12
Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 Beauvais 8-10 juillet 2014 EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS DE TERRAIN ASSOCIES AUX TREMBLEMENTS DE TERRE RECENTS EN IRAN A REVIEW ON THE IMPACTS AND CAUSES OF LANDSLIDES ASSOCIATED WITH RECENT EARTHQUAKES IN IRAN Kambod AMINI HOSSEINI 1 , Frederic L. PELLET 2 , Mohammad KESHAVARZ 3 1 International Institute of Earthquake Engineering and Seismology, Tehran, Iran 2 INSA Université de Lyon, Villeurbanne, France 3 Payam Noor University, Zanjan, Iran RÉSUMÉ - L'Iran est une région sismique, située le long de la ceinture orogénique Alpine-Himalayenne. Aux abords des deux principales chaînes de montagnes du pays, l'Alborz et le Zagros (situées dans les parties nord et ouest de l'Iran, respectivement) plusieurs failles actives coexistent. Ces dernières sont à l’origine de nombreux tremblements de terre destructeurs survenus au cours des dernières décennies. La plupart de ces événements ont été associés à certains types de glissements de terrain et de chutes de blocs, en raison de la topographie des régions touchées. Dans cet article, les causes et les effets de ces tremblements de terre sont analysés en fonction des différents types d’instabilité de pente observés ou signalés après chaque événement. En outre, les impacts des glissements de terrain sur les activités post-séisme, tels que les interventions d'urgence et la reconstruction des zones endommagées sont discutés. Enfin, les impacts socio - économiques de ces instabilités géologiques sont exposés. Des recommandations pour réduire l’impact de ces risques en Iran, mais aussi dans d'autres pays confrontés à des défis similaires, sont présentées. ABSTRACT Iran is located in a seismic prone region along Alpine-Himalaya Orogenic belt. Along two main mountain ranges of Alborz and Zagros in the country (in north and west parts of Iran, respectively) several active faults exist, that are the roots of many destructive earthquakes occurred during the recent decades. Most of these events were associated with some types of landslides and rock-falls, due to topography of the affected regions. In this paper, having a look on the causes and impacts of these earthquakes, different types of the slope instabilities observed or reported after each event will be introduced and discussed. In addition, the impacts of landslides on post-earthquake activities such as emergency response and reconstruction of the damaged areas will be presented. Finally having a look on socio-economic impacts of these geological instabilities, some recommendations will be presented to be applied for reducing the impacts of those hazards that can be applied in Iran and other countries facing similar challenges.

EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS DE TERRAIN ASSOCIES AUX TREMBLEMENTS DE TERRE RECENTS EN IRAN

A REVIEW ON THE IMPACTS AND CAUSES OF LANDSLIDES ASSOCIATED WITH RECENT EARTHQUAKES IN IRAN

Kambod AMINI HOSSEINI1, Frederic L. PELLET2, Mohammad KESHAVARZ3

1 International Institute of Earthquake Engineering and Seismology, Tehran, Iran 2 INSA – Université de Lyon, Villeurbanne, France 3 Payam Noor University, Zanjan, Iran

RÉSUMÉ - L'Iran est une région sismique, située le long de la ceinture orogénique

Alpine-Himalayenne. Aux abords des deux principales chaînes de montagnes du

pays, l'Alborz et le Zagros (situées dans les parties nord et ouest de l'Iran,

respectivement) plusieurs failles actives coexistent. Ces dernières sont à l’origine de

nombreux tremblements de terre destructeurs survenus au cours des dernières

décennies. La plupart de ces événements ont été associés à certains types de

glissements de terrain et de chutes de blocs, en raison de la topographie des régions

touchées. Dans cet article, les causes et les effets de ces tremblements de terre

sont analysés en fonction des différents types d’instabilité de pente observés ou

signalés après chaque événement. En outre, les impacts des glissements de terrain

sur les activités post-séisme, tels que les interventions d'urgence et la reconstruction

des zones endommagées sont discutés. Enfin, les impacts socio - économiques de

ces instabilités géologiques sont exposés. Des recommandations pour réduire

l’impact de ces risques en Iran, mais aussi dans d'autres pays confrontés à des défis

similaires, sont présentées.

