24
Foraminiferal Biostratigraphy and Palaeoenvironmental Reconstruction of the Paleocene–Eocene Transition at the Kharrouba Section, Tunisia (Southern Tethys Margin) LAMIA ZILI & DALILA ZAGHBIB-TURKI Unité de recherche GEODPS (UR: 02/UR/10–02), Département de Géologie, Faculté des Sciences de Tunis. 1060 El Manar II, Tunisie (E-mail: [email protected] ; [email protected]) Received 01 April 2009; revised typescript receipt 04 August 2009; accepted 07 August 2009 Abstract: At Kharrouba (near Tunis City in northern Tunisia), on the southern margin of the Tethyan realm, the Paleocene–Eocene (P–E) transition interval deposition is continuous and complete. Based on high-resolution analysis and quantitative data of planktonic and benthic foraminifera at the Kharrouba section, this transition interval records expanded deposition of the relevant standard planktonic foraminiferal biozones with indicative index species i.e.: Morozovella velascoensis for the latest Paleocene P5 zone, and Acarinina sibaiyaensis for the earliest Eocene E1 zone, Pseudohastigerina wilcoxensis for the E2 zone, Morozovella marginodentata for the E3 zone and Morozovella formosa for the E4 zone. This complete section contains benthic foraminiferal assemblages which include calcareous and agglutinated cosmopolitan deep-water species (DWBF). Among the calcareous deep benthic foraminifera Aragonia velascoensis Anomalinoides rubiginosus, Oridorsalis umbonatus, Nuttallides truempyi, Pullenia coryelli and Tappanina selmensis, are relatively abundant. These species are the main representatives of the Velasco fauna indicative of a bathyal-abyssal environment. Moreover, within this section, the agglutinated species e.g., Glomospira charoides, Karrerulina horrida, Rzehakina epigona, Ammodiscus spp. and Gaudryina pyramidata, assumed to be restricted to deep-sea palaeoenvironments, constitute an important proportion of the benthic foraminiferal assemblages. Therefore, during the Paleocene–Eocene transitional period, the Kharrouba area hosted many cosmopolitan deep-sea benthic foraminiferal species as was the case at Zumaya and several DSDP sites. The depth range tolerances of these deep-marine taxa, both with calcareous and agglutinated test, indicate that close to the P/E boundary, the Kharrouba area was located in the lower bathyal environment in the southern Tethys margin. Key Words: benthic foraminifera, palaeobathymetry, Paleocene–Eocene, agglutinated, Southern Tethys margin Kharrouba Kesitinde (Tunus, Güney Tetis Kenarı) Paleosen−Eosen Geçişinin Foraminifer Biyostratigrafisi ve Paleoortamsal Rekonstrüksiyonu Özet: Tetis bölgesinin güney kenarında yeralan Kharrouba’da (Tunus şehri yakınları, Kuzey Tunus) Paleosen–Eosen (P–E) geçişini temsil eden döneme ait çökeller devamlı ve tamamdır. Yüksek çözünürlü analizler ile Kharrouba kesitindeki planktonik ve bentik foraminiferlerin sayısal verilerine göre bu geçiş dönemi standard planktonik foraminifera biyozonlarını gösterir indeks türlerinide (örneğin: en geç Paleosen P5 Zonu için Morozovella velascoensis, en erken Eosen E1 zonu için Acarinina sibaiyaensis, E2 zonu için Pseudohastigerina wilcoxensis, Morozovella E3 zonu için marginodentata ve E4 zonu içi Morozovella formosa) içeren genişletilmiş çökeller ile temsil edilir. Bu tamamlanmış kesit kalkerli ve aglutine kozmopolit derin deniz türlerini de içeren bentik foraminifer (DDBF) topluluklarını içerir. Kalkerli derin deniz bentik foraminiferleri arasında Aragonia velascoensis Anomalinoides rubiginosus, Oridorsalis umbonatus, Nuttallides truempyi, Pullenia coryelli ve Tappanina selmensis göreceli olarak en yaygın türlerdir. Bu türler batiyal-abisal ortama işaret eden Valesco faunasının ana temsilcileridir. Bundan başka, kesitteki Glomospira charoides, Karrerulina horrida, Rzehakina epigona, Ammodiscus spp. ve Gaudryina pyramidata gibi derin deniz paleoortamlara ait olduğu varsayılan aglutine türler bentik foraminfer topluluğunun önemli bir 385 Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 19, 2010, pp. 385–408. Copyright ©TÜBİTAK doi:10.3906/yer-0904-7 First published online 14 August 2009

Foraminiferal Biostratigraphy and Palaeoenvironmental

  • Upload
    haquynh

  • View
    236

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Foraminiferal Biostratigraphy and Palaeoenvironmental

Foraminiferal Biostratigraphy and PalaeoenvironmentalReconstruction of the Paleocene–Eocene Transition at the

