45
FeynmanKac models Stability & discretization MCQMC 2018 GrØgoire FerrØ ? Mathias Rousset y Gabriel Stoltz cole des Ponts ParisTech & INRIA Paris ? Labex BØzout y INRIA Rennes & IRMAR Wednesday July 4 th , 2018

Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

  • Upload
    others

  • View
    20

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Feynman–Kac modelsStability & discretization

MCQMC 2018

Grégoire Ferré∗? Mathias Rousset† Gabriel Stoltz∗

∗ École des Ponts ParisTech & INRIA Paris? Labex Bézout

† INRIA Rennes & IRMAR

Wednesday July 4th, 2018

Page 2: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

SituationIf this meeting is about

x −Monte Carlo

with

x ∈{Quasi,Markov Chain, Sequential,Quantum,Hamiltonian,

Multilevel,Diffusion,Langevin,Multifidelity...},

Grégoire Ferré Feynman–Kac models

Page 3: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

SituationIf this meeting is about

x −Monte Carlo

with

x ∈{Quasi,Markov Chain, Sequential,Quantum,Hamiltonian,

Multilevel,Diffusion,Langevin,Multifidelity...},

then this talk would be on

x −Monte Carlo,

withx ∈

{Sequential,Quantum,Diffusion

},

summarized as Feynman–Kac models (also known as splitting,genealogical, branching models, etc).

Grégoire Ferré Feynman–Kac models

Page 4: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Motivation

Ergodicity for Markov chains

Ergodicity for Feynman–Kac dynamics

A word on discretization

Conclusion

Grégoire Ferré Feynman–Kac models

Page 5: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

A rare event problem

• Consider a dynamics over X ⊂ Rd :

dXt = b(Xt)dt + σ(Xt)dBt ,

with invariant measure µ and generator L.

• Ergodicity: for a test function f

1t

∫ t

0f (Xs)ds

t→+∞−−−−→∫Xf (x)µ(dx).

Grégoire Ferré Feynman–Kac models

Page 6: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

A rare event problem

• Consider a dynamics over X ⊂ Rd :

dXt = b(Xt)dt + σ(Xt)dBt ,

with invariant measure µ and generator L.

• Ergodicity: for a test function f

1t

∫ t

0f (Xs)ds

t→+∞−−−−→∫Xf (x)µ(dx).

• Idea of large deviations:

P[1t

∫ t

0f (Xs)ds = a

]� e−tI (a),

where I is the rate function, or generalized entropy creation.Grégoire Ferré Feynman–Kac models

Page 7: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Duality and importance sampling

• Donsker-Varadhan duality [70’s]: in many cases it holds

I (a) = supk∈R

{ka− λf (k)

},

whereλf (k) = lim

t→∞

1tlogE

[ek

∫ t0 f (Xs)ds

].

Grégoire Ferré Feynman–Kac models

Page 8: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Duality and importance sampling

• Donsker-Varadhan duality [70’s]: in many cases it holds

I (a) = supk∈R

{ka− λf (k)

},

whereλf (k) = lim

t→∞

1tlogE

[ek

∫ t0 f (Xs)ds

].

• Similar to study, for an observable ϕ,

Θt(µ)(ϕ) =Eµ[ϕ(Xt) e

∫ t0 f (Xs)ds

]Eµ[e∫ t0 f (Xs)ds

] .

• This procedure weights the trajectories depending on f .

Grégoire Ferré Feynman–Kac models

Page 9: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Natural questions

One may wonder:

• for which class of functions f does λf exists?

• under which conditions Θt admits a long time limit?

• how can we discretize in time for numerical purposes?

• how to sample efficiently the expectations?

Grégoire Ferré Feynman–Kac models

Page 10: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Natural questions

One may wonder:

• for which class of functions f does λf exists?

• under which condition Θt admits a long time limit?

• how can we discretize in time for numerical purposes?

• how to sample efficiently the expectations?

Grégoire Ferré Feynman–Kac models

Page 11: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Link with filtering & Sequential Monte Carlo

In Sequential Monte Carlo/filtering, we generally consider theweighted path measure

Qn(dx0:n) =1Ln

{G0(x0)

t∏k=1

Gk(xk−1, xk)}M0(dx0)

n∏k=1

Mk(xk−1, xk).

Analogies:

• Gk(xk−1, xk)↔ ef (xk−1) with «potential» f ,

• Mk ↔ Q(x , ·) = E[xk ∈ ·

∣∣ xk−1 = x]homogeneous transition

kernel,

• Ln ↔ (efQ)n1 = E[e∑n−1

k=0 f (xk )]accumulated weight up to

time n (sometimes written γn(1)).

Grégoire Ferré Feynman–Kac models

Page 12: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Numerics – Sequential Monte Carlo

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = x .