ABSTRACT – Iran is located in a seismic prone region along Alpine-Himalaya

Orogenic belt. Along two main mountain ranges of Alborz and Zagros in the country

(in north and west parts of Iran, respectively) several active faults exist, that are the

roots of many destructive earthquakes occurred during the recent decades. Most of

these events were associated with some types of landslides and rock-falls, due to

topography of the affected regions. In this paper, having a look on the causes and

impacts of these earthquakes, different types of the slope instabilities observed or

reported after each event will be introduced and discussed. In addition, the impacts

of landslides on post-earthquake activities such as emergency response and

reconstruction of the damaged areas will be presented. Finally having a look on

socio-economic impacts of these geological instabilities, some recommendations will

be presented to be applied for reducing the impacts of those hazards that can be

applied in Iran and other countries facing similar challenges.

Page 2: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

1. Introduction

Au cours de son histoire, l’Iran a subi de nombreux séismes destructeurs en raison

des conditions géologiques et des nombreuses failles actives qui existent dans

différentes parties du pays. Les plus importantes sont présentées à la Figure 1.

Figure 1 : Carte des failles actives et l'emplacement de certains forts tremblements

de terre en Iran (Hessami et al, 2003)

En Iran, un événement sismique de magnitude supérieure à 6.0 se produit chaque

année en moyenne, tandis qu’un séisme de magnitude d'environ égale à 7.0 se

produit tous les dix ans (Amini Hosseini et al, 2009).

Ces gros séismes destructeurs s’accompagnent souvent, en Iran comme dans le

reste du monde, d’instabilités de pentes. À titre d'exemple, le tremblement de terre

de Tohoku au Japon (2011) a provoqué de nombreux glissements de terrain qui ont

causé la destruction de bâtiments et d’infrastructures (Higaki et al, 2011). Les

glissements de terrain déclenchés par le séisme de Padang en Indonésie (2009) ont

causé au total le décès d’environ 600 habitants des quartiers situés sur les pentes de

la colline de Padand Pariman dans l'ouest de Sumatra. Ce nombre est presque égal

au nombre des victimes de bâtiments effondrés par les secousses du sol (Vigny,

2009). Des effets similaires de glissements de terrain et de chutes de blocs ont

également été recensés à Port-au-Prince, Haïti (2010), dans le Sichuan en Chine

(2008) et à Balakot au Pakistan (2005). Ces exemples soulignent la nécessité de

disposer d’études approfondies sur les instabilités des pentes déclenchées par des

événements sismiques.

Page 3: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

Compte tenu de la topographie de l'Iran, la plupart des événements sismiques dans

le pays sont également associés à des instabilités de pente (glissements de terrain

ou éboulements). Dans certains séismes en Iran, les dommages dus aux instabilités

sont plus élevés que ceux liés à la secousse du sol elle-même. Par conséquent, au

cours des dernières années, des études ont été réalisées visant à établir des

directives destinées à réduire les impacts de ces aléas géologiques induits par les

séismes. Dans ce qui suit, différents dommages liés aux glissements de terrain

déclenchés par des séismes en Iran sont passés en revue ainsi que les principales

mesures prises pour limiter et gérer les conséquences de ce risque géologique.

2. Instabilités des pentes liées à de récents séismes survenus en Iran

Comme mentionné précédemment, la plupart des récents séismes survenus en Iran

ont été à des degrés divers, associés à différents types de risques géologiques, en

particulier les glissements de terrain et les éboulements rocheux. Dans cette partie,

les événements sismiques les plus importantes survenus en Iran au cours de ces 25

dernières années sont passés en revue.

2.1. Séisme de Manjil-Roudbar (Mw: 7.3)

Cet événement a eu lieu le 21 juin 1990 dans la partie du centre-nord de l'Iran, le

long de la chaîne de montagnes de l'Alborz. Les trois provinces de Gilan, de Zanjan

et de l'Azerbaïdjan oriental ont été touchées par ce tremblement de terre. Les

estimations indiquent que plus de 15.000 personnes sont décédées alors qu’environ

30.000 ont été blessées par cet événement. De plus, ce séisme a fait environ

500.000 sans-abri et détruit les trois villes de Roudbar, Manjil et Loshan et près de

700 villages (Moin Far et Nad -er Zadeh, 1990).