Kharrouba Section, Tunisia (Southern Tethys Margin)

LAMIA ZILI & DALILA ZAGHBIB-TURKI

Unité de recherche GEODPS (UR: 02/UR/10–02), Département de Géologie,Faculté des Sciences de Tunis. 1060 El Manar II, Tunisie

(E-mail: [email protected] ; [email protected])

Received 01 April 2009; revised typescript receipt 04 August 2009; accepted 07 August 2009

Abstract: At Kharrouba (near Tunis City in northern Tunisia), on the southern margin of the Tethyan realm, thePaleocene–Eocene (P–E) transition interval deposition is continuous and complete. Based on high-resolution analysisand quantitative data of planktonic and benthic foraminifera at the Kharrouba section, this transition interval recordsexpanded deposition of the relevant standard planktonic foraminiferal biozones with indicative index species i.e.:Morozovella velascoensis for the latest Paleocene P5 zone, and Acarinina sibaiyaensis for the earliest Eocene E1 zone,Pseudohastigerina wilcoxensis for the E2 zone, Morozovella marginodentata for the E3 zone and Morozovella formosa forthe E4 zone.

This complete section contains benthic foraminiferal assemblages which include calcareous and agglutinatedcosmopolitan deep-water species (DWBF). Among the calcareous deep benthic foraminifera Aragonia velascoensisAnomalinoides rubiginosus, Oridorsalis umbonatus, Nuttallides truempyi, Pullenia coryelli and Tappanina selmensis, arerelatively abundant. These species are the main representatives of the Velasco fauna indicative of a bathyal-abyssalenvironment. Moreover, within this section, the agglutinated species e.g., Glomospira charoides, Karrerulina horrida,Rzehakina epigona, Ammodiscus spp. and Gaudryina pyramidata, assumed to be restricted to deep-seapalaeoenvironments, constitute an important proportion of the benthic foraminiferal assemblages. Therefore, duringthe Paleocene–Eocene transitional period, the Kharrouba area hosted many cosmopolitan deep-sea benthicforaminiferal species as was the case at Zumaya and several DSDP sites.

The depth range tolerances of these deep-marine taxa, both with calcareous and agglutinated test, indicate thatclose to the P/E boundary, the Kharrouba area was located in the lower bathyal environment in the southern Tethysmargin.

Key Words: benthic foraminifera, palaeobathymetry, Paleocene–Eocene, agglutinated, Southern Tethys margin

Kharrouba Kesitinde (Tunus, Güney Tetis Kenarı) Paleosen−Eosen GeçişininForaminifer Biyostratigrafisi ve Paleoortamsal Rekonstrüksiyonu

Özet: Tetis bölgesinin güney kenarında yeralan Kharrouba’da (Tunus şehri yakınları, Kuzey Tunus) Paleosen–Eosen(P–E) geçişini temsil eden döneme ait çökeller devamlı ve tamamdır. Yüksek çözünürlü analizler ile Kharroubakesitindeki planktonik ve bentik foraminiferlerin sayısal verilerine göre bu geçiş dönemi standard planktonikforaminifera biyozonlarını gösterir indeks türlerinide (örneğin: en geç Paleosen P5 Zonu için Morozovella velascoensis,en erken Eosen E1 zonu için Acarinina sibaiyaensis, E2 zonu için Pseudohastigerina wilcoxensis, Morozovella E3 zonuiçin marginodentata ve E4 zonu içi Morozovella formosa) içeren genişletilmiş çökeller ile temsil edilir.

Bu tamamlanmış kesit kalkerli ve aglutine kozmopolit derin deniz türlerini de içeren bentik foraminifer (DDBF)topluluklarını içerir. Kalkerli derin deniz bentik foraminiferleri arasında Aragonia velascoensis Anomalinoidesrubiginosus, Oridorsalis umbonatus, Nuttallides truempyi, Pullenia coryelli ve Tappanina selmensis göreceli olarak enyaygın türlerdir. Bu türler batiyal-abisal ortama işaret eden Valesco faunasının ana temsilcileridir. Bundan başka,kesitteki Glomospira charoides, Karrerulina horrida, Rzehakina epigona, Ammodiscus spp. ve Gaudryina pyramidatagibi derin deniz paleoortamlara ait olduğu varsayılan aglutine türler bentik foraminfer topluluğunun önemli bir

385

Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 19, 2010, pp. 385–408. Copyright ©TÜBİTAKdoi:10.3906/yer-0904-7 First published online 14 August 2009

Page 2: Foraminiferal Biostratigraphy and Palaeoenvironmental

bölümünü temsil ederler. Bu yüzden, Paleosen–Eosen geçiş döneminde, Kharrouba bölgesi Zumaya örneği ile bir çokDSDP bölgesinde olduğu gibi kozmopolit derin deniz foraminifer türlerini barındırmıştır.