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

The weight

wnm = exp

(n−1∑k=0

f (xmk )

).

of particle m at time n is usedfor resampling(renormalization).

Grégoire Ferré Feynman–Kac models

Page 13: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Numerics – Sequential Monte Carlo

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = x .

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

The weight

wnm = exp

(n−1∑k=0

f (xmk )

).

of particle m at time n is usedfor resampling(renormalization).

Grégoire Ferré Feynman–Kac models

Page 14: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Numerics – Sequential Monte Carlo

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = x .

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

The weight

wnm = exp

(n−1∑k=0

f (xmk )

).

of particle m at time n is usedfor resampling(renormalization).

Grégoire Ferré Feynman–Kac models

Page 15: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Numerics – Sequential Monte Carlo

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = x .

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

The weight

wnm = exp

(n−1∑k=0

f (xmk )

).

of particle m at time n is usedfor resampling(renormalization).

Grégoire Ferré Feynman–Kac models

Page 16: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Numerics – Sequential Monte Carlo

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = x .

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

The weight

wnm = exp

(n−1∑k=0

f (xmk )

).

of particle m at time n is usedfor resampling(renormalization).

Grégoire Ferré Feynman–Kac models

Page 17: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Numerics – Sequential Monte Carlo

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = x .

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

The weight

wnm = exp

(n−1∑k=0

f (xmk )

).

of particle m at time n is usedfor resampling(renormalization).

Conclusion: the particles areselected towards the right.

Grégoire Ferré Feynman–Kac models

Page 18: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Motivation

Ergodicity for Markov chains

Ergodicity for Feynman–Kac dynamics

A word on discretization

Conclusion

Grégoire Ferré Feynman–Kac models

Page 19: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Markov chains and ergodicity

A homogeneous Markov chain (xn)n∈N is defined through itsevolution operator Q:

Qϕ(x) := E[ϕ(x1) | x0 = x ] =

∫Xϕ(y)Q(x , dy).

A measure µ∗ ∈ P(X ) is invariant if ∀A ⊂ X :

µ∗Q(A) :=

∫Xµ∗(dx)Q(x ,A) = µ(A).

The process is ergodic when, for any initial distribution µ,

µQn n→+∞−−−−→ µ∗.

Grégoire Ferré Feynman–Kac models

Page 20: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Big picture I

b

b

bb

b

Trajectory of the Markov chain

Measurable set A

Probability µQn(A)

Grégoire Ferré Feynman–Kac models

Page 21: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

An ergodic theorem

Theorem [M. Hairer & J. Mattingly]

Assume there exist W : X → R+, γ ∈ (0, 1) and C > 0 suchthat

(L) PW ≤ γW + C ,

and α > 0, η ∈ P(X ) such that

(M) infx∈C

P(x , ·) ≥ αη(·),

for C a large enough level set of W . Then, there exist a uniqueµ∗ ∈ P(X ), C > 0 and α ∈ (0, 1) such that for any µ ∈ P(X )

‖Pnµ− µ∗‖W ≤ C αn‖µ− µ∗‖W .

Here: ‖f ‖ = supx∈X

|f (x)|1 + W (x)

, ‖µ−ν‖W = sup‖ϕ‖≤1

∫Xϕ(x)(µ−ν)(dx).

Grégoire Ferré Feynman–Kac models

Page 22: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Motivation

Ergodicity for Markov chains

Ergodicity for Feynman–Kac dynamics

A word on discretization

Conclusion

Grégoire Ferré Feynman–Kac models

Page 23: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Feynman–Kac models

We consider:• a kernel operator Q f with Q f 6= 1;• a dynamics Φn : P(X )→ P(X ) defined by, for testsfunctions ϕ

Φn(µ)(φ) =µ((Q f )nϕ

)µ((Q f )n1

) = (Φn)(µ)(ϕ) with Φ(µ)(ϕ) =µ(Q f ϕ

)µ(Q f 1

) .

Grégoire Ferré Feynman–Kac models

Page 24: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Feynman–Kac models

We consider:• a kernel operator Q f with Q f 6= 1;• a dynamics Φn : P(X )→ P(X ) defined by, for testsfunctions ϕ

Φn(µ)(φ) =µ((Q f )nϕ

)µ((Q f )n1

) = (Φn)(µ)(ϕ) with Φ(µ)(ϕ) =µ(Q f ϕ

)µ(Q f 1

) .Typically• Q f = efQ, where Q defines a Markov chain (xn)n∈N;• then

Φn(µ)(φ) =Eµ[ϕ(xn) e

∑n−1k=0 f (xk )

]Eµ[e∑n−1

k=0 f (xk )] .

