154
N° d’ordre 05 ISAL 0060 Année 2005 Thèse Evolution des propriétés d’un film inhibiteur de corrosion sous l’influence de la température et des conditions hydrodynamiques : caractérisation par techniques électrochimiques présentée devant L’Institut National des Sciences Appliquées de Lyon pour obtenir le grade de docteur Ecole doctorale : Ecole doctorale Matériaux de Lyon Spécialité : Microstructure et comportement mécanique et macroscopique des matériaux – Génie des matériaux par Pascale BOMMERSBACH Soutenue le 30 septembre 2005 devant la Commission d’examen Jury Président DALARD Francis Professeur (INP Grenoble – ENSEEG) Rapporteur PEBERE Nadine Directrice de recherche CNRS (Toulouse) Rapporteur TRIBOLLET Bernard Directeur de recherche CNRS (Paris) ALEMANY-DUMONT Catherine Maître de conférences( INSA Lyon) MILLET Jean-Pierre Professeur (INSA Lyon) ROUVREAU Sabine Ingénieure (ASCOTEC Saint-Etienne) Thèse préparée au sein du Laboratoire de Physico-Chimie Industrielle (LPCI)

Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

N° d’ordre 05 ISAL 0060 Année 2005

Thèse

Evolution des propriétés d’un film inhibiteur de corrosion sous

l’influence de la température et des conditions hydrodynamiques :

caractérisation par techniques électrochimiques

présentée devant L’Institut National des Sciences Appliquées de Lyon

pour obtenir

le grade de docteur

Ecole doctorale : Ecole doctorale Matériaux de Lyon Spécialité : Microstructure et comportement mécanique et macroscopique des matériaux – Génie des matériaux

par

Pascale BOMMERSBACH

Soutenue le 30 septembre 2005 devant la Commission d’examen

Jury

Président DALARD Francis Professeur (INP Grenoble – ENSEEG) Rapporteur PEBERE Nadine Directrice de recherche CNRS (Toulouse) Rapporteur TRIBOLLET Bernard Directeur de recherche CNRS (Paris)

ALEMANY-DUMONT Catherine Maître de conférences( INSA Lyon) MILLET Jean-Pierre Professeur (INSA Lyon) ROUVREAU Sabine Ingénieure (ASCOTEC Saint-Etienne)

Thèse préparée au sein du Laboratoire de Physico-Chimie Industrielle (LPCI)

Page 2: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

2005 SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE DE LYON Responsable : M. Denis SINOU

M. Denis SINOU Université Claude Bernard Lyon 1 Lab Synthèse Asymétrique UMR UCB/CNRS 5622 Bât 308 2ème étage 43 bd du 11 novembre 1918 69622 VILLEURBANNE Cedex Tél : 04.72.44.81.83 Fax : 04 78 89 89 14 [email protected]

E2MC

ECONOMIE, ESPACE ET MODELISATION DES COMPORTEMENTS Responsable : M. Alain BONNAFOUS

M. Alain BONNAFOUS Université Lyon 2 14 avenue Berthelot MRASH M. Alain BONNAFOUS Laboratoire d’Economie des Transports 69363 LYON Cedex 07 Tél : 04.78.69.72.76 Alain.bonnafous∂ish-lyon.cnrs.fr

E.E.A.

ELECTRONIQUE, ELECTROTECHNIQUE, AUTOMATIQUE M. Daniel BARBIER

M. Daniel BARBIER INSA DE LYON Laboratoire Physique de la Matière Bâtiment Blaise Pascal 69621 VILLEURBANNE Cedex Tél : 04.72.43.64.43 Fax 04 72 43 60 82 [email protected]

E2M2

EVOLUTION, ECOSYSTEME, MICROBIOLOGIE, MODELISATION http://biomserv.univ-lyon1.fr/E2M2 M. Jean-Pierre FLANDROIS

M. Jean-Pierre FLANDROIS UMR 5558 Biométrie et Biologie Evolutive Equipe Dynamique des Populations Bactériennes Faculté de Médecine Lyon-Sud Laboratoire de Bactériologie BP 1269600 OULLINS Tél : 04.78.86.31.50 Fax 04 72 43 13 88 E2m2∂biomserv.univ-lyon1.fr

EDIIS

INFORMATIQUE ET INFORMATION POUR LA SOCIETE http://www.insa-lyon.fr/ediis M. Lionel BRUNIE

M. Lionel BRUNIE INSA DE LYON EDIIS Bâtiment Blaise Pascal 69621 VILLEURBANNE Cedex Tél : 04.72.43.60.55 Fax 04 72 43 60 71 [email protected]

EDISS

INTERDISCIPLINAIRE SCIENCES-SANTEhttp://www.ibcp.fr/ediss M. Alain Jean COZZONE

M. Alain Jean COZZONE IBCP (UCBL1) 7 passage du Vercors 69367 LYON Cedex 07 Tél : 04.72.72.26.75 Fax : 04 72 72 26 01 [email protected]

EDML

MATERIAUX DE LYON http://www.ec-lyon.fr/sites/edml M. Jacques JOSEPH

M. Jacques JOSEPH Ecole Centrale de Lyon Bât F7 Lab. Sciences et Techniques des Matériaux et des Surfaces 36 Avenue Guy de Collongue BP 163 69131 ECULLY Cedex Tél : 04.72.18.62.51 Fax 04 72 18 60 90 [email protected]

Math IF

MATHEMATIQUES ET INFORMATIQUE FONDAMENTALE http://www.ens-lyon.fr/MathIS M. Franck WAGNER

M. Franck WAGNER Université Claude Bernard Lyon1 Institut Girard Desargues UMR 5028 MATHEMATIQUES Bâtiment Doyen Jean Braconnier Bureau 101 Bis, 1er étage 69622 VILLEURBANNE Cedex Tél : 04.72.43.27.86 Fax : 04 72 43 16 87 [email protected]

MEGA

MECANIQUE, ENERGETIQUE, GENIE CIVIL, ACOUSTIQUEhttp://www.lmfa.ec-lyon.fr/autres/MEGA/index.html M. François SIDOROFF

M. François SIDOROFF Ecole Centrale de Lyon Lab. Tribologie et Dynamique des Systêmes Bât G8 36 avenue Guy de Collongue BP 163 69131 ECULLY Cedex Tél :04.72.18.62.14 Fax : 04 72 18 65 37 [email protected]

Page 3: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

« L’oisiveté est pire que la rouille, elle use plus que le travail. »

Pat L. WOLF

Page 4: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

REMERCIEMENTS

C’est avec un réel plaisir et un grand enthousiasme que je me livre

à la rédaction de cette page. Bien plus que le point final du manuscrit scientifique, cet exercice de style constitue, en effet, l’opportunité de m’accorder une réflexion sur une période relatant trois années de vie très riches en évènements.

Tout d’abord, je tiens à remercier très chaleureusement Madame

Catherine ALEMANY-DUMONT pour son implication exceptionnelle dans ce travail. Sa disponibilité, son esprit volontaire, sa pugnacité à toute épreuve, agrémenté quotidiennement de discussions constructives ont été le moteur de ce travail.

Je remercie également vivement Monsieur Jean-Pierre MILLET

pour avoir accepté, lui aussi, de prendre en charge l’encadrement de ma recherche.

Je suis très reconnaissante envers Mesdames Sabine ROUVREAU

et Christine GAILLON (ASCOTEC) pour leur collaboration qui a permis le démarrage de ce travail, Monsieur Pierre DELICHERE (IRC-CNRS) pour ses conseils avisés concernant l’interprétation des spectres XPS, sans oublier Monsieur Valéry BOTTON (LMFA) pour son apport on ne peut plus fluide dans son domaine coudé et parsemé d’embûches.

J’exprime bien entendu mes remerciements les plus sincères à

Monsieur Bernard TRIBOLLET (LISE-CNRS) et Madame Nadine PEBERE (ENSCIACET-CNRS) pour l’intérêt qu’ils ont témoigné à mon travail tout au long de ma thèse et pour finalement avoir accepté d’en être les rapporteurs. Je remercie par ailleurs Monsieur Francis Dalard (LEPMI-ENSEEG) pour avoir présider ce jury de thèse.

Page 5: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Un clin d’œil spécial à Madame Elisabeth ECCIDIO qui, par son dynamisme, sa bonne humeur et sa gentillesse rendrait presque agréables les tâches administratives, à Monsieur Robert DIEMIASZONECK qui, par son calme olympien trouve toujours à se déjouer des situations les plus inextricables dans lesquelles j’ai parfois pu l’embarquer, et à Monsieur Robert DI FOLCO qui, par sa générosité, son ingéniosité et son savoir-faire inégalable aura permis l’élaboration des dispositifs essentiels à l’obtention de résultats fiables et donc exploitables.

A tous mes compagnons du LPCI : Fabien, Badr, Christophe,

Young-Pil, Lionel, Lilian, Bruno, Elena, Flori, David, Alexandre,…qui, pour une raison ou une autre, se sont également lancés dans cette drôle d’aventure…

A tous les autres du LPCI, j’adresse mes remerciements les plus

sincères pour leur disponibilité, leurs conseils, les discussions scientifiques ou non, et surtout pour les bons moments passés en leur compagnie. De même, je ne saurai oublier tous les étudiants de passage au laboratoire : Mustapha, Alice, Mohamed, Emilie, Estelle, François, Rémy, Laure,…

Je remercie également tous mes amis d’ici ou d’ailleurs, et

particulièrement ELENA, collègue le premier jour, amie le jour suivant, et ma grande sœur à présent, RODICA pour notre complicité amicale si immédiatement naturelle mais tellement précieuse à mes yeux, et MAËLENN pour notre collaboration IR-EIS presque aboutie mais notre amitié 100 % accomplie, ainsi que tous les autres y compris les footeux, matheux, voire les deux …

Enfin, Je ne saurais que trop remercier Ma famille, toujours à mes côtés, Et plus que jamais, en l’occurrence A l’heure de la soutenance.

Page 6: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Sommaire

SOMMAIRE

Liste des symboles 5 Introduction 9 Chapitre 1 : Lutte contre la corrosion par l’utilisation d’inhibiteurs 13

1. Corrosion et protection 15

2. Les inhibiteurs de corrosion 15

2.1. Historique 15

2.2. Définition 16

2.3. Propriétés 16

2.4. Les classes d’inhibiteurs 16

2.4.1. Nature des molécules de l’inhibiteur 17

2.4.1.1. Les inhibiteurs organiques 17

2.4.1.2. Les inhibiteurs minéraux 17

2.4.2. Mécanismes d’action électrochimique 18

2.4.3. Mécanismes d’action interfaciale 19

2.4.3.1. Adsorption des molécules inhibitrices à la surface métallique 19

2.4.3.2. Formation d’un film intégrant les produits de dissolution du

substrat 19

2.5. Pouvoirs protecteurs des films formés 20

3. Les inhibiteurs spécifiques aux métaux ferreux 20

4. Conclusion du chapitre 1 24

- 1 -

Page 7: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Sommaire

Chapitre 2 : Dispositifs expérimentaux, milieu et méthodes 25 1. Matériaux 27

2. Cellule, montages et électrolyte 28

2.1. Cellule électrochimique à trois électrodes 29

2.2. Montage pour les mesures gravimétriques 31

2.2.1. Principe de la microbalance électrochimique à cristal de quartz 31

2.2.2. Montage du couplage électrochimie / microgravimétrie 33

2.3. Préparation de l’échantillon 34

2.4. Electrolyte 35

3. Techniques électrochimiques 36

3.1. Techniques stationnaires 36

3.1.1. Suivi du potentiel en circuit ouvert 36

3.1.2. Courbes de polarisation 36

3.2 Techniques transitoires 36

3.2.1. Méthode impulsionnelle : la chronoampérométrie 36

3.2.2. La méthode à balayage en potentiels : la voltamétrie 37

3.2.3. La méthode par modulation : la spectroscopie d’impédance

électrochimique (SIE) 37

3.2.3.1. Généralités 37

3.2.3.2. La SIE appliquée aux études sur les inhibiteurs de corrosion 38

3.2.4. Bilan 43

4. Méthodes d’analyses 45

4.1. La microscopie électronique à balayage 45

4.2. La microscopie à force atomique 46

4.3. La spectroscopie de photoélectrons X 47

Chapitre 3 : Caractérisation générale des propriétés du film inhibiteur 49 1. Nature de l’inhibiteur 51

1.1. Suivi des potentiels / temps pour différentes concentrations en inhibiteur 51

1.2. Courbes de polarisation 52

1.2.1. Domaine anodique 52

- 2 -

Page 8: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Sommaire

1.2.2. Domaine cathodique 53

1.3. Etude chronoampérométrique 55

2. Mécanisme de formation du film inhibiteur 56

2.1. Spectres d’impédance 56

2.1.1. Après 2 heures d’immersion 56

2.1.2. A des temps d’immersion importants 58

2.2. Mise en évidence de la contribution des oxydes-hydroxydes de fer dans la

construction du film 60

2.3. Analyses XPS 61

3. Etude du mode de dégradation du film inhibiteur 65

3.1. Détermination d’une concentration limite pour la formation du film 65

3.2. Etude par spectroscopie d’impédance 67

3.3. Analyses XPS 72

4. Conclusion du chapitre 3 72

Chapitre 4 : Influence de paramètres physiques liés aux conditions de service du système : influence de la température 75 1. Mise au point bibliographique 75

2. Mise en évidence d’une température critique d’efficacité de l’inhibiteur 79

2.1. Etude sans inhibiteur 79

2.2. Etude en présence d’inhibiteur 81

2.3. Détermination d’une température critique d’utilisation de l’inhibiteur 83

3. Evolution du pouvoir protecteur avec la température 83

4. Evolution des mécanismes de formation du film inhibiteur avec la température 88

4.1. Effet de la température sur les mécanismes d’inhibition 88

4.2. Evolution des paramètres à l’interface 91

4.3. Effet d’un ajout de 5 % en inhibiteur sur la formation du film à 80 °C 92

4.3.1. Mise en évidence de la formation du film à température élevée 93

4.3.2. Evolution de la cinétique de formation du film 95

5. Conclusion du chapitre 4 98

- 3 -

Page 9: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Sommaire

Chapitre 5 : Influence de paramètres physiques liés aux conditions de service du système : influence des conditions hydrodynamiques 99 1. Préambule : l’écoulement dans la configuration de l’EDT 101

1.1. Le transport de masse 101

1.2. Dépendance entre les contraintes d’écoulement et le rayon du disque de l’EDT103

2. Les inhibiteurs et l’hydrodynamique 105

2.1. Régime turbulent 106

2.2. Régime laminaire 106

3. Etude qualitative de l’effet de la vitesse de rotation sur le film inhibiteur 107

3.1. Nature du régime 107

3.2. L’inhibition sous l’effet de l’hydrodynamique 107

4. Etude de l’hydrodynamique à des temps courts 110

4.1. Cinétique d’adsorption 110

4.2. Diagrammes d’impédance après 2 heures 112

4.3. Décomposition des contributions 113

4.4. Evolution des paramètres à l’interface 117

5. Etude de l’hydrodynamique à des temps plus importants 119

6. Caractérisation des films inhibiteurs sous l’influence de la vitesse de rotation 123

6.1. Caractérisation de l’état de surface : analyses par AFM 123

6.2. Caractérisation de la composition chimique des films inhibiteurs : analyses par

XPS 126

7. Conclusion du chapitre 5 127

Conclusion générale / Perspectives 129 Références bibliographiques 133 Annexes 147

- 4 -

Page 10: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Liste des symboles

Liste des symboles

- 5 -

Page 11: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Liste des symboles

A : surface active résonante (cm²)

CB : concentration de l’espèce B au sein de la solution (mol.cm-3)

Cinh : concentration de l’inhibiteur (% massique)

Cdc : capacité de double couche (F)

Cf : capacité de film (F)

CPC : capacité des produits de corrosion (F)

d : épaisseur du film (m)

DB : coefficient de diffusion de l’espèce B (cm².s-1)

E : tension (V)

Ecorr : potentiel de corrosion (V)

Ea : énergie d’activation (kJ.mol-1)

EC : énergie cinétique du photoélectron éjecté (eV)

EL : énergie de liaison (eV)

e : vitesse d’écoulement linéaire du fluide (m.s-1)

eΦ : énergie d’extraction du spectromètre (eV)

F : constante de Faraday (96500 C)

f : fréquence (Hz)

fmax : fréquence maximale (Hz)

f0 : fréquence de résonance du quartz (Hz)

hν0 : énergie du rayonnement incident (eV)

I : intensité du courant (A)

Im(Z) ou Z’’ : partie imaginaire de l’impédance électrochimique (Ω)

il : densité de courant limite (A.cm-2)

icorr : densité de courant en l’absence d’inhibiteur (A.cm-2)

- 6 -

Page 12: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Liste des symboles

icorrinh : densité de courant en présence d’inhibiteur (A.cm-2)

j : unité imaginaire

L : longueur caractéristique du système (m)

n : nombres d’électrons échangés dans la réaction

Qdc : paramètre caractéristique du CPE de la double couche

Qf : paramètre caractéristique du CPE de film

R : constante des gaz (J.mol-1.K-1)

Re(Z) ou Z’ : partie réelle de l’impédance électrochimique (Ω)

Re : nombre de Reynolds (grandeur adimensionnelle)

Recrit

: nombre de Reynolds critique (grandeur adimensionnelle)

Rf : résistance de film (Ω)

RΩ : résistance de l’électrolyte (Ω)

Rtc : résistance de transfert de charge (Ω)

RtcA : résistance de transfert de charge anodique (Ω)

RtcC : résistance de transfert de charge cathodique (Ω)

r : rayon de l’électrode (m)

rms : facteur de rugosité de surface (nm)

Sc : nombre de Schmidt (grandeur adimensionnelle)

Sh : nombre de Sherwood (grandeur adimensionnelle)

T : température absolue (K)

t : temps (h)

vbal : vitesse de balayage (V.s-1)

W : impédance de diffusion de Warburg (Ω)

Wδ : impédance de diffusion-convection (Ω)

ZC : impédance liée à la capacité

- 7 -

Page 13: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Liste des symboles

ZI : impédance liée à l’inductance

α : déphasage par rapport à l’axe des réels

∆m : variation de masse (g)

∆f : variation de fréquence (Hz)

χ² : facteur d’erreur

ε : constante diélectrique relative du film

ε0 : permittivité du vide (8,85.10-14 F.cm-1)

Ø : diamètre de l’électrode (m)

Φ : déphasage du courant alternatif par rapport au potentiel

λ : facteur préexponentionnel

µ : viscosité dynamique (Pa.s)

µQ : coefficient de vibration du quartz (µQ = 2,947.1011 dyne.cm-2)

ν : viscosité cinématique du milieu (cm². s-1),

θ : angle d’analyse du spectromètre (°)

ρ : masse volumique (g.cm-3)

ρQ : densité du quartz (ρQ = 2,648 g.cm-3)

τtot : frottement à la paroi (Pa)

τzr : cisaillement radial (Pa)

τzϕ : cisaillement tangentiel (Pa)

ω : pulsation (rad.s-1)

ωmax : pulsation maximale (rad.s-1)

Ω : vitesse de rotation de l’électrode (rad.s-1 ou tours par minute tpm)

- 8 -

Page 14: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Introduction

Introduction

- 9 -

Page 15: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Introduction

- 10 -

Page 16: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Introduction

En matière de protection, les inhibiteurs constituent un moyen original pour lutter

contre la corrosion. Un inhibiteur est un composé chimique que l’on ajoute, en faible quantité,

au milieu pour diminuer la vitesse de corrosion des matériaux. Il peut être destiné soit à une

protection permanente de la pièce (l’installation requiert alors une attention scrupuleuse), soit

à une protection provisoire (notamment lorsque la pièce est particulièrement sensible à la

corrosion).

Les nouvelles directives européennes concernant les rejets industriels étant de plus en

plus sévères en terme d’écologie, la mise au point d’inhibiteurs de corrosion éco-compatibles

et biodégradables devient, de nos jours, un enjeu important. C’est en particulier pour cette

raison, mais également pour leurs propriétés inhibitrices remarquables, que l’utilisation

d’inhibiteurs organiques a été largement plébiscitée au cours de cette dernière décennie.

La demande grandissante de l’utilisation d’inhibiteurs incite de nombreuses

entreprises à s’engager sur ce marché socio-économique. Les performances recherchées de

ces produits s’évaluent en terme de protections métallique et environnementale. C’est dans ce

contexte qu’une jeune entreprise, Ascotec, spécialisée dans le domaine de la formulation, la

production et la commercialisation de nouveaux inhibiteurs de corrosion s’est créée. Les

produits issus de cette société sont destinés aux secteurs industriels suivants : Peintures et

Revêtements, Huiles et Lubrifiants, Détergents, Encres, Bâtiment. A la demande, en 2001, de

l’incubateur d’entreprise Créalys, le LPCI a apporté son soutien scientifique au projet

« ASCOTEC », avec l’appui financier de la Région Rhône-Alpes.

L’inhibiteur testé dans notre étude, fourni par cette société, est destiné à être intégré à

des huiles utilisées dans l’usinage mécanique, afin de limiter la corrosion des outils de coupe

et des pièces en acier. Il est composé, entre autres, d’un acide carboxylique et d’une amine

tertiaire. Nous attendons, par l’effet synergique de ce mélange de molécules organiques, une

meilleure inhibition que celle obtenue par l’utilisation individuelle de chaque molécule.

- 11 -

Page 17: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Introduction

Ce manuscrit est divisé en cinq chapitres.

Le premier est consacré à une présentation générale relative aux inhibiteurs de

corrosion et plus particulièrement à une mise au point bibliographique sur les inhibiteurs

spécifiques aux métaux ferreux, soulignant ainsi, les rôles essentiels joués respectivement,

dans l’inhibition, par l’acide carboxylique et l’amine tertiaire.

Le second chapitre présente les conditions expérimentales de l’étude ainsi que les

techniques électrochimiques et les méthodes de caractérisation de surface mises en œuvre.

Les résultats expérimentaux sont regroupés dans les trois chapitres suivants.

Tout d’abord, la caractérisation générale de l’inhibiteur sera réalisée dans le chapitre 3.

Il s’agit alors d’une part d’identifier le type et le mode d’action de l’inhibiteur, et d’autre part,

d’étudier les mécanismes de formation et de croissance du film ainsi que les phénomènes

responsables de sa dégradation dans le temps.

Ensuite, l’influence des paramètres liés aux conditions de service sera abordée dans les

deux derniers chapitres.

Ainsi, le chapitre 4, axé sur l’influence de la température, consistera à identifier

l’évolution des mécanismes de formation du film dans l’intervalle 20-80 °C.

Enfin, le dernier chapitre abordera l’effet de l’hydrodynamique sur la cinétique de

formation du film dans le temps (jusqu’à 10 jours). Nous évaluerons l’importance du rôle de

l’écoulement et en particulier des contraintes de cisaillement sur la stabilité et la morphologie

du film protecteur, en particulier pour des temps d’immersion importants.

- 12 -

Page 18: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

Chapitre 1 :

LUTTE CONTRE LA CORROSION PAR

L’UTILISATION D’INHIBITEURS

1. Corrosion et protection ______________________________________ 15

2. Les inhibiteurs de corrosion ____________________________________ 15 2.1. Historique ________________________________________________ 15 2.2. Définition_________________________________________________ 16 2.3. Propriétés _________________________________________________ 16 2.4. Les classes d’inhibiteurs _____________________________________ 16

2.4.1. Nature des molécules de l’inhibiteur ________________________ 17 2.4.1.1. Les inhibiteurs organiques_____________________________ 17 2.4.1.2. Les inhibiteurs minéraux ______________________________ 17

2.4.2. Mécanismes d’action électrochimique _______________________ 18 2.4.3. Mécanismes d’action interfaciale ___________________________ 19

2.4.3.1. Adsorption des molécules inhibitrices à la surface métallique _ 19 2.4.3.2. Formation d’un film intégrant les produits de dissolution du

substrat ________________________________________________________ 19 2.5. Pouvoir protecteur des films formés ____________________________ 20

3. Les inhibiteurs spécifiques aux métaux ferreux ____________________ 20 3.1. Le rôle des amines __________________________________________ 22

3.1.1. Les amines filmantes ____________________________________ 22 3.1.2. Les amines neutralisantes _________________________________ 22

3.2. Le rôle des acides carboxyliques : un effet complexant _____________ 23

4. Conclusion du chapitre 1 _______________________________________ 24

- 13 -

Page 19: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

- 14 -

Page 20: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

1. Corrosion et protection

Tout ce qui nous entoure est susceptible de se détériorer. Lorsque l’attaque

destructive s’effectue par des moyens physico-chimiques voire biologiques, il s’agit, pêle-

mêle, de gonflement ou vieillissement du plastique, de pourriture du bois ou encore

d’érosion du granit, etc… Par contre, lorsque la détérioration irréversible d’un métal a lieu

par réaction chimique ou électrochimique avec son environnement, il s’agit de corrosion,

pouvant être de différentes formes : uniforme, localisée, etc… les propriétés des matériaux

sont alors altérées.

En matière de protection contre la corrosion, il est possible d’agir sur le matériau

lui-même (choix judicieux, formes adaptées, contraintes en fonction des applications, …),

sur la surface du matériau (revêtement, peinture, tout type de traitement de surface, …) ou

sur l’environnement avec lequel le matériau est en contact (inhibiteurs de corrosion).

2. Les inhibiteurs de corrosion

2.1. Historique

Tout comme pour bien d’autres domaines, il est difficile de déterminer l’origine

exacte de l’inhibition considérée comme une technologie à part. Néanmoins, il y a

quelques décennies, il a été observé que le dépôt calcaire formé à l’intérieur des conduites

transportant certaines eaux naturelles protégeait cette conduite ; plutôt que d’améliorer

sans cesse la résistance à la corrosion des conduites en agissant directement sur ces

dernières, il s’avère plus pratique d’ajuster les concentrations minérales des solutions

transportées, qui sont à l’origine des dépôts calcaires « protecteurs ». En 1945, on comptait

moins de 30 papiers traitant de l’inhibition. Dans un article de 1948 [WAL-48], Waldrip se

référait à un rapport datant de 1943 au sujet de sa discussion concernant la protection

contre la corrosion des puits de pétrole. De nombreux articles concernant l’inhibition ont

été rédigés durant la période couvrant 1945 à 1954 : ceux-ci traitaient entre autres de

- 15 -

Page 21: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

l’inhibition dans les domaines de l’aviation, des chaudières, des circuits de refroidissement,

des moteurs diesel, des sels de déneigement, des raffineries de pétrole, des pétroliers….

Les articles publiés durant cette période témoignent d’un grand développement

technologique en matière d’inhibition. Durant les quarante dernières années, un nombre

croissant de résumés, d’articles et autres ouvrages évoquant ce sujet a été recensé : au total,

en 1970, 647 articles traitant de l’inhibition sont dénombrés [HAM-73].

2.2. Définition

La définition d’un inhibiteur de corrosion n’est pas unique, néanmoins celle retenue

par la National Association of Corrosion Engineers (NACE) est la suivante : un inhibiteur

est « une substance qui retarde la corrosion lorsqu’elle est ajoutée à un environnement en

faible concentration » [NAC-65].

2.3. Propriétés

Un inhibiteur de corrosion doit abaisser la vitesse de corrosion du métal tout en

conservant les caractéristiques physico-chimiques de ce dernier. Il doit être non seulement

stable en présence des autres constituants du milieu, mais également ne pas influer sur la

stabilité des espèces contenues dans ce milieu. Un inhibiteur est définitivement reconnu

comme tel s’il est stable à la température d’utilisation et efficace à faible concentration. Il

peut être utilisé en vue d’une protection permanente (surveillance primordiale du

dispositif) ou plus couramment en vue d’une protection temporaire : durant une période où

la pièce est particulièrement sensible à la corrosion (stockage, décapage, nettoyage,…) ou

encore lorsque la pièce est soumise à des usinages très sévères comme le perçage,

taraudage, forage, filetage,…

2.4. Les classes d’inhibiteurs

Il existe plusieurs possibilités de classer les inhibiteurs, celles-ci se distinguant les

unes des autres de diverses manières :

- 16 -

Page 22: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

la formulation des produits (inhibiteurs organiques ou minéraux),

les mécanismes d’action électrochimique (inhibiteurs cathodiques,

anodiques ou mixtes),

les mécanismes d’interface et principes d’action (adsorption et/ou formation

d’un film).