Bu kalkerli ve aglutine olmuş derin deniz taksonunun tolera ettiği derinlik Kharrouba bölgesinin P/E sınırına yakınbir dönemde güney Tetis’e ait batiyal ortamda olduğuna işaret etmektedir.

Anahtar Sözcükler: bentik foraminiferler, paleobatimetri, Paleosen–Eosen, yapıştırılmış/aglutine olmuş, güney Tetiskenarı

386

PALEOCENE–EOCENE TRANSITION IN TUNISIA

IntroductionDeep-sea benthic foraminifera are the mostwidespread dwellers on earth and constitute animportant part of the biomass in the bathyal andabyssal deep sea floor (Tjalsma & Lohman 1983;Thomas 2007). However, they still are one of the leastknown fauna. They form diverse assemblages withlow density and high species diversity (Levin et al.2001). Several authors thought that there is arelationship between diversity, bathymetric andlatitude gradients (Culver & Buzas 2000; Levin et al.2001; Rex et al. 2005). Many benthic foraminiferalspecies are cosmopolitan (e.g., Globocassidulinasubglobosa, Glomospira charoides, Cibicidoideshyphalus, Tappanina selmensis) permitting acorrelation between different oceanic assemblages.In addition, several benthic foraminiferal species areconsidered to be good palaeobathymetric markers.The depth range and palaeogeographic distributionof some species have also been widely discussed(Berggren & Aubert 1975; Tjalsma & Lohmann 1983;van Morkhoven et al. 1986; Berggren & Miller 1989;Kuhnt et al. 1989; Murray 1991; Derbel-Damak1993; Kaminski & Gradstein 2005).

However, only a few studies based on benthicforaminiferal assemblages have been carried outaround the Paleocene–Eocene transition in theTethyan Realm similar to those in the Pacific andAtlantic oceans, or of Cretaceous and EarlyPalaegene age. In Spain, Ortiz (1995) is among thosewho studied benthic foraminifera from thenorthwestern Tethys margin (Caravaca and Zumayasections). In the northeastern Peri-Tethys area(Austria), Egger et al. (2003) detailed agglutinatedforaminiferal assemblages and concluded that theyindicated a deep-sea environment. Radionova et al.(2001) pointed out that Bulimina trigonalis andassociated species in Kazakhstan indicated a shallowsea there. Also, many authors working on Egyptian

and Tunisian sections (e.g., Aubert & Berggren 1976;Said 1978; Speijer 1994; Alegret et al. 2005; Guasti etal. 2005; Alegret & Ortiz 2006; Ernst et al. 2006;Karoui-Yaakoub 2006) hold that benthic fauna inthese locations along the southern Tethys marginindicate shallower environments. However, apartfrom Kaminski et al. (1996), who worked onagglutinated benthic foraminifera from theNumidian Flysch in the Rif area (Morocco), deep seabenthic foraminiferal fauna from the southernTethys margin remain insufficiently studied. Bothcalcareous and agglutinated foraminiferalassemblages close to the P/E boundary have beenpoorly documented.

In this paper, we detail calcareous andagglutinated foraminiferal assemblages from thePaleocene–Eocene transition deposits outcroppingat the Kharrouba section (northern Tunisia) in thesouthern Tethys margin and we attempt toreconstruct the palaeoenvironmental conditionsprevailing close to the P/E boundary.

Materials and MethodsIn Northern Tunisia, very few series in thePaleocene–Eocene transition interval are exposed.Often, this interval is included in the upper part ofthe Paleocene clayey deposits of the El HariaFormation (Burollet 1956). Due to erosion, it ismasked by carbonate detritus originating from theoverlying Eocene beds of the Bou DabbousFormation (Fournié 1978). In the Tunis area, about 3km south of Tunis City (Figure 1), and underneaththe lower Eocene (Ypresian) carbonate bar of theBou Dabbous Formation, an expanded intervaldeposition across the Paleocene–Eocene transitionpermitted high resolution sampling. The 29-m-thickinvestigated interval forms the upper part of the ElHaria Formation. It is mainly composed of marl andlimestone alternations providing a gradual transition

Page 3: Foraminiferal Biostratigraphy and Palaeoenvironmental

Eocene

Paleocene

Cretaceous

Jurassic

Triassic

Oligocene

Neogene

Fault

Lybia

Algeria

Alg

eria

8° 10°

36°

34°

TunisEl Kef

G.P.8

Soukra

La Goulette

ArianaSebkhat

Sebkhat

Sedjoumi

G.P

. 2

Ben Arous

Ariana

Birine

Lake

N

0 5 Km

G.P. 1

TUNIS

Quaternary

Tunisia

Kharrouba section

(a)

(b)

10°12'

36°

45'

Figure 1. Location of the Kharrouba section. (a) Geographical setting. (b) Geological setting. The geological outcrops arefrom the geological map of Tunisia, scale: 1/500.000, edited by O.N.M. (1985 and modified).