Grégoire Ferré Feynman–Kac models

Page 25: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Ergodicity for Feynman–Kac dynamics

Theorem [G.F., M. Rousset & G. Stoltz, yesterday]Assumptions:

• Lyapunov condition: there exist W : X → [1,+∞), γn∞−→ 0,

bn ≥ 0 and compact sets Kn s.t.

(L) Q fW (x) ≤ γnW (x) + bn1Kn ;

• Minorization condition: ∀ n ≥ 1, there exist αn > 0, ηn ∈ P(X )s.t.

(M) ∀ x ∈ Kn, Q f (x , ·) ≥ αnηn(·);

• X is Polish and Q f is «locally strong Feller».

Then, there exist a unique µ∗f and α ∈ (0, 1) such that for any µ ∈P(X ), ∃Cµ > 0 for which

‖Φn(µ)− µ∗f ‖W ≤ Cµαn, and Φ(µ∗f ) = µ∗f .

Grégoire Ferré Feynman–Kac models

Page 26: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Big picture II

b

b

bb

b

A trajectory of the Markov chain

Measurable set A

Probability Φn(µ)(A)

bb

b

b

b

Another trajectory

Measurable set B

Probability Φn(µ)(B)

Grégoire Ferré Feynman–Kac models

Page 27: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Sketch of proof

The steps of the proof are as follows:

• Q f is quasi-compact in L∞W (X ) = {ϕ : sup |ϕ|/W < +∞};

• the spectral radius Λ is an eigenvalue with «positive»eigenvector h:

Q f h = Λh ;

Grégoire Ferré Feynman–Kac models

Page 28: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Sketch of proof

The steps of the proof are as follows:

• Q f is quasi-compact in L∞W (X ) = {ϕ : sup |ϕ|/W < +∞};

• the spectral radius Λ is an eigenvalue with «positive»eigenvector h:

Q f h = Λh;

• define the Markovian kernel Qh = Λh−1Q f h;

• Φn is rewritten

Φn(µ)(φ) =µ(h(Qh)nh−1ϕ

)µ(h(Qh)nh−1

) ;

• the kernel Qh = Λh−1Q f h satifies the conditions of Hairer andMattingly’s theorem.

Grégoire Ferré Feynman–Kac models

Page 29: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Sketch of proof

The steps of the proof are as follows:

• Q f is quasi-compact in L∞W (X ) = {ϕ : sup |ϕ|/W < +∞};

• the spectral radius Λ is an eigenvalue with «positive»eigenvector h:

Q f h = Λh;

• define the Markovian kernel Qh = Λh−1Q f h;

• Φn is rewritten

Φn(µ)(φ) =µ(h(Qh)nh−1ϕ

)µ(h(Qh)nh−1

) ;

• the kernel Qh = Λh−1Q f h satifies the conditions of Hairer andMattingly’s theorem.

Grégoire Ferré Feynman–Kac models

Page 30: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Toy model application

Consider the following Markov chain in Rd :

xn+1 = ρxn + σGn,

with ρ ∈ (−1, 1), (Gn)n∈N standard Gaussian r.v.

Grégoire Ferré Feynman–Kac models

Page 31: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Toy model application

Consider the following Markov chain in Rd :

xn+1 = ρxn + σGn,

with ρ ∈ (−1, 1), (Gn)n∈N standard Gaussian r.v.

Then, the Feynman–Kac dynamics is stable if

f (x) ≤ a|x |p + c ,

with a > 0, c ∈ R, and 0 ≤ p < 2. The Lyapunov function is

W (x) = eβx2, with 0 < β <

1− ρ2

2σ2 .

Grégoire Ferré Feynman–Kac models

Page 32: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Back to O.U. process

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = a|x |α, a > 0.

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

Grégoire Ferré Feynman–Kac models

Page 33: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Back to O.U. process

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = a|x |α, a > 0.

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

Grégoire Ferré Feynman–Kac models

Page 34: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Back to O.U. process

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = a|x |α, a > 0.

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

Conclusion: for α > 2, thealgorithm blows up!

Grégoire Ferré Feynman–Kac models

Page 35: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Back to O.U. process

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = a|x |α, a > 0.

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

Conclusion: for α > 2, thealgorithm blows up!

For α = 2 there is a limitvalue a∗.

Grégoire Ferré Feynman–Kac models

Page 36: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Back to O.U. process

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = a|x |α, a > 0.

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

Conclusion: for α > 2, thealgorithm blows up!

For α = 2 there is a limitvalue a∗.

Grégoire Ferré Feynman–Kac models

Page 37: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Back to O.U. process

• Dynamics (xn+1, yn+1) = (xn, yn)− 0.1(xn, yn) + Gn ∈ R2,• Weight function f (x , y) = a|x |α, a > 0.

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5

y

x

Conclusion: for α > 2, thealgorithm blows up!