2.4.1. Nature des molécules de l’inhibiteur

2.4.1.1. Les inhibiteurs organiques

Les molécules organiques sont promises à un développement plus que certain en

terme d’inhibiteur de corrosion : leur utilisation est actuellement préférée à celle

d'inhibiteurs inorganiques pour des raisons d’écotoxicité essentiellement. Les inhibiteurs

organiques sont généralement constitués de sous-produits de l’industrie pétrolière [FIA-

02]. Ils possèdent au moins un centre actif susceptible d’échanger des électrons avec le

métal, tel l’azote, l’oxygène, le phosphore ou le soufre. Les groupes fonctionnels usuels,

permettant leur fixation sur le métal, sont :

le radical amine (-NH2),

le radical mercapto (-SH),

le radical hydroxyle (-OH),

le radical carboxyle (-COOH).

2.4.1.2. Les inhibiteurs minéraux

Les molécules minérales sont utilisées le plus souvent en milieu proche de la

neutralité, voire en milieu alcalin, et plus rarement en milieu acide. Les produits se

dissocient en solution et ce sont leurs produits de dissociation qui assurent les phénomènes

d’inhibition (anions ou cations). Les principaux anions inhibiteurs sont les oxo-anions de

type XO4n- tels les chromates, molybdates, phosphates, silicates,… Les cations sont

essentiellement Ca2+ et Zn2+ et ceux qui forment des sels insolubles avec certains anions

tels que l’hydroxyle OH-. Le nombre de molécules en usage à l’heure actuelle va en se

restreignant, car la plupart des produits efficaces présentent un côté néfaste pour

l’environnement.

- 17 -

Page 23: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

2.4.2. Mécanismes d’action électrochimique

Dans la classification relative au mécanisme d’action électrochimique, on peut

distinguer les inhibiteurs anodique, cathodique ou mixte (regroupant alors les deux

premières propriétés). L’inhibiteur de corrosion forme une couche barrière sur la surface

métallique, qui modifie les réactions électrochimiques en bloquant soit les sites anodiques

(siège de l’oxydation du métal) soit les sites cathodiques (siège de la réduction de

l’oxygène en milieu neutre aéré ou siège de la réduction du proton H+ en milieu acide),

voire les deux (figure 1.1).

Fe2+

e-

H+H+

Fe2+

e-

Fe2+

e-

H+H+

Fe2+

e-

H+H+

e-

Fe2+

e-

H+H+

e-

a) blocage des sites CATHODIQUES b) blocage des sites ANODIQUES

Figure 1.1 : Formation des couches barrières a) cathodiques et b) anodiques interférant

avec les réactions électrochimiques, dans le cas d’une étude en milieu acide

[d’après SCH-73]

Les inhibiteurs anodiques doivent être utilisés avec précaution. En effet, si le film

protecteur est altéré par une rayure ou par une dissolution, ou si la quantité d’inhibiteur est

insuffisante pour restaurer le film, la partie exposée se corrode en piqûre profonde. En

matière de corrosion localisée, la corrosion par piqûre est une forme particulièrement

insidieuse : l’attaque se limite à des trous, très localisés et pouvant progresser très

rapidement en profondeur tout en conservant le reste de la surface indemne.

- 18 -

Page 24: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

2.4.3. Mécanismes d’action interfaciale

2.4.3.1. Adsorption des molécules inhibitrices à la surface métallique

L’adsorption est un phénomène de surface universel car toute surface est constituée

d’atomes n’ayant pas toutes leurs liaisons chimiques satisfaites. Cette surface a donc

tendance à combler ce manque en captant atomes et molécules se trouvant à proximité.

Deux types d’adsorption peuvent être distingués : la physisorption (formation de liaisons

faibles) et la chimisorption.

La première, encore appelée adsorption physique conserve l’identité aux molécules

adsorbées ; trois types de forces sont à distinguer :

Les forces de dispersion (Van der Waals, London) toujours présentes,

Les forces polaires, résultant de la présence de champ électrique,

Les liaisons hydrogène dues aux groupements hydroxyle ou amine.

La chimisorption, au contraire, consiste en la mise en commun d’électrons entre la

partie polaire de la molécule et la surface métallique, ce qui engendre la formation de

liaisons chimiques bien plus stables car basées sur des énergies de liaison plus importantes.

Les électrons proviennent en grande majorité des doublés non appariés des molécules

inhibitrices tels que O, N, S, P,… (tous ces atomes se distinguant des autres de par leur

grande électronégativité). L’adsorption chimique s’accompagne d’une profonde

modification de la répartition des charges électroniques des molécules adsorbées. La

chimisorption est souvent un mécanisme irréversible.

2.4.3.2. Formation d’un film intégrant les produits de dissolution du substrat

Cette forme d’inhibition, appelée également inhibition «d’interphase » traduit la

formation d’un film tridimensionnel entre le substrat corrodé et les molécules d’inhibiteur

[LOR-80, MAN-85, KAR-98]. Les inhibiteurs d’interphase ne se contentent ainsi pas

d’être adsorbés aux interfaces métal/oxyde et oxyde/électrolyte, mais sont également

incorporés dans les couches barrières (en formant des complexes par exemple) ; ainsi ces

- 19 -

Page 25: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

molécules inhibitrices d’interphase conduisent à des réseaux homogènes et denses

présentant de fait une faible porosité et une bonne stabilité.

2.5. Pouvoir protecteur des films formés

Quel que soit le type de mécanisme par lequel agit l’inhibiteur, le pouvoir

protecteur de ce dernier caractérise le ralentissement de la corrosion, c’est-à-dire la

diminution du courant de corrosion (ou de la vitesse de corrosion). Le pouvoir protecteur

d’un inhibiteur s’exprime par l’équation (1.1) :

Pouvoir protecteur (%) .100inh

corr corr

corr

i ii−= (1.1)

icorr et icorrinh représentent respectivement les courants de corrosion en l’absence et

en présence d’inhibiteur. Il est possible d’accéder aux valeurs des courants de corrosion de

manière expérimentale, plus précisément en se basant sur des dispositifs relevant d’études

électrochimiques (voir chapitre 2).

3. Les inhibiteurs spécifiques aux métaux ferreux

D’une manière générale, pour chaque matériau existe une famille d’inhibiteurs

propice à une protection satisfaisante face à la corrosion. Par exemple, pour le cuivre, les

dérivés azolés sont très souvent utilisés comme inhibiteurs de corrosion et présentent une

remarquable efficacité dans certaines conditions [ASS-02]. Pour les études des métaux

ferreux, en milieux neutres ou alcalins, les inhibiteurs de corrosion sont divers et variés ;

ces derniers sont répertoriés dans le tableau 1.1 :

- 20 -

Page 26: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

Tableau 1.1 : Inhibiteurs les plus utilisés pour la protection des métaux ferreux

Molécules inhibitrices Matériaux Références amine grasse, polyamines acier (XC35) [DUP-81]

phosphonates et acides phosphoniques acier (XC35) [TO-97]

alkylamine fer (99.99%) [TSU-00]

acides phosphoniques / amine grasse

ou acides polyacryliques / amine grasse

acier (4340) [MAN-85]

alkylimidazole acier (XC38) [SHR-96]

Amines grasses / sels d’acide

phosphonocarboxylique

acier (XC35) [OCH-02]

carboxylates acier [MER-80]

benzoates fer [TUR-85]

phosphonates acier [SHI-88]

benzimidazole acier (XC38) [LOP-03]

acides phosphoniques acier (XC28) [KAR-98]

Toutes ces molécules inhibitrices permettent d’obtenir de bons rendements en

terme d’inhibition de métaux ferreux en milieux neutre et alcalin, qu’elles soient utilisées

indépendamment les unes des autres ou de manière synergique. Tous ces composés

organiques contiennent les atomes N, O, S ou P ; chacun de ces éléments est susceptible

d’échanger des électrons avec le métal à protéger. Les molécules inhibitrices les plus

communément utilisées sont les amines ou encore les sels d’acides carboxyliques, qui se

trouvent également être présents dans l’inhibiteur étudié pour la suite de ce travail ;

intéressons-nous alors plus en détail à leur mode d’action respectif.

- 21 -

Page 27: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

3.1. Le rôle des amines

Les amines primaires, secondaires ou tertiaires sont très souvent utilisées pour la

protection de pièces en milieu aqueux naturel. Toutefois, il faut distinguer deux rôles bien

distincts de protection effectués par l’amine : une action filmante et une action

neutralisante.

3.1.1. Les amines filmantes

Les amines filmantes ont pour fonction de former une barrière constituée d’une

couche mono moléculaire d’un produit à chaîne plus ou moins longue. L’ancrage de la

partie hydrophobe s’effectue préférentiellement sur la surface métallique à protéger par le

biais du principal site actif de l’amine : l’azote N, également présent dans les amides, les

ammoniums quaternaires ou les imidazolines. L’extrémité non adsorbée (la partie

hydrophile) peut adsorber à son tour des molécules d’hydrocarbures provoquant un

accroissement de la barrière hydrophobe. Suzuki et al. [SUZ-96] attribuent à l’amine un

rôle d’agent chélatant (agent comportant plusieurs atomes donneurs arrangés) formant une

couche épaisse et non adhérente à la surface du matériau, capable de bloquer le processus

de réduction de l’oxygène dissous. Pour Tsuji et al. [TSU-00], dans les solutions acides, les

alkylamines comme les alkanethiols sont fortement chimisorbés à la surface métallique en

partageant leurs électrons entre l’azote et les atomes de fer. Il en résulte alors une très

bonne inhibition à la surface du métal en milieu acide. Or, il n’en est pas de même dans les

milieux neutres aérés. L’inhibition à la surface même du matériau est quasi inexistante, par

contre, l’alkylamine (classé comme base forte) s’adsorbera préférentiellement aux oxydes

et hydroxydes ferreux et ferriques (acides forts), résultant justement de la mauvaise

protection du métal. Tsuji et al. supposent que la couche ainsi adsorbée est bien plus

protectrice contre la corrosion du fer dans une solution aqueuse contenant des molécules

d’oxygène.

3.1.2. Les amines neutralisantes

Les amines neutralisantes ou d’alcalinisation du milieu sont destinées à réagir

chimiquement avec les espèces acides pour les neutraliser. Ces propriétés tendent à être

exploitées pour abaisser l’activité des protons de la solution corrosive : en milieu neutre, à

température ordinaire, le déplacement du pH amène le métal dans une zone où la corrosion

- 22 -

Page 28: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

est ralentie. Contrairement aux amines filmantes, les amines neutralisantes ne protègent

pas contre la corrosion liée à la présence d’oxygène dissous dans l’électrolyte.

D’un point de vue appliqué, les éthanolamines sont souvent utilisées soit pour

neutraliser les composants acides dans les lubrifiants, soit pour fournir l’alcalinité requise

pour protéger contre l’oxydation des métaux (des métaux ferreux ne doivent pas s’oxyder

dans des conditions alcalines).

Les amines neutralisantes sont ainsi caractérisées par :

leur basicité,

leur capacité de neutralisation du milieu,

leur coefficient de partage,

leur stabilité thermique : ces produits de nature organique sont

généralement fragiles et peuvent être dégradés par une température

excessive ; cette stabilité thermique permet de déterminer la température

maximale d’utilisation des amines.

De par leur multifonctionnalité combinant des propriétés de bases faibles à des

propriétés d’adsorption, les amines sont considérées comme un groupement fonctionnel

très efficace face à la corrosion des métaux ferreux. Dans certains cas, leurs rendements

d’inhibition peuvent être améliorés lorsqu’elles sont combinées à d’autres types de

molécules, et dans de nombreux cas aux acides carboxyliques.

3.2. Le rôle des acides carboxyliques : un effet complexant

Les travaux de Suzuki [SUZ-96] ont précisé le rôle essentiel joué par l’acide

carboxylique constituant l’inhibiteur. L’acide carboxylique réagit avec les ions fer III pour

former une couche précipitante fine et dense d’un complexe partiellement soluble à la

surface métallique. Le groupement carboxylique intervient sur le processus anodique,

bloquant quasiment la dissolution métallique lors de la corrosion de l’acier.

Alexander et al. [ALE-01] ont également focalisé leur étude sur le rôle de l’acide

carboxylique et de ses dérivés dans l’inhibiteur. Ils ont observé une concentration plus

- 23 -

Page 29: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 1 – Lutte contre la corrosion par l’utilisation d’inhibiteurs

importante de l’acide aux endroits les moins recouverts par le film inhibiteur sur la surface

métallique; l’acide se placerait préférentiellement dans les défauts du film.

4. Conclusion du chapitre 1

Les inhibiteurs de corrosion constituent un moyen de lutte récent contre la

corrosion des métaux et des alliages ; l’originalité de cette méthode provient du fait que le

traitement anticorrosion ne se fait pas sur le métal lui-même, mais par l’intermédiaire du

milieu corrosif [BER-02].

Les molécules inhibitrices peuvent agir suivant différents mécanismes, leur

conférant ainsi des performances d’inhibition fonction du milieu d’étude.

En particulier, pour la protection des métaux et alliages ferreux, les inhibiteurs à

base de groupements amines ou d’acides carboxyliques (voire les deux combinés),

présentent des pouvoirs protecteurs satisfaisants et sont actuellement largement utilisés,

notamment en raison de leur faible toxicité vis-à-vis de l’environnement.

- 24 -

Page 30: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

Chapitre 2 :

DISPOSITIFS EXPERIMENTAUX, MILIEU ET METHODES

1. Matériaux ................................................................................................... 24

2. Cellule, montages et électrolyte ................................................................ 25 2.1. Cellule électrochimique à trois électrodes................................................ 25 2.2. Montage pour les mesures microgravimétriques...................................... 27 2.3. Préparation de l’échantillon...................................................................... 30 2.4. Electrolyte................................................................................................. 30

3. Techniques électrochimiques........................................................................ 31 3.1. Techniques stationnaires........................................................................... 31 3.2. Techniques transitoires ............................................................................. 32

4. Méthodes d’analyses...................................................................................... 40 4.1. Le Microscope Electronique à Balayage (MEB ou Scanning Electronic Microscopy – SEM)......................................................................................... 40 4.2. La Microscopie à Force Atomique (Atomic Force Microscopy – AFM). 41 4.3. La Spectroscopie de Photoélectrons X (X-ray Photoelectron Spectroscopy – XPS).............................................................................................................. 41

- 23 -

Page 31: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

Ce chapitre a pour but de présenter les méthodes expérimentales, électrochimiques

et d’analyse, utilisées dans cette étude. Une description des matériaux, de l’électrolyte, et des montages effectués permet, dans un premier temps, de fixer une démarche expérimentale assurant une bonne reproductibilité des résultats. Les techniques électrochimiques sont à leur tour présentées, de manière à souligner leur intérêt et leur pertinence dans l’étude des inhibiteurs. Les méthodes d’analyse chimique et de topographie de surface utilisées permettent d’apporter des informations souvent complémentaires aux résultats issus des techniques électrochimiques.

1. Matériaux Les métaux ferreux sont des matériaux largement utilisés dans l'industrie ; leurs

applications s’étendent du bâtiment aux boîtes de conserves alimentaires, en passant par les composés électroniques ou les coques de certains bateaux [UNC-05]. Les outils de coupe et les pièces couramment usinées sont en grande majorité constitués de métaux ferreux. Dans ce contexte, ces matériaux sont soumis à de nombreuses sollicitations extérieures agressives les rendant, de fait, vulnérables face à la corrosion (échauffement en température, hydrodynamique, …).

Le matériau testé dans cette étude est l’acier SAE 1038 (désigné anciennement par

la norme française AFNOR XC38). Les lettres XC signifient qu'il s'agit d'un acier non allié de nature fine dont les fourchettes d'analyse sont relativement étroites. La composition de l'acier XC38 est donnée dans le tableau 2.1 suivant :

Tableau 2.1 : Analyse typique de l’acier XC38

Eléments (autres que Fe)

C Mn Si S P Ni Cr Mo Cu Al

Teneur (%) 0,36 0,66 0,27 0,02 0,015 0,02 0,21 0,02 0,22 0,06 Les teneurs en éléments normaux d'élaboration Mn, Si, S, P, Cu, Al ainsi que N et

O (quelques millièmes de %) sont relativement faibles. La faible proportion de ces éléments permet de se baser sur le diagramme Fer-Carbone ; les frontières seront très peu déplacées par leur présence. Toutefois, malgré leurs basses teneurs, les éléments "résiduels" affectent considérablement le comportement mécanique de l'acier.

Une observation, après attaque métallographique de la surface de l’acier, a permis

de vérifier sa composition. En particulier, les différentes phases constitutives ont pu être mises en évidence. L’attaque est effectuée en trempant quelques secondes l’acier,

- 24 -

Page 32: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

préalablement poli, dans une solution de « nital » (mélange d’acide nitrique et d’alcool dans un rapport de 3/100) [LEV-]. Une analyse au microscope électronique à balayage (voir paragraphe 4.1.) révèle les deux phases en présence. Comme le présente la figure 2.1, la ferrite ou phase α apparaît bien plus claire que la perlite, constituée de ferrite et cémentite (α + Fe3C).

Perlite(phase sombre)

Ferrite(phase claire)

Perlite(phase sombre)

Ferrite(phase claire)

Figure 2.1 : Photographie par microscopie électronique à balayage de la surface de l’acier XC38 après attaque au « nital », révélant les deux phases en présence

2. Cellule, montages et électrolyte Les pièces usinées et les outils de coupe en conditions de service sont soumis à des

contraintes importantes (échauffement, hydrodynamique,…). Ainsi, afin de prendre en compte les conditions réelles d’utilisation de l’inhibiteur, deux montages ont été utilisés, adaptés et développés (essais microgravimétriques).

2.1. Cellule électrochimique à trois électrodes La cellule utilisée pour les essais électrochimiques est cylindrique, en verre et a une

contenance de 200 mL. Elle est munie d’une double-enveloppe permettant la régulation, si nécessaire, de la température, par l’intermédiaire d’un bain thermostaté.

La cellule est surmontée d’un couvercle en Téflon® qui permet d’adapter :

• une électrode de référence au calomel saturée (ECS), • une contre-électrode constituée d’un barreau de graphite, • un réfrigérant lors des essais longues durées, menés à des températures

supérieures à 40 °C, permettant de condenser l’électrolyte évaporé. L’électrode de référence est placée dans une allonge thermostatée à température ambiante : en effet, le potentiel de l’électrode de référence augmente de 6 mV par variation croissante de 10 °C.

- 25 -

Page 33: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

• une électrode de travail, constituée d’un barreau d’acier XC38 ou de fer est enrobée dans une résine époxi, qui permet de délimiter une section plane (surface étudiée) et qui évite toute infiltration d’électrolyte [ESS-04]. L’ensemble est disposé sur une électrode à disque tournant (Radiometer Analytical) (figure 2.2).

contact

éventuellearrivée de gaz

électrode(en fer ou acier)mise en résine

contact

éventuellearrivée de gaz

électrode(en fer ou acier)mise en résine

contact

éventuellearrivée de gaz

électrode(en fer ou acier)mise en résine

Figure 2.2 : Schéma de l’électrode à disque tournant (EDT)

La rotation de l'électrode peut être imposée de 0 à 5000 tours par minute (tpm)

grâce à un boîtier de contrôle CTV 101 de chez Radiometer. La rotation induit une aspiration du fluide vers le disque et le projette en direction du bord par des forces tangentielles, créant ainsi un mouvement en spirale (figure 2.3). L’électrode à disque tournant permet ainsi d’imposer et de maitriser l’écoulement au voisinage de la surface réactionnelle.

Axe de rotationAxe de rotation

Direction de la rotationDirection de la rotation

Vue de profil Vue de dessous

Figure 2.3 : Ecoulement caractéristique de l’électrolyte au voisinage d’une EDT

- 26 -

Page 34: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

Un paragraphe consacré aux phénomènes de transport de masse dans la configuration de l’EDT introduira le chapitre concernant l’étude de l’influence de l’hydrodynamique sur les inhibiteurs de corrosion (voir chapitre 5).

Toutes les études électrochimiques ont été réalisées avec un potentiostat Gamry de

type FAS1 (logiciels DC 105 et EIS 300). Le schéma du dispositif expérimental décrit précédemment est présenté et détaillé sur la figure 2.4.

a

c

d

b

a

c

d

b

Figure 2.4 : Photographie de la cellule électrochimique à double-enveloppe (b),

équipée d’un bain thermostaté (a), d’un réfrigérant (c) et d’une allonge thermostatée (d)

2.2. Montage pour les mesures microgravimétriques Quel que soit le mécanisme d’action de l’inhibiteur sur la surface à protéger,

d’infimes pertes et/ou prises de masse s’effectuent simultanément au niveau de la surface active de l’électrode de travail (perte de masse par oxydation du métal mais gain de masse par accumulation de produits de corrosion ou adsorption de molécules inhibitrices) [GAN-00]. Ces changements gravimétriques peuvent être décelés par un outil récent : la microbalance à cristal de quartz (Electrochemical Quartz Crystal Microbalance – EQCM).

2.2.1. Principe de l’EQCM La technique même de l’EQCM consiste à mesurer les changements mécaniques

d’un cristal à la fréquence de résonance [RUB-95]. Pour un cristal de quartz oscillant, l’équation de Sauerbrey (équation 2.1) décrit la réponse en fréquence :

- 27 -

Page 35: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

20

12

2

( )Q Q

f mfA ρ µ

− ∆∆ = (2.1)

Avec : • f 0 : fréquence de résonance du quartz (Hz), • ∆m : variation de masse (g), • A : surface active résonante (cm²), • µQ : coefficient de vibration du quartz (µQ = 2,947*1011 dyne.cm-2), • ρQ : densité du quartz (ρQ = 2,648 g.cm-3).

Cette équation repose sur certaines hypothèses dont notamment le fait que la masse

ajoutée est uniformément répartie. Au laboratoire, la microbalance Maxtek (RQCM) opère avec un quartz calé à une fréquence de résonance de 5 MHz ; ainsi une variation de 0,1 Hz correspond à une variation de masse de 2,42 ng pour une surface active de 1,37 cm² ; autrement dit la sensibilité de ce cristal de quartz de coupe AT (ANNEXE 1) est de l’ordre de 17,66 ng.cm-2.Hz-1. Dans la configuration électrochimique, l’électrode 1 du dessus (figure 2.5) est en contact direct avec l’électrolyte et constitue l’électrode de travail.

Surface activeElectrode 1

Electrode 2

Vue de dessus Vue de dessous

ContactElectrode 1

Figure 2.5 : Description du cristal de quartz

La coupe transversale du cristal présentée sur la figure 2.6 permet de bien cerner le

phénomène réversible de la piézo-électricité : la tension appliquée entre les deux électrodes produit une déformation du cristal, celui-ci entre alors en résonance.

QUARTZélectrode 1

électrode 2∆V

Pin 1 Pin 2Contacts électriques

Figure 2.6 : Coupe transversale du cristal de quartz

- 28 -

Page 36: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

La différence de potentiel est imposée via les 2 pins : la pin 1 établit le contact électrique au niveau de la surface active qui joue ainsi le rôle de l’électrode de travail tandis que la pin 2 fait contact au verso du cristal. Les deux électrodes sont constituées d’un film mince composé de plusieurs matériaux : un formant la couche d’adhésion et l’autre la couche extérieure. La couche d’adhésion est une fine couche métallique intercalée entre le quartz et le revêtement. Afin d’étudier le comportement du fer lors de son immersion dans la solution corrosive, l’électrode de travail (électrode 1) est revêtue de trois couches au total : une couche d’adhésion en chrome, puis une couche d’or sur laquelle est déposée par PVD (Physical Vapor Deposition) une couche de fer de l’ordre de quelques nanomètres d’épaisseur [KUR-03]. La figure 2.7 présente la structure colonnaire à croissance épitaxique observée par AFM (voir paragraphe 4.2.) ; l’image a été obtenue en effectuant l’analyse de la surface du cristal.

400nm

X: 2.0 µm

Y: 2.0 µm

Z: 50 nm

X: 2.0 µm

Y: 2.0 µm

Z: 50 nm

Figure 2.7 : Image AFM de la surface du quartz recouvert de fer

2.2.2. Montage du couplage électrochimie/microgravimétrie Lors des études couplant les techniques électrochimiques et microgravimétriques,

le signal du potentiel est récupéré par la microbalance, afin de pouvoir suivre simultanément les évolutions du courant et de la masse en fonction du potentiel appliqué (notamment lors des études voltamétriques). Une cellule électrochimique a été réalisée afin de conserver la géométrie horizontale de l’électrode de travail, constituée par le cristal de quartz de la microbalance (figure 2.8).

- 29 -

Page 37: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

Electrode de travailElectrode de référenceContre-électrode

PC i = f (E)

POTENTIOSTAT Parstat 2263

RQCM MAXTEK-INC

DAC outpout

PCm = f (E)

récupération de E

Electrode de travailElectrode de référenceContre-électrode

PC i = f (E)

POTENTIOSTAT Parstat 2263

RQCM MAXTEK-INC

DAC outpout

PCm = f (E)

récupération de E

Figure 2.8 : Montage pour les études intégrant la microgravimétrie

2.3. Préparation de l’échantillon Afin d’obtenir des résultats fiables et reproductibles, l’électrode de travail subit,

avant chaque essai, un prétraitement, qui consiste en un polissage de la surface de l’électrode au papier abrasif de granulométrie de plus en plus fine (SiC #800, #1200 et #2400), suivi d’un rinçage à l’eau distillée puis d’un séchage sous un flux d’air. Tout rinçage à l’alcool est proscrit car des molécules organiques issues de l’alcool pourraient interagir avec les molécules contenues dans l’inhibiteur.

Aucune activation électrochimique particulière de la surface des électrodes n’a été

réalisée : une très bonne reproductibilité des expériences avec le traitement mécanique a, en effet, été observée.

L’échantillon est alors fixé sur l’EDT puis immergé rapidement dans l’électrolyte.

2.4. Electrolyte L’électrolyte est une solution composée de 100 ppm de chacun des sels suivants :

NaCl, Na2CO3 et Na2SO4 [AST-93]. La proportion de ces sels correspond à une solution « synthétique » corrosive augmentant la sévérité des tests effectués dans l’eau permutée. Chaque ion de l’électrolyte joue un rôle spécifique dans l’étude [RIG-73] (ANNEXE 2).

- 30 -

Page 38: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

La concentration de cet électrolyte est proche de celles rencontrées dans les eaux des circuits de refroidissement [OCH-04c].

L’inhibiteur étudié (fourni par la Société Ascotec [ASC-02]) est constitué entre

autres d’une amine tertiaire et d’un acide carboxylique, deux groupes fonctionnels présentant comme centres actifs N et C et/ou O respectivement. L’effet indépendant et synergique de ces deux molécules est détaillé dans le chapitre 1. Dans le cadre de notre étude, l’inhibiteur est ajouté dans une gamme de concentrations comprises entre 0.1 et 5 % en masse.

3. Techniques électrochimiques Les techniques électrochimiques ont permis d’appréhender l’étude selon deux

points de vue. D’un point de vue phénoménologique d’abord, la caractérisation de l’adsorption est possible soit par suivi dans le temps du potentiel en circuit ouvert, caractéristique de la modification de l’interface entre un métal et son environnement, soit par voltamétrie cyclique à vitesse de balayage élevée. L’aspect plus quantitatif (courbes de polarisation à vitesse de balayage modérée, spectroscopie d’impédance,…) permet, quant à lui, d’accéder à des vitesses de réaction et à des valeurs de paramètres physiques décrivant l’état du système (capacité de double-couche, résistance de transfert, capacité du film,…).