Les glissements de terrain et les chutes de blocs rocheux déclenchés par le séisme

ont été les deux principales causes des lourds dommages et du grand nombre de

blessés lors de ce tremblement de terre. Ce fut principalement lié aux

caractéristiques géologiques et topographiques particulières de la région de l’Alborz.

La géologie des zones touchées par le tremblement de terre se compose de

différentes formations métamorphiques du Précambrien présentes sous forme de

massifs rocheux sains à très altérés et fissurés. Des dépôts de sols lâches du

Quaternaire recoupés par de nombreuses failles actives ont aussi été observés dans

cette région.

La combinaison de ces lithologies avec la topographie escarpée des zones a

constitué des conditions très favorables à des glissements de terrain et à des chutes

de blocs. D’autres instabilités de pentes déclenchées par des événements sismiques

dans la zone Alborz ont également été signalées (Tableau 1).

Les glissements de terrain et les chutes de blocs déclenchés par le séisme de Manjil-

Roudbar eurent des impacts directs et indirects importants. Par exemple, le village

de Fatalak avec une population de plus d'une centaine de personnes a été

complètement enterré sous une montagne de boue et de roches en raison d'un

grand glissement de terrain. D'autres villages dans les zones d’Eshkor ont également

Page 4: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

été endommagés par des instabilités de pentes. Des chutes de pierres et de débris

ont également bloqué plusieurs routes principales et rurales et ont causé des retards

dans l'intervention des services d'urgence et de secours au cours des premières

heures après le tremblement de terre (Figure 2).

Lieu Date Type M Effet

Ray 958 Glissement 7.7 Villages ensevelis

Frame 1127 Glissement 6.8 Villages détruits

Damavand

1830 Éboulement 7.1 Routes bloquées

Talarood 1935 Glissement Eboulement 5.8 42 morts

Bandpey 1957 Glissement Eboulement 6.8 Routes bloquées

Tableau 1 : Instabilités de pentes déclenchées par des tremblements de terre dans la

région d'Alborz (Jafari et al, 2000).

Figure 2 : Blocage partiel de la route principale Téhéran-Rasht dû à un éboulement

(Source: IIEES)

Le tremblement de terre de Manjil-Roudbar a souligné l’attention à apporter aux

risques géologiques induits par les tremblements de terre et la nécessité de les

étudier précisément. La préparation de cartes de micro-zonage et l’établissement de

programmes de développement des zones urbaines et rurales sont apparus

indispensables. Cela n’est malheureusement pas à ce jour intégré de manière

satisfaisante dans les plans de gestion des catastrophes du pays.

Page 5: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

2.2. Séisme de Bam (Mw: 6.5)

Le 26 décembre 2003, un tremblement de terre destructeur se produit au sud-est de

l'Iran, dans la province de Kerman. Le tremblement de terre détruit la ville de Bam et

ses villages voisins. Environ 85% des maisons, des bâtiments commerciaux, des

infrastructures de santé et d'éducation ont été complètement détruits ou sévèrement

endommagés. Le tremblement de terre a causé la mort de plus de 26.000 personnes

et laissé plus de 20.000 blessés et 75.000 sans-abri (Tier-ney et al, 2005).

La zone touchée par le séisme de Bam est située sur dans une région composée

d’alluvions plus ou moins récentes du Quaternaire, de formations sédimentaires du

Paléogène, de roches volcaniques de l’Éocène et de roches ignées intrusives. La

plupart des bâtiments et des infrastructures dans la ville de Bam sont construits sur

des sols du Quaternaire constitués de dépôts de sables et de limons jaune à brun

(Qm1); de graviers bruns, de sables et le limons déposés par les inondations

saisonnières (Qm2); de graviers à grains grossiers de cônes de déjection (Qf2). La

citadelle de Bam est le seul édifice construit sur un affleurement rocheux, se

composant d'andésite et de basalte.

Le séisme de Bam a causé plusieurs instabilités géologiques comprenant

l'affaissement du sol, en raison de l'effondrement des qanats (canaux traditionnels

d'irrigation souterrains) et des glissements de terrain. La plupart des réseaux des

qanats en service dans les villes de Bam et de Baravat ont été endommagés par le

tremblement de terre et environ 40% se sont complètement effondrés (Pellet et al,

2005). Les impacts des glissements de terrain n’ont, dans ce cas, pas été trop

importants sauf sur le réseau routier d’accès à la ville. Cela a causé des problèmes

d'intervention d'urgence (Figure 3).