For α = 2 there is a limitvalue a∗.

Grégoire Ferré Feynman–Kac models

Page 38: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Motivation

Ergodicity for Markov chains

Ergodicity for Feynman–Kac dynamics

A word on discretization

Conclusion

Grégoire Ferré Feynman–Kac models

Page 39: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

DiscretizationGoal: discretize in time the quantity

Θt(µ)(ϕ) =Eµ[ϕ(Xt) e

∫ t0 f (Xs)ds

]Eµ[e∫ t0 f (Xs)ds

] .

Grégoire Ferré Feynman–Kac models

Page 40: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

DiscretizationGoal: discretize in time the quantity

Θt(µ)(ϕ) =Eµ[ϕ(Xt) e

∫ t0 f (Xs)ds

]Eµ[e∫ t0 f (Xs)ds

] .

Idea: discretize (Xt) into xn ≈ Xn∆t , and consider e.g.

Φn,∆t(µ)(φ) =Eµ[ϕ(xn) e

∑n−1k=0 f (xk )∆t

]Eµ[e∑n−1

k=0 f (xk )∆t] .

Other possible choice:

Φn,∆t(µ)(φ) =Eµ[ϕ(xn) e

∑n−1k=0

f (xk )+f (xk+1)

2 ∆t]

Eµ[e∑n−1

k=0f (xk )+f (xk+1)

2 ∆t] .

Grégoire Ferré Feynman–Kac models

Page 41: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

DiscretizationUnder verifiable conditions and if X is bounded, the followingtheorem holds.

Theorem: error estimate on the invariant measure [G.F.,G. Stoltz, 2017]

There exist µ∗f , µ∗f ,∆t ∈ P(X ) such that ∀µ ∈ P(X )

Θt(µ)t→+∞−−−−→ µ∗f , Φn(µ)

n→+∞−−−−→ µ∗f ,∆t .

Moreover, there exist p ≥ 1 and ψ solution to a Poisson equationsuch that∫Xϕ dµ∗f ,∆t =

∫Xϕ dµ∗f + ∆tp

∫Xϕψ dµ∗f + O(∆tp+1).

Grégoire Ferré Feynman–Kac models

Page 42: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Application

Overdamped Langevin dynamics on a one dimensional torus.

1.254

1.256

1.258

1.26

1.262

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Avera

ge

∆t

MC 1st-order

MC hybrid

MC 2nd-order

Galerkin 1st-order

Galerkin 2nd-order

Average estimate for:

• dXt = (−V ′(Xt) + 1)dt + dBt ,

• V (x) = 0.02 cos(2πx),

• f = |V |2,

• ϕ = ef

• Euler-Maruyama scheme and2nd order modified scheme,

• comparison to Galerkindiscretization.

Grégoire Ferré Feynman–Kac models

Page 43: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Conclusion

Take home message:

• new results on the ergodicity of Feynman–Kac dynamics;

• easily verifiable conditions;

• natural extension of the theory for Markov chains;

• numerical analysis for discretizations of SDE’s;

• possible directions: applications to SPDE’s, link with largedeviations theory, application to systems of interactingparticles...

Grégoire Ferré Feynman–Kac models

Page 44: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

References

Pierre Del Moral and Alice Guionnet.On the stability of interacting processes with applications to filteringand genetic algorithms.Annales de l’IHP Probabilités et statistiques, 37(2):155–194, 2001.

G. F., Mathias Rousset, and Gabriel Stoltz.More on the stability of Feynman–Kac semigroups.arXiv:1807.00390, 2018.

G. F. and Gabriel Stoltz.Error estimates on ergodic properties of Feynman–Kac semigroups.arXiv:1712.04013, 2017.

Martin Hairer and Jonathan C. Mattingly.Yet another look at Harris’ ergodic theorem for Markov chains.In Seminar on Stochastic Analysis, Random Fields and ApplicationsVI, pages 109–117. Springer, 2011.

Luc Rey-Bellet.Ergodic properties of Markov processes.In Open Quantum Systems II, pages 1–39. Springer, 2006.

Grégoire Ferré Feynman–Kac models

Page 45: Feynman Kac models 0.3cm Stability & discretization 0.6cm ...mcqmc2018.inria.fr/wp-content/uploads/2018/07/pres_MCQMC-Ferre… · Feynman–Kacmodels Stability & discretization MCQMC2018

Motivation Ergodicity for Markov chains Ergodicity for Feynman–Kac dynamics A word on discretization Conclusion

Spectrum of quasi-compact operators

Spectral radius Λ

Essential spectral radius θ

b

b

b

b

b

b

b b

b

b

b

b

b

Discrete spectrum

C

Essential spectrum

Grégoire Ferré Feynman–Kac models