387

L. ZILI & D. ZAGHBIB–TURKI

to the carbonate bar of the Bou Dabbous Formation.In detail, at the Kharrouba section, five successivelithological units (Figures 2 & 3) have beendistinguished:

Unit U1: grey marls (2.30 m) at the base rich inwell-preserved planktonic and benthic foraminifera.

Unit U2: massive grey calcareous beds (1.20 m)with less abundant foraminifera.

Unit U3: grey marls (3.15 m) which contain moreabundant and well-preserved planktonic and benthicforaminifera.

Unit U4: starting with dark clays, it is mainlycomposed of grey clays (18 m). In this unit,planktonic and benthic foraminifera are variablyabundant. Towards the base and in the dark clays (i.e.from Kh20.20 to Kh18.70), planktonic foraminiferaare present and benthic foraminifera are rare and lessdiversified. The calcareous foraminiferal tests show apartial dissolution. In the rest of this unit, planktonicand benthic foraminifera become more abundantand diversified.

Unit U5: comprises grey marls including thinclayey limestone intercalations (3.95 m). These marls

Page 4: Foraminiferal Biostratigraphy and Palaeoenvironmental

)5P=(sisneocsalevallevozoroM

KKKK KKK

1 5

K

NECOELAPPAREPPU

AITENAHTREPPU

)

K

ramallevozoroMMo

KKKKKKK KKKKK

1E=(.yy.bbyis.cA

K K01 51 02

anireg(

itsahoduesP)2E=(

gsisnexocliw

EN EREWOL

YREWOLNA

)3E=(attaattanedoniggirrg

KKKKKKhKKhKK

52

asomroffoMM.)4E=(

L

ENECOE

NAISERPY

HT

12

)