Les méthodes électrochimiques peuvent être classées selon deux groupes distincts : les méthodes stationnaires et les méthodes non-stationnaires dites transitoires.

3.1. Techniques stationnaires Les techniques stationnaires permettent d’étudier un système se trouvant dans un

état quasiment d’équilibre thermodynamique ; elles prennent en compte tous les couples rédox dans la solution [ROS-86].

3.1.1. Suivi du potentiel en circuit ouvert Egalement désigné par potentiel d’abandon ou potentiel libre, il s’agit de la

grandeur électrochimique la plus immédiatement mesurable. Cette technique simple apporte des informations préliminaires sur la nature des processus en cours, à l’interface métal / électrolyte : corrosion, passivation,…

3.1.2. Courbes de polarisation Les courbes courant-tension stationnaires ont permis d’estimer la vitesse de

corrosion et d’appréhender la formation du film inhibiteur. En effet, la présence du film

- 31 -

Page 39: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

formé peut se caractériser sur ces courbes par l’invariance du courant sur un large domaine de surtension appliquée.

Ces techniques stationnaires restent toutefois insuffisantes pour caractériser des

mécanismes complexes, mettant en jeu plusieurs étapes réactionnelles et ayant des cinétiques caractéristiques différentes (ce qui est le cas lors des processus d’inhibition). L’utilisation des techniques transitoires devient alors indispensable.

3.2. Techniques transitoires Les différentes méthodes transitoires se différencient les unes des autres par la

forme du signal respectif appliqué : une impulsion, un balayage ou une modulation.

3.2.1. Méthode impulsionnelle : la chronoampérométrie La chronoampérométrie consiste à suivre l’évolution du courant en fonction du

temps lorsque le système est soumis à une surtension. Cette technique est intéressante dans le cadre des études sur les inhibiteurs de corrosion, car elle permet d’avoir accès à l’évolution des cinétiques de formation du film selon différentes conditions expérimentales (température, concentration en inhibiteur, vitesse de rotation de l’électrode,…). De plus, la mesure du courant résiduel (courant mesuré à la fin du temps d’acquisition) donne une bonne estimation de la compacité et de l’efficacité de la couche barrière formée à l’interface [ROS-98, BRE-94].

3.2.2. La méthode à balayage en potentiels : la voltamétrie Les mesures de voltamétrie cyclique reviennent à effectuer des balayages linéaires

en potentiels autour d’une position donnée et d’observer les éventuelles apparition et/ou disparition des phénomènes électrochimiques (oxydation et/ou réduction). Certains paramètres, tels la vitesse de balayage, permettent de rendre compte de la réversibilité de certaines réactions. Dans l’étude des inhibiteurs, cette technique a été mise en oeuvre notamment pour caractériser l’adsorption des molécules inhibitrices au matériau et ce dès les premières minutes d’immersion.

3.2.3. La méthode par modulation : la spectroscopie d’impédance électrochimique (SIE)

3.2.3.1. Généralités La mesure de l’impédance électrochimique consiste à étudier la réponse du système

électrochimique, suite à une perturbation qui est, le plus souvent, un signal alternatif de faible amplitude.

La force de cette technique par rapport aux précédentes, est de différencier les phénomènes réactionnels par leur temps de relaxation. Seuls les processus rapides sont caractérisés à hautes fréquences ; lorsque la fréquence appliquée diminue, apparaîtra la

- 32 -

Page 40: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

contribution des étapes plus lentes, comme les phénomènes de transport ou de diffusion en solution [LAN-93].

En pratique, la mesure d’impédance consiste à surimposer, à un point de

fonctionnement stationnaire, une perturbation sinusoïdale ∆E de faible amplitude notée I∆EI et de pulsation ω = 2Пf (en rad.s-1) ; le potentiel imposé à l’électrode est égal à E(t) = E + ∆E avec ∆E = I∆EI exp (jωt). Il en résulte alors un courant sinusoïdal ∆I de même pulsation ω, superposé au courant stationnaire I, tel que I(t) = I + ∆I avec ∆I = I∆II exp (j(ωt -Ф)), Φ correspondant au déphasage du courant alternatif par rapport au potentiel.

L’objectif de l’analyse d’un spectre d’impédance est d’associer à chacune des

étapes observables sur les diagrammes de Nyquist et/ou de Bode des grandeurs physiques représentatives. Ceci peut être abordé par la modélisation du spectre en proposant un circuit électrique équivalent (CEE), composé d’un certain nombre d’éléments simples ; les éléments les plus couramment utilisés sont :

• la résistance d’impédance R, uniquement modélisée par sa partie réelle (indépendante de la pulsation) ;

• la capacité d’impédance CjZ

Cω−= ;

• l’inductance d’impédance IZ jLω= .

L’interprétation des diagrammes par l’intermédiaire de CEE doit respecter deux

conditions primordiales : • tous les éléments du circuit doivent avoir une signification physique

précise, associée aux propriétés physiques du système ; • le spectre simulé à partir du CEE doit être le plus fidèle possible au spectre

expérimental et l’erreur ne doit pas présenter de caractère systématique en fonction de la fréquence.

3.2.3.2 La spectroscopie d’impédance électrochimique appliquée aux études sur les inhibiteurs de corrosion.

Dans le cadre des études sur les inhibiteurs de corrosion, la spectroscopie d’impédance permet, en particulier, de déterminer le mode d’action du produit [TAK-04]. Il peut s’agir d’une simple adsorption sur le substrat, ou de la formation d’un film tridimensionnel à l’interface.

3.2.3.2.1. Adsorption simple

Dans le cas d’une adsorption de l’inhibiteur, le spectre d’impédance est représenté, dans le plan de Nyquist, par une boucle capacitive plus ou moins aplanie, pouvant présenter un déphasage par rapport à l’axe des réels (figure 2.9).

- 33 -

Page 41: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

(a) (b)

Figure 2.9 : Déphasage α observé au niveau du repère du spectre : (a) Cas idéal, en théorie pour une surface uniformément accessible, (b) Spectre obtenu dans la plupart des

cas pratiques

Dans la majorité des travaux, ce déphasage α est expliqué par les inhomogénéités

de la surface de l’électrode : celles-ci proviennent soit de la formation de produits de corrosion ou encore de l’oxydation du métal et induisent ainsi une modification de la surface active de l’électrode comme cela est décrit sur la figure 2.10. Pour exemple, ce comportement lié au déphasage n’est pas obtenu sur électrode de mercure : en effet, tout comme un liquide, celle-ci est parfaitement lisse à l’échelle atomique [EIS−04]!

Figure 2.10 : Inhomogénéités à la surface de l’acier, observées après immersion de l’électrode dans l’électrolyte

D’autres auteurs attribuent encore ce déphasage à des variations d’épaisseur ou de

compositions d’un film ou revêtement à la surface de l’électrode [SCH-01]. C’est par un élément à phase constante (CPE) que l’on rend compte des

inhomogénéités de surface par l’intermédiaire du coefficient α. Un tel élément est décrit

par ( )1CPEZ j

Cαω −= . Dans un cas idéal d’uniformité d’accès à la surface active (électrode

de mercure), le coefficient α vaut 1 et la modélisation physique se traduit par un condensateur plan.

- 34 -

Page 42: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

Le CEE représentatif du mécanisme d’adsorption est représenté sur la figure 2.11.

ReRE

R

Re WE

Rtc

Qdc, α1

ReRE

R

Re WE

Rtc

Qdc, α1

Figure 2.11 : Circuit électrique équivalent proposé pour l’interface métal/électrolyte lors de l’adsorption d’un film inhibiteur

Ce circuit est constitué d’un élément à phase constante (Qdc), utilisé pour rendre

compte des inhomogénéités précédemment décrites, de la résistance d’électrolyte (Re), et de la résistance de transfert de charge (Rtc). La valeur de la capacité de double-couche est obtenue par l’équation (2.2) :

Cdc = Qdc (ωmax)α-1 (2.2)

Avec ω = 2πf (f représentant la fréquence à laquelle la valeur imaginaire atteint un

maximum sur le diagramme de Nyquist). L’adsorption progressive des molécules inhibitrices sur le substrat se caractérise,

sur le diagramme d’impédance, par une augmentation de la boucle capacitive, à savoir une augmentation de Rtc conjointement à une diminution de Cdc.

3.2.3.2.2. Formation d’un film tridimensionnel

Dans le cas de la formation d’un film tridimensionnel, le diagramme d’impédance est plus complexe. Pour un film suffisamment épais (quelques µm), le spectre d’impédance dans le plan de Nyquist est formé de deux boucles capacitives plus ou moins découplées en fréquences (figure 2.12).

- 35 -

Page 43: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

-Zim

Zréel

Diffusion/convectionDouble-couche

Film

-Zim

Zréel

Diffusion/convectionDouble-couche

Film

Figure 2.12 : Diagramme d’impédance correspondant à l’interface métal/électrolyte après adsorption et formation d’un film à la surface

La boucle à hautes fréquences peut être attribuée à la contribution du film

inhibiteur, quant à celle à basses fréquences, au transfert de charge à l’interface. L’amélioration des propriétés du film se caractérise, sur le diagramme d’impédance, par une augmentation de la taille des deux boucles. Un tel spectre peut être modélisé par le circuit équivalent de la figure 2.13.

Re WE

R

Re WE

Rf

Qf, α

Re WERE Re WE

, α2

Rtc

Qdc , α1

W

Re WE

R

Re WE

Rf

Qf, α

Re WERE Re WE

, α2

Rtc

Qdc , α1

W

Figure 2.13 : Circuit électrique équivalent proposé pour l’interface métal/électrolyte après adsorption et formation d’un film à l’interface

Rf représente la résistance du film inhibiteur. L’évolution de ce paramètre est liée

principalement à l’augmentation du pouvoir protecteur du film ou à la pénétration de l’électrolyte à travers le film [DIG-96]. Cf représente la capacité du film et s’exprime par la relation (2.3) :

0fACd

εε= (2.3)

Avec : • ε : constante diélectrique relative du film, • ε0 : permittivité du vide (8.85.10-14 F.cm-1), • A0 : surface active, • d : épaisseur du film.

- 36 -

Page 44: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

L’évolution de Cf peut être attribuée principalement à deux phénomènes : - une évolution de l’épaisseur du film - une évolution de la constante diélectrique du film Dans certaines études où le film est poreux (figure 2.14), une contribution

supplémentaire apparaît sur les diagrammes d’impédance aux basses fréquences (figure 2.12). Il s’agit de l’impédance de Warburg, notée ZW, caractéristique des phénomènes de diffusion et qui s’exprime par l’équation (2.4):

12 2 2( )

W

B

E RTZI C n F A j Dω

∆= =∆

(2.4)

Avec : • R : constante des gaz (J.mol-1.K-1), • T : température (K), • CB : concentration de l’espèce électrolysée au sein de la solution (mol.cm-3), • n : nombre d’électrons échangés dans la réaction, • F : constante de Faraday (F = 96500 C), • A0 : surface active (cm²), • D : coefficient de diffusion de l’espèce (cm2.s-1),

Elle est caractérisée, sur le diagramme de Nyquist, par une droite formant un angle

de 45 ° par rapport à l’axe des réels (figure 2.12). Afin de rendre compte de ce dernier paramètre, une impédance de Warburg est introduite en série avec la résistance de transfert de charge dans le CEE précédent.

XC 38

film inhibiteur

ions fers

pore

XC 38

film inhibiteur

ions fers

pore

XC 38

film inhibiteur

ions fers

pore

Figure 2.14 : Schéma de l’interface électrode/électrolyte, avec la présence d’un film inhibiteur poreux

La technique de l’impédance électrochimique permet une analyse plus complète du

mécanisme d’action de l’inhibiteur, comparativement aux méthodes stationnaires, puisqu’elle permet de séparer les différents mécanismes intervenant lors du processus

- 37 -

Page 45: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

d’inhibition. En effet, les propriétés du film ainsi que le mécanisme de transfert de charge peuvent être identifiés et quantifiés, en particulier en fonction des différents paramètres imposés au système.

3.2.4. Bilan En guise de conclusion concernant les méthodes transitoires, le tableau 2.2 présente

les trois principales techniques, à savoir la chronoampérométrie, la voltamétrie et la spectroscopie d’impédance, agrémentées de leurs formes respectives de signaux imposés et de leurs réponses. Cette présentation permet de distinguer les différentes méthodes (impulsions, balayages et modulation) sur lesquelles s’appuient ces techniques.

Tableau 2.2 : Tableau récapitulatif des différentes techniques transitoires

- 38 -

Page 46: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Cha

pitr

e 2

–Dis

posi

tifs e

xpér

imen

taux

, mili

eu e

t mét

hode

s

- 3

9 -

RE

PON

SE

NO

M D

E L

A

TE

CH

NIQ

UE

FO

RM

E D

U S

IGN

AL

IMPO

SE

E =

f (te

mps

) gr

aphi

que

Qua

ntité

term

inée

M

ET

HO

DE

Chr

onoA

mpé

rom

étri

e Sa

ut

E fin

E in

E fin

E in

i

t

i

t

I = f

(t)

IMPU

LSI

ON

S

linéa

ire

Ram

pe

vv

E

i

E

i

I = f

(E,dE dt

)

Vol

tam

étri

e

cycl

ique

Ram

pe tr

iang

ulai

re

vv

- g

rand

e am

plitu

de e

n E

(plu

sieu

rs v

olts

) -

bas

ses f

réqu

ence

s (<

100

Hz)

E

i

E

i

I = f

(E,dE dt

)

BA

LA

YA

GE

S

f dé

croiss

ante

s-Z

im

Zre

NIQ

UIS

T

f dé

croiss

ante

s-Z

im

Zre

NYQ

UIS

T

f dé

croiss

ante

s-Z

im

Zre

NIQ

UIS

T

f dé

croiss

ante

s-Z

im

Zre

NYQ

UIS

T

Im

péda

nce

Exci

tatio

n si

nuso

ïdal

e ω

= 2π

= 2π

= 2π

= 2π

f

- f

aibl

e am

plitu

de e

n E

(que

lque

s mvo

lts)

- trè

s hau

tes f

réqu

ence

s (ju

squ’

à 10

0 kH

z)

f cr

oiss

ante

Log

f

BO

DE

lZl

f cr

oiss

ante

Log

f

BO

DE

lZl

Z =

f (ω )

M

OD

UL

AT

ION

Page 47: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

4. Méthodes d’analyses L’étude de la structure cristalline et de la topographie des surfaces fait appel à

différentes méthodes, certaines fournissant une information au niveau microscopique (microscopie électronique à balayage), d’autres renseignant à l’échelle atomique (microscopie à force atomique). Les phénomènes d’adsorption, d’oxydation et de ségrégation modifient la composition chimique des surfaces, qui diffère alors de celle de la masse. Les nouvelles propriétés de surface qui en résultent peuvent changer radicalement le comportement d’une pièce face aux agressions chimiques. Ainsi les méthodes de caractérisations chimiques des surfaces (comme la spectroscopie de photoélectrons X) sont souvent indispensables pour étudier les processus de corrosion [LAN-93].

4.1. Le Microscope Electronique à Balayage (MEB ou Scanning Electronic Microscopy – SEM)

Le MEB est actuellement la technique la plus utilisée en matière de topographie à

l’échelle microscopique. Son avantage considérable par rapport à des microscopes optiques, par exemple, réside dans le fait que l’image ne souffre pas d’une profondeur de champ limitée.

Le principe de la microscopie électronique à balayage consiste à balayer la surface d’un échantillon par un faisceau d’électrons finement localisé pour en collecter, par détecteurs respectifs, les électrons secondaires et les électrons rétrodiffusés. Le matériau analysé doit être conducteur afin d’éviter des phénomènes de charges dus aux électrons : la métallisation peut s’effectuer par exemple au carbone ou encore à l’or.

L’association du microscope avec un microanalyseur permet la détection des rayons

X, caractéristiques de fond continu (1µm) pour établir la cartographie X de l’échantillon analysé : il s’agit du mode EDS (X Energy Dispersive Spectroscopy). Ce mode établit une carte de distribution des éléments présents sur une étendue choisie. Autant de cartes X sont éditées qu’il y a d’éléments à analyser.

Les clichés ont été obtenus sur un microscope JEOL 840 A LGS couplé à un détecteur

Princeton Gamma Tech.

- 40 -

Page 48: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

4.2. La Microscopie à Force Atomique (Atomic Force Microscopy – AFM) L’AFM est l’une des méthodes d’observation et d’analyse aisée d’atomes et de

structures atomiques superficielles, dans une grande variété d’environnements (ultra vide, air, huile, eau, etc…), pour une large gamme de températures et dans l’espace réel direct. Il s’agit d’une analyse détaillée de la morphologie de surface de l’échantillon.

Le principe de cette technique consiste à balayer une surface à une distance de quelques Angströms, à l’aide d’une pointe très fine et sensible aux propriétés de la surface (magnétisme, forces électrostatiques, forces de Van der Waals, température, etc…)

En AFM, il existe 3 modes d’opération. L’AFM de contact est l’équivalent atomique du profilomètre ou de l’aiguille d’un micro-sillon. La pointe est en contact direct avec l’échantillon, et les forces répulsives en présence sont très fortes. L’AFM mode résonnant force l’ensemble pointe-levier à vibrer à une fréquence proche de sa résonance mécanique. Sous l’influence du gradient vertical des forces d’attraction de Van der Waals, la constante élastique effective de l’oscillation est modifiée et la fréquence de résonance déplacée. Ceci se traduit par une variation d’amplitude. Enfin, le « tapping mode » est un développement récent de l’AFM qui résout les problèmes de risque d’endommagement par la pointe de la surface de l’échantillon et des modifications éventuelles des propriétés de surface.

La rugosité peut être caractérisée par la hauteur moyenne des irrégularités sur une surface plane et la longueur de corrélation entre les irrégularités. Un critère de rugosité couramment utilisé est un critère statistique appelé rms représentant l’écart quadratique moyen du profil.

Les études topographiques des surfaces des électrodes ont été effectuées sur un

microscope Digital Instrument 3100 en mode tapping.

4.3. La Spectroscopie de Photoélectrons X (X-ray Photoelectron Spectroscopy – XPS)

Les électrons sont liés au noyau par une énergie de liaison EL. Le principe de l’XPS repose sur la mesure de l’énergie cinétique EC du photoélectron

éjecté de son orbite après l’envoi de rayons X sur l’échantillon placé sous vide (10-7 torrs) ; le tube à rayons X est équipé d’un monochromateur capable de sélectionner une longueur d’onde de travail.

Le bilan énergétique suivant (équation 2.5) :

hν0 = EL + EC + eΦ (2.5)

- 41 -

Page 49: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 2 – Dispositifs expérimentaux, milieu et méthodes

établit une relation entre les énergies EL, EC, hν0 (énergie en eV envoyée par la source focalisée sur une longueur d’onde de travail) et eΦ correspondant à l’énergie d’extraction propre à chaque spectromètre (de l’ordre de quelques eV).

Les signaux détectés se présentent sous forme d’un spectre d’intensités des photoélectrons (nombres de coups par secondes) en fonction de l’énergie cinétique correspondante. La mesure de EC permet d’atteindre les énergies de liaisons, rapportées au niveau de Fermi des éléments et répertoriés dans les tables de Siegbahn. Dans certains cas, il arrive que les rayons X éjectent un électron appartenant à une orbitale intérieure d’un atome. Aussitôt, la lacune créée est comblée par un autre électron de cet atome provenant d’une couche plus éloignée. Or, cet électron possède trop d’énergie pour sa nouvelle position et l’atome de ce fait est dans un état d’excitation perpétuelle, l’incitant à libérer ce surplus d’énergie, soit par l’émission d’un photon, soit par l’émission d’un électron d’une couche externe, appelé alors électron Auger.

D’un point de vue appliqué, l’XPS permet d’effectuer des analyses élémentaires qualitatives (détection au 1/100ème de monocouche) et semi-quantitative (proportion d’un atome par rapport à l’autre en se basant sur les intensités des éléments). Des informations concernant l’environnement chimique telles l’état des liaisons, le degré d’oxydation ou encore la coordinence sont également accessibles par le biais de cette technique.

Les analyses ont été effectuées sur un ESCALAB 200R-VG Scientific Spectrometer,

utilisant une source raie Al KL2,3 (1486,6 eV).

- 42 -

Page 50: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

Chapitre 3 :

CARACTERISATION GENERALE DES

PROPRIETES DU FILM INHIBITEUR

1. Nature de l’inhibiteur__________________________________________ 51 1.1. Suivi des potentiels / temps pour différentes concentrations en inhibiteur

__________________________________________________________________ 51 1.2. Courbes de polarisation ______________________________________ 52

1.2.1. Domaine anodique ______________________________________ 52 1.2.2. Domaine cathodique _____________________________________ 53

1.3. Etude chronoampérométrique _________________________________ 55

2. Mécanismes de formation du film inhibiteur_______________________ 56 2.1. Spectres d’impédance _______________________________________ 56

2.1.1. Après 2 heures d’immersion_______________________________ 56 2.1.2. A des temps d’immersion importants ________________________ 58

2.2. Mise en évidence de la contribution des oxydes-hydroxydes de fer dans la construction du film __________________________________________________ 60

2.3. Analyse XPS ______________________________________________ 61

3. Etude du mode de dégradation du film inhibiteur __________________ 65 3.1. Détermination d’une concentration limite pour la formation du film

inhibiteur___________________________________________________________ 65 3.2. Etude par spectroscopie d’impédance ___________________________ 67 3.3. Analyses XPS _____________________________________________ 72

4. Conclusion du chapitre 3 _______________________________________ 72

- 49 -

Page 51: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

- 50 -

Page 52: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

Avant d’étudier l’effet, sur le film protecteur, des paramètres physiques liés aux

domaines d’application de notre inhibiteur, il convient, dans un premier temps, de le

caractériser de manière générale. Ainsi, ce chapitre a tout d’abord pour objectifs de

déterminer la nature de l’inhibiteur (anodique, cathodique) ainsi que son mode d’action

(film 2D ou 3D). Les mécanismes de formation et de croissance du film sont à leur tour

étudiés ainsi que les phénomènes responsables de son éventuelle dégradation.

1. Nature de l’inhibiteur

1.1. Suivi des potentiels / temps pour différentes concentrations en inhibiteur

La figure 3.1 présente l’évolution du potentiel en fonction du temps, pour

différentes concentrations d’inhibiteur (de 0 à 5 % en masse).

0 20 40 60 80 100 120 140 160

-0,50

-0,45

-0,40

-0,35

-0,30

0.2 %

5 %

0.5 %0.3 %0.4 %

sans inhibiteur

E (V

/EC

S)

Temps (min)

Figure 3.1 : Suivi du potentiel en circuit ouvert de l’acier XC38 immergé dans la

solution A (cf. p.35) à différentes concentrations en inhibiteur, Ω = 1600 tpm

- 51 -

Page 53: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

L’évolution du potentiel pour l’essai réalisé sans inhibiteur caractérise la corrosion

de l’échantillon avec formation de produits de corrosion. La stabilisation du potentiel libre

à une valeur de -500 mV.s-1 est atteinte après 30 minutes d’immersion. Lorsque les essais

sont conduits en présence d’inhibiteur, on observe un anoblissement du potentiel d’autant

plus marqué que la concentration en inhibiteur est importante. L’évolution du potentiel

libre, dans ce cas, traduit la formation d’une couche protectrice. L’essai mené à 0,2 %

d’inhibiteur présente une évolution intermédiaire, à savoir un anoblissement puis une chute

du potentiel libre après 40 minutes d’immersion, ce qui laisse présager une amorce de

corrosion. Le film formé dans ces conditions ne serait pas de nature à protéger l’acier

efficacement.

1.2. Courbes de polarisation

1.2.1. Domaine anodique

Les courbes de polarisation, tracées après 2 heures d’immersion, illustrent la même

tendance (figure 3.2).

-0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

5 %

0.5 %

0.4 %

0.3 %

0.2 %

sans

I ( A

.cm

-2)

E (V/ECS) Figure 3.2 : Courbes de polarisation obtenues pour l’acier XC38 immergé dans la

solution A à différentes concentrations en inhibiteur, Ω = 1600 tpm

Les courbes dans le domaine anodique ont été tracées entre -200 et +1000

mV/Ecorr avec une vitesse de balayage de 0,5 mV.s-1. A titre comparatif, la courbe sans

inhibiteur est également présentée (---). En plus du déplacement du potentiel libre vers des

valeurs plus nobles, l’ajout d’inhibiteur en solution induit une diminution importante du

- 52 -

Page 54: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

courant partiel anodique. Néanmoins, la diminution du courant n’est pas proportionnelle à

la teneur en inhibiteur introduite et une valeur limite du courant de corrosion est obtenue

dès 0,3 % en masse d’inhibiteur. Par contre, l’étendue de la zone passive pour laquelle une

densité de courant minimale est maintenue est d’autant plus grande que la concentration en

inhibiteur est élevée.

Les pouvoirs protecteurs de l’inhibiteur peuvent être calculés à partir de la relation

(1.1), rappelée ici :

Pouvoir protecteur (%)inh

corr corr

corr

i ii−= . 100

où icorr et icorrinh

correspondent respectivement aux densités de courant enregistrées

dans la solution A en l’absence et en présence de l’inhibiteur. Ces courants ont été

déterminés soit par intersection des tangentes aux courbes anodiques et cathodiques au

niveau du potentiel de corrosion (pour icorr), soit par prolongement du plateau anodique au

potentiel de corrosion pour icorrinh.

Le pouvoir protecteur atteint 78 % pour 0,2 % d’inhibiteur et plus de 95 % pour 0,3

% d’inhibiteur.

1.2.2. Domaine cathodique

Les courbes de polarisation dans le domaine cathodique, présentées sur la figure

3.3, ont été obtenues en appliquant +20 à -800 mV/Ecorr (vbal = 0,5 mV.s-1). L’inhibiteur

n’agit pas sur la réduction de l’oxygène dissous, puisque le même courant partiel

cathodique est obtenu pour les essais conduits avec et sans inhibiteur.

- 53 -

Page 55: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

-1,4 -1,2 -1,0 -0,8 -0,6 -0,4 -0,2

1E-8

1E-7

1E-6

1E-5

1E-4

sans inhibiteur 0.5 % d'inhibiteur

I (A

.cm

-2)

E (V/ECS)

Figure 3.3 : Courbes de polarisation (domaine cathodique) obtenues pour l’acier

XC38 immergé dans la solution A avec et sans inhibiteur, Ω = 1600 tpm

Ainsi, l’inhibiteur étudié peut être considéré comme un inhibiteur anodique. En

effet, les précédents essais ont révélé que :

l’inhibiteur, ajouté à la solution A, décale le potentiel de corrosion vers des

valeurs plus nobles,

sa présence en solution ne perturbe pas la réaction cathodique, et diminue de

façon importante la densité de courant anodique,

le plateau anodique est plus étendu lorsque la concentration en inhibiteur

augmente.

Une bonne efficacité de l’inhibiteur est obtenue que celui-ci soit ajouté à 0,3 ou 0,5

% en masse, néanmoins, le plateau anodique est d’autant plus important que la

concentration en inhibiteur est élevée. Afin de discerner une évolution des propriétés du

film inhibiteur formé à 0,3 % et 0,5 % massique, une étude chronoampérométrique a été

menée.

- 54 -

Page 56: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

1.3. Etude chronoampérométrique

Les courbes chronoampérométriques ont été tracées pour chacune des deux

concentrations en imposant -0,1 V/ECS (soit environ + 200 mV/Ecorr), de façon à mener

l’essai dans la zone du plateau anodique (figure 3.4).