Figure 3. Fracturation du terrain et affaissements de blocs lors du séisme de Bam

Lorsque le séisme de Bam est survenu, aucune directive n’existait pour atténuer le

risque sismique et les risques géologiques induits. Il était admis que la ville n'était

pas sujette aux tremblements de terre en raison notamment du fait que la citadelle de

Page 6: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

Bam tenait debout depuis plus de 2000 ans. Le tremblement de terre a révélé que la

réalisation d’une carte de micro-zonage sismique de la région ainsi que

l’établissement de plans de développement urbains étaient essentiels, ce qui fût fait.

2.3. Séisme de Firooz Abad-Kojour (Mw: 6.2)

Le tremblement de terre de Firooz Abad - Kojour est survenu le 28 mai 2004 dans

une région montagneuse située le long de la chaîne de montagnes de l’Alborz

central au nord de l'Iran. Dans les zones touchées, l'événement a détruit quelques

petits villages et de nombreuses infrastructures (en particulier les réseaux de

communication et de transport d'électricité). Cet événement a causé 41 décès et

plusieurs centaines de blessés. Toutefois, les pertes ont été relativement faibles pour

un événement de cette envergure en Iran. Cela est dû au fait que beaucoup de gens

étaient à l'extérieur lorsque le tremblement de terre s’est produit.

La faille inverse de Khazar a été identifiée comme responsable de ce séisme. En

raison de la topographie de la région et de fortes précipitations survenues dans la

période précédant le séisme, de nombreux glissements de terrain et chutes de blocs

rocheux se sont produits au moment de tremblement de terre. En fait, les

glissements de terrain et chutes de blocs ont causé plus de 80 % des victimes et ont

bloqué la plupart des routes locales et régionales dans les zones touchées. La route

Téhéran - Chalus, qui est l'un des principaux axes de communication trans - Alborz,

a été fermée pendant environ 3 mois. Les fermetures de routes ont entraîné des

difficultés supplémentaires pour les recherches et le sauvetage ainsi que pour les

activités de reconstruction. Les figures 4 et 5 illustrent les impacts des glissements

de terrain et des chutes de blocs provoquées par le tremblement de terre Firooz

Abad - Kojour (Amini Hosseini and Ghayamghamian, 2012).

Les conséquences destructrices de cet événement ont, une fois de plus, souligné

l'importance des risques géologiques qui peuvent survenir suite aux tremblements de

terre et la nécessité de considérer ces risques dans les plans de développement

urbain et régional. Dans ce cas particulier, la construction sur les pentes raides a été

restreinte dans certains endroits.

2.4. Séisme de Varzaghan (Mw: 6.4)

Le tremblement de terre de Varzaghan est survenu le 11 Août 2012 dans les zones

rurales de la province d'Azerbaïdjan Est située au Nord -Ouest de l'Iran; il a entraîné

258 décès, 1380 blessés et des dizaines de milliers de sans-abri. La plupart des

dommages ont été concentrés dans des endroits montagneux proches des villes

d’Heris, d’Ahar et de Varzaghan.

Cet événement a été également associé à de nombreux risques géologiques et a

déclenché plusieurs glissements de terrain et chutes de blocs rocheux qui, dans

certains cas, ont provoqué des dégâts sur les bâtiments et les infrastructures (Figure

6).

Le tremblement de terre de Varzaghan s'est produit de nombreuses années après

ceux de Manjil (1990) et de Firooz Abad (2004), quand les politiques de réduction

Page 7: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

des risques étaient déjà appliquées dans de nombreux endroits. Cependant, les

dommages observés suite à cet événement ont révélé que la mise en œuvre de

mesures de réduction des risques n’est pas aisée, spécialement dans les zones

rurales. Cet événement a favorisé la prise en compte par l’opinion publique de ces

dangers.