35

8

746

YGOLOHTIL

EGA

)(m(SSENHCIHSENOZOIB

00,62

hKKh

00,72

hK

09,82

hKKh

04,13

hK

02,22

hK

52,42

hKKh50,

52hK

02,32

hKKh

31

UU

2U

0 58,01

hK

07,31

hKh

05,41

hKKh02,

51hKKh

01,61

hK

00,71

hK06,

71hK

08,11

hKKh

05,21

hK

03,81

hKh

033,3,39911

hhKK

hKK

h

002,12

hKKh

0220,20

22hh

KKh

KKh

4U

57,1h

KKh

05,2h

04,3h

Kh

55,4h

Kh

07,5h

05,6h

05,7h

00,9h

KKh

5U

odicibiCeoisnetS

odicibiCinogarA

odicibiCnimiluB

niregivUUvainelluP

odicibiC

inappppaapTTanimiluB

inappppaapTTa

HainelluP

aludnumsediosimroffoiifiraccebanie

inellasediosisneocsalevai

sisneocsalevsedioatarga

aedicsoborpanaboleuqniuqa

isbbercsedio

1.psaniatatsocimesa

sisnemlesani

lihiilleyrryoca er

acla

cen

ilay

hre

taw-w

pee

DD

SELPMAS

STINU

motsolitSwaznaHHa

aniviloB

nidioryGGyilamonA

egohpiipSnimiluB

inogarA

nimiluBodicibiC

nilevaGdillattuNNu

srodirO

ohpyyprryoCsacobolG

nimiluB

odicibiC

bulocatsA

.ppsallemalihpoopmmaaiaw

.ppsa

susobolgsedionsusonigiigbursedion

atnagelesedionirenesisnetatinirta

sisnenogaraai

sisnemapxxpuuxtasulahpyyphhysedio

acinadalleiyppymmpeurtsed

sutanobmusila

sisneyaaywddwimamotsasobolgbusaniludiss

sisneyaaywddwima

ittenrabsedio seic

epsl

areffei

nima

roffo

ciht

neb

suoe

FC

WD

sutavosu

odicibiC

lamonArasodoNNo

rasodoNNogoduesP

golugnA

olunigaagVVaniluvlaVVaaniviloB

odicibiCnecaraS

odicibiCnilazirB

goduesP

mabalA

ugnasOlamonA

nilatneDlucitneLrasodoNNo

ainelluP

nirussiF

htne

bsu

oera

clac

enil

ayh

htab

yru

Esuirpooprropsedio

atucasedioniatacsignolair

anairapi

airsuluborrotsaniludnalg

silarumanip

reg

.ppssispoop.psairen

atalunerreca

sitsergaagsedio.psairan

sudiculrepoopduespsedi.ppsan

aseboaniludnalgl

sisneyaaywddwimani

earemmulpairalg

ilettizsedioni

.pi

psan.ppsanil

.ppsair

isip

vraja

.ppsan

FC

E

lamonA

romollA

nimiluB

nimiluB

lasyrryhC

edicibiC

knesrrsuFFu

niluttuG

anegaagL

unigrrgaMMa

enoinoNNo

tsoruelP

uoduesP

noinoNNo

lamonA

tsoruelP

omirddrauQ

seic

epsl

areffe

ini

maro

ffoci

h

atucaearpsedioni

sediohcortanihprp

y

sisneihcoka

acinecoelapi

a

.ppsmuinogl

ol

.ppsse

.ppsaniok

sinummocan

.pps

.ppsanilu

.ppsalg

llg

e

acinecoelapallemot

earemmulpaniregip

vu

sisneavah

irellewsedioni

siverreballemot

sedionihprrpomollaanihprrpo

Figure 2. Deep-water hyaline calcareous benthic foraminiferal (DWCF) and hyaline calcareous eurybath (ECF)species range across the Paleocene-Eocene transition in the Kharrouba section. 1– clayey limestone; 2–limestone; 3– clay; 4– marl; 5– gypsum crystals; 6– iron concretions; 7– pyrite crystals; 8– bioturbations.

388

PALEOCENE–EOCENE TRANSITION IN TUNISIA

Page 5: Foraminiferal Biostratigraphy and Palaeoenvironmental

Dorothia retusa

Glomospira sp. 4

Tritaxia spp.

Psammosphaera spp.

Karrerulina conversa

Reticulophragmoides jarvisi

Hormosina velascoensis

Vulvulina advena

Psammosphaera irregularis

Reticulophragmoides spp.

Spiroplectammina spectabilis

Spiroplectinella subhaeringensisGaudryina aissana

Trochamminopsis altiformis

Ammodiscus glabratusAmmodiscus peruvianus

Clavulinoides amorpha Dorothia bulletta

Gaudryina pyramidata

Glomospira charoides

Marssonella oxycona

Nothia robusta

Bathysiphon sp.1

Gaudryina inflata

Spiroplectinella dentata

Rzehakina epigona

Vulvulina mexicana

Bathysiphon gerochi

Karrerulina horrida

Deep-w

ater agglutinated benthic foraminifera species

DW

AF

FT

AA

A

SMA

Haplophragmoides spp.

Morozovella velascoensis (= P5) Morozovella marginodentata (=E3)

Kh 1,75

Kh 2,50

Kh 3,40

Kh 4,55

Kh 10,85

Kh 13,70

Kh 14,50Kh15,20

Kh 17,00Kh 17,60

Kh 5,70

Kh 6,50

Kh 7,50

Kh 9,00

Kh 11,80

Kh 12,50

Kh 18,30

Kh 19.30

Ac. siby.(=E

1)

Kh 26,00

Kh 27,00

Kh 28,90

Kh 31,40

Kh 20,70

Kh 22,20

Kh 21,20

Kh 20,20

Kh 24,25

Kh 25,05

1 5 10

15

20

25

M. formosa (=E4)

Pseudohastigerina wilcoxensis (=E2)

Kh 23,20

U5

U3

U1

U4

U2

SAMPLES

LITHOLOGY

UPPER PALEOCENE LOWER EOCENE

LOWER YPRESIAN UPPER THANETIAN AGE

THICHNESS (m)

UNITS

BIOZONES

P/B

ratio (%)

A/C

ratio (%)

2040

6080

100 %3

58

7 4 6

12

Kh 16,10

2040

6080

100 %

Pseudonodosinella spp.

Ammosphaeroidina sp.

P=(sisneocsalevallevozoroMMo

1 5

ENECOELAPPAREPPU

NAITENAHTREPPU

)5P allevozoroMMo

.yy.bby

iibs.