0 5 10 15 20 25 30 35

1E-3

0,01

0,1

1 µA.cm-2

concentration en inhibiteur :

0,5 % 0,3 %

I (m

A.c

m-2)

temps (min)

Figure 3.4 : Chronoampérométries (E = -0,1 V/ECS) pour XC38 dans la solution A à 0,3

et 0,5 % en inhibiteur, Ω = 0

A cette valeur de potentiel, la densité de courant enregistrée pour 0,5 % d’inhibiteur

diminue plus rapidement et atteint une valeur plus faible que pour une solution à 0,3 % en

inhibiteur. Comme il a été mentionné dans le chapitre 2 (voir paragraphe 3.2.1. p. 36), la

mesure du courant résiduel permet, entre autre, d’estimer la « compacité » du film

protecteur [ROS-98, BRE-94]. Ainsi, le film formé à 0,5 % d’inhibiteur aurait une

compacité voire une morphologie plus à même de bloquer la réaction de dissolution

métallique.

- 55 -

Page 57: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

2. Mécanismes de formation du film inhibiteur

2.1. Spectres d’impédance

2.1.1. Après 2 heures d’immersion

Les spectres d’impédance obtenus au potentiel de corrosion sont enregistrés après 2

heures d’immersion pour différentes concentrations en inhibiteur. Les diagrammes de

Nyquist et de Bode sont présentés sur les figures 3.5 et 3.6. Dans l’encadré de la figure 3.5,

un agrandissement des spectres est proposé, afin de discerner, en particulier, les

diagrammes obtenus sans inhibiteur et à une concentration de 0,2 %. Les tailles des

boucles capacitives, déphasées par rapport à l’axe des réels, augmentent avec une

concentration croissante en inhibiteur. Ce type de diagrammes est généralement interprété

comme un mécanisme de transfert de charge sur une surface inhomogène [DUP-81]. Les

valeurs des résistances de polarisation, déterminées à partir des limites à basses fréquences

sur les diagrammes de Nyquist, confirment un pouvoir protecteur satisfaisant à partir de

0,3 % en inhibiteur.

0 15 30 45 60 75 900

15

30

45

60

75 concentration en inhibiteur :

0 2 4 6 80

2

4

6hautes

fréquences

1 Hz

0.1 Hz

10 mHz

1 Hz0.1 Hz

10 mHz

10 mHz

sans 0.2 % 0.3 % 0.4 % 0.5 % 5 %

- Z''

(kΩ

.cm

2 )

Z' (kΩ.cm2)

Figure 3.5 : Diagrammes d’impédance de Nyquist obtenus pour l’acier XC38 après 2

heures d’immersion dans la solution A et différentes concentrations en inhibiteur,

Ω = 1600 tpm

- 56 -

Page 58: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

- 57 -

10

(a) (

10-3 10-2 10-1 100 101 102 103 104 105

-80

-70

-60

-50

-40

-30

-20

-10

0

concentration en inhibiteur :

sans 0,2 % 0,3 % 0,4 % 0,5 % 5 %

Phas

e (°

)

Fréquence (Hz)

b)

Figure 3.6 : Diagrammes d’impédance en représentation de Bode, obtenus pour l’acier

(a) représentation de la phase en fonction de la fréquence

Sur le diagramme de Bode, une seule constante de temps est détectée pour les

concen

Ces observations montrent que l’inhibiteur forme, à la surface de l’acier, une

couche

10-3 10-2 10-1 100 101 102 103 104 105 106102

103

104

105

concentration en inhibiteur : sans 0,2 % 0,3 % 0,4 % 0,5 % 5 %

Z (Ω

.cm

²)

Fréquence (Hz)

XC38 après 2 heures d’immersion dans la solution A à différentes concentrations en

inhibiteur, Ω = 1600 tpm

(b) représentation du module en fonction de la fréquence

trations en inhibiteur comprises entre 0,3 et 0,5 % (figure 3.6.a). Avec un ajout

d’inhibiteur de 5 % en masse, il apparaît une deuxième constante de temps : ce

comportement révèle la présence de deux contributions différentes. La première, localisée

dans les hautes fréquences, peut être associée au film et la seconde au transfert de charge à

l’interface. Les deux contributions commencent déjà à être discernables pour une

concentration de 0,5 % en inhibiteur, si l’on se base sur l’épaulement que l’on distingue

entre 0,1 et 10 Hz. Les valeurs des modules dans le domaine des hautes fréquences nous

renseignent sur une valeur de conductivité plus grande à 5 % qu’aux concentrations

inférieures.

tridimensionnelle dont les propriétés évoluent avec la concentration introduite. En

particulier, l’évolution du diagramme de Bode pour une teneur de 5 % en inhibiteur peut

être connectée à une augmentation de l’épaisseur du film [OCH-02, OCH-04c]. Pour les

Page 59: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

solutions contenant moins de 0,5 % d’inhibiteur, la contribution du film ne peut pas être

mesurée après 2 heures d’immersion.

2.1.2. A des temps d’immersion importants

Pour des temp du film inhibiteur ont pu

être ca

s d’immersion plus longs, des modifications

ractérisées par spectroscopie d’impédance. En effet, la figure 3.7 présente les

diagrammes d’impédance obtenus lors des tests conduits sur 60 heures. La taille des

boucles capacitives augmente avec le temps, caractérisant le blocage de la réaction de

transfert de charge par la présence d’un film inhibiteur : ce film est de plus en plus résistant

à la dissolution active de l’acier. L’élargissement de la phase après 6 heures d’immersion

peut être associée à l’apparition d’une deuxième constante de temps attribuable au film.

Cette évolution des diagrammes d’impédance dans le temps confirme que l’inhibiteur

n’agit pas seulement par une simple adsorption (comme pouvait le montrer les spectres

d’impédance obtenus après 2 heures d’immersion et pour des teneurs en inhibiteur

comprises entre 0,3 et 0,5 % massique), mais forme un film tridimensionnel à la surface du

matériau. A présent, les valeurs des modules dans le domaine des hautes fréquences nous

renseignent sur une valeur de conductivité d’autant plus grande avec le temps croissant

d’immersion.

- 58 -

Page 60: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

0 50 100 150 200 250 3000

50

100

150

200 (a)

temps d'immersion (h) :

2 6 24 48 60

10 mHz

10 mHz

0.1 Hz

-Z''

(kΩ

.cm

²)

Z' (kΩ.cm²)

10-3 10-2 10-1 100 101 102 103 104 105 106

-80

-60

-40

-20

0 (b)

temps d'immersion (h) 2 6 24 48 60

Phas

e (°

)

Fréquence (Hz)10-3 10-2 10-1 100 101 102 103 104 105 106

102

103

104

105

106

temps d'immersion (h) :

2 6 24 48 60

Z (k

Ω.c

m²)

Fréquence (Hz)

Figure 3.7 : Diagrammes d’impédance obtenus pour l’acier XC38 immergé dans la

solution A + 0,5 % en inhibiteur, pour différents temps d’immersion, Ω = 1600 tpm

(a) représentation de Nyquist

(b) représentation de Bode

- 59 -

Page 61: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

2.2. Mise en évidence de la contribution des oxydes-hydroxydes de fer dans

la construction du film

Une étude en milieu désaéré a permis de recueillir des informations

supplémentaires sur la nature du film formé à l’interface. Ces informations ont pu être

recueillies grâce à l’évolution des potentiels libres en milieu désaéré en présence ou non

d’inhibiteur (figure 3.8).

0 20 40 60 80 100 120 140-0,80-0,75-0,70-0,65-0,60-0,55-0,50-0,45-0,40-0,35-0,30

solution désaérée

solution aérée

0,5 % sans

0,5 %

sans

E (V

/EC

S)

Temps (min)

Figure 3.8 : Suivi du potentiel en circuit ouvert de l’acier XC38 immergé dans la solution

A seule et avec 0,5 % en inhibiteur, en milieu aéré et désaéré, Ω = 1600 tpm

Comme cela a été vu précédemment (voir figure 3.1.), en milieu aéré, le potentiel

en circuit ouvert diffère totalement lorsque l’inhibiteur est en solution (que ce soit au

niveau de son évolution dans le temps ou de la différence de potentiels de l’ordre de 300

mV obtenue après 2 heures). L’évolution du potentiel pour l’essai mené avec 0,5 %

d’inhibiteur reflète la formation du film et plus précisément l’adsorption des molécules

inhibitrices à la surface métallique, lui conférant cette allure caractéristique vers des

valeurs de potentiels plus nobles [FEL-02]. Au contraire, en milieu désaéré, les allures des

potentiels dans la solution A en présence ou non d’inhibiteur suivent la même tendance

dans le temps. De plus, après 2 heures d’immersion, les mêmes valeurs de potentiels sont

enregistrées (environ – 750 mV/ECS), témoignant du même état de surface de l’électrode

dans les deux cas, et en particulier, d’aucune formation de film.

- 60 -

Page 62: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

Ainsi, l’oxygène en solution est un facteur essentiel pour la formation du film

inhibiteur. Ce dernier nécessiterait, pour sa formation, des oxydes-hydroxydes de fer issus

de la dissolution de l’électrode métallique.

Afin de valider ce résultat, des analyses XPS ont été réalisées sur deux électrodes

respectivement corrodée dans la solution A (électrode 1) et protégée dans la solution A +

0,5 % en inhibiteur (électrode 2).

2.3. Analyse XPS

Les analyses ont été effectuées après 24 heures d’immersion dans l’électrolyte,

temps volontairement long pour s’assurer de la formation du film dans le cas de l’électrode

2. La figure 3.9 décrit les signaux du fer, révélant une modification de la surface de

l’électrode, selon que l’acier est dans la solution A seule ou dans celle contenant

l’inhibiteur. Pour l’électrode 2, deux analyses avec des angles différents ont été réalisées :

la première (pour un angle θ = 90°), vise à caractériser la profondeur de la couche

protectrice, et la deuxième (pour un angle θ = 30°), détermine la composition chimique de

la surface du film.

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode Célectrode P (90°électrode P (30

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode 1électrode 2 (θ = 90°)électrode 2 (θ = 30°)

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode Célectrode P (90°électrode P (30

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode 1électrode 2 (θ = 90°)électrode 2 (θ = 30°)

(1)

(2a)(2b)

12a2b

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode Célectrode P (90°électrode P (30

1

740 730 720 710 700 690

1000

1500

2000

2500

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode Célectrode P (90°électrode P (30

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode 1électrode 2 (θ = 90°)électrode 2 (θ = 30°)

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode 1électrode 2 (θ = 90°)électrode 2 (θ = 30°)

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode Célectrode P (90°électrode P (30

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode Célectrode P (90°électrode P (30

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Cou

ps (s

)

sample 1sample 2 (90°)sample 2 (30°)

22

1

740 730 720 710 700 690

1000

1500

2000

2500

3000

3500

4000

4500Fe 2p

Energie de liaisons (eV)

électrode 1électrode 2 (θ = 90°)électrode 2 (θ = 30°)

(1)

(2a)(2b)

12a2b

Figure 3.9 : Spectres XPS de Fe2p pour l’acier XC38 immergé dans la solution A

(électrode 1), dans la solution A + 0.5 % en inhibiteur (électrode 2)

Le spectre obtenu pour l’électrode 1 décrit un pic très discernable vers 710 eV ; ce

pic correspond à la forme oxydée du fer, caractérisant les produits de corrosion formés à la

- 61 -

Page 63: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

surface. Pour l’électrode inhibée ou électrode 2, en plus du pic à 707 eV caractéristique du

fer métallique pour l’analyse menée en profondeur, on observe les pics liés aux formes

oxydées du fer dans toute l’épaisseur du film. Cependant une proportion plus importante de

ces espèces a pu être détectée en profondeur (tableau 3.1).

Tableau 3.1 : Energies de liaison pour chaque élément du spectre (en eV). Entre

parenthèses, les valeurs données en pourcentage correspondent au rapport de l’aire des

pics

Fe2p3/2

O1s

(O2-)

O1s

(OH-)

O1s

(H2O) N1s

Echantillon 1 710,5 529,5

(59%)

531,0

(41%) - -

Echantillon 2

(θ = 90°)

707 +

709,7

529,3

(47%)

531,5

(38%)

533,0

(15%) 399,6

Echantillon 2

(θ = 30°)

707 +

710

529,3

(30%)

531,6

(50%)

532,9

(20%) 399,5

En s’appuyant sur la déconvolution du spectre de l’oxygène (O1s), présentée sur la

figure 3.10, ce dernier apparaît dans trois états chimiques (tableau 3.1). Ceux-ci

correspondent respectivement à la forme oxyde O-Fe (529,3 eV), à la forme hydroxyde

HO-Fe (531,5 eV) et à l’eau adsorbée (533,0 eV) [KAR-98, FEL-99, BEN-99]. Certains

auteurs avancent que ce dernier signal est également confondu avec celui du groupement

carboxylique (O = C – O-) présent dans la molécule de sels d’acide carboxylique [OCH-

04c].

Seuls O2- et OH- sont identifiés sur le spectre de la figure 3.10.a, résultant de la

mesure pratiquée sur la surface de l’électrode corrodée (électrode 1). Ces oxydes et

hydroxydes sont constitutifs des produits de corrosion formés à la surface métallique dans

la solution A.

- 62 -

Page 64: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

a)

O 1s

OH- O2-

Sample 1

O 1s

OH- O2-

Sample 1

O 1s

OH- O2-

Sample 1

O 1s

OH- O2-

électrode 1

O 1s

OH- O2-

Sample 1

O 1s

OH- O2-

Sample 1

O 1s

OH- O2-

Sample 1

O 1s

OH- O2-

électrode 1

b)

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

électrode P (θ = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

électrode 2 (θ = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

électrode P (θ = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

Sample 2 (α = 90°)

H2O

OH- O2-

O 1s

électrode 2 (θ = 90°)

H2O

OH- O2-

c)

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

électrode P (θ = 30 °)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

électrode 2 (θ = 30 °)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

électrode P (θ = 30 °)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

Sample 2 (α = 30°)

H2O

OH-

O2-

O 1s

électrode 2 (θ = 30 °)

H2O

OH-

O2-

Figure 3.10 : a) Spectre XPS sur O1s dans la solution A,

b) Spectre XPS sur O1s, dans la solution A + 0,5 % d’inhibiteur (angle d’analyse 90°),

c) Spectre XPS sur O1s, la solution A + 0,5 % d’inhibiteur (angle d’analyse 30°)

- 63 -

Page 65: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

Sur la figure 3.10.b, les analyses réalisées avec un angle θ = 90° (dans la

profondeur de la couche) sur l’électrode 2, révèlent également une contribution

significative des oxydes-hydroxydes de fer. Cette observation confirme que l’inhibiteur

incorpore, lors de la formation du film, les premiers produits de corrosion. Il y a pourtant

moins d’oxydes O2- détectés sur la surface de l’électrode 2, lorsque l’analyse est réalisée

avec un angle θ = 30° (figure 3.10.c). Moins de produits de corrosion subsisteraient à la

surface du film et la principale contribution proviendrait alors des composés organiques de

l’inhibiteur. En effet, des traces d’azote ont été identifiées sur l’échantillon 2, et de plus, en

quantité plus importante à l’extrême surface du film (N/Fe = 0,2 pour θ = 90° et N/Fe = 0,4

pour θ = 30°). L’azote, témoin de la présence du film inhibiteur, est associé à la

contribution de l’amine ; l’azote de l’amine génère un pic à environ 400 eV (tableau 3.1)

[WEL-97, BEN-99]. La présence des autres contributions et en particulier le pic observé à

536 eV sera discuté dans le paragraphe 3.3. p. 72.

Une photographie par MEB de la tranche de la surface de l’électrode a été réalisée

après que cette dernière ait été respectivement plongée dans la solution A seule (figure

3.11.a) et dans la solution A contenant 5 % d’inhibiteur (figure 3.11.b). La différence

majeure observée entre les deux clichés est la présence d’espèces globuleuses sur

l’électrode inhibée, attribuée au réseau intégrant les molécules inhibitrices et les produits

de corrosion.

(a) (b)

XC38 / sol.A + 0,5 % inh. 20 kV x3700

10µ

XC38 / sol.A + 0,5 % inh. 20 kV x3700

10µ

XC38 / sol.A 20 kV x3700

10µ

XC38 / sol.A 20 kV x3700

10µ

Figure 3.11 : Photographies MEB de la tranche de la surface de l’électrode (a)

sans inhibiteur, (b) avec inhibiteur

Ces différentes études, appuyées sur des méthodes complémentaires

d’électrochimie et d’analyse de surface, ont révélé que le film inhibiteur formait, à la

surface de l’acier, une couche tridimensionnelle qui intègre les premiers oxydes-

- 64 -

Page 66: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

hydroxydes de fer issus de la dissolution métallique. Le film formé, également appelé film

d’interphase, forme un réseau homogène et compact dont les propriétés mécaniques,

structurales et chimiques dépendent étroitement des conditions particulières de

l’expérience (concentration en inhibiteur, température, vitesse de rotation de

l’électrode,…) [MAN-85, LOR-80, LOR-83]. Felhosi et al. pensent que certaines

substances dissoutes de l’électrolyte peuvent engendrer des réactions secondaires formant

alors des précipités à la surface du métal [FEL-00]. D’après Lopez et al., il existe certains

inhibiteurs ne pouvant être efficaces que si les produits de corrosion de l’acier sont des

carbonates ou sulfures de fer, et non si ce sont des oxydes [LOP-03].

De plus, le film est efficace, après 2 heures d’immersion, à partir de 0,3 %

d’inhibiteur. Cependant, les courbes chronoampérométriques ont révélé une différence de

comportement au niveau de la vitesse de formation du film et de sa structure entre 0,3 et

0,5 % d’inhibiteur.

3. Etude du mode de dégradation du film inhibiteur

3.1. Détermination d’une concentration limite pour la formation du film

inhibiteur

Afin d’étudier les mécanismes responsables de la dégradation du film par

spectroscopie d’impédance électrochimique, il convient de déterminer, dans un premier

temps, une concentration limite pour laquelle la formation du film est possible mais pas

durable. Les tests potentiodynamiques et chronoampérométriques précédents menés avec

une concentration en inhibiteur de 0,3 % massique laissent présager que cette

concentration constitue cette limite. Aussi, des essais par voltamétries cycliques ont été

réalisés respectivement dans la solution A seule et dans la solution A avec 0,3 % ou 0,5 %

d’inhibiteur (figures 3.12.a, 3.12.b et 3.12.c).

- 65 -

Page 67: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

(a)

-0,6 -0,4 -0,2

-0,10

-0,05

0,00

0,05

0,10

0,154 23

1

1 2 3 4

cycle :I (

mA

.cm

-2)

E (V/ECS)

(b)

-0,6 -0,3 0,0 0,3 0,6 0,9

-0,10

-0,05

0,00

0,05

0,10

0,15

4

2

31

1 2 3 4

cycle :

I (m

A.c

m-2)

E (V/ECS)

(c)

-0,6 -0,3 0,0 0,3 0,6 0,9 1,2

-0,10

-0,05

0,00

0,05

0,10

0,15 42

3

1

1 2 3 4

cycle :

I (m

A.c

m-2)

E (V/ECS)

Figure 3.12 : Voltamétries cycliques effectuées à Ω =0 sur XC38 immergé (a) dans la

solution A, (b) dans la solution A + 0,3 % en inhibiteur, (c) dans la solution A + 0,5 % en

inhibiteur

- 66 -

Page 68: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

Les différents cycles pour chaque électrolyte ont été obtenus en imposant un

balayage (20 mV.s-1) de -100 mV/Ecorr jusqu’à une surtension anodique conduisant à une

densité de courant égale à 0,1 mA.cm-2, puis retour au potentiel initial.

Les voltamogrammes obtenus dans la solution sans inhibiteur sont proposés à titre

de référence : ils sont représentatifs d’une dissolution active de l’acier (figure 3.12.a). Les

courbes voltamétriques tracées en présence d’inhibiteur décrivent des allures différentes.

En effet, pour les essais conduits à 0,3 % d’inhibiteur, l’ébauche du plateau anodique

observé au retour du deuxième cycle laisse place, à l’issue du quatrième cycle, à une

évolution du courant caractéristique de la corrosion active de l’acier (figure 3.12.b). Lors

des différents cycles, le potentiel appliqué favorise la dissolution du fer. L’apport en

inhibiteur est alors insuffisant pour restaurer le film : il perd alors son efficacité. Les essais

conduits avec 0,5 % d’inhibiteur sont caractéristiques, quant à eux, de la formation d’une

couche protectrice très efficace, puisque des densités de courant décroissantes sont

obtenues au cours des quatre cycles (figure 3.12.c). Dans ce cas, la quantité d’inhibiteur

ajoutée est suffisante pour réagir avec l’ensemble des oxydes de fer formés au cours des

différents cycles, ce qui conduit à la formation d’un réseau homogène.

Aussi, 0,3 % d’inhibiteur constitue une concentration limite pour la formation du

film. Afin de comprendre précisément le mode de dégradation pour cette teneur, des essais

sur des temps d’immersion importants ont été menés par spectroscopie d’impédance

électrochimique.

3.2. Etude par spectroscopie d’impédance

Les spectres d’impédance pour 0,3 % d’inhibiteur sont reportés sur la figure 3.13.

Ceux-ci décrivent une augmentation de l’impédance totale du système avec le temps

jusqu’à 36 heures. Cette évolution suggère une forte inhibition du processus de dissolution

s’opérant à la surface [JAM-04]. Tout comme cela avait déjà été observé pour 0,5 %

d’inhibiteur, après 6 heures d’immersion, le diagramme de Bode présente un élargissement

de la phase, qui peut être attribué à la contribution du film (figure 3.13.b). Cependant,

après 36 heures, le diagramme de Nyquist rend compte d’une diminution de la boucle

capacitive (figure 3.13.a) : l’efficacité de l’inhibiteur chute. A partir de 48 heures, un retour

de boucle dans le domaine des basses fréquences peut traduire une instabilité du système.

- 67 -

Page 69: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

0 100 200 300 400 5000

100

200

300(a)

10 mHz

0 5 10 15 200

5

10

15 hautes fréquences

1 Hz

0,1 Hz

10 mHz

484642362462temps d'immersion (h) :

- Z''

(kΩ

.cm

²)

Z' (kΩ.cm²)

10-3 10-2 10-1 100 101 102 103 104 105 106-90-80-70-60-50-40-30-20-10

010

(b)

temps d'immersion (h) : 2 6 24 36 48

Phas

e (°

)

Fréquence (Hz)10-3 10-2 10-1 100 101 102 103 104 105 106

102

103

104

temps d'immersion (h) :

2 6 24 36 48

Z (Ω

.cm

²)

Fréquence (Hz)

Figure 3.13 : Diagrammes d’impédance obtenus pour l’acier XC38 immergé dans la

solution A + 0,3 % en inhibiteur, pour différents temps d’immersion, Ω = 1600 tpm

(a) représentation de Nyquist

(b) représentation de Bode

Afin de comprendre cette perte d’efficacité, une modélisation de l’interface métal /

électrolyte a été réalisée par l’intermédiaire d’un circuit électrique équivalent (figure 3.14).

- 68 -

Page 70: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

Ce CEE est, en général, utilisé pour les études des revêtements [BEA-76].

Re

Rf

RtcA

WERE Re

Rf

WEQdc α

Qf, α2

Re

Rf

WERE Re

Rf

WE, 1

Qf, α2

Re

Rf

WERE Re

Rf

WEQdc α

Qf, α2

Re

Rf

WERE Re

Rf

WE, 1

Qf, α2

Re

Rf

RtcA

WERE Re

Rf

WEQdc α

Qf, α2

Re

Rf

WERE Re

Rf

WE, 1

Qf, α2

Re

Rf

WERE Re

Rf

WEQdc α

Qf, α2

Re

Rf

WERE Re

Rf

WE, 1

Qf, α2

Figure 3.14 : Circuit électrique équivalent (CEE) proposé pour modéliser les phénomènes

interfaciaux avec deux constantes de temps

Il est constitué de deux éléments à phase constante (CPE), comprenant

respectivement un composé Q et un coefficient α. Le coefficient α peut caractériser

différents phénomènes physiques comme les inhomogénéités de surface résultant des

rugosités de surface, des impuretés, de l’adsorption de l’inhibiteur, de la formation d’une

couche poreuse,…[VEL-90, LOR-86]. La capacité (respectivement Cf et Cdc) est alors

calculée en se basant sur la formule de Brug [BRU-84].

Ce CEE est constitué d’éléments décrivant les propriétés du film inhibiteur

(capacité du film donnée indirectement par (Qf, α2) et résistance du film Rf) et d’autres

éléments relatifs aux processus de corrosion (capacité de double couche donnée

indirectement par (Qdc, α1) et résistance de transfert de charge Rtc) à la surface métallique.

En confrontant le CEE avec les spectres expérimentaux obtenus précédemment, il est

possible d’établir une évolution, dans le temps, des paramètres physiques relatifs au film

inhibiteur et au mécanisme de corrosion. Une bonne corrélation est obtenue entre les

données expérimentales et simulées non seulement sur les spectres observés, mais

également par le biais des valeurs du facteur d’erreur χ2, incluses pour chaque ajustement

entre 1,21.10-3 et 5,48.10-4.

Les évolutions des paramètres Cdc et Rtc pour 0,3 % en inhibiteur sont décrites sur

la figure 3.15 et celles de Cf et Rf sur la figure 3.16. Les analyses de ces évolutions

- 69 -

Page 71: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

respectives ont permis de proposer des interprétations concernant la perte d’efficacité de

l’inhibiteur après 36 heures.

0 10 20 30 40 50

0

200

400

600

800

1000

Temps (h)

Rtc (k

Ω.c

m2 )

0

10

20

30

40

50

60C

dc (µF.cm-2)

Figure 3.15 : Evolution dans le temps, des paramètres Rtc (--) et Cdc (--) pour 0,3 % en

masse d’inhibiteur

0 10 20 30 40 5020

40

60

80

100

120

Temps (h)

Rf (

kΩ.c

m2 )

10

20

30

40

Cf (µF.cm

-2)

Figure 3.16 : Evolution dans le temps, des paramètres Rf (--) et Cf (--) pour

0,3 % en masse d’inhibiteur

Rf correspond à la résistance électrique du transfert ionique à travers les pores du

film. Rf diminue avec le temps : cette évolution correspond à la pénétration de l’électrolyte

dans les pores du film. Conjointement à ce phénomène, la diminution de la capacité du

- 70 -

Page 72: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

film Cf serait liée à une augmentation de l’épaisseur du film ; en effet, le film gonflerait

sous l’influence d’une prise en eau, la capacité du film ayant l’expression 2.3, rappelée ici :

0fACd

εε=

où ε représente la constante diélectrique relative du film, A la surface active et d

l’épaisseur du film. ε0 est la permittivité du vide (8,85.10-14 F.cm-1).

L’effet de l’augmentation de la constante diélectrique avec l’infiltration de

l’électrolyte, qui tend à faire augmenter la valeur de Cf n’a qu’une répercussion mineure.

De plus, la valeur relativement élevée de Cf dès le début de l’expérience est liée à la nature

même de la couche, formée en partie par les premiers oxydes-hydroxydes de fer.

L’interprétation physique de Rf et Cf est en accord avec les évolutions respectives de Rtc et

Cdc pendant la période d’immersion. En effet, la diminution régulière de la valeur de Cdc

avec l’augmentation de Rtc durant les 36 premières heures d’immersion indique la

diminution du processus de corrosion. Cette observation montre que les pores du film

inhibiteur ne sont pas encore ouverts à la surface active. Après ce délai, la tendance est

inversée, traduisant un début de corrosion. C’est à ce moment que la prise en eau est si

importante que le nombre de chemins permettant d’établir le contact entre l’électrolyte et

le substrat s’accroît considérablement. La dissolution active de l’électrode métallique n’est

plus retenue par le film, alors détérioré, et les produits de corrosion s’amassent à la surface

de l’électrode.

