4: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

• “Information processing using photo-, electro-, iono-, magneto-, thermo-, mechanico or chemio-active effects at the scale of structurally and functionally organized molecular architectures”

(Adapted from: J.M. Lehn, Angew. Chem. Int. Ed., 1988, Noble Lecture)

Molecular Electronics - manipulate and control the position of one or few molecules- tailor their electronic properties to obtain useful devices

1 molécule - 1 monocouche

Page 5: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Pioneer resultsPioneer results

M 1 A D M 2

F e rm ie n e rgy

L U M O

H O M O

L U M O

H O M O

A vira m -R a tn er p ro p o sa l

Aviram & Ratner, Chem Phys Lett (1974)IBM, New York U.

Theoretical suggestion of amolecular analog of the p-n junction:the donor-bridge-acceptor molecularjunction.

A - σ - D

Page 6: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

1rst evidence of tunnelingthrough a fatty acid LBmonolayer sandwichedbetween metal electrodes

Mann & Kuhn, JAP (1971)MPI

Page 7: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Dimension

Courtesy of J.P. Bourgoin (LEM-CEA)

Page 8: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Basic problems : electronic structure, Basic problems : electronic structure, basic devices and electronic transportbasic devices and electronic transport

Page 9: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Molecule vs.Molecule vs.Metal-Molecule-Metal junctionMetal-Molecule-Metal junction

« L'électronique moléculaire », J.P. Bourgoin, D. Vuillaume, M. Goffman & A. Filoramo.In "Les nanosciences, nanotechnologies et nanophysique", eds. M. Lahmani, C. Dupas P. Houdy (Belin, Paris, 2004), pp.400-449

Δ

•hybridation•charge transfer

0

E

V

Page 10: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Vondrak et al., J. Phys. Chem B (1999)

Page 11: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

single molecule single molecule ensemble of molecules ensemble of molecules

Page 12: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Charge transport, current-voltageCharge transport, current-voltage

12

Low bias:tunnel effect

12

Higher bias:resonancethrough MO

gVe 21

low coupling

Page 13: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

V

I

V

I

C. Joachim et al. Phys. Rev. Lett. 74, 2102 (1995)Europhys. Lett. 30, 409 (1995)

D. Porath et al.J. Appl. Phys. 81, 2241 (1997)Phys. Rev. B 56, 9829 (1997)

Page 14: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

control of the electrode-molecule interface is control of the electrode-molecule interface is crucialcrucial

Li et al., JACS (2006)Arizona U.

2.5x10-4G0

0.5x10-4G0

Patrone et al., Chem Phys (2002) LEM-CEA

Page 15: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

What can we do with molecules ? What can we do with molecules ? Which types of electronic devices?Which types of electronic devices?

Page 16: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

electronic function in moleculeselectronic function in molecules

S

SS

S

SS

CN

CNNC

NC16H33

semiconductor/metal

rectifyier

insulator

bistable, memory

switch

Page 17: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

tunnel barriertunnel barrier

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

-1.0x10-14

0.0

1.0x10-14

2.0x10-14

3.0x10-14

4.0x10-14

5.0x10-14

6.0x10-14

7.0x10-14

Flux signal (V

)

Pho

tocu

rren

t (A

)

Photon energy (eV)

HTS DTS OTS

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

10-3

10-2

10-1

100

flux

D. Vuillaume et al., Phys. Rev. B (1998), Phys Rev. Lett. (1996)

A. Salomon et al., PRL (2005); Adv Mater (2007)

1.5 2.0 2.5 3.0

1x10-8

1x10-7

1x10-6

1x10-5

1x10-4

1x10-3

Monolayer thickness (nm)

Cu

rre

nt

de

nsi

ty (

A/c

m2 )

•E.E. Polymeropoulos et J. Sagiv, J. Chem. Phys. (1978)•C. Boulas et al., Phys. Rev. Lett. (1996)•J. Holmlin et al., J. Am. Chem. Soc. (2001)•D.J. Wold et al., J. Am. Chem. Soc. (2000,2001)•X.D. Cui et al., J. Phys. Chem. B (2002)

Δ Δ?Au-S- : ~ 1.5 - 2.5 eV

Si-C- : ~ 1.5 eVSi-O- : ~ 4 - 4.5 eV

Page 18: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

S. Lenfant et al. Phys. Stat. Sol. a (2006), IEMN-CNRSKushmerick et al. Nano Lett. (2004), NISTWang et al. Nano Lett? (2004), Yale

Couplage electron-vibration moléculaireIETS

fluctuations, bruit

SiO2 1nm Si highly doped

SiO2 1nm Si highly doped

Al

SiO2 1nm Si highly doped

hydrogen carbon oxygen

sulfur

silicon

Au Au

-(CH2)3-SH or C3-SH -(CH2)3-CH3 or C3 -(CH2)6-CH=CH2 or C8

localized (E,z) defects

N. Clement et al., PRL (soumis)IEMN-CNRS & Weizmann

Page 19: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

molecular rectifying diodemolecular rectifying diode

D A

-2 -1 0 1 2

0

2x10-3

4x10-3

6x10-3

8x10-3

1x10-2

(a)

LB3/5,chena/bo429d

Cu

rre

nt d

ensi

ty (

mA

/cm

2 )

Voltage (V)

CN

CNNC

NC16H33

Aviram & Ratner concept (1974)

A.S. Martin et al., Phys. Rev. Lett. (1993), Cranfield U.R.M. Metzger et al., J. Am. Chem. Soc. (1997), Alabama U.D. Vuillaume et al., Langmuir (1999), IEMN-CNRS