cA

)1E=

(

01

51

02

anireg(

itsahoduesP)2E=(

gsisnexocliw

E REWOL

YREWOLN

)3E=(atatnedonigrrgam

02

52

asomrrmoffo.MM.)4E=(

ENECOE

NAISERPY

)YGOLOHTIL

EGA

)(m(SSENHCIHTSENOZOIB

35

8

746

12

00,6

2hK

00,7

2hK

09,8

2hK

04,1

3hKKh

02,2

2hKKh

52,4

2hK

50,5

2hK

02,3

2hK

1 3UU

2U

0204

0608

01

0 58,0

1hKKh

07,3

1hKKh

05,4

1hK

02,5

1hKKh

00,7

1hKKh

06,7

1hKKh

08,1

1hK

05,2

1hK

03,8

1hK

033.9911

hhKK

007,0

2hKKh

02,1

2hKKh

022,2,20022

hhKK

4U

01,6

1hK

57,1

hKKh

05,2

hK

04,3

hK

55,4

hKKh

5801

hKKh

07,5

hKKh

05,6

hK

05,7

hK

00,9

hK

5U

0204

0608

01

SELPMAS

STINU

%(oi

tar

B/P

%(oi

tar

C/A

0204

0608

013 862

%00

roD

olG

tirTTr

raKKaiteR

mAmA

olG

taBtaB

raKKa

paapHHa

%0

esP

mA

asuteraihtor

4.psaripsspomo

.ppsaixat

asrevnocanilurerr.ppssediomgarhpoopluci

sutarbalgsucsidomsunaivurepsucsidom

sediorroahcaripsspomo

1.psnohpiipsyhhytihcoregnohpiipsyhhyt

adirrohanilurerr

etan

itul

gga

reta

w-pe

eD

DA

A

.ppssediomgarhpooplp

)%

)%

%0

.ppsallenisodonodu

.psanidioreahpsspom

asP

iteR

roHHo

luVVu

asPripSSp

orroipSSpuaG

corTTr

alCClroD

uaG

aMMa

uaG

ripSSpluVVu

.ppsareahpsspomma

isivrrvajsediomgaagrhpoopluci

sisneocsalevanisomr

anevddvaaniluv

siralugeegrriareahpsspommsilibatcepsspanimmatcelpoopr

sisnegnireahbusallenitcelpoopanassiaaniyrrydu

simroffoiiftlasispoopnimmahc

ahprrpomasedioniluvaattellubaihtor

atadimaryppyaniyrrydu

anocyxxyoallenossr

atalfflnnfianiyrrydu

atatnedallenitcelpoopranacixeexmaniluv

seic

eps

areffe

ini

maro

ffoci

htne

bde

FA

WWA

D

AT

FA

MS

ptoNNoezR

ppatsuboraiht

anogipeepanikkiahe

Figure 3. Planktonic/benthic foraminiferal ratio (P/B) and agglutinated/hyaline calcareous foraminiferal ratio for the A/Cand deep-water agglutinated benthic foraminiferal (DWAF) species range across the Paleocene-Eocene transition inthe Kharrouba section. AA– Abyssal Assemblage; FTA– Flysch-type Assemblages; SMA– Slop Marl Assemblage (for1–8 see Figure 2).

389

L. ZILI & D. ZAGHBIB–TURKI

contain abundant and well-preserved planktonic andbenthic foraminifera.

Sixty two samples (62) were collected from theKharrouba section, spaced at 20 cm intervals close to

the P/E boundary (first half of U4) and at 50 cm to 1m intervals below and above it. All samples werewashed through two sieves (315 μm and 63 μm) andthe obtained residues were dried in a stove at 50 °C

Page 6: Foraminiferal Biostratigraphy and Palaeoenvironmental

390

PALEOCENE–EOCENE TRANSITION IN TUNISIA

for a few days. Exceptionally, rich carbonate sampleswere heated to boiling point. For quantitativeanalyses, at least 300 specimens of benthicforaminifera were recovered from sized fractions >63 μm, using an ‘Otto’ micro-splitter to obtain asuitable fraction with non-selective grain size. Thecalculated relative abundance data are plotted onTable 1. All the counted species were mounted onmicro-slides for a permanent record and depositedin the Invertebrate Palaeontology, Palaeoecology andBiostratigraphy Laboratory Research Unit (DPS):02/UR/10-02 at the Tunis Faculty of Sciences.

Some of the identified species were photographedusing a reflected light microscope and a scanningelectronic microscope SEM (Plate 1). Identificationof benthic foraminiferal species is mainly based onthe Ellis & Messina Micropalaeontology Catalogue(1940 to present) and several works illustrating anddiscussing benthic foraminifera (e.g., Berggren &Aubert 1975; Tjalsma & Lohmann 1983; VanMorkhoven et al. 1986; Bolli et al. 1994; Alegret &Thomas 2001; Kaminski & Gradstein 2005; Alegret& Ortiz 2006; Ortiz 2006).

BiostratigraphyAt the Kharrouba section, the planktonicforaminifera are abundant and diversified. In thissection, the main marker species used to definestandard biozones of the Paleocene–Eocenetransition are recognized. Our biostratigraphicanalysis is based on planktonic foraminiferalbiozonation by Berggren & Pearson (2005) andPearson et al. (2006). These authors utilized analphanumeric notation using the prefix ‘P’ for thePaleocene zones and ‘E’ for the Eocene ones.Therefore, in the studied Paleocene–Eocenetransition interval five biozones have beenrecognized:

Morozovella Celascoensis Zone (P5)This zone is based on the Partial Range of thenominate Zone taxon (Berggren & Pearson 2005). Itcorresponds to the interval between highestoccurrence (HO) of Globanomalina pseudomenardii

(Bolli 1957) and lowest occurrence (LO) of Acarininasibaiyaensis (Molina et al. 1999; Pardo et al. 1999). Inthe Kharrouba section, the P5 Zone intervalcontaining the marker and many other planktonicspecies (e.g., Globanomalina ovalis, Acarininacoalingensis, Morozovella velascoensis, M. aequa, M.acuta, Subbotina velascoensis) was investigated in itsupper part (11.2 m). Its lower part is not covered bythis work.