Toutes ces observations peuvent contribuer à énoncer certaines hypothèses sur le

mécanisme de dégradation des propriétés inhibitrices. L’inhibiteur, de nature anodique, est

adsorbé à la surface métallique et forme un film protecteur qui intègre les premiers

produits de corrosion (inhibiteur d’interphase). La croissance de ce film, suivant une

organisation tridimensionnelle, accroît la résistance du métal face à la dissolution

métallique. Cependant, la morphologie de cette couche est de nature à laisser s’infiltrer

l’électrolyte, cette pénétration même étant à l’origine de phénomènes de corrosion après

environ 36 heures. C’est à la fin de cette période critique d’infiltration que le film est

totalement dégradé. En particulier, cette dégradation est caractérisée par une nette

augmentation de Cf ; la notion de capacité de film n’a plus aucun sens physique puisque le

film n’existe plus [DIG-96].

- 71 -

Page 73: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

3.3. Analyses XPS

Des analyses XPS, réalisées après 24 heures d’immersion, ont permis de valider les

mécanismes de détérioration du film inhibiteur par une prise en électrolyte croissante, qui

provoque finalement, au bout de 36 heures, la perte d’efficacité du film.

Sur les figures 3.10.b et 3.10.c, les pics identifiés à 536,5 eV correspondent à la raie

Auger du sodium (plus précisément à une transition Na KL1L23) [MOU-92]. Celle-ci

caractérise la présence de l’électrolyte. Cette détection est en accord avec une infiltration

de l’électrolyte dans le film, et particulièrement dans sa partie externe (voir le rapport

Na/Fe dans le tableau 3.2).

Na/Fe

Echantillon 1 0,1

Echantillon 2 (θ = 90°) 0,6

Echantillon 2 (θ = 30°) 1,4

Tableau 3.2 : Valeurs issues des analyses XPS après 24 heures d’immersion

4. Conclusion du chapitre 3

L’inhibiteur étudié est un inhibiteur anodique, bloquant uniquement la dissolution

métallique et n’influant pas sur la réduction de l’oxygène dissous en solution. Il forme une

couche tridimensionnelle à la surface du matériau qui incorpore les oxydes-hydroxydes de

fer issus de la corrosion de l’acier.

Le film formé, également appelé film d’interphase, forme un réseau dense dont les

propriétés dépendent du taux d’inhibiteur introduit. En effet, après 2 heures d’immersion,

l’inhibiteur présente un pouvoir protecteur satisfaisant dès 0,3 % massique. Néanmoins, le

film formé à cette teneur n’est pas en mesure de protéger durablement l’acier. La perte

- 72 -

Page 74: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 3 – Caractérisation générale des propriétés du film inhibiteur

d’efficacité peut alors être attribuée à une prise en eau progressive du film, qui conduit

après 36 heures, à une corrosion importante [BOM-03, BOM-04].

Au contraire, le film formé à 0,5 % d’inhibiteur est vraisemblablement plus dense

ou plus compact. Il est capable de bloquer l’infiltration de l’électrolyte et donc, permet

d’assurer une protection durable de l’acier, jusqu’à au moins 60 heures.

- 73 -

Page 75: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Chapitre 4 :

INFLUENCE DE PARAMETRES PHYSIQUES

LIES AUX CONDITIONS DE SERVICE DU

SYSTEME :

INFLUENCE DE LA TEMPERATURE

1. Mise au point bibliographique___________________________________ 77

2. Mise en évidence d’une température critique d’utilisation de l’inhibiteur____________________________________________________________________ 79

2.1. Etude en l’absence d’inhibiteur ________________________________ 79 2.2. Etude en présence d’inhibiteur ________________________________ 81 2.3. Détermination d’une température critique d’utilisation de l’inhibiteur__ 83

3. Evolution du pouvoir protecteur avec la température _______________ 83

4. Evolution des mécanismes de formation du film inhibiteur avec la température__________________________________________________________ 88

4.1. Effet de la température sur les mécanismes d’inhibition_____________ 88 4.2. Evolution des paramètres à l’interface dans la gamme 40 – 50 °C _____ 91 4.3. Effet d’un ajout de 5 % d’inhibiteur sur la formation du film à 80 °C __ 92

4.3.1. Mise en évidence de la formation du film à température élevée ___ 93 4.3.2. Evolution de la cinétique de formation du film ________________ 95

5. Conclusion du chapitre 4 _______________________________________ 98

- 75 -

Page 76: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

- 76 -

Page 77: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Lors de l’usinage mécanique (découpes, forages, perçages,…), des échauffements

locaux, dus en grande partie aux frottements des surfaces, au niveau des pièces usinées ou

des outils de coupe sont constatés. Ces élévations de température peuvent avoir une

incidence importante sur la formation du film inhibiteur.

Le but de ce chapitre est de déterminer, s’il existe, une température critique

d’utilisation de l’inhibiteur et d’identifier l’évolution des mécanismes de formation du film

en fonction de la température dans l’intervalle 20-80 °C. Avant d’étudier l’influence de la

température sur la formation et la stabilité du film inhibiteur, une étude préliminaire mais

nécessaire dans la solution A* a été effectuée afin de caractériser l’effet de ce paramètre sur

la vitesse de corrosion de l’acier.

1. Mise au point bibliographique

L’influence de la température sur l’efficacité des inhibiteurs, notamment en milieu

acide a fait l’objet de plusieurs articles ; lors de décapages et détartrages à haute

température, pour enlever les produits de corrosion sur les installations métalliques, les

inhibiteurs ont pour rôle de protéger ces dernières face aux attaques acides [GOM-98a,

GOM-98b, CHE-02, CHE-04, CHE-05, HAM-73, AUD-99, POP-03, RAD-65].

Gomma a étudié l’effet de la température sur l’efficacité de plusieurs inhibiteurs de

corrosion utilisés soit pour la protection de l’acier (par les acides tartarique et/ou malique

en présence ou non de cations fer dans l’intervalle 35-55 °C) [GOM-98a], soit pour la

protection du cuivre (par le benzotriazole dans l’acide sulfurique dans l’intervalle 30-65

°C) [GOM-98b]. Ces deux études ont révélé une diminution du pouvoir protecteur de

l’inhibiteur avec une augmentation de la température. Chetouani et al. ont abouti aux

mêmes constatations lors de leurs essais sur l’action inhibitrice de composés organiques de

type bipyrazolique [CHE-05] et de dérivés de la pyridazine [CHE-02] sur la corrosion du

fer pur en milieu acide dans l’intervalle de températures 20-80 °C.

* solution A : composition indiquée dans le paragraphe 2.4 du chapitre 2, p. 35

- 77 -

Page 78: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Dans ces études, la dépendance, de type Arrhenius, observée entre le courant de

corrosion et la température, permet de calculer la valeur de l’énergie d’activation (équation

4.1):

exp aCORR

EiRT

λ −⎛= ⎜⎝ ⎠

⎞⎟ (4.1)

Avec :

iCORR : densité de courant de corrosion (A.cm-2)

λ : facteur préexponentionnel

Ea : énergie d’activation (kJ.mol-1)

R : constante des gaz parfaits (J.mol-1.K-1)

T : température absolue (K)

La comparaison des énergies d’activation obtenues en présence (Eai) ou non (Ea)

d’inhibiteur permet de prévoir la dépendance du pouvoir protecteur de l’inhibiteur avec la

température.

En 1965, Radovici [RAD-65] propose un classement des inhibiteurs reposant sur

cette comparaison. Il distingue :

1. les inhibiteurs pour lesquels Eai > Ea, qui s’adsorbent sur le substrat par des

liaisons de nature électrostatique (liaisons faibles). Ce type de liaisons sensibles à

la température ne permet pas de lutter efficacement contre la corrosion quand la

température augmente.

2. les inhibiteurs pour lesquels Eai < Ea. Ces inhibiteurs présentent, quant à eux,

une augmentation du pouvoir protecteur avec la température. Les molécules

organiques de l’inhibiteur s’adsorbent à la surface métallique par liaisons fortes

(chimisorption). Gomma rappelle que, pour Machu, les inhibiteurs de cette

catégorie sont les plus efficaces [GOM-98b]. Putilova et al. considèrent que

l’augmentation du pouvoir protecteur avec l’augmentation de la température est

due au changement de nature de l’adsorption : à des faibles températures,

l’inhibiteur est adsorbé physiquement tandis que la chimisorption est favorisée à

haute température [PUT-60].

3. les inhibiteurs pour lesquels Eai = Ea. Cette catégorie ne présente pas

d’évolution du pouvoir protecteur avec la température ; très peu de composés

appartiennent à cette dernière catégorie.

- 78 -

Page 79: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Les études portant sur l’influence de la température sur les films inhibiteurs par

spectroscopie d’impédance sont peu nombreuses [CHE-02, CHE-04, CHE-05, POP-03].

Seul Popova a réellement exploité cette technique lors de ses essais sur des dérivés du

benzimidazole [POP-03]. Il a, en particulier, mis en évidence que la diminution du pouvoir

protecteur avec la température était liée à un déplacement de l’équilibre d’adsorption /

désorption. Néanmoins, malgré cette évolution, il montra qu’un pouvoir protecteur

satisfaisant pouvait être atteint à température élevée (60 °C) si la concentration en

inhibiteur était suffisante pour maintenir une couche inhibitrice adsorbée.

2. Mise en évidence d’une température critique d’utilisation de

l’inhibiteur

En général, la température a un effet important sur les phénomènes de corrosion : la

vitesse de corrosion augmente lorsque la température d’essai augmente, et cette

augmentation de température induit, de fait, des changements sur l’action des inhibiteurs

[BOM-05b, BOM-05c].

2.1. Etude en l’absence d’inhibiteur

Le suivi du potentiel en circuit ouvert permet d’enregistrer les modifications à

l’interface entre le matériau et l’environnement. La figure 4.1 présente l’évolution du

potentiel libre de l’acier XC38 dans la solution A, pendant 2 heures, respectivement à

chaque température d’essais. Quelle que soit la température, l’évolution du potentiel en

fonction du temps est caractéristique d’un mécanisme de corrosion avec formation de

produits de corrosion. Le potentiel diminue pendant les 20 premières minutes puis se

stabilise à des valeurs comprises entre -500 et -550 mV/ECS. Cependant, l’allure des

courbes dans la gamme de températures 20-40 °C (traits en continu) tend légèrement à

différer de celle observée dans la gamme 50-80 °C (traits en pointillé). Cette évolution peut

être attribuée à une dissolution plus rapide de l’acier pour les températures supérieures à 50

°C. L’observation de la surface de l’électrode après les essais révèle une quantité plus

- 79 -

Page 80: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

importante de produits de corrosion à partir de 50°C, ce qui confirme les remarques

précédentes.

0 20 40 60 80 100 120-0,60

-0,55

-0,50

-0,45

60

30

80

4050

20

50 °C 60 °C 80 °C

20 °C 30 °C 40 °C

E (V

/EC

S)

Temps (min)

Figure 4.1 : Suivi du potentiel en circuit ouvert de l’acier XC38 immergé dans la solution

A à différentes températures, Ω = 1600 tpm

Les courbes de polarisation obtenues dans l’intervalle de potentiels -500 à +1500

mV/Ecorr avec une vitesse de balayage de 0,5 mV.s-1 sont présentées sur la figure 4.2.

Celles-ci confirment et complètent les renseignements issus des courbes potentiel/temps.

En particulier, l’augmentation des densités de courant anodique et cathodique avec la

température confirme l’augmentation des cinétiques de corrosion de l’acier avec ce

paramètre.

-1,2 -0,9 -0,6 -0,3 0,0 0,3 0,6 0,9 1,2

1E-7

1E-6

1E-5

1E-4

1E-3

0,01 40 °C

30 °C

20 °C température (°C) :

20 30 40 50 60 80

i (A

.cm

-2)

E (V/ECS)

Figure 4.2 : Courbes de polarisation obtenues pour l’acier XC38 immergé dans la solution

A à différentes températures, Ω = 1600 tpm

- 80 -

Page 81: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

2.2. Etude en présence d’inhibiteur

L’évolution du potentiel libre en fonction du temps enregistrée dans la solution A

avec 0,5 % en masse d’inhibiteur aux différentes températures montre l’existence de deux

domaines de température bien distincts, où le comportement de l’acier semble différent

vis-à-vis de la corrosion (figure 4.3).

Dans le domaine 50-80 °C, malgré des valeurs de potentiels plus nobles que dans la

solution A seule, la diminution importante du potentiel durant la première heure

d’immersion est caractéristique de la corrosion de l’échantillon ; l’observation de la surface

de l’acier après les essais confirme cette remarque.

0 20 40 60 80 100 120-0,45

-0,40

-0,35

-0,3020

40 30

50

60

80

20 °C 30 °C 40 °C 50 °C 60 °C 80 °CE

(V/E

CS)

Temps (min)

Figure 4.3: Suivi du potentiel en circuit ouvert de l’acier XC38 immergé dans la solution A

avec 0,5 % en masse d’inhibiteur à différentes températures, Ω = 1600 tpm

A 50 °C, l’évolution du potentiel libre est légèrement différente de celle enregistrée

à 60 et 80 °C. En effet, le potentiel ne chute qu’après 30 minutes d’immersion. Ce

comportement peut caractériser un début d’inhibition. Néanmoins, le film formé à cette

température ne serait pas de nature (de par sa composition ou morphologie) à protéger

l’acier durablement.

- 81 -

Page 82: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Dans le domaine de températures 20-40 °C, le potentiel augmente d’une vingtaine

de millivolts puis se stabilise après 30 minutes d’immersion pour atteindre une valeur de

l’ordre de -300 mV/ECS. Cette allure est caractéristique de la formation d’un film à la

surface de l’électrode active : Felhosi et al. attribuent, en effet, l’augmentation continue

dans le temps du potentiel en circuit ouvert à l’adsorption spontanée des molécules

inhibitrices à la surface métallique [FEL-02] . L’observation de l’électrode, après 2 heures

d’immersion et pour cette dernière gamme de températures, confirme la présence du film

inhibiteur, la surface étant exempte de tout produit de corrosion apparent.

Les courbes de polarisation obtenues dans la solution A avec 0,5 % en inhibiteur

sont présentées sur la figure 4.4. La présence d’un plateau anodique pour des températures

inférieures à 40 °C caractérise le blocage de la réaction d’oxydation du métal par la

formation du film protecteur. Ce plateau anodique est d’autant plus important que la

température est proche de 20 °C.

En revanche, pour des températures strictement supérieures à 50 °C, les allures des

courbes (anodiques et cathodiques) sont les mêmes que celles obtenues lorsque le métal est

immergé dans la solution A seule (figure 4.2) : les ordres de grandeur des densités de

courant sont importants et comparables à ceux obtenus dans la solution A.

-1,2 -0,9 -0,6 -0,3 0,0 0,3 0,6 0,9 1,2 1,51E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0,01

4030

50

6080

20 température (°C) : 20 30 40 50 60 80

i (A

.cm

-2)

E (V/ECS)

Figure 4.4 : Courbes de polarisation obtenues pour l’acier XC38 immergé dans la solution

A + 0,5 % en inhibiteur à différentes températures, Ω = 1600 tpm

- 82 -

Page 83: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

2.3. Détermination d’une température critique d’utilisation de l’inhibiteur

La température 50 °C semble constituer une température critique d’utilisation de

l’inhibiteur. La figure 4.5 permet de visualiser ce comportement : elle présente l’évolution

des valeurs des potentiels libres obtenus après 2 heures d’immersion en fonction des

températures étudiées, pour l’acier XC38 plongé respectivement dans la solution A seule et

contenant l’inhibiteur.

20 30 40 50 60 70 80

-0,55

-0,50

-0,45

-0,40

-0,35

-0,30

-0,25

avec inhibiteur

sans inhibiteur

E (V

/EC

S)

Température (°C)

Figure 4.5 : Evolution des potentiels en circuit ouvert en fonction des températures

d’essais, obtenus après 2 heures d’immersion de l’acier XC38 dans la solution A (——)

et dans la solution A avec inhibiteur (— —)

3. Evolution du pouvoir protecteur avec la température

Le pouvoir protecteur de l’inhibiteur à chaque température est déterminé par la

relation 1.1, rappelée ici :

Pouvoir protecteur (%)inh

corr corr

corr

i ii−= . 100

- 83 -

Page 84: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

avec icorr et icorrinh représentant respectivement les courants de corrosion dans la

solution A seule et en présence d’inhibiteur. La détermination des courants de corrosion a

été effectuée grâce aux tracés potentiodynamiques. Ces différents tracés sont présentés

dans les tableaux 4.1 et 4.2 (ci-après p. 86 et 87). Par souci de clarté, les courbes de

polarisation obtenues avec et sans inhibiteur sont superposées sur le même graphe à une

température donnée.

La valeur de chaque courant de corrosion, pour les essais effectués sans inhibiteur,

a été déterminée par l’intersection, au potentiel de corrosion, des tangentes respectives aux

courbes anodique et cathodique. Concernant les essais réalisés dans la solution avec

inhibiteur, et aux températures 20, 30 et 40 °C, la valeur du courant de corrosion a été

déterminée en prolongeant le plateau anodique jusqu’au potentiel de corrosion. La figure

4.6 présente l’évolution des courants de corrosion en fonction de la température.

20 30 40 50 60 80

solution A + 0,5 % en inhibiteurSolution A

275 320

515

617

740 760

2 19 17

175

345

736

0

100

200

300

400

500

600

700

800

i cor

r (µA

.cm

-²)

Température (°C)

Figure 4.6 : Evolution, en fonction de la température, des courants de corrosion calculés

pour chaque essai respectivement dans la solution A seule ou en présence de 0,5 % en

inhibiteur

De manière générale, les valeurs des densités de courant augmentent avec la

température, que l’on soit ou non en présence d’inhibiteur dans la solution. L’évolution

- 84 -

Page 85: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

des courants de corrosion dans la solution A présente une croissance régulière de 275 à 760

µA.cm-2, confirmant une dissolution métallique croissante avec l’augmentation de la

température.

En présence d’inhibiteur, une nette augmentation du courant de corrosion à partir

de 50 °C est à noter. En effet, entre 20 et 40 °C, les courants ne dépassent pas 20 µA.cm-2,

tandis qu’au-delà, ils passent de 175 µA.cm-2 à 50 °C à 736 µA.cm-2 à 80 °C.

Finalement, l’évolution des pouvoirs protecteurs en fonction de la température est

portée sur la figure 4.7. Cette représentation confirme la valeur de la température critique

TC déterminée précédemment. En effet, l’inhibiteur présente un pouvoir protecteur très

satisfaisant (> 94 %) jusqu’à 40 °C, alors qu’il chute considérablement après 50 °C : il

n’est plus que de l’ordre de 3 % à 80 °C.

20 30 40 50 60 70 800

102030405060708090

10099 %

94 % 96 %

53 %

72 %

3 %

Pouv

oir p

rote

cteu

r (%

)

Température (°C)

Figure 4.7 : Evolution du pouvoir protecteur de l’inhibiteur en fonction de la température

- 85 -

Page 86: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Tableau 4.1 : Pour chaque température d’essais (respectivement 20, 30 et 40 °C) :

représentation des courbes de polarisation sans (---) et avec (—) inhibiteur, valeurs des

densités de courant sans et avec inhibiteur, et valeurs des pouvoirs protecteurs

Température

(°C)

Courbes de polarisation

(---) sans inhibiteur

(—) avec inhibiteur

icorr

(µA.cm-2)

icorrinh

(µA.cm-2)

Pouvoir

protecteur

(%)

20

-1,2 -0,8 -0,4 0,0 0,4 0,8 1,21E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0,01

I (A

.cm

-2)

E (V/ECS)

275

± 35

2,1

± 0,4

99,24

± 0,45

30

-1,2 -0,8 -0,4 0,0 0,4 0,8 1,2

1E-7

1E-6

1E-5

1E-4

1E-3

0,01

I (A

.cm

-2)

E (V/ECS)

320

± 60

19

± 3

94,06

± 0,51

40

-1,2 -0,8 -0,4 0,0 0,4 0,8 1,21E-7

1E-6

1E-5

1E-4

1E-3

0,01

I (A

.cm

-2)

E (V/ECS)

515

± 95

17

± 2

96,69

± 0,48

- 86 -

Page 87: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Tableau 4.2 : Pour chaque température d’essais (respectivement 50, 60 et 80 °C) :

représentation des courbes de polarisation sans (---) et avec (—) inhibiteur, valeurs des

densités de courant sans et avec inhibiteur, et valeurs des pouvoirs protecteurs

Température

(°C)

Courbes de polarisation

(---) sans inhibiteur

(—) avec inhibiteur

icorr

(µA.cm-2)

icorrinh

(µA.cm-2)

Pouvoir

protecteur

(%)

50

-1,2 -0,8 -0,4 0,0 0,4 0,8 1,21E-7

1E-6

1E-5

1E-4

1E-3

0,01

I (A

.cm

-2)

E (V/ECS)

617

± 137

175

± 16

71,63

± 0,39

60

-1,2 -0,8 -0,4 0,0 0,4 0,8 1,2

1E-5

1E-4

1E-3

0,01

I (A

.cm

-2)

E (V/ECS)

740

± 150

345

± 95

53,37

± 0,36

80

-0,8 -0,4 0,0 0,4 0,8 1,2

1E-7

1E-6

1E-5

1E-4

1E-3

0,01

I (A

.cm

-2)

E (V/ECS)

760

± 120

736

± 74

3,16

± 0,01

- 87 -

Page 88: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

4. Evolution des mécanismes de formation du film inhibiteur avec

la température

Afin d’appréhender l’évolution du comportement du film inhibiteur avec la

température, une étude de l’influence de ce paramètre sur les mécanismes de formation du

film a été menée par spectroscopie d’impédance électrochimique.

4.1. Effet de la température sur les mécanismes d’inhibition

La figure 4.8 présente les diagrammes d’impédance en représentation de Nyquist et

de Bode, tracés aux différentes températures étudiées après 2 heures d’immersion.

Pour des températures inférieures à la température critique de 50 °C, les

diagrammes de Nyquist décrivent une boucle capacitive déphasée par rapport à l’axe des

réels. La limite à basses fréquences de ce diagramme permet de calculer la valeur de la

résistance de transfert de charge. Ainsi, la décroissance de la taille de la boucle avec la

température confirme une légère diminution de l’efficacité du film. Cependant, les

mécanismes de formation à 2 heures restent inchangés puisqu’il existe une simple relation

de proportionnalité entre les diagrammes.

Le diagramme de Bode pour l’essai mené à 20 °C, présente dans la gamme de

fréquences 0,1 à 10 Hz (partie grisée sur la figure 4.8.b), un léger épaulement qui peut être

attribué à la contribution du film.

Une étude impédancemétrique, menée jusqu’à 60 heures d’immersion et à 40 °C a

été réalisée (figure 4.9). Comme pour les essais effectués à température ambiante, la taille

de la boucle capacitive augmente avec le temps. Cette évolution a déjà été discutée dans le

chapitre 3 et a été attribuée à une augmentation de l’efficacité du film liée à une

augmentation de son épaisseur.

- 88 -

Page 89: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

0 20 40 60 80 100 1200

20

40

60

80

0,0 0,4 0,8 1,20,0

0,4

0,8

1 Hz

hautesfréquences

0.1 Hz

10 mHz

température (°C) :

0.1 Hz

10 mHz

20 30 40 50 60 80

-Z''

(kΩ

.cm

²)

Z' (kΩ.cm²)

(a)

10-3 10-2 10-1 100 101 102 103 104 105 106

-70

-60

-50

-40

-30

-20

-10

0

température (°C) : 20 30 40 50 60 80

Phas

e (°

)

Fréquence (Hz)10-3 10-2 10-1 100 101 102 103 104 105 106

100

101

102 20 30 40 50 60 80

température (°C) :

Z (k

Ω.c

m²)

Fréquence (Hz)

(b)

Figure 4.8 : Diagrammes d’impédance obtenus pour l’acier XC38 immergé dans la

solution A + 0,5 % en inhibiteur à différentes températures, Ω = 1600 tpm

(a) représentation de Nyquist

(b) représentation de Bode

Le même type de diagramme d’impédance et la même évolution dans le temps sont

observés dans la gamme de températures 20-40 °C. Ainsi, la température n’agirait pas sur

les mécanismes de formation du film mais plutôt sur sa morphologie : le film semblerait

moins résistant à l’agressivité du milieu.

- 89 -

Page 90: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

0 100 200 300 400 5000

100

200

300

(a)

10 mHz

temps d'immersion (h) : 2 4 6 24 48 60

- Z''

(kΩ

.cm

2 )

Z' (kΩ.cm2)

10-3 10-2 10-1 100 101 102 103 104 105 106-90-80-70-60-50-40-30-20-10

010

(b)

temps d'immersion (h) : 2 6 24 48 60

Phas

e (°

)

fréquence (Hz)10-3 10-2 10-1 100 101 102 103 104 105 106

100

101

102

103

temps d'immersion (h) :

2 6 24 48 60

Z (k

Ω.c

m²)

Fréquence (Hz)

Figure 4.9 : Diagrammes d’impédance (a) en mode Nyquist (b) en mode Bode obtenus

pour l’acier XC38 immergé dans la solution A + 0,5 % en inhibiteur à 40 °C, pour

différents temps d’immersion Ω = 1600 tpm

- 90 -

Page 91: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Pour des températures supérieures à 50 °C, les spectres d’impédance sur le

diagramme de Nyquist de la figure 4.8.a décrivent 2 boucles capacitives déphasées et mal

découplées. Ces diagrammes sont comparables à ceux obtenus sans inhibiteur. La boucle à

hautes fréquences peut être attribuée au transfert de charges à l’interface et la boucle à

basses fréquences à la diffusion de l’oxygène dissous à travers les produits de corrosion

[DUP-81]. De plus, la valeur de la limite à basses fréquences de ces diagrammes pour 60 et

80 °C est très faible et du même ordre de grandeur que pour les essais conduits sans

inhibiteur (Rtc = 300 Ω.cm2), ce qui confirme l’absence du film protecteur à l’interface.

4.2. Evolution des paramètres à l’interface dans la gamme 20 – 40 °C

Pour des températures comprises entre 20 et 40 °C et après 2 heures d’immersion,

la contribution du film protecteur n’est pas encore quantifiable (du fait probablement de

son épaisseur) et l’ajustement paramétrique des spectres d’impédance expérimentaux a été

réalisé avec le circuit électrique équivalent (CEE) de la figure 4.10.

ReRE

R

Re WE

Qdc, α1

ReRE Re WE

tcA

dc, α1

ReRE

R

Re WE

Qdc, α1

ReRE Re WE

tcA

dc, α1

Figure 4.10 : Circuit électrique équivalent (CEE) proposé pour les spectres

obtenus dans la gamme de température 20 - 40 °C

Les spectres expérimentaux et simulés sont bien corrélés et les valeurs issues de

l’ajustement paramétrique sont présentées dans le tableau 4.3.

- 91 -

Page 92: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Tableau 4.3 : Valeurs des paramètres issus de la simulation par le CEE pour les

températures de 20 à 40 °C dans la solution A avec inhibiteur

T

(°C)

Re

(Ω.cm²) α1

Rtc

(kΩ.cm²)

Cdc

(µF.cm-²)

χ²

(facteur

d’erreur)

20 206 0,83 99,8 87,2 9,56.10-4

30 197 0,79 25,4 37,5 3,20.10-3

40 113 0,79 26,1 28,1 4,81.10-3

Le maintien de la capacité à une valeur relativement faible pour les températures

comprises entre 20 et 40 °C témoigne de l’adsorption des molécules inhibitrices à la

surface de l’échantillon. Par contre, la diminution de Rtc traduit l’augmentation, à

l’interface, du transfert de charges lié à la dissolution du fer plus rapide quand la

température augmente. Ainsi, quand la température augmente, le film formé serait moins

de nature (morphologie, structure, homogénéité) à protéger l’acier efficacement.