Figure 4. Glissement rocheux le long d'une des routes locales dans les zones

affectées par le séisme de Firooz Abad - Kojour

Figure 5. Chutes de blocs rocheux sur un véhicule circulant dans la région du séisme

de Firooz Abad – Kojour

3. Base juridique sur la réduction des risques géologiques en Iran

Au cours des dernières années, de nombreuses lois et règlements visant à réduire

les effets des instabilités de pentes induites par les tremblements de terre en Iran ont

été préparés et approuvés, sur la base des enseignements tirés des événements

sismiques. En outre, les collaborations institutionnelles existantes ont été renforcées.

Un résumé de ces activités est présenté dans ce qui suit.

Page 8: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

Figure 6 : Dommages causés aux routes locales autour de SAT-tar Khan Dam en

raison de chutes de pierres (Source: IIEES)

3.1. Lois et règlements

Le cadre juridique et les principales mesures de réduction des risques géologiques

en Iran (approuvés depuis 1990) sont résumés au le tableau 2. À l’issue des gros

séismes récents (tremblement de terre de Bam en 2003 et de Firooz Abad - Kojour

en 2004), plusieurs lois et politiques de réduction des risques géologiques induits ont

été approuvés. En outre, les mesures de prévention de ces risques se sont

également traduites dans les plans d’aménagement des zones urbaines et rurales

ainsi que dans les codes et les normes de construction des bâtiments. L'interdiction

de construire autour des zones instables, l'application des mesures d'assainissement

et le suivi et le contrôle des instabilités sur les sites importants sont quelques-unes

de ces mesures. Toutefois, en raison de contraintes techniques et socio-

économiques, l'application de ces mesures demeure insuffisante et ces plans ne sont

pas encore correctement mis en œuvre, spécialement dans les zones rurales.

3.2. Structures administratives

Différentes institutions sont impliquées dans la conduite de l’établissement des plans

d'atténuation des risques en Iran (voir tableau 3). En plus de ces institutions,

plusieurs ministères et organisations (Ministère des transports et du logement,

Ministère du pétrole) participent également à la réduction des risques géologiques.

Malheureusement, les responsabilités de ces institutions sont mal définies aux

niveaux national ou régional, ce qui peut entraîner des doubles emplois liés à des

activités menées en parallèle et aboutir à une utilisation peu efficace des ressources

financières limitées allouées aux mesures de réduction des risques géologiques dans

le pays.

Page 9: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

Années Lois et recommandations

1991 La loi du Comité National pour l'atténuation des effets des catastrophes naturelles a été

approuvée par le Parlement de l'Iran. Sur la base de cette loi le Comité des

tremblements de terre et des glissements de terrain a été mis en place pour prévenir ou

atténuer de tels incidents.

1993 Le gouvernement approuve la décentralisation du système de gestion des catastrophes

du pays afin d'atténuer efficacement les risques naturels.

2000 3ème version du code sismique national (2800) : Risque de liquéfaction et de

glissements de terrain. Approuvé par le ministère du logement et du développement

urbain.

2003 Le gouvernement approuve le plan directeur de secours. En vertu de cette loi, un groupe

de travail a été créé pour mener des recherches sur les tremblements de terre et les

glissements de terrain. Des formations sont données pour réduire l'impact des risques

géologiques comme les glissements de terrain.

2004 Le gouvernement approuve la loi pour déterminer les endroits appropriés pour

l’urbanisation et le développement des zones rurales fondé sur les risques géologiques.

2005 Le gouvernement approuve le programme de réduction des risques de tremblement de terre pour faire appliquer la conduite d’enquêtes nécessaires à la préparation des cartes de micro zonage. Politiques de sensibilisation du public.

2008 Mise sur pied l’organisation de la gestion des catastrophes afin de faciliter toutes les

activités d'atténuation et de gestion des risques.

2009 Le Ministère du Logement et du Développement urbain approuve le plan directeur de

Téhéran. Il pré sente certaines règles pour la prévention des glissements de terrain et

autres risques géologiques et impose certaines restrictions dans des projets de

développement.

Tableau 2. Politiques et règlements relatives aux risques géologiques en Iran (Amini

Hosseini and Ghayamghamian, 2012)

4. Stratégie d’atténuation des risques géologiques

Sur la base des expériences acquises en Iran, les stratégies suivantes peuvent être

proposées pour la planification et la mise en œuvre des réductions des risques

d’instabilités de pentes induites par les séismes et les mesures de gestion de ces

risques.