Acarinina Sibaiyaensis Zone (E1)The base of this Interval Range Zone is defined bythe lowest occurrence (LO) of Acarinina sibaiyaensis(Molina et al. 1999; Pardo et al. 1999). The lowestoccurrence (LO) of Pseudohastigerina wilcoxensismarks the top of this zone (Molina et al. 1999; Pardoet al. 1999). In the Kharrouba section, this zone is 90cm thick. Within it, the marker species (i.e. A.sibaiyaensis) is common and associated withAcarinina africana, Morozovella allisonensis, M.velascoensis and Chiloguembelina trinitatensis.However, in the Kharrouba section, this zone isthinner than in the Dababiya section in Egypt (GSSPfor the P/E boundary), which is ~2.20 m thick(Berggren & Ouda 2003). The E1 Zone isdocumented to contain the stratigraphic record ofisotopic shifts (e.g., Carbon Isotope Excursion CIE)related to the Initial Eocene Thermal MaximumIETM (about 55 Myr ago). Indeed, in the Dababiyasection, the base of this zone coincides with the onsetof a ∂13C excursion (Alegret et al. 2005; Berggren &Pearson 2005; Alegret & Ortiz 2006; Aubry et al.2007) which indicates the P/E boundary.

Pseudohastigerina Wilcoxensis / Morozovellavelascoensis Zone (E2)This interval Zone starts at the lowest occurrence(LO) of Pseudohastigerina wilcoxensis and ends at thehighest occurrence (HO) of Morozovella velascoensis(Bolli 1957; Berggren et al. 1995). In the Kharroubasection, within this 3.2-m-thick E2 Zone, thebiozone biomarker is associated with Subbotinavelascoensis, Morozovella pasionensis, M. acuta, M.apanthesma, M. occlusa, M. velascoensis andChiloguembelina trinitatensis.

Page 7: Foraminiferal Biostratigraphy and Palaeoenvironmental

Samples

Alabamina midwayensisAllomorphina trochoidesAmmodiscus glabratusAmmodiscus peruvianusAmmosphaeroidina sp. Angulogerina muralisAnomalinoides acutaAnomalinoides praeacutaAnomalinoides rubiginosusAnomalinoides welleriAnomalinoides zitteliAragonia aragonensisAragonia velascoensisAnomalinoides spp. Astacolus ovatusBathysiphon gerochiBathysiphon sp.1 Bolivina crenulataBolivina spp. Brizalina spp. Bulimina grataBulimina kochiensis Bulimina midwayensisBulimina paleocenicaBulimina semicostataBulimina trinitatensisBulimina tuxpamensisBulimina spp. Chrysalogonium spp. Cibicides spp. Cibicidoides agrestisCibicidoides alleniCibicidoides barnetti Cibicidoides crebbsiCibicidoides hyphalus Cibicidoides mundulaCibicidoides propriusCibicidoides pseudoperlucidusCibicidoides velascoensisCibicidoides spp. Clavulinoides amorpha Coryphostoma midwayensisCoryphostoma sp. Dentalina spp. Dorothia bullettaDorothia retusaDorothia spp.Fissurina spp. Fursenkoina spp.Gaudryina aissanaGaudryina inflataGaudryina pyramidataGaudryina spp. Gavelinella danicaGlobocassidulina subglobosaGlomospira charoidesGlomospira sp.4 Guttulina communisGyroidinoides globosusGyroidinoides spp. Hanzawaia ammophilaHaplophragmoides spp.Hormosina velascoensisKarrerulina conversaKarrerulina horrida

Kh

31,4

0

4,330,333,003,670,000,000,333,330,001,000,002,000,004,330,33

1,670,00

2,000,001,330,000,330,330,331,000,007,000,670,670,330,000,670,000,002,670,000,000,000,004,331,000,000,673,671,000,000,000,000,330,000,000,670,001,670,001,001,000,330,330,000,000,000,001,000,00

Kh

28,9

04,330,330,331,330,000,000,674,001,000,330,000,000,000,670,004,000,001,336,007,670,000,000,000,330,000,008,334,330,000,330,000,000,000,003,670,000,000,000,003,000,330,000,003,000,670,000,000,330,670,330,002,000,000,331,330,330,000,000,330,000,000,000,000,000,00

Kh

28,1

011,110,000,000,000,000,000,000,000,0011,110,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0022,220,000,000,000,000,000,000,000,000,000,000,0033,330,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00

Kh

27,7

0

3,510,000,000,000,000,000,000,000,000,000,001,750,001,750,001,750,000,000,001,750,000,000,000,000,000,000,007,020,000,000,000,000,000,000,000,000,000,000,007,020,000,000,001,750,000,001,750,0012,280,000,001,750,000,000,000,000,000,000,000,000,000,000,000,000,00

Kh

27,0

0

3,990,331,990,330,000,000,000,000,333,990,000,330,001,660,005,650,334,650,335,980,000,000,000,001,660,000,331,660,000,000,001,000,000,001,330,001,001,660,000,331,660,000,009,300,000,000,000,004,980,000,002,660,001,990,000,000,000,000,000,000,000,000,000,000,00