Le tableau 4.3 présente également l’évolution du paramètre α1∗. On note une

diminution de ce paramètre avec la température. D’après Popova, cette évolution en

présence d’inhibiteur peut résulter non seulement d’une augmentation des rugosités de

surface liée à la corrosion croissante de l’échantillon, mais également au déplacement de

l’équilibre d’adsorption / désorption tendant vers la désorption de l’inhibiteur [POP-03].

4.3. Effet d’un ajout de 5 % d’inhibiteur sur la formation du film à 80 °C

Plusieurs résultats expérimentaux ont déjà révélé l’importance du rapport

« molécules inhibitrices / oxydes-hydroxydes métalliques » : ce rapport doit être respecté

* Rappel : le coefficient α peut caractériser différents phénomènes physiques comme les

inhomogénéités de surface résultant des rugosités de surface, des impuretés, de l’adsorption de l’inhibiteur,

de la formation d’une couche poreuse,…[VEL-90, LOR-86]

- 92 -

Page 93: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

afin d’assurer une protection contre la corrosion (et qui plus est, dans le temps). Citons

pour exemple, les essais réalisés à 20 °C pour deux concentrations différentes en inhibiteur

(0,3 et 0,5 % en masse). La cinétique de dissolution du fer est la même durant les

premières heures d’immersion pour les deux concentrations, mais le réseau formé entre les

molécules inhibitrices à 0,3 % et les oxydes de fer n’est pas de nature à protéger la surface

de l’acier durablement. En effet, la perte d’efficacité dans le temps a été corrélée à une

prise en eau progressive, probablement liée à une moins bonne cohésion ou compacité du

réseau (comparativement à celui obtenu à 0,5 %). Lorsque la température d’essais

augmente, pour une même quantité d’inhibiteur, le rapport évolue considérablement. Ainsi,

à 80 °C, l’apport de 0,5 % d’inhibiteur n’est pas suffisant pour intéragir avec tous les

produits de corrosion formés. La complexation entre les oxydes-hydroxydes de fer et les

molécules inhibitrices, qui assure la compacité du réseau, ne concerne plus qu’un petit

pourcentage de l’interphase.

4.3.1. Mise en évidence de la formation du film à température élevée

La figure 4.11 présente l’évolution du potentiel libre avec le temps d’immersion,

pour des essais menés à 5 % en inhibiteur, à des températures de 20 et 80 °C. Les courbes à

0,5 % en inhibiteur aux deux mêmes températures servent uniquement d’essais de

référence, la possibilité ou non de formation du film dans ces conditions expérimentales

ayant déjà été discutée précédemment.

- 93 -

Page 94: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

0 20 40 60 80 100 120-0,45

-0,40

-0,35

-0,30 avec 0.5 % (20°C)avec 5 % (20°C)

avec 5 % (80°C)

avec 0.5 % (80°C)

Pote

ntie

l (V/

ECS)

Temps (min)

Figure 4.11 : Suivi du potentiel en circuit ouvert de l’acier XC38 immergé dans la solution

A avec inhibiteur en proportion 0,5 ou 5 % en masse, à 20 et 80 °C, Ω = 1600 tpm

A 80 °C et pour une concentration de 0,5 % (---), l’allure décroissante du potentiel

dans le temps est caractéristique de la dissolution active du matériau. L’effet d’un apport

plus important en inhibiteur est nettement discernable : en plus d’un gain en potentiel de

l’ordre de 100 mV, l’allure du potentiel libre pour l’électrode immergée dans la solution A

+ 5 % en inhibiteur (—) révèle la formation du film à la surface métallique (augmentation

sur quelques minutes puis stabilisation du potentiel libre). Néanmoins, l’écart de potentiels

observé après 2 heures d’immersion pour les essais réalisés à 5 % d’inhibiteur aux 2

températures laisse présager une efficacité réduite du film à 80 °C.

Les courbes de polarisation présentées sur la figure 4 .12 confirment et complètent

ces résultats. En particulier, à 80°C, le plateau anodique n’apparaît que pour une surtension

de l’ordre de 500 mV/Ecorr. Cette observation permet de révéler un blocage non instantané

de la réaction de dissolution du fer par rapport aux essais réalisés à température ambiante

(le plateau anodique n’apparaît pas directement au-delà du potentiel de corrosion).

- 94 -

Page 95: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

-0,8 -0,4 0,0 0,4 0,8 1,21E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0,01

0,1

avec 5 % (80 °C)

avec 5 % (20 °C)

avec 0.5 % (80 °C)

i (A

.cm

-2)

Potentiel (V/ECS)

Figure 4.12 : Courbes de polarisation obtenues pour l’acier XC38 immergé dans la

solution A avec inhibiteur en proportion 0,5 ou 5 % à 20 et 80 °C, Ω = 1600 tpm

4.3.2. Evolution de la cinétique de formation du film

Afin de comprendre le blocage non instantané du processus de corrosion à 80 °C

pour 5 % d’inhibiteur, une étude couplant la chronoampérométrie et la microgravimétrie a

été mise en œuvre.

La figure 4.13 présente respectivement l’évolution des courants (—) et des masses

(- - -) en fonction du temps pour les températures 20 et 80 °C, lorsque l’on applique une

tension de -100 mV/ECS. Cette surtension permet de se placer avant le plateau anodique

décrit sur la courbe potentiodynamique réalisée pour 5 % en inhibiteur. A 20 °C, une

densité de courant anodique très faible (2 µA.cm-2) est enregistrée dès les cinq premières

minutes ; or, cette valeur n’est atteinte qu’après 30 minutes à 80 °C. Les essais

microgravimétriques montrent que cette évolution du temps d’obtention du courant

résiduel est liée aux quantités de produits de corrosion et de molécules inhibitrices

engagées dans la « construction du film ». En effet, une masse croissante est détectée sur la

surface du quartz durant les 30 premières minutes (elle atteint 25 µg.cm-2) pour l’essai

menée à 80 °C et 5 % alors que la prise de masse n’est pas décelable pour celui réalisé à 20

°C et 0,5 %.

- 95 -

Page 96: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

0 10 20 30 40 50 60-0,01

0,00

0,01

0,02

0,03

0,04

0,05

0,06

Temps (min)

i (m

A.c

m-2)

0

5

10

15

20

25

30

mi 20 °C 80 °C

m (µg.cm

-2)

Figure 4.13 : Chronoampérométries (E = -0,1 V/ECS) et chronogravimétrie obtenues pour

l’acier XC38 immergée dans la solution A avec 5 % d’inhibiteur à 20 et 80 °C, Ω = 0

Le tableau 4.4 suivant récapitule les trois cas de figures qui soulignent l’importance

du rapport évoqué précédemment.

- 96 -

Page 97: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

Tableau 4.4 : Récapitulatif de l’importance du rapport « concentration en

inhibiteur / produits de corrosion »

Conditions

expérimentales Schéma explicatif

L’inhibiteur est-il

efficace ?

Cinh = 0,5 %

T = 20 °C CAS N° 1

OUI

Cinh = 0,5 %

T = 80 °C CAS N° 2

NON

Cinh = 5 %

T = 80 °C CAS N° 3

OUI

molécule d’inhibiteur

produits de corrosion

métal

molécule d’inhibiteur

produits de corrosion

métal

- 97 -

Page 98: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 4 – Influence du paramètre température

5. Conclusion du chapitre 4

Afin de se rapprocher des conditions dans lesquelles l’inhibiteur peut être placé en

service, l’influence de la température sur la formation et la tenue du film protecteur a été

testée dans l’intervalle 20-80 °C.

Dans un premier temps, il a été mis en évidence que 50 °C constituait une

température critique d’utilisation de l’inhibiteur. En effet, pour des températures

inférieures à 50 °C, la formation du film est possible et le pouvoir protecteur satisfaisant

(> 94 %). Par contre, pour des températures au-delà de 50 °C, l’efficacité de l’inhibiteur

chute considérablement pour n’être plus que de 3 % à 80 °C.

L’évolution du pouvoir protecteur avec la température a pu être corrélée à une

augmentation importante de la cinétique de dissolution des ions fer plutôt qu’à une réelle

évolution des mécanismes réactionnels. Quand la température augmente, le réseau formé

par complexation entre les oxydes-hydroxydes de fer et les molécules inhibitrices ne

concerne plus qu’une proportion de plus en plus faible de l’interphase, qui est alors

majoritairement recouverte de produits de corrosion.

Cette approche souligne l’importance du rapport « concentration en inhibiteur /

produits de corrosion », en particulier lorsque l’inhibiteur forme une couche

tridimensionnelle mettant en jeu, lors de sa formation, des étapes successives d’adsorption

/ complexation.

Enfin, cette approche a pu être confirmée par une étude couplée microgravimétrie /

chrononampérométrie menée à 80 °C et pour 5 % d’inhibiteur. Le film formé dans ces

conditions présente un pouvoir protecteur satisfaisant après 2 heures d’immersion.

Néanmoins, la formation d’un réseau dense capable de bloquer complètement la

dissolution du fer est retardée puisque la complexation entre les molécules de l’inhibiteur

et les oxydes-hydroxydes engage plus de produits et a lieu sur une épaisseur plus

importante.

- 98 -

Page 99: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

Chapitre 5 :

INFLUENCE DE PARAMETRES PHYSIQUES

LIES AUX CONDITIONS DE SERVICE DU

SYSTEME :

INFLUENCE DE L’HYDRODYNAMIQUE

1. Préambule : l’écoulement dans la configuration de l’EDT _____________ 101 1.1. Le transport de masse _________________________________________ 101 1.2. Dépendance entre les contraintes d’écoulement et le rayon du disque dans le

cas de l’EDT _________________________________________________________ 103

2. Les inhibiteurs et l’hydrodynamique ______________________________ 105 2.1. Régime turbulent ____________________________________________ 106 2.2. Régime laminaire ____________________________________________ 106

3. Etude qualitative de l’effet de la vitesse de rotation sur le film inhibiteur 107 3.1. Nature du régime d’écoulement _________________________________ 107 3.2. L’inhibition sous l’effet de l’hydrodynamique______________________ 107

4. Etude de l’hydrodynamique à des temps courts______________________ 110 4.1. Cinétique d’adsorption ________________________________________ 110 4.2. Diagrammes d’impédance après 2 heures _________________________ 112 4.3. Décomposition des contributions ________________________________ 113 4.4. Evolution des paramètres à l’interface ____________________________ 117

5. Etude de l’hydrodynamique à des temps plus importants _____________ 119

6. Caractérisation des films inhibiteurs sous l’influence de la vitesse de rotation______________________________________________________________________ 123

6.1. Caractérisation de l’état de la surface : analyses par AFM ____________ 123 6.2. Caractérisation de la composition chimique des films inhibiteurs : analyses

par XPS _____________________________________________________________ 126

7. Conclusion du chapitre 5 ________________________________________ 127

- 99 -

Page 100: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

- 100 -

Page 101: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

Ω

B

De par les divers domaines d’applications de l’inhibiteur, l’étude de l’influence de

l’hydrodynamique sur la formation et la tenue du film est incontournable. En effet, ce

paramètre conditionne considérablement le transport de masse à l’interface, et il est

responsable des contraintes de cisaillement, plus ou moins importantes, suivant l’écoulement

au niveau de la surface active.

Dans ce chapitre, un préambule consacré au transport de masse dans la configuration

de l’électrode à disque tournant (EDT) rappelle, dans un premier temps, la notion de régime

d’écoulement. Puis, est abordé l’effet de l’hydrodynamique, aux temps courts (2 heures), sur

la cinétique de formation du film. Enfin, la dernière partie de ce chapitre est axée sur le rôle

de l’écoulement et en particulier des contraintes de cisaillement sur la stabilité et la

morphologie du film protecteur, pour des temps d’immersion importants (jusqu’à 10 jours).

1. Préambule : l’écoulement dans la configuration de l’EDT

1.1. Le transport de masse

En 1942, Levich est le premier à développer la théorie décrivant le transport de masse

vers une EDT [LEV-42, LEV-44]. L’hypothèse de Levich repose sur un état de surface du

disque uniformément accessible, c’est-à-dire que tous les sites du disque décrivent une

activité équivalente. Le critère de Levich est donné par la relation (5.1) :

2/3 1/ 6 1/ 20,62 Bk D ν −= (5.1)

et le courant limite s’exprime par l’équation (5.2) :

(5.2) li nFC k=

Avec :

• il : densité de courant limite (A.cm-2),

• n : nombre d’électrons engagés dans la réaction étudiée,

- 101 -

Page 102: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

c

• F : constante de Faraday, dont la valeur est 96500 C,

• CB : concentration (mol.cm-3) de l’espèce B électroactive,

• DB : coefficient de diffusion de l’espèce B (cm². s-1),

• ν : viscosité cinématique du milieu (cm². s-1),

• Ω : vitesse de rotation de l’électrode (rad.s-1).

On peut calculer l’évolution du courant limite de diffusion convection en fonction de

ω (équation 5.3) :

2/3 1/ 6 1/ 20,62l B Bi nFC D ν −= Ω (5.3)

Le critère de Levich peut également s’exprimer sous forme adimensionnelle, en

fonction des nombres de Sherwood Sh (5.4), de Schmidt Sc (5.5) et de Reynolds Re (5.6). Dans

les systèmes à convection forcée, et entre autres dans la configuration de l’EDT, le nombre de

Sherwood Sh caractérise la vitesse du transport de masse :

1/ 2 1/30,62h eS R S= (en régime laminaire) (5.4)

cSDν= (5.5)

2

euL rRν ν

Ω= = (5.6)

avec u la vitesse d’écoulement linéaire du fluide et L la longueur caractéristique du

système. Dans le cas de l’EDT, u = Ωr et L = r, avec Ω la vitesse angulaire en rad.s-1.

L’estimation du nombre de Reynolds critique Recrit permet de prévoir le régime

d’écoulement. Pour beaucoup d’auteurs, dans la configuration de l’EDT, Recrit 10≈ 5 [LEV-

42].

• crite eR R< : régime laminaire

• crite eR R> : régime turbulent

Il est possible d’accéder à un nombre de Reynolds pour un système donné, à partir de

dimensions accessibles, telles r et Ω (ANNEXE 3). Pratiquement, il est difficile d’atteindre le

- 102 -

Page 103: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

c

régime turbulent, pour une EDT, néanmoins quelques auteurs [DAG-68] ont pu travailler

dans une telle configuration ; le nombre de Sherwood s’exprime alors par [LAN-93] :

0,896 0,2490,0117h eS R S= (en régime turbulent) (5.7)

1.2. Dépendance entre les contraintes d’écoulement et le rayon du disque dans le

cas de l’EDT

Les lois régissant la mécanique des fluides permettent d’établir un lien entre les

contraintes d’écoulement générées par le fluide et le rayon de l’EDT (figure 5.1).

ϕ er

z

r ϕ er

z

ϕ er

z

r

Figure 5.1 : Représentation de l’EDT en coordonnées polaires (r,ϕ)

Dans la configuration de l’EDT, en régime laminaire, et en supposant que le fluide est

incompressible et newtonnien (ces fluides ont un coefficient de viscosité indépendant du

gradient de vitesse ; c’est le cas des gaz, des vapeurs, des liquides purs de faible masse

molaire,..), l’équation (5.8) est proposée d’après Levich :

( )( )

( )

u r F

v r G

w H

ξξ

ν ξ

⎧ ⎫= Ω⎪ ⎪⎪ ⎪= Ω⎨ ⎬⎪ ⎪

= Ω⎪ ⎪⎩ ⎭

où z z ρξν µΩ= = Ω (5.8)

ν représente la viscosité cinématique (cm².s-1) et µ la viscosité dynamique (Pa.s).

- 103 -

Page 104: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

Le frottement à la paroi s’exprime par l’équation (5.9) :

0

2 2ztot zr zϕτ τ τ=

= +0z=

(5.9)

τzr est le cisaillement radial (dû à la force centrifuge) et s’exprime par :

zru wz r

τ µ ∂ ∂⎡ ⎤= +⎢ ⎥∂ ∂⎣ ⎦ (5.10)

Avec : '( )u u r Fz z

ξ ρξξ µ

∂ ∂ ∂ Ω= × = Ω∂ ∂ ∂

(5.11)

0wr

∂ =∂

car 0rξ∂ =

∂ (5.12)

Donc : 0

1/ 2 3/ 2 1/ 2 '(0)zr rτ ρ µ= Ω F (5.13)

F’(0) = 0,510 (d’après Schlichting) [SCH-79]

τzϕ est le cisaillement tangentiel et s’exprime par :

1z

w vr zϕτ µ

ϕ⎡ ⎤∂ ∂= +⎢ ⎥∂ ∂⎣ ⎦

(5.14)

Avec : 0wϕ

∂ =∂

(5.15)

'( )v v r Gz z

ξ ρξξ µ

∂ ∂ ∂ Ω= × = Ω∂ ∂ ∂

(5.16)

Donc : 0

1/ 2 3/ 2 1/ 2 '(0)z rϕτ ρ µ= Ω G (5.17)

G’(0) = 0,616 (d’après Schlichting)

Finalement,

2 2 1/ 2 3/ 2 1/ 20,616 0,510tot rτ ρ= + Ω µ

µ

1/ 2 3/ 2 1/ 20,800tot rτ ρ= Ω (5.18)

- 104 -

Page 105: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

Les contraintes de cisaillement dépendent linéairement du rayon de l’électrode pour

une vitesse de rotation donnée. Les contraintes liées à l’écoulement du fluide sont plus

importantes au bord de l’électrode qu’en son centre. La figure 5.2 présente l’évolution du

frottement à la paroi en fonction du rayon de l’électrode pour deux vitesses de rotation

respectivement Ω = 100 et Ω = 3200 tpm, avec ρ = 1 g.cm-3 et µ = 0.001 Pa.s-1. Pour une

même position sur l’électrode, le frottement à la paroi est approximativement 100 fois plus

important à 3200 tpm qu’il ne l’est à 100 tpm.

0,000 0,002 0,004 0,006 0,008 0,0100,0

5,0x10-4

1,0x10-3

1,5x10-3

2,0x10-3

2,5x10-3

3,0x10-3

3,5x10-3

Ω = 3200 tpm

frot

tem

ent τ

(Pa)

distance r (m)0,000 0,002 0,004 0,006 0,008 0,010

0,0

5,0x10-4

1,0x10-3

1,5x10-3

2,0x10-3

2,5x10-3

3,0x10-3

3,5x10-3

Ω = 3200 tpm

frot

tem

ent τ

(Pa)

distance r (m) 0,000 0,002 0,004 0,006 0,008 0,010

0,02,0x10-6

4,0x10-6

6,0x10-6

8,0x10-6

1,0x10-5

1,2x10-5

1,4x10-5

1,6x10-5

1,8x10-5

Ω= 100 tpm

frot

tem

ent τ

(Pa)

distance r (m)0,000 0,002 0,004 0,006 0,008 0,010

0,02,0x10-6

4,0x10-6

6,0x10-6

8,0x10-6

1,0x10-5

1,2x10-5

1,4x10-5

1,6x10-5

1,8x10-5

Ω= 100 tpm

frot

tem

ent τ

(Pa)

distance r (m)

Figure 5.2 : Evolution du frottement à la paroi (τ) en fonction de la position sur

l’électrode

2. Les inhibiteurs et l’hydrodynamique

L’influence de l’hydrodynamique sur les performances des inhibiteurs de corrosion, en

régimes laminaire et turbulent, a fait l’objet de relativement peu d’études.

En général, l’effet de la vitesse est défavorable aux performances d’un inhibiteur de

corrosion, et particulièrement lorsque des régimes turbulents sont atteints. Cependant, dans

certains environnements, il arrive que de faibles vitesses soient favorables à l’efficacité de

l’inhibiteur [HAM-73].

- 105 -

Page 106: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

2.1. Régime turbulent

En terme d’applications industrielles, les inhibiteurs de corrosion organiques sont les

plus appropriés pour la protection contre la corrosion interne des conduites en acier destinées

au transport des produits pétroliers. En particulier, quelques travaux sur les mécanismes

d’inhibition des inhibiteurs à base d’imidazoline ont déjà été effectués à l’échelle du

laboratoire sur électrode à cylindre tournant (ECT) ou sur boucle de circulation, visant à

simuler les conditions d’écoulement dans les pipelines [TAN-87, KLE-94].

Récemment, des auteurs se sont penchés sur le comportement de l’inhibiteur sous

écoulement multiphasé : le transport multiphasé est particulièrement développé car, d’un

point de vue économique, il est bien plus intéressant de transporter le pétrole et le gaz de

manière combinée. Les études ont été menées dans une boucle de circulation dont le diamètre

des conduites est élevé (∅ = 10 cm) [HON-02a, HON-02b, CHE-99] : des régimes

turbulents ont ainsi été atteints. De même, Heeg et al. ont étudié la tenue de films inhibiteurs

dans des écoulements à jet liquide sur une ECT [HEE-98].

Tous ces précédents travaux, menés majoritairement par spectroscopie d’impédance,

révèlent une diminution des performances de l’inhibiteur lorsque les débits de fluide

augmentent. Cette évolution est attribuée à un endommagement voire une éjection du film

sous l’effet des turbulences ou impacts de bulles à l’interface.

2.2. Régime laminaire

Ochoa et al. [OCH-04b, OCH-04c] ont étudié le comportement de l’interface acier

au carbone / NaCl 200 mg.L-1 en présence d’un inhibiteur (mélange amines grasses et sels

d’acide phosphonocarboxyliques) dans la configuration de l’EDT. Les auteurs ont montré en

particulier que la vitesse de rotation de l’électrode conditionne les propriétés inhibitrices du

film, puisque des densités de courant de plus en plus faibles sont enregistrées avec une

augmentation de la vitesse de rotation de l’électrode.

Des études XPS ont été réalisées pour comparer les compositions chimiques du film

inhibiteur formé sous différentes conditions hydrodynamiques. Le film formé à 2000 tpm est

plus fin que celui formé à 100 tpm. De plus, les spectres de l’oxygène obtenus à vitesse

élevée, présentent un pic supplémentaire attribuable au chélate formé entre le carboxylate et

- 106 -

Page 107: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

les ions Fe3+. Ce chélate, localisé préférentiellement dans les défauts du film, renforce la

couche protectrice [ALE-01, SUZ-96].

Ainsi, une augmentation de la vitesse de rotation de l’électrode conduit à une

diminution de l’épaisseur du film et à la formation de défauts, ces derniers favorisant la

formation de chélate.

3. Etude qualitative de l’effet de la vitesse de rotation sur le film

inhibiteur

3.1. Nature du régime d’écoulement

Tous les tests sont effectués sur une électrode de travail de diamètre fixe et égal à 6

mm. Pour un tel diamètre d’électrode et pour des vitesses de rotation d’électrode n’excédant

pas 3200 tpm, le nombre de Reynolds se trouve bien en dessous de sa valeur critique : le

régime laminaire est alors conservé durant toute notre étude.

3.2. L’inhibition sous l’effet de l’hydrodynamique

Le suivi du potentiel de corrosion de l’acier plongé dans la solution A + 0,5 % en

inhibiteur en fonction du temps, avec et sans rotation (figure 5.3), permet de mesurer l’effet

de l’hydrodynamique sur le comportement du film inhibiteur (formation et/ou tenue dans le

temps) ; l’essai est conduit sur plus de 250 heures. A vitesse de rotation nulle (—), le potentiel

libre se stabilise après 10 heures d’immersion. Malgré les chutes de potentiel (correspondant à

une légère détérioration du film qui se reforme spontanément [YAM-92]), le film joue son

rôle protecteur pendant environ huit jours ou 200 heures (maintien du potentiel à une valeur

relativement stable et égale à –270 mV/ECS).

- 107 -

Page 108: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

0 50 100 150 200 250-0,42

-0,39

-0,36

-0,33

-0,30

-0,27

-0,24

0 3200

vitesse de rotation (tpm) :

(a)

E (V

/EC

S)

Temps (h)

0 5 10 15 20 25 30 35 40-0,36

-0,34

-0,32

-0,30

-0,28

-0,26

-0,24 (b)

Ω = 3200 rpm

Ω = 0

E (V

/EC

S)

Temps (h) Figure 5.3 : Suivi du potentiel en circuit ouvert de l’acier XC38 immergé dans la

solution A + 0,5 % en inhibiteur, pour deux vitesses de rotation, (a) sur 250 heures, (b) zoom

sur 40 heures

Avec une vitesse de rotation de 3200 tpm (—), l’évolution du potentiel libre est

différente. Tout d’abord, une augmentation relativement marquée du potentiel pendant les

cinq premières heures d’immersion peut être attribuée :

à un transport plus rapide de l’inhibiteur,

à un abaissement des courants anodiques

à une augmentation du transport de masse de l’oxygène dissous vers l’interface, qui

a pour effet d’augmenter le courant cathodique de réduction de l’oxygène (figure 5.4) et par

- 108 -

Page 109: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

conséquent de déplacer le potentiel d’équilibre vers des valeurs plus nobles (figure 5.5) [FEL-

02].

i

EΩ= 400 tpm

Ω = 1600 tpm= 3200 tpm

i

E= 400 tpm

= 1600 tpm= 3200 tpm

i

E= 400 tpm

= 1600 tpmΩ = 3200 tpm

i

EΩ= 400 tpm

Ω = 1600 tpm= 3200 tpm

i

E= 400 tpm

= 1600 tpm= 3200 tpm

i

E= 400 tpm

= 1600 tpmΩ = 3200 tpm

Figure 5.4 : Représentation des contributions respectives anodique et cathodique des

courbes courant-tension ; schéma explicatif de l’anoblissement du potentiel de corrosion avec

l’augmentation de la vitesse de rotation de l’électrode

0 20 40 60 80 100 120

-0,36

-0,34

-0,32

-0,30

-0,28

-0,26

vitesse de rotation (tpm) : 0 400 1600 3200

Pote

ntie

l (V/

ECS)

Temps (min)0 20 40 60 80 100 120

-0,36

-0,34

-0,32

-0,30

-0,28

-0,26

vitesse de rotation (tpm) : 0 400 1600 3200

Pote

ntie

l (V/

ECS)

Temps (min)

Figure 5.5 : Suivi du potentiel en circuit ouvert de l’acier XC38 immergé dans la

solution A + 0,5 % en inhibiteur, pour différentes vitesses de rotation

A Ω = 3200 tpm, les chutes de potentiel (observées sur la figure 5.3.a), liées à une

détérioration du film se produisent à la fois plus précocement et plus fréquemment ; ceci

- 109 -

Page 110: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

laisse présager une évolution de la structure du film ou une rupture partielle de ce dernier,

sous l’effet des contraintes imposées par l’écoulement. L’observation de la surface métallique

après 50 heures d’immersion sous une vitesse de rotation de 3200 tpm a été obtenue par

microscopie optique (figure 5.6).

100 µm100 µm

100 µm100 µm100 µm

100 µm100 µm100 µm100 µm

100 µm Figure 5.6 : Visualisation par microscope optique de l’état de surface obtenu après 50

heures d’immersion dans la solution A + 0,5 % d’inhibiteur, Ω = 3200 tpm

Le profil typique d’une EDT en régime laminaire est observé, à savoir des spirales

logarithmiques issues de l’axe de rotation [BON-83].

L’écoulement agirait d’une part sur la vitesse de formation du film, et d’autre part sur

sa structure et sa stabilité, si l’on considère des temps d’immersion plus importants [BOM-

05a].

4. Etude de l’hydrodynamique à des temps courts

4.1. Cinétique d’adsorption

Afin de suivre l’évolution de la cinétique d’adsorption du film en fonction de la vitesse

de rotation de l’électrode, des voltamétries cycliques (vbal = 20 mV.s-1) ont été tracées, dans le

domaine anodique, dès les premières minutes d’immersion (figure 5.7).