4.1. Élaboration des plans de gestions des risques

Le retour d’expérience iranien et international montre que les différentes décisions et

les opérations menées individuellement peuvent ne pas conduire à une réduction

significative des risques géologiques. Par conséquent, un plan intégré de gestion des

risques géologiques est nécessaire ; il doit absolument intégrer des aspects relatifs à

l’impact potentiel de ces risques sur les bâtiments et sur les infrastructures. À cet

effet, les règles pour la gestion et la supervision des activités de prévention et

Page 10: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

d’organisation des secours devraient être renforcées. Ces règles devraient permettre

la maîtrise des plans mis en œuvre par les urbanistes pour l'aménagement du

territoire (Burby et Dalton, 1994).

Institution Responsabilités

Groupe de travail tremblement de terre et glissements de terrain (Ministère de la route et du logement)

Préparation des bases de données, des programmes de formation, de la re-cherche sur les causes et les mesures de prévention, préparation de cartes de micro-zonage

Organisme de gestion des catastrophes (Mi-nistère de l'Intérieur)

Gestion de toutes les activités sur l'atté-nuation des risques naturels et la ges-tion des risques.

Groupe professionnel glissement de terrain (Ministère de l'Agriculture)

La recherche sur les causes des glis-sements de terrain et des zones de risques.

Centre de recherche et Universités. Identification des zones de géo- risques et l enquêtes sur les meilleurs moyens de réduire les risques

Sociétés privées Exécution des mesures de stabilisation du terrain et préparation des cartes mi-cro-zonage.

Tableau 3: Principales organisations impliquées dans la recherche, la prévision et la

réduction des géo-risques en Iran (Amini Hosseini & Ghayamghamian, 2012)

4.2. Évaluation des risques

Afin d'interdire le développement dans un terrain potentiellement exposé, il est

nécessaire d'évaluer le risque dans différents endroits (FEMA, 2007). Le meilleur

moyen pour l'évaluation des risques de glissements de terrain, de chutes de blocs

est d’établir des cartes de micro zonage. Cependant, dans beaucoup d'endroits dans

le monde, y compris l'Iran, ces cartes ne sont pas encore préparées et par

conséquent, les effets potentiels de tremblements de terre pouvant déclencher des

instabilités de pente ne sont pas bien évalués. Dans la préparation de ces cartes,

l’expérience acquise devrait être intégrée pour conduire à des plans directeurs

complets qui puissent être utilisés simplement par les urbanistes à l’échelle adaptée

à leurs projets.

Page 11: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

4.3. Communication au public

Les mesures de réduction des risques, telles que l'interdiction de la construction sur

un terrain instable et l'application de plans d'utilisation des terres dans des endroits

exposés à des risques géologiques, ne peuvent être mises en œuvre de manière

appropriée qu’avec la participation des communautés locales. Cependant, l'opinion

publique est liée à son degré de compréhension de la situation de danger aux

niveaux local et régional. Afin d’expliquer les dangers locaux au public, les cartes de

micro-zonage devraient être traduites dans un langage simple pour être utilisées par

les populations locales et améliorer leurs sensibilisations aux risques menaçant leur

espace de vie en cas de séismes. Cela peut être fait en préparant des cartes

simples, des animations et des films sur l'aménagement du territoire et les risques

géologiques associés ainsi que sur les programmes de sécurité (USGS, 2011). De

plus, les connaissances des gestionnaires professionnels, des ingénieurs civils et

des urbanistes sur les risques géologiques et les moyens de réduire leur impact

devrait être également amélioré.

4.4. Réduction des risques

Afin de réduire le risque lié aux instabilités de pentes, différentes méthodes sont

disponibles dans la littérature. Cela comprend le drainage du terrain, la stabilisation

et la surveillance des zones menaçantes. Toutefois, compte tenu de leur coût et de

leur complexité, la formulation de ces mesures nécessite une évaluation précise des

risques. En outre, l'application de systèmes d'alerte précoce et la surveillance dans

les zones de danger sont généralement coûteuses et nécessitent une évaluation

économique précise pour être efficace.