RR~30V>0

DA

Page 20: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

simplified concept

-1.0 -0.5 0.0 0.5 1.0-2.5x10-5

-2.0x10-5

-1.5x10-5

-1.0x10-5

-5.0x10-6

0.0

5.0x10-6

1.0x10-5

OETS-thiophene HETS-phenyl HETS-thiophene

VT

Cur

rent

den

sity

(A

.cm

-2)

Voltage (V)S. Lenfant et al., Nano Letters (2003)D. Vuillaume, J. Nanosci. Nanotechnol. (2002)S. Lenfant et al., J. Phys. Chem. B (2006)IEMN-CNRS

Π

RR~37

Page 21: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

capacitive molecular memorycapacitive molecular memory

+Q

IV…

Page 22: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

U. California Riverside, North Carolina & ZettaCore Inc (2002) Liu et al., science (2003)

Porphyrin-based SAM on Si-H surfacesPorphyrin-based SAM on Si-H surfaces

multi-redox = multi-valuedwrite ~ 10-3 - 10-5 srentention ~ 100-200 sr/w cycle : 1012

stable : 400°C (30min, inert atm)charge density ~16 µC/cm2

Kuhr et al., MRS Bul (2004)

Page 23: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Mémoire moléculaire capacitiveMémoire moléculaire capacitive

SiSiO2, 2 nm

C60, 1ML

Al2O3 (ALD), 30 nmSiO2 (PECVD), 26 nm

Hou et al., APL (2006)Cornell

Page 24: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

functionalized NW memoryfunctionalized NW memory

Duan et al., Nano Letters (2002) Harvard Univ

InP (10-30 nm) + Co phthalocyanine

on/off ~104

write ~ ?? srentention ~ 20min - 600hr/w cycle : ??stable : ??

Page 25: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

resistive molecular memoryresistive molecular memory

Ron Roff

command

Page 26: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

S

S

SSHSH

Gplane > Gtwisté

G ~ G0 cos2θ

SS

SHSHS

Page 27: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Vankataraman et al., Nature (2006)Columbia

Page 28: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

several attempts…several attempts…

A. Szuchmacher Blum et al.,Nature Mater. (2005)NRL, Rice, Geo-Centers

Moore et al.JACS (2006)Penn State & Rice U.

Donhauser et al., Science (2001)Penn State & Rice U.

Au(111)/mica

Page 29: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

avoid thiol on gold !avoid thiol on gold !

Au-S ~180kJ/mol ~1.8eV

Si-Si ~326kJ/mol ~3.3eV

Si-C ~451kJ/mol ~4.7eV

Si-O ~800kJ/mol ~8.3eV

NH2/Auless sensitive to local structure

coupling through N lone pair

Page 30: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Very low energy

Loppacher et al., PRL (2003)U. Basel, IBM & CEMES-CNRS

~50zJ

=10°"OFF"

=55°"ON"

F. Moresco et al., Phys. Rev. Lett. (2001)U. Berlin & CEMES-CNRS

- CMOS FET : 0.1-1 fJ

- mol switch : 50 zJ

- kTLn2=2.8 zJ (@300K)

1012 "devices" at 1 GHz = 47 W

~ x104

~ x20

Page 31: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

molecular transistormolecular transistor

McEuen & Ralph et al. Nature 2002Cornell

20-60 nm

Mottaghi et al. Adv Func Mater. (2007)ITODYS, IEMN-CNRS

Park et al, Nature 2002Harvard

Coulomb blokadeKondo effect

field effect

Page 32: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

other molecular devicesother molecular devices

McEuen & Ralph et al. Nature 2002Park et al, Nature 2002

N. P. Guisinger et al, Nanoletters 4, 55 (2004)

Feringa et al., Adv. Mater. (2006)Univ. Groningen

NDR diodeMolecular transistor

Optical switch

Molecular spin-valve

Ralph et al., Phys Rev Lett (2004)

Page 33: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

molecular-based circuitsmolecular-based circuits

J.M. Tour et al., IEEE Trans Nanotechnol. (2002)J.M. Tour et al., J. Am. Chem. Soc. (2003)

"NANOCELL"

A. Dehon et al., IEEE Trans Nanotechnol. (2003)

"Connecting nano to micro"

Crossnets Synaptic plaquette

Lykharev (2004)

NanoBlocks and NanoFabrics

Goldstein (2001)

Page 34: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Conclusions and perspectivesConclusions and perspectives

• Several functions and devices have been studied at the molecular scale : tunnel barrier, molecular wire, rectifying and NDR diodes, bistable devices and memories.– A better understanding and further improvements are

mandatory.– Need to be confirmed– What's about a true molecular 3-terminals device?

• Molecule-electrode coupling and conformation strongly modifies the molecular-scale device properties. Molecular engineering (changing ligand atoms for example) may be used to improve or adjust the electrode-molecule coupling.– A better control of the interface (energetics and atomic

conformation) is still compulsory.

Page 35: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

• Towards molecular architecture and circuits: mainly the « cross-bar » architecture has been studied. Is it sufficient?– More new architectures must be explored (e.g. non Von

Neuman, neuronal…).– Molecular device interconnection?– 3D

Page 36: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular
Page 37: Electronique moléculaire: état de l'art & perspectives D. Vuillaume Institute for Electronics, Microelectronics & Nanotechnology – CNRS, Lille “Molecular

Thank you!Thank you!