- 110 -

Page 111: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

(a) Ω = 0

-0,6 -0,3 0,0 0,3 0,6 0,9 1,2

-0,05

0,00

0,05

0,10

0,15 42

3

1

cycle : 1 2 3 4

I (m

A.c

m-2)

E (V/ECS)

(b) Ω = 3200 tpm

-0,6 -0,3 0,0 0,3 0,6 0,9 1,2

-0,05

0,00

0,05

0,10

0,15 23

1

1 2 3

cycle :

I (m

A.c

m-2)

E (V/ECS)

Figure 5.7 : Voltamétries cycliques effectuées sur XC38 immergé dans la solution A +

0 ,5 % d’inhibiteur, (a) à Ω = 0, (b) à Ω = 3200 tpm

A vitesse de rotation nulle (figure 5.7.a), il faut attendre l’issue du troisième cycle

pour obtenir un courant de corrosion faible de l’ordre de 15 µA.cm-2 ; à Ω = 3200 tpm, ce

courant est déjà quasiment atteint à partir du deuxième cycle (figure 5.7.b), ce qui traduit

l’accélération de la cinétique d’adsorption avec la vitesse de rotation de l’électrode.

- 111 -

Page 112: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

4.2. Diagrammes d’impédance après 2 heures

Les spectres d’impédance, en représentation de Nyquist, obtenus au potentiel de

corrosion après 2 heures d’immersion présentent une boucle capacitive quelle que soit la

vitesse de rotation appliquée (figure 5.8).

0 20 40 60 80 100 1200

20

40

60

80vitesse de rotation (tpm) :

0,1 Hz

1 Hz

10 mHz

- Z''

(kΩ

.cm

2 )

0 400 1600 3200

Z' (kΩ.cm2)

10-3 10-2 10-1 100 101 102 103 104 105 106

-80

-70

-60

-50

-40

-30

-20

-10

0

vitesse de rotation (tpm) :

0 400 1600 3200

Phas

e (°

)

Fréquence (Hz)

Figure 5.8 : Diagrammes d’impédance tracés au potentiel de corrosion pour l’acier

XC38 immergé dans la solution A + 0,5 % d’inhibiteur pour différentes vitesses de rotation

La boucle capacitive est d’autant plus grande que la vitesse de rotation est élevée.

Or, au potentiel de corrosion, les deux réactions anodique et cathodique ont lieu

simultanément à la surface de l’électrode ; aussi, l’évolution de la boucle capacitive avec la

vitesse de rotation peut être attribuée non seulement à une évolution du film avec

l’hydrodynamique, mais également à une évolution du mécanisme de diffusion convection de

l’oxygène dissous : il s’agit alors de décomposer les différents processus s’établissant dans

chaque domaine.

- 112 -

Page 113: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

4.3. Décomposition des contributions

Afin de séparer les différentes contributions possibles au potentiel de corrosion, des

spectres d’impédance ont été tracés à des surtensions anodique et cathodique. Les surtensions

appliquées, dans chaque domaine, ont été déterminées grâce aux tracés potentiodynamiques

présentés sur la figure 5.9. Dans le domaine cathodique, l’étude est réalisée à -700 mV/Ecorr

et, dans le domaine anodique, une surtension de +300 mV/ECS est appliquée afin de

s’affranchir de toute contribution cathodique.

-1,2 -0,8 -0,4 0,0 0,4

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

-1,2 -1,0 -0,8

1E-4

1E-3

-0,3 -0,2 -0,1 0,0

1E-6

0 400 1600 3200

vitesse de rotation (tpm) :

I (A

.cm

-2)

E (V/ECS) Figure 5.9 : Courbes potentiodynamiques tracées pour un acier XC38 immergé dans

la solution A + 0,5 % en inhibiteur, pour différentes vitesses de rotation (vbal = 0,5 mV.s-1)

Pour les trois vitesses étudiées, les spectres tracés dans le domaine cathodique (à -700

mV/Ecorr) présentent deux boucles capacitives (figure 5.10.a). La boucle à hautes fréquences

peut être attribuée au transfert de charges et la boucle à basses fréquences au mécanisme de

diffusion convection. Une diminution de la taille des deux boucles capacitives sur le

diagramme de Nyquist est à noter lorsque la vitesse de rotation augmente ; cette évolution a

déjà été discutée dans les travaux de Duprat [DUP-81]. Elle est liée à une augmentation du

transport par diffusion convection de l’oxygène sous l’effet de la rotation de l’électrode.

- 113 -

Page 114: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

- 114 -

Cette évolution des spectres d’impédance avec la vitesse de rotation dans le domaine

cathodique indique que l’évolution des diagrammes obtenus au potentiel de corrosion serait

plutôt attribuable à une amélioration du comportement du film.

(a)

0 1 2 3 40

1

2

3

0,0 0,2 0,4 0,60,0

0,2

0,4

10 mHz

0,1 Hz1 Hz

hautesfréquences

vitesse de rotation (tpm) :

400 1600 3200

10 mHz

0.1 Hz

0.1 Hz

1Hz

-Z''

(kΩ

.cm

²)

Z' (kΩ.cm²)

(b)

10-3 10-2 10-1 100 101 102 103 104 105 1060

1

10

400 1600 3200

vitesse de rotation (tpm) :

Z (k

Ω.c

m²)

Fréquence (Hz)

10-3 10-2 10-1 100 101 102 103 104 105 106

-40

-30

-20

-10

0

400 1600 3200

vitesse de rotation (tpm) :

Phas

e (°

)

Fréquence (Hz)

Figure 5.10 : Diagrammes d’impédance (a) en mode Nyquist et (b) mode Bode, tracés

à -700 mV/Ecorr pour l’acier XC38 immergé dans la solution A + 0,5 % d’inhibiteur pour

différentes vitesses de rotation

Page 115: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

Les spectres d’impédance dans le domaine anodique ont été obtenus indépendemment

les uns des autres, l’électrode étant pour chaque expérience immergée pendant deux heures

dans la solution sous la vitesse imposée (figure 5.11). Cette étude dans le domaine anodique

confirme le résultat émis précédemment concernant la seule contribution anodique des

spectres obtenus au potentiel de corrosion. En effet, dans la région des hautes fréquences, la

boucle capacitive relative au transfert de charge augmente très légèrement avec la vitesse de

rotation (figure 5.11.a).

- 115 -

Page 116: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

(a)

0 100 200 300 4000

100

200

300

0 2 4 6 8 100

2

4

6

hautesfréquences

vitesse de rotation (tpm) : 400 1600 3200

10 mHz

0.1 Hz

1 Hz

-Z''

(kΩ

.cm

²)

Z' (kΩ.cm²)

(b)

-2 0 2 4 6

-80

-60

-40

-20

0

vitesse de rotation (tpm) :

400 1600 3200

log f (Hz)

Phas

e (°

)

0,1

1

10

100

Z (kΩ.cm

²)

Figure 5.11 : Diagrammes d’impédance (a) en mode Nyquist, (b) en mode Bode

(phase), tracés à +300 mV/Ecorr pour l’acier XC38 immergé dans la solution A + 0.5 %

d’inhibiteur pour différentes vitesses de rotation

- 116 -

Page 117: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

4.4. Evolution des paramètres à l’interface

Une évolution des paramètres du film et des processus de corrosion en fonction de la

vitesse de rotation permet de quantifier l’effet bénéfique de l’hydrodynamique sur la

formation du film après 2 heures d’immersion.

Le circuit électrique équivalent décrivant l’ensemble des phénomènes mis en jeu lors

de la réaction d’inhibition est présenté sur la figure 5.12. Or, nous avons mis en évidence

qu’au potentiel de corrosion après deux heures d’immersion l’évolution des diagrammes

d’impédance avec la rotation était liée à la seule évolution du film sans effet de diffusion,

observée uniquement aux surtensions anodiques. De plus, après 2 heures d’immersion, le film

n’est pas encore complètement quantifiable : il faut attendre 6 heures d’immersion pour

déceler sa contribution sur les diagrammes de Bode (voir partie 2.1.2. du chapitre 3).

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WEREF

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38

Qf , α2

Qdc , α1

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Rf

RtcC

WE

R

Rf

WE

Wδ XC38

Qf , α2

Qdc , α1

tcA

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WEREF

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38

Qf , α2

Qdc , α1

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WEREF

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38

Qf , α2

Qdc , α1

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

RRe

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

e

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Rf

RtcC

WE

R

Rf

WE

δ XC38

Qf , α2

Qdc , α1

tcA

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WEREF

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38

Qf , α2

Qdc , α1

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WEREF

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38

Qf , α2

Qdc , α1

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

RRe

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

e

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Rf

RtcC

WE

R

Rf

WE

Wδ XC38

Qf , α2

Qdc , α1

tcA

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Rf

RtcC

WE

R

Rf

WE

Wδ XC38

Qf , α2

Qdc , α1

tcA

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WEREF

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38

Qf , α2

Qdc , α1

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WEREF

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38

Qf , α2

Qdc , α1

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WEREF

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38

Qf , α2

Qdc , α1

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WEREF

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38

Qf , α2

Qdc , α1

XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

RRe

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

RRe

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRe

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Re

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

e

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

e

Rf

RtC

WEWRtAW

δ

Re

Rf

RtC

WEWRtAW

δ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ

Re

Rf

RtC

WECEW

RtAWδ XC38XC 38

electrolyte

Re

Rf

RtC

WERE

WRtAW

δ

Rf

RtcC

WE

R

Rf

WE

δ XC38

Qf , α2

Qdc , α1

tcA

Figure 5.12 : Circuit électrique équivalent général proposé

Ainsi, la contribution de la branche cathodique (résistance de transfert de charge de

réduction de l’oxygène dissous RtcC associée à l’impédance de diffusion convection Wδ) est

soustraite du circuit. Il en est de même pour les contributions du film (Qf et Rf). Le CEE

général présenté sur la figure 5.12 se réduit alors au circuit simplifié de la figure 5.13.

- 117 -

Page 118: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

ReRE

R

Re WE

tcA

Qdc, α1

ReRE Re WE

Qdc, α1

ReRE

R

Re WE

tcA

Qdc, α1

ReRE Re WE

Qdc, α1

Figure 5.13 : Circuit électrique équivalent proposé après simplification

Les spectres expérimentaux et ajustés (par le CEE de la figure 5.13) concordent de

manière satisfaisante dans toute la gamme de fréquences étudiées (figure 5.14).

0 20 40 60 80 1000

20

40

60

80 vitesse de rotation (tpm) :

0,1 Hz

1 Hz

10 mHz

- Z''

(kΩ

.cm

2 )

0 400 1600 3200

ajustement

Z' (kΩ.cm2)

Figure 5.14 : Spectres expérimentaux et spectres ajustés par le CEE proposé sur la

figure 5.13

Les valeurs des paramètres obtenues sont répertoriées dans le tableau 5.1.

Lorsque la vitesse de rotation de l’électrode augmente, RtcA augmente conjointement à

une diminution de Cdc. Ces évolutions respectives caractérisent d’une part un blocage

croissant du transfert de charges à la surface de l’électrode et d’autre part une diminution de la

surface de contact liée à l’adsorption de l’inhibiteur.

- 118 -

Page 119: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

Tableau 5.1 : Valeurs des paramètres RtcA , α et Cdc en fonction de la vitesse de

rotation (le facteur d’erreur de l’ajustement χ² est précisé pour chaque vitesse étudiée)

Ω

(tpm)

RtcA

(kΩ.cm-2) α

Cdc

(µF.cm-²)

χ²

(facteur

d’erreur)

0 50 0,81 107 9,8.10-4

400 65 0,88 80 6,96.10-4

1600 98 0,83 98 9,56.10-4

3200 121 0,88 71 7,99.10-4

Ainsi, une augmentation de la vitesse de rotation permet d’obtenir une meilleure

résistance à la corrosion après 2 heures d’immersion : l’effet hydrodynamique est bénéfique à

la formation du film.

Qu’en est-il à présent de l’effet de la vitesse de rotation sur le comportement du film

inhibiteur pour des temps d’immersion plus importants ?

5. Etude de l’hydrodynamique à des temps plus importants

Les spectres d’impédance électrochimique tracés après 10 heures d’immersion à

différentes vitesses de rotation de l’électrode sont présentés sur la figure 5.15. A l’inverse de

ceux obtenus après 2 heures, les spectres observés à 10 heures laissent apparaître une boucle

capacitive dont la taille diminue avec la vitesse de rotation, laissant présager une diminution

du pouvoir protecteur du film.

Cette observation montre une évolution de l’effet de l’écoulement sur le film avec le

temps d’immersion.

- 119 -

Page 120: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

050

100150

0

50

100

0 2 4 6 8 1012

vitesse de rotation (tpm) :

0 400 3200

10 h

2 h10mHz

10mHz

Temps (h)

-Z ''

(kΩ

.cm

²)

Z' (kΩ.cm²)

Figure 5.15 : Diagrammes d’impédance en mode Nyquist tracés au potentiel de

corrosion pour l’acier XC38 immergé dans la solution A + 0,5 % d’inhibiteur pour trois

vitesses de rotation après 2 heures et après 10 heures

Les figures 5.16 et 5.18 présentent les diagrammes d’impédance, en représentation de

Nyquist, après 140 et 250 heures, pour des vitesses de rotation respectivement égales à Ω = 0

et Ω = 3200 tpm.

Quelle que soit la vitesse de rotation de l’électrode (Ω = 0 ou 3200 tpm), on observe

un élargissement de la phase après dix heures d’immersion que l’on attribue à l’apparition

d’une deuxième constante de temps relative au film inhibiteur (figures 5.17.a et 5.19.a).

Si l’on prolonge encore le temps d’immersion (140 heures et plus), on observe, dans le

domaine des hautes fréquences, une diminution de la valeur du module, plus importante à Ω =

3200 tpm qu’à Ω = 0, révélant une augmentation importante de la résistance de l’électrolyte

(figures 5.17.b et 5.19.b). Cette diminution peut être attribuée à une augmentation de la

conductivité de l’électrolyte, due à la présence de plus en plus importante des ions fer dans la

solution. La dissolution métallique est plus forte à Ω = 3200 tpm, ce qui confirme la

détérioration précoce du film.

- 120 -

Page 121: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

Ainsi, l’hydrodynamique agirait non seulement sur la vitesse de formation du film à

des temps courts mais ce paramètre aurait également une incidence sur la structure du film

pour des temps plus conséquents.

0 20 40 60 80 1000

20

40

60

temps d'immersion (h):

0.1Hz

10mHz

10mHz

0 1 2 30

1

2

hautesfréquences

2 10 140 250

- Z''

(kΩ

.cm

2 )

Z' (kΩ.cm2) Figure 5.16 : Diagrammes d’impédance en représentation de Nyquist tracés au

potentiel de corrosion pour l’acier XC38 immergé dans la solution A + 0,5 % d’inhibiteur à

différents temps d’immersion à Ω = 0

10-3 10-2 10-1 100 101 102 103 104 105 106

-80

-70

-60

-50

-40

-30

-20

-10

0

10

temps d'immersion (h):

2 10 140 250

Phas

e (°

)

Fréquence (Hz)10-3 10-2 10-1 100 101 102 103 104 105 106

0,1

1

10

100 temps d'immersion (h):

2 10 140 250

Z (k

Ω.c

m²)

Fréquence (Hz)

(a) (b)

Figure 5 .17 : Diagrammes d’impédance en représentation de Bode (a) phase et (b)

module, tracés au potentiel de corrosion pour l’acier XC38 immergé dans la solution A + 0,5

% en inhibiteur à différents temps d’immersion à Ω = 0

- 121 -

Page 122: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

- 122 -

10-2 10-1 100 101 102 103 104 105

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0 20 40 60 80 100 120 1400

20

40

60

80

100temps d'immersion (h):

0 1 2 30

1

2

hautes fréquences

0.1Hz

0.1Hz

10mHz

10mHz

2 10 140 250

- Z''

(kΩ

.cm

2 )

Z' (k 2)

Figure 5.18 : Diagrammes d’impédance en représentation de Nyquist tracés au

potentiel de corrosion pour l’acier XC38 immergé dans la solution A + 0,5 % d’inhibiteur à

différents temps d’immersion à Ω = 3200 tpm

(a) (b)

10-3 106

temps d'immersion (h):

2 10 140 250

Phas

e (°

)

Fréquence(Hz)10-3 10-2 10-1 100 101 102 103 104 105 106

0,01

0,1

1

10

100

temps d'immersion (h):

2 10 140 250

Z (k

Ω.c

m²)

Fréquence (Hz)

Figure 5.19 : Diagrammes d’impédance en représentation de Bode (a) phase et (b)

module, tracés au potentiel de corrosion pour l’acier XC38 immergé dans la solution A + 0,5

% en inhibiteur à différents temps d’immersion à Ω = 3200 tpm

Page 123: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

6. Caractérisation des films inhibiteurs sous l’influence de la vitesse

de rotation

Afin de valider les résultats issus des études électrochimiques par impédancemétrie

qui révèlent la détérioration du film sous l’effet de l’écoulement pour des temps d’immersion

importants, des techniques de caractérisation de surface (AFM) et de composition (XPS) ont

été mises en œuvre. Les mesures ont été réalisées sur deux électrodes, immergées pendant 24

heures dans la solution A avec 0,5 % d’inhibiteur, l’une fixe et l’autre soumise à une vitesse

de rotation de 3200 tpm.

6.1. Caractérisation de l’état de la surface : analyses par AFM

La figure 5.20 présente l’image AFM de la surface de l’électrode, obtenue sans aucune

agitation après 24 heures d’immersion dans la solution inhibitrice. L’état de surface est

relativement homogène et lisse (rms = 7,5) : le critère de rugosité couramment utilisé est un

critère statistique appelé rms et représentant l’écart quadratique moyen du profil.

Plusieurs analyses ont été effectuées sur la surface de l’électrode afin de prouver le

caractère homogène du film.

rms = 7,5

Figure 5.20 : Image AFM de la morphologie de la surface de l’électrode obtenue

après 24 heures d’immersion dans la solution A + 0,5 % d’inhibiteur à Ω = 0

- 123 -

Page 124: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

L’analyse de surface sur l’électrode soumise une vitesse de rotation de 3200 tpm

pendant 24 heures, rend compte d’une morphologie différente de la couche protectrice. Trois

analyses AFM ont été effectuées respectivement aux positions A, B et C (figure 5.21).

Distance (mm)(centre/lieu d’analyse )0 3 5,5

A B CDistance (mm)

(centre/lieu d’analyse )0 3 5,5

A B CDistance (mm)

(centre/lieu d’analyse )0 3 5,5

A B CDistance (mm)

(centre/lieu d’analyse )0 1,5 3

A B CDistance (mm)

(centre/lieu d’analyse )0 3 5,5

A B CDistance (mm)

(centre/lieu d’analyse )0 3 5,5

A B CDistance (mm)

(centre/lieu d’analyse )0 3 5,5

A B CDistance (mm)

(centre/lieu d’analyse )0 1,5 3

A B C

Figure 5.21 : Localisations des 3 positions pour les analyses AFM

Les résultats, présentés sur la figure 5.22, révèlent une évolution de la topographie de

la surface selon la position analysée. La rugosité de surface diminue considérablement du

centre de l’électrode à sa périphérie (le facteur rms varie de 53 à 5,4). Cette évolution peut

être liée à l’évolution du coefficient de frottement le long du rayon de l’électrode (voir

paragraphe 2.1). En effet, la rugosité du film diminue lorsque les contraintes

hydrodynamiques augmentent. L’hydrodynamique aurait ainsi une action érosive sur la

couche protectrice.

- 124 -

Page 125: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

A.

rms = 52,9

B.

rms = 14,9

C.

rms = 5,4

Figure 5.22 : Images AFM de la morphologie de la surface, au centre de l’électrode

(position A) , au milieu (position B) et à la périphérie ( position C), obtenues après 24 heures

d’immersion dans la solution A + 0,5 % d’inhibiteur à Ω = 3200 tpm

- 125 -

Page 126: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

6.2. Caractérisation de la composition chimique des films inhibiteurs : analyses

par XPS

L’adsorption de l’inhibiteur sur la surface métallique pour différentes vitesses de

rotation a été suivie en analysant les pics caractéristiques C1s, N1s, et O1s. Ces éléments

constituent les témoins de la présence des composants majeurs de l’inhibiteur, à savoir :

l’acide carboxylique et l’amine. De plus, l’oxygène caractérise soit la présence d’oxydes-

hydroxydes de fer (pics à 530 eV et 531,5 eV), soit la présence de chélates formés entre les

ions carboxylates et le substrat oxydé (pics à 533 eV) [OCH-04b, SUZ-96]. Les analyses

quantitatives de ces éléments (données en pourcentage atomiques par rapport au fer) sont

présentées dans les tableaux 5.2 et 5.3. L’azote et l’oxygène sont respectivement présents

dans les mêmes proportions au centre (A) et à la périphérie (C) de l’échantillon, alors qu’une

plus grande quantité de carbone est détectée à la périphérie de l’électrode qu’en son centre.

Tableau 5.2 : Energies de liaison pour chaque élément du spectre (en eV). Entre

parenthèses, les valeurs données en pourcentage correspondent au rapport de l’aire des pics

Fe2p3/2O1s

(O2-)

O1s

(OH-)

O1s

(H2O)

Ω = 3200 tpm

(24 heures)

Position A

706,8

710,2

529,7

(45%)

531,7

(46%)

533,6

(9%)

Ω = 3200 tpm

(24 heures)

Position C

706,5

710,0

529,5

(44,5%)

531,7

(48%)

533,6

(7,5%)

- 126 -

Page 127: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

Tableau 5.3 : Valeurs issues des analyses XPS après 24 heures d’immersion,

Ω = 3200 tpm

C/Fe O/Fe N/Fe

Position A

(centre) 5,9 3,2 0,3

Position C

(bord)

9,1 3,5 0,3

Dans la littérature, l’évolution de la proportion en carbone sur la surface de l’électrode

est attribuée au mode d’action des carboxylates [WEI-71, ZEC-76]. En effet, il est probable

que ces composés forment un complexe avec le cation métallique, issu de la dissolution de

l’électrode [SUZ-96]. Le complexe serait incorporé dans la couche hydroxydes-oxydes

ferreux pour combler les pores. Alexander et al. avancent que ce type de complexe semble se

former préférentiellement là où le film est défectueux [ALE-01]. Ainsi, ceci pourrait

expliquer la proportion plus importante de carbone à la périphérie de l’électrode, là où les

contraintes hydrodynamiques sont les plus importantes.

7. Conclusion du chapitre 5

Le paramètre hydrodynamique, modulé dans notre étude par la vitesse de rotation de

l’EDT, agit non seulement sur la formation du film inhibiteur mais également sur sa tenue et

sa morphologie lors de temps d’immersion plus importants.

L’évolution des valeurs de la capacité de la double couche et de la résistance de

transfert de charge à chaque vitesse de rotation, obtenues par spectroscopie d’impédance au

potentiel de corrosion, après 2 heures d’immersion, a permis de révéler que la formation du

film dépendait fortement de la vitesse de rotation de l’électrode. Le film se forme d’autant

plus rapidement que la vitesse de rotation est élevée.

Pour des temps d’immersion importants (supérieurs à 5 jours), les contraintes

hydrodynamiques liées à l’écoulement sont responsables d’une déformation et d’une

- 127 -

Page 128: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Chapitre 5 – Influence des conditions hydrodynamiques

détérioration du film protecteur. En effet, des frottements plus importants à la périphérie ont

une action érosive sur le film et induisent l’apparition de défauts. La prédominance des

défauts provoque dès lors la formation de chélates (mesurée par XPS) entre les ions

carboxylates et les ions fer, préférentiellement localisés sur le bord de l’électrode.

- 128 -

Page 129: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Conclusion générale – Perspectives

Conclusion générale

Perspectives

- 129 -

Page 130: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Conclusion générale – Perspectives

- 130 -

Page 131: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Conclusion générale – Perspectives

Ce travail de thèse avait pour objectif de caractériser le comportement d’un inhibiteur

de corrosion, destiné à être intégré à des huiles afin de protéger les outils de coupe et les

pièces usinées en acier dans le domaine de l’usinage mécanique.

Dans un premier temps, la caractérisation générale de l’inhibiteur a été effectuée. Il

s’agit d’un inhibiteur d’interphase anodique intégrant, lors de sa formation, les premiers

oxydes-hydroxydes de fer issus de la dissolution de l’acier. L’étude de l’évolution du pouvoir

protecteur avec la teneur en inhibiteur a révélé que 0,3 % massique constituait une

concentration critique d’utilisation du produit. En effet, à cette teneur, la formation du film est

possible et une efficacité intéressante est obtenue après deux heures d’immersion, mais la

structure de la couche barrière ne permet pas une protection prolongée de l’échantillon. La

dégradation du film a alors pu être corrélée à une prise en eau progressive qui entraîne, après

36 heures d’immersion, une corrosion complète de l’acier.

Les paramètres liés aux conditions de service de l’inhibiteur (température et

hydrodynamique) influencent de manière significative la formation et l’évolution dans le

temps, du film protecteur. Les essais visant à caractériser leur effet respectif ont été réalisés

majoritairement pour une teneur de 0,5 % d’inhibiteur, teneur pour laquelle le film est

efficace après 60 heures.

Les essais concernant l’effet de la température ont été menés dans l’intervalle 20 – 80

°C. 50 °C constitue une température critique : en dessous de cette température, la formation

du film est possible et les pouvoirs protecteurs satisfaisants (supérieurs à 94 %), alors qu’au-

delà de cette température le pouvoir protecteur chute, pour n’être plus que de 2 % à 80 °C.

L’évolution du pouvoir protecteur avec la température a pu être corrélée à une évolution

importante de la cinétique de dissolution du fer, plutôt qu’à une réelle évolution des

mécanismes réactionnels. L’importance du rapport oxydes-hydroxydes de fer / molécules

inhibitrices a ainsi été soulignée et validée par une approche couplée microgravimétrie /

chronoampérométrie, menée à 80 °C pour 5 % d’inhibiteur. Le film formé dans ces conditions

- 131 -

Page 132: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Conclusion générale – Perspectives

est plus épais et présente un pouvoir protecteur satisfaisant après deux heures d’immersion.

Toutefois, sa cinétique de formation est ralentie puisque le phénomène de complexation (entre

les molécules inhibitrices et les oxydes de fer), à l’origine de la formation du film, engage

plus de produits.

L’étude de l’influence des conditions hydrodynamiques (induite par la rotation de

l’électrode) sur les propriétés du film a finalement été réalisée. Les diagrammes d’impédance

ont été tracés au potentiel de corrosion ainsi qu’à des surtensions anodiques et cathodiques,

afin de séparer et quantifier l’évolution des différentes contributions intervenant à l’interface

(réduction de l’oxygène dissous, diffusion à travers le film, dissolution du fer). Ceci a permis

de mieux appréhender l’effet de l’écoulement sur la seule formation et stabilité du film. Ainsi,

les conditions hydrodynamiques interviennent :

sur la formation du film, puisque celui-ci se forme d’autant plus rapidement que

la vitesse de rotation est élevée,

sur la morphologie et la composition chimique du film, pour des temps

d’immersion importants. Les contraintes liées à l’écoulement sont responsables

d’une déformation et d’une détérioration du film, en particulier sur les bords de

l’échantillon, où les frottements sont les plus importants.

Finalement, ce travail nous a permis de maîtriser l’effet d’un écoulement laminaire sur

l’action d’un film inhibiteur. Une perspective intéressante de ce travail serait d’aborder l’effet

d’un écoulement turbulent sur le film protecteur. Une collaboration avec le laboratoire de

mécanique des fluides de l’INSA a déjà permis de déterminer l’influence d’un écoulement

turbulent sur le transport de masse dans la configuration du cylindre tournant.