5. Conclusion

Dans cet article, l'impact des glissements de terrain et d’éboulements rocheux

associés aux tremblements de terre récents en Iran ont été présentés et discutés. Il a

été montré que la plupart des événements sismiques survenus dans les régions

montagneuses de l’Iran, a déclenché différents types d'instabilités de pente, ce qui

dans certains cas a causé d'autres dégâts et victimes. Compte tenu du risque élevé

de tremblements de terre en Iran et des géo-risques potentiels associés, il s’avère

que la préparation d'un plan intégré pour l'atténuation et la gestion des risques est

essentielle pour le pays. Par conséquent, il était nécessaire de présenter les

principales stratégies et leurs composantes pour établir ces plans directeurs sur la

base des expériences acquises en Iran et dans le monde. Les capacités

institutionnelles devraient être encouragées dans une première étape. Cela peut être

fait par l'amélioration et l'application des règlements, l'allocation des budgets en

fonction des priorités et le renforcement institutionnel des capacités de gestion des

activités opérationnelles. Parmi les stratégies indiquées, celle liée à l'évaluation des

risques, à la cartographie des risques ainsi qu’à la communication des risques au

public (promotion de la connaissance et de l'information) doit être effectuée en amont

Page 12: EXAMEN DES IMPACTS ET DES CAUSES DE GLISSEMENTS …caractéristiques géologiques et topographiques particulières de la région de l’Alborz. La géologie des zones touchées par

Journées Nationales de Géotechnique et de Géologie de l’Ingénieur JNGG2014 – Beauvais 8-10 juillet 2014

des programmes à moyen et long terme, visant à planifier les activités

d'assainissement. La réduction des risques en utilisant des méthodes d’amélioration

du terrain est normalement beaucoup longue et plus coûteuses et ne peut être mise

en œuvre avant l'analyse de l'évaluation des risques. Ensuite, en utilisant les

résultats de l'évaluation des risques et sur la base d'une analyse coûts-avantages,

les mesures de réduction des risques doivent être conçues et mises en œuvre

associées à des mesures de surveillance.

Références

Amini Hosseini, K & Ghayamghamian MR (2012) A survey of challenges in reducing the impact of

geological hazards as-associated with earthquakes in Iran, Natural Hazards, 63 (3), 901-926;

Amini Hosseini K, Tasnimi AA, Ghayamghamian MR, Haghshenas E, Mahdavifar MR and Mohammadi

M (2009) Local disaster management assessment and implementation strategy, The World Bank

Project, 4697-IRN, 2009;

Burby R and Dalton L (1994) Plans can matter! The role of land use plans and state planning

mandates in limiting the development of hazardous areas, Public Administrative Review, 54 (3),

229-237;

Federal Emergency Management Agency, FEMA (2007) Multi-hazard mitigation planning guidance

under DMA, retrieved from http://www.fema.gov/library/viewRecord.do?id=2752;

Hessami K, Jamali F and Tabassi H (2003) Major active faults of Iran, International Institute of

Earthquake Engineering and Seismology, Tehran;

Higaki D, Tsuchiya T and Tushima M (2011) Landslide disasters induced by the 2011 off the Pacific

Coast of Tohoku Earthquake, Faculty of Agriculture and Life Science, Hirosaki Uiversity, Japan;

Jafari MK, Montazer S and Heydari M (2000) Earthquake triggered landslide studies in Alborz,

International Institute of Earthquake Engineering and Seismology, Tehran;

Moin Far A and Nader Zadeh A (1990) Technical report of Manjil Earthquake, BHRC, Tehran;

Pellet F, Amini Hosseini K, Jafari MK, Zerfa FZ, Mahdavifar MR and Keshavarz M (2005) Geotechnical

performance of Qanats during the 2003 Bam, Iran, Earthquake, Earth-quake Spectra, 21 (S1),

S137-S165;

Tierney K, Khazai B, Tobin T and Krimgold F (2005) Social and public issues following the 2003 Bam,

Iran, Earthquake, Earthquake Spectra, 21 (S1), S513-S534;

United States Geological Survey, USGS (2011) San Francisco Bay Region Geology and Geologic

Hazards, (retrieved on http://geomaps.wr.usgs.gov/sfgeo/geologic/about.html);

Vigny C (2009), The Earthquake of Padang, Scientific information and updates, Sumatra 30

September 2009, Geosciences Dept. of ENS, CNRS.