En terme d’hydrodynamique, nous attendons beaucoup de l’exploitation de la

technique de la microbalance dans des conditions d’écoulement : à l’instar du Laboratoire

Interface et Systèmes Electrochimique de Paris, l’utilisation de la microbalance à jet immergé

permettrait de contrôler l’écoulement du fluide (similaire à l’EDT).

Enfin, pour aborder concrètement la situation industrielle, des tests complémentaires

pourraient être menés simultanément en température et sous écoulement contrôlé, afin de

coupler les 2 principales contraintes extérieures étudiées jusqu’à présent.

- 132 -

Page 133: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

Références

bibliographiques

- 133 -

Page 134: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[A]

[ALE-01] ALEXANDER M.R., BEAMSON G., BLOMFIELD C.J. Interaction of carboxylic

acids with the oxyhydroxide surface of aluminium : poly(acrylic acid), acetic acid

and propionic acid on pseudoboehmite. Journal of Electron Spectroscopy and

Related Phenomena, 2001, vol. 121, pp. 19-32.

[ASC-02] ASCOTEC : Les spécialistes de l’anticorrosion. [en ligne]. Disponible sur :

http://www.ascotran.com/ascotec.html (consulté en octobre 2002).

[ASS-02] ASSOULI B. Etude par émission acoustique associée aux méthodes

électrochimiques de la corrosion et de la protection de l’alliage cuivre-zinc (60/40)

en milieux neutre et alcalin. Thèse de doctorat, INSA de Lyon, 2002, 164 p.

N°:02ISAL0103.

[AST-93] ASTM. Standard Test Method for Corrosion Test for Engine Coolants in

Glassware. ASTM D 1384 – 93. Philadelphia: ASTM, 1993, 6 p.

[AUD-99] AUDISIO S. Ed. Le Livre multimedia de la corrosion [CDROM]. Lyon : LPCI,

INSA de Lyon, 1999.

[B]

[BEA-76] BEAUNIER L., EPELBOIN I., LESTRADE J.C., TAKENOUTI H.

Electrochemical and Scanning Electron Microscope study of painted Fe. Surface

Technology, 1976, vol. 4, pp. 237-254.

[BEN-99] BENTISS F., TRAISNEL M., GENGEMBRE L., LAGRENEE M. A new triazole

derivative as inhibitor of the acid corrosion of mild steel: electrochemical studies,

weight loss determination, SEM and XPS. Applied Surface Science, 1999, vol.

152, pp. 237-249.

- 134 -

Page 135: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[BER-02] BERANGER G., MAZILLE H. Corrosion et anticorrosion : pratique industrielle.

Paris : Lavoisier, Hermès Science. Publications, 2002, 303 p. (Traité Mécanique et

ingénierie des Matériaux. Alliages métalliques). ISBN 2-7462-0467-3.

[BOM-03] BOMMERSBACH P., DUMONT-ALEMANY C., MILLET J-P. Etude de

l’efficacité d’un nouvel inhibiteur de corrosion par électrode à disque tournant. In :

Actes du XVIème Forum sur les impédances électrochimiques. Paris : Ed. C.

Gabrielli, 2003, pp 317-326.

[BOM-04] BOMMERSBACH P., DUMONT-ALEMANY C., MILLET J-P. Electrochemical

study of the behavior in corrosive media of a new friendly environmental inhibitor.

In : Proceeding Eurocorr 2004, 12-16 septembre 2004 [CD-ROM].

[BOM-05a] BOMMERSBACH P., DUMONT-ALEMANY C., MILLET J-P. Effet de

l’hydrodynamique sur la formation et la tenue d’un film inhibiteur :

caractérisation par EIS. In : Actes du XVIIème Forum sur les impédances

électrochimiques. Paris : Ed. C. Gabrielli, 2005, pp 51-60.

[BOM-05b] BOMMERSBACH P., DUMONT-ALEMANY C., MILLET J.P., NORMAND

B. Electrochemical Characterization of a corrosion inhibitor : influence of

temperature on the inhibition mechanism. In : 207th Meeting of the

Electrochemical Society, 15-20 mai 2005, Quebec City (CANADA) [CD-

ROM].

[BOM-05c] BOMMERSBACH P., DUMONT-ALEMANY C., MILLET J.P., NORMAND

B. Formation and behaviour study of an environment- friendly corrosion

inhibitor by electrochemical methods. Electrochimica Acta, 2005. Accepté pour

publication.

[BON-83 ] BONNEL A., DABOSI F., DESLOUIS C., DUPRAT M., KEDDAM M.,

TRIBOLLET B. Corrosion Study of a carbon steel in neutral chloride solution by

impedance techniques. Journal of the Electrochemical Society, 1983, vol. 130, pp.

753-761.

- 135 -

Page 136: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[BRE-94] BRETT M.A., GOMEZ A.R.I., MARTINS J.PS. The electrochemical behaviour

and corrosion of aluminium in chloride media. The effect of inhibitor anions.

Corrosion Science, 1994, vol. 36, pp. 915-925.

[BRU-84] BRUG G.J., VAN DEN EEDEN A.L.G., SLUYTERS-REHBACH M.,

SLUYTERS J.H. The analysis of electrode impedances complicated by the

presence of a constant phase element. Journal of Electroanalytical Chemistry,

1984, vol. 176, pp. 275-295.

[C]

[CHE-99] CHEN Y., JEPSON W. P. EIS measurement for corrosion monitoring under

multiphase flow condition. Electrochimica Acta, 1999, vol. 44, pp. 4453-4464.

[CHE-02] CHETOUANI A., HAMMOUTI B., AOUNITI A., BENCHAT N., BENHADDA

T. New synthesised pyridazine derivatives as effective inhibitors for the corrosion

of pure iron in HCl medium. Progress in Organic Coatings, 2002, vol. 45, pp. 373-

378.

[CHE-04] CHETOUANI A., MEDJAHED K., SID-LAKHDAR K.E. Poly (4-vinylpyridine-

poly-(3-oxide-ethylene)tosyle) as an inhibitor for iron in sulphuric acid at 80 °C.

Corrosion Science, 2004, vol. 46, pp. 2421-2430.

[CHE-05] CHETOUANI A., HAMMOUTI B., BENHADDA T., DAOUDI M. Inhibitive

action of bipyrazolic type organic compounds towards corrosion of pure iron in

acidic media. Applied Surface Science, 2005. Accepté pour publication.

[D]

[DAG-68] DAGUENET M. Etude du transport de matière en solution à l’aide des électrodes

à disque et à anneau tournants. International Journal of Heat and Mass transfer,

1968, vol. 11, pp. 1581-1596.

- 136 -

Page 137: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[DIA-04] DIAZ B., JOIRET S., KEDDAM M., NOVOA X.R., PEREZ M.C., TAKENOUTI

H. Passivity of iron in red mud’s water solutions. Electrochimica Acta, 2004, vol.

49, pp. 3039-3048.

[DIG-96] DIGUET L. Protection contre la corrosion par des revêtements fluorés. Etude par

voie électrochimique. Thèse de doctorat. Paris : Université Paris VI, 1996, 250 p.

[DUP-81] DUPRAT M., DABOSI F., MORAN F., ROCHER S. Inhibition of corrosion of a

carbon steel by the aliphatic fatty polyamines in association with organic

phosphorous compounds in 3% sodium chloride solutions. Corrosion-Nace, 1981,

vol. 37, pp. 262-266.

[E]

[ESS-04] ES-SALAH K., KEDDAM M., RAHMOUNI K., SHRIRI A., TAKENOUTI H.

Aminotriazole as corrosion inhibitor of Cu-30Ni alloy in 3% NaCl in presence of

ammoniac. Electrochimica Acta, 2004, vol. 49, pp. 2771-2778.

[F]

[FEL 99] FELHOSI I., KERESZTES Zs., KARMAN F. H., KALMAN E. Effect of bivalent

cations on corrosion inhibition of steel by 1-hydroxyethane-1,1diphosphonic acid.

Journal of Electrochemical Society, 1999, vol. 146, pp. 961-969.

[FEL-00] FELHOSI I., EKES R., BARADLAI P., PALINKAS G., VARGA K., KALMAN

E. Coupled radiotracer and voltametric study of the adsorption of 1-hydroxy-

ethane-1,1-diphosphonic acid on polycrystalline gold. Journal of Electroanalytical

Chemistry, 2000, vol. 480, pp. 199-208.

- 137 -

Page 138: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[FEL-02] FELHOSI I., TELEGDI J., PALINKAS G., KALMAN E. Kinetics of self-

assembled layer formation on iron. Electrochimica Acta, 2002, vol. 47, pp. 2335-

2340.

[FIA-02] FIAUD C., LEMAITRE C., PEBERE N. Inhibiteurs de corrosion. In : BERANGER

G., MAZILLE H. Corrosion et anticorrosion (pratique industrielle). Mécanique et

ingénierie des Matériaux. Lavoisier. Paris, Hermès Science Publications, 2002, pp.

245-266.

[G]

[GAN-00] GAN F., DAI. Z., WANG D., YAO L. A study of the filming kinetics of corrosion

inhibitors in Fe/Na2SO4 system using EQCM. Corrosion Science, 2000, vol. 42, n°

8, pp.1379-1388.

[GOM-98a] GOMMA G.K. Mechanism of corrosion behaviour of carbon steel in tartaric and

malic acid in the presence of Fe2+ ion. Materials Chemistry and Physics, 1998,

vol. 52, pp. 200-206.

[GOM-98b] GOMMA G.K. Influence of copper cation on inhibition of corrosion for steel in

presence of benzotriazole in sulphuric acid. Materials Chemistry and Physics,

1998, vol. 55, pp. 131-138.

[H]

[HAM-73] HAMNER NORMAN. E. Scope and importance of inhibitor technology. In : Ed.

By C.C. Nathan, Houston, NACE Corrosion Inhibitors. USA : National

Association of Corrosion Engineers, 1973, p.28-41.

- 138 -

Page 139: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[HEE-98] HEEG B., MOROS T., KLENERMAN D. Persistency of corrosion inhibitor films

on C-steel under multiphase flow conditions. Part I: the jet-cylinder arrangement.

Corrosion Science, 1998, vol. 40, pp. 1303-1311.

[HON-02a] HONG T., SUN Y.H., JEPSON W.P. Study on corrosion inhibitor in large

pipelines under multiphase flow using EIS. Corrosion Science, 2002, vol. 44, pp.

101-112.

[HON-02b] HONG T., JEPSON W.P. Corrosion inhibitor studies in large flow loop at high

temperature and high pressure. Corrosion Science, 2001, vol. 43, pp. 1831-1849.

[I]

[IVA-86] IVANOV E.S. Inhibitors of Corrosion of Metals in Acid Media, Metallurgy,

(Ingibitory korrozii metallov v kislyykh sredakh : spravochnik). Moskva :

Metallurgiia, 1986, 175 p.

[J]

[JAM-04] JAMIL H.E., SHRIRI A., BOULIF R., BASTOS C., MONTEMOR M. F.,

FERREIRA M.G.S. Electrochemical behaviour of amino alcohol-based inhibitors

used to control corrosion of reinforcing steel. Electrochimica Acta, 2004, vol. 49,

pp. 2753-2760.

[JOI-02] JOIRET S., KEDDAM M., TAKENOUTI H. Use of EIS, ring-disk electrode,

EQCM and Raman spectroscopy to study the film of oxydes formed on iron in 1M

NaOH. Cement & Concrete composites, 2002, vol. 24, pp. 7-15.

- 139 -

Page 140: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[K]

[KAR-98] KARMAN F. H., FELHOSI I., KALMAN E., CSERNY I., KOVER L. The role of

oxide layer formation during the corrosion inhibition of mild steel in neutral

aqueous media. Electrochimica Acta, 1998, vol. 43, pp. 69-75.

[KLE-94] KLENERMAN D., HODGE J., JOSEPH M. Second harmonic generation at

surfaces applied to corrosion inhibition. Corrosion Science, 1999, vol. 36, pp. 301-

313.

[KUR-03] KUROSAKI M., SEO M., Corrosion behavior of iron thin film in deaerated

phosphate solutions by an electrochemical quartz crystal microbalance. Corrosion

Science, 2003, vol. 45, n° 11, pp. 2597-2607.

[L]

[LAN-93] LANDOLT D. Corrosion et chimie de surfaces des métaux. Lausanne : Presses

polytechniques et universitaires romandes, 1993, 553 p. ISBN 2-88074-245-5.

[LEV-42] LEVICH B., LANDAU L. Dragging of a liquid by a moving plate. Acta

Physicochimica URSS, 1942, vol. 17, pp. 42-54.

[LEV-44] LEVICH B. Theory of concentration polarization – transition regime. Acta

Physicochimica URSS, 1944, vol. 19, pp. 133-138.

[LEV-02] LEVY R. Contrôle d’épaisseur, dans les Techniques de l’Ingénieur R 1370 (paru

en juin 2002), 16 p.

[LOP-03] LOPEZ D. A., SCHREINER W. H., DE SANCHEZ S. R., SIMISON S. N. The

influence of carbon steel microstructure on corrosion layers. An XPS and SEM

characterization. Applied Surface Science, 2003, vol. 207, pp. 69-85.

- 140 -

Page 141: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[LOR-80] LORBEER P., LORENZ W.J. The kinetics of iron dissolution and passivation in

solutions containing oxygen. Electrochimica Acta, 1980, vol. 25, pp. 375-381.

[LOR-83] LORENTZ W. J., MANSFELD F. Interface and interphase inhibition. In :

Proceeding of the international conference on corrosion inhibition. NACE, 16-20

mai 1983, Dallas, Texas (USA), pp. 7-13.

[LOR-86] LORENZ W.J., MANSFELD F. Dynamic system analysis in corrosion testing.

Dechema monographs, 1986, vol. 101, pp. 185-208.

[M]

[MAN-85] MANSFELD F., KENDIG M.W., LORENZ W. J. Inhibition in Neutral, Aerated

Media. Journal of Electrochemical Society, 1985, vol 32, pp. 290-296.

[MER-80] MERCIER A.D. In : Proceedings of the 5th European Symposium of Corrosion

Inhibitors, Ann. Univ. Ferrara (ITALIE), 1980, p. 553.

[MOU-92] MOULDER J., STICKLE W. F., SOBOL P.E., BOMBEN K.D. Handbook of X-

ray Photoelectron Spectroscopy, (2nd edition). Eden Prairie, Minn. : Physical

Electronics Division, Perkin-Elmer Corp., 1992, 259 p.

[N]

[NAC-65] NACE Glossary of Corrosion Terms. Materials Protection, 1965, vol. 4, n°1, pp.

79-80.

- 141 -

Page 142: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[O]

[OCH-02] OCHOA N., BARIL G., MORAN F., PEBERE N. Study of the properties of a

multi-component inhibitor used for water treatment in cooling circuits. Journal of

Applied Electrochemistry, 2002, vol. 32, pp. 497-504.

[OCH-04a] OCHOA N., MORAN F., PEBERE N. The synergistic effect between

phosphonocarboxylic acid salts and fatty amines fort he corrosion protection of a

carbon steel. Journal of Applied Electrochemistry, 2004, vol. 34, pp. 487-593.

[OCH-04b] OCHOA N., MORAN F., PEBERE N., TRIBOLLET B. Influence of flow on the

corrosion inhibition of carbon steel by fatty amines in association with

phosphonocarboxylic acid salts. Corrosion Science, 2005, vol. 47, n°3, pp. 593-

604.

[OCH-04c] OCHOA N. Propriétés inhibitrices d’un mélange d’amines grasses et de sels

d’acide phosphonocarboxylique vis-à-vis de la corrosion d’un acier au carbone.

Influence des conditions hydrodynamiques sur le mécanisme d’inhibition. Thèse

de doctorat. Toulouse : Institut National Polytechnique de Toulouse, 2004, 124

p.

[P]

[PEB-88] PEBERE N., M. DUPRAT, DABOSI F., LATTE A., DE SAVIGNAC A.

Corrosion inhibition study of a carbon steel in acidic media containing hydrogen

sulphide and organic surfactants. Journal of Applied Electrochemistry, 1988, vol.

18, pp. 225-231.

[POP-03] POPOVA A., SOKOLOVA E., RAICHEVA S., CHRISTOV M. AC and DC

study of the temperature effect on mild steel corrosion in acid media in the

presence of benzimidazole derivatives. Corrosion Science, 2003, vol. 45, pp. 33-

58.

- 142 -

Page 143: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[PUT-60] PUTILOVA L.N., BALEZIN S.A., BARRANIK V.P. Metallic Corrosion

Inhibitors. New-York : Pergamon Press, 1960, 196 p.

[R]

[RAD-65] RADOVICI O. In : Proceedings of the 2nd European Symposium of Corrosion

Inhibitors, Ann. Univ. Ferrara (ITALIE), 1965, p. 178.

[REI-85] REINHARD G., RAMMET U. In : Proceedings of the 6th European Symposium of

Corrosion Inhibitors, Ann. Univ. Ferrara (ITALIE), 1985, p. 831.

[RIG-73] RIGGS O.L. Jr, Theoritical aspects of corrosion inhibitors and inhibition. In :

NACE Corrosion Inhibitors. Ed. By C.C. Nathan, Houston, USA, 1973, pp. 7-27.

[ROD-04] RODGERS ROBERT S. Research Solutions & Ressources [en ligne]. Disponible

sur: http://www.consultrsr.com/ (consulté en 2004)

[ROS-86] ROSSITER W. B., HAMILTON F. J., Physical methods of chemistry,

Electrochemical methods, vol. 2, New-York : John Wiley & sons, Inc, 1986, 904

p. ISBN: 0-471-08027-6 (vol. 2).

[ROS-98] ROSSET R., SOK P., POINDESSOUS G., BEN AMOR M., WAHLA K.

Caractérisation de la compacité des dépôts de carbonate de calcium d’eaux

géothermales du Sud tunisien par impédancemétrie. Electrochemistry and

photochemistry, 1998, pp. 751-759.

[RUB-95] WARD M. D. Principles and applications of the Electrochemical Quartz Crystal

Microbalance. In : Israel Rubinstein. Physical electrochemistry : principles,

methods, and applications. New-York , USA : M. Dekker, 1995, pp. 293-338.

(Monographs in Electroanalytical Chemistry and Electrochemistry)

- 143 -

Page 144: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[S]

[SCH-73] SCHASCHL E. Methods for evaluation and testing of corrosion inhibitors. In : .

In : Ed. By C.C. Nathan, Houston, NACE Corrosion Inhibitors, USA, National

Association of Corrosion Engineers, p. 28-41.

[SCH-79] SCHLICHTING H, KESTIN J. Boundary Layer Theory, 7th ed. New York :

McGraw-Hill, 1979, 817 p. ISBN: 0070553343.

[SCH-01] SCHILLER C.A., STRUNZ W. The evaluation of experimental dielectric data of

barrier coatings by means of different models. Electrochimica Acta, 2001, vol. 46,

pp. 3619-3625.

[SHI-88] SHIM S. H., JOHNSON D.A., MORIARTY B.E. Characterization of localized and

underdeposit corrosion in cooling water systems. In : NACE Corrosion’88

Meeting, March 21-25, 1988, Saint-Louis, Missouri (USA).

[SHR-96] SHRIRI A., ETMAN. M., DABOSI F. Electro and physicochemical study of

corrosion inhibition of carbon steel in 3% NaCl by alkylimidazoles.

Electrochimica Acta, 1996, vol. 41, pp. 429-437.

[SIN-02] SINICKI C. Protection contre la corrosion humide, chapitre IX. Lyon : INSA de

Lyon, CAST, 2002, p.12.

[SUZ-96] SUZUKI T., NISHIHARA H., ARAMAKI K. The synergistic inhibition effect of

octylmercaptopropionate and 8-quinolinol on the corrosion of iron in an aerated

0.5 M Na2SO4 solution. Corrosion Science, 1996, vol. 38, pp. 1223-1234.

- 144 -

Page 145: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[T]

[TAK-04] TAKENOUTI H. Evaluation de la protection contre la corrosion assurée par des

revêtements organiques. In : B. Normand, N. Pébère, C. Richard, M. Wery.

Prévention et lutte contre la corrosion : une approche scientifique et technique.

Lausanne : Presses polytechniques et universitaires romandes, 2004, pp. 123-145.

ISBN 2-88074-543-8

[TAN-96] TAN Y.J., BAILEY S., KINSELLA B. The monitoring of the formation and

destruction of corrosion inhibitor films using electrochemical noise analysis

(ENA). Corrosion Science, 1996, vol. 38, pp. 1681-1695.

[TEL-00] TELEGDI J., SHABAN A., KALMAN E. EQCM study of corrosion and iron

corrosion inhibition in presence of organic inhibitors and biocides. Electrochimica

Acta, 2000, vol. 45, pp. 3639-3647.

[TO-97] TO X.H., PEBERE N., PELAPRAT N., BOUTEVIN B., HERVAUD Y. A

corrosion-protective film formed on a carbon steel by an organic phosphonate.

Corrosion Science, 1997, vol. 39, pp. 1925-1934.

[TSU-00] TSUJI N., NOZAWA K. Ultrathin protective films prepared by modification of an

N,N-dimethylalkylamine monolayer with chlorosilanes for preventing corrosion of

iron. Corrosion Science, 2000, vol. 42, pp. 1523-1538.

[TUR-85] TURGOOSE S. In : Proceedings of the 6th European Symposium of Corrosion

Inhibitors, Ann. Univ. Ferrara (ITALIE), 1985, p. 1041.

[U]

[UNC-05] UNCTAD : United Nationals Conference on Trade and Development. [en ligne].

Disponible sur : http://www.unctad.org/ (consulté en janvier 2005).

- 145 -

Page 146: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Références bibliographiques

[V]

[VEL-90] S. Veleda, A. Popova, S. Raicheva. In : Proceedings of the 7th European

Symposium of Corrosion Inhibitors, Ann. Univ. Ferrara (ITALIE), 1990, p. 149.

[W]

[WAL-48] WALDRIP H.E. Present Day Aspects of Condensate Well Corrosion. Corrosion,

1948, vol. 4, pp. 611-618.

[WEI-71] WEISSTUCH A., CARTER D. A., NATHAN C. C. Chelation compounds as

cooling waters corrosion inhibitors. Material Performance, 1971, vol. 10, pp. 11-

17.

[WEL-97] WELLE A., LIAO J.D., KAISER K., GRUNZE M., MADER U., BLANK N.

Interactions of N-N’-dimethylaminoethanol with steel surfaces in alkaline and

chlorine containing solutions. Applied Surface Science, 1997, vol. 119, pp 185-

190.

[Y]

[YAM-92] YAMAMOTO Y., NISHIHARA H., ARAMAKI K. Inhibition mechanism of

sodium 3-n-Octylmercaptopropionate for iron corrosion in 0.5 M NaCl solution.

Corrosion, 1992, vol. 48, pp. 641-648.

[Z]

[ZEC-76] ZECHER D. C. Corrosion inhibition by surface-active chelants. Material

Performance, 1976, vol. 15, pp. 33-38.

- 146 -

Page 147: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Annexes

- 147 -

Page 148: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

- 148 -

Page 149: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

ANNEXE 1

Coupes et directions de vibration des cristaux de quartz

L’utilisation du quartz impose que le cristal soit découpé en lames d’où seront tirés des

parallélépipèdes, des cylindres et des lentilles dont les dimensions définiront les propriétés

vibratoires. Ces lames doivent être très précisément orientées par rapport aux axes

cristallographiques du cristal.

Orientation des coupes AT et BT d’un cristal de quartz

On appelle axe Z (ou axe optique) l’axe de symétrie d’ordre 3, parallèle à la longueur du

quartz. Aucune propriété piézoélectrique ne lui est associée. L’axe X (ou axe électrique) et

l’axe Y (ou axe mécanique) sont dans un plan perpendiculaire à Z. Il existe 3 axes X et 3 axes

Y déduits les uns des autres par rotation de 120° autour de Z . C’est par rapport à ces axes que

sont définies les « coupes » utilisées pour les applications principalement électroniques du

quartz. Ces coupes sont baptisées de noms conventionnels ( X, Y , NT, CT, AT, …). Chacune

d’elles est optimale dans une gamme de fréquences donnée, et, à chacune correspondent des

performances thermiques particulières.

L’orientation de la coupe AT est à 35,25° par rapport à l’axe Z et la coupe BT à -49° par

rapport à l’axe Z

- 149 -

Page 150: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

Une lame de quartz piézo-électrique, de coupe et de dimensions particulières, possède

un certain nombre de fréquences de résonance mécanique propres. Le cisaillement d’épaisseur

permet l’obtention de fréquences élevées allant de 0,8 à 30 MHz et jusqu’à 150 MHz . Il

s’applique principalement aux coupes AT et BT. Lorsqu’un potentiel électrique est appliqué à

travers le cristal, le quartz de coupe AT subit une contrainte de cisaillement dans la direction

de vibration :

Direction de vibration

a)

t = 3π /2ω ; x = -xmax

b) t = 0 ; x = 0 (le cristal a le

maximum d’énergie

cinétique)

c)

t = π /2ω ; x = +xmax

Direction de vibration d’un résonateur de quartz de coupe AT

t est le temps nécessaire au cristal pour atteindre le maximum de la contrainte durant

l’oscillation. Le cristal a le maximum d’énergie potentielle pour x = +/- xmax

- 150 -

Page 151: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

ANNEXE 2

Le rôle particulier de chaque ion constituant l’électrolyte

Les ions chlorures sont fortement adsorbés sur l’acier, rendant la passivation du

matériau plus difficile. Les effets des ions sulfates ne sont pas aussi sévères et dans la plupart

des cas bien plus bénéfiques à la passivation du matériau que les ions chlorures. Les sulfates

peuvent être à l’origine de la coagulation de certains inhibiteurs de corrosion. Dans les eaux

« dures », les ions carbonates offrent une inhibition naturelle en formant des dépôts de

calcaires. Dans les eaux « douces », l’utilisation des inhibiteurs de corrosion est fortement

recommandée à cause de l’effet acide généré par un excès de dioxyde de carbone.

- 151 -

Page 152: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

- 152 -

Page 153: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

ANNEXE 3

Accès rapide au nombre de Reynolds d’un système donné (d, Ω)

Expérimentalement, afin de connaître rapidement la nature du régime, il est possible

d’accéder à une valeur approximative de Re pour une électrode de diamètre donnée d (mm),

tournant à une vitesse Ω (tours par minute) en se référant à la réglette de la figure :

d (mm)ω (tpm)

Re (ν=10−2cm².s-1)

1600

3200 66

d (mm)ω (tpm)

Re (ν=10−2cm².s-1)

d (mm)Ω (tpm)

Re (ν=10−2cm².s-1)

1600

3200 66

d (mm)ω (tpm)

Re (ν=10−2cm².s-1)

1600

3200 66

d (mm)ω (tpm)

Re (ν=10−2cm².s-1)

d (mm)Ω (tpm)

Re (ν=10−2cm².s-1)

1600

3200 66

d (mm)ω (tpm)

Re (ν=10−2cm².s-1)

1600

3200 66

d (mm)ω (tpm)

Re (ν=10−2cm².s-1)

d (mm)Ω (tpm)

Re (ν=10−2cm².s-1)

1600

3200 66

Réglette permettant la détermination de Re pour des paramètres géométriques données

La conversion est graduelle : tout d’abord le bord du disque est affecté par la turbulence

qui s’étend graduellement jusqu’au centre en augmentant la vélocité de rotation. Toutefois,

des turbulences peuvent apparaître avant Recrit si le disque vibre de manière axiale ou radiale

ou encore si la surface n’est pas homogène, ce qui entraîne des remous supplémentaires dans

la solution.

- 153 -

Page 154: Evolution des propriétés d’un film inhibiteur de corrosion ...theses.insa-lyon.fr/publication/2005ISAL0060/these.pdf · agrémenté quotidiennement de discussions constructives

- 154 -