Kh

26,0

0

0,980,330,000,650,000,000,000,000,001,630,001,630,001,960,003,590,331,635,236,540,000,001,310,650,000,331,963,270,002,290,000,330,000,330,000,000,000,650,003,923,272,610,008,170,000,000,000,001,960,000,000,650,650,650,330,330,000,000,330,000,000,000,000,000,00

Kh

25,6

0

3,320,330,661,660,000,000,000,000,334,320,000,001,000,660,004,321,660,330,004,980,330,000,000,660,000,002,660,000,001,331,000,000,000,001,000,330,002,660,006,641,000,000,004,320,330,000,000,000,000,000,001,330,000,661,330,000,000,001,330,000,000,000,000,000,00

Kh

25,3

5

2,330,000,000,000,000,000,000,000,662,660,000,000,331,660,001,000,000,661,335,980,000,330,000,660,000,667,317,310,001,990,000,000,000,330,000,000,001,330,008,310,000,000,004,650,660,000,000,666,980,000,000,330,001,000,660,000,000,000,000,000,000,000,000,000,00

Kh

25,0

5

1,000,330,000,670,000,000,000,000,331,670,000,000,332,670,331,002,000,000,003,330,000,000,001,33

0,000,6713,002,330,004,000,000,000,000,001,670,000,000,670,0014,330,000,000,007,000,000,000,001,000,670,000,002,000,000,330,330,000,000,330,670,000,000,000,000,000,00

Kh

24,8

5

2,750,311,220,000,000,000,000,002,142,750,000,000,311,220,000,614,592,140,003,060,000,000,000,312,450,004,892,750,006,120,000,000,000,000,000,000,003,360,0010,400,610,000,003,360,920,000,000,000,610,000,002,140,001,220,920,310,000,000,000,000,000,000,000,000,00

Kh

24,6

5

0,330,001,000,000,000,000,000,001,663,990,000,000,002,660,000,004,982,330,000,000,000,331,330,000,000,006,640,000,002,331,990,000,000,001,661,000,001,990,006,640,330,000,008,311,660,660,000,000,330,000,001,990,001,990,662,330,000,001,000,000,000,000,000,330,00

Kh

24,4

5

0,650,001,950,970,000,000,000,000,004,870,000,001,300,000,324,870,0011,360,005,520,000,000,000,320,000,327,470,001,621,300,001,950,000,970,320,000,000,000,002,921,300,000,0011,690,000,000,000,000,000,000,001,300,000,650,320,650,000,000,000,000,000,000,000,651,30

Kh

24,2

5

2,620,000,660,000,000,000,000,000,981,640,000,000,662,620,000,331,970,330,004,920,001,640,330,330,660,333,931,310,000,000,980,000,000,000,001,640,002,620,007,211,642,300,009,182,950,000,980,982,300,000,000,000,001,310,330,330,000,000,000,000,000,000,000,000,33

Kh

23,8

5

4,230,001,811,210,000,000,301,511,211,510,000,000,002,110,001,210,603,630,003,320,000,000,910,000,000,004,230,910,910,000,001,510,000,000,000,000,002,110,0010,272,110,300,005,440,300,000,000,000,000,000,001,510,001,510,602,420,000,000,910,000,000,000,300,001,21

Kh

23,6

0

0,000,331,991,990,000,000,000,000,334,970,000,001,661,990,000,002,3215,230,004,640,000,330,990,000,000,004,300,000,000,001,662,650,000,330,000,000,330,000,005,632,320,000,002,980,330,000,000,000,330,000,000,990,000,660,000,990,000,660,000,000,000,000,000,330,00

Kh

23,4

0

2,810,630,310,630,000,000,003,752,810,000,000,000,310,000,001,880,000,310,009,690,000,310,000,000,000,943,130,000,003,130,000,000,000,000,310,000,004,380,0010,311,880,000,004,690,630,000,000,001,560,000,000,940,002,810,630,310,000,000,000,000,000,000,000,310,00

Kh

23,2

0

0,330,005,300,990,000,000,001,990,000,990,000,000,331,990,003,311,990,000,008,280,000,330,661,320,330,002,320,330,002,980,660,000,000,000,330,000,000,000,000,003,641,320,0010,930,000,000,000,332,320,000,001,320,000,660,330,330,000,330,000,000,000,000,000,000,66

Kh

22,0

5

0,000,004,095,031,571,260,001,570,315,660,000,000,000,630,002,523,462,200,001,570,000,000,000,000,940,005,350,000,310,630,940,000,000,000,000,000,000,000,008,180,000,000,00

11,950,000,000,000,000,000,000,000,940,000,941,571,890,000,000,000,000,000,000,312,831,89

Kh

22,2

0

2,190,310,310,940,000,000,000,000,311,250,000,001,882,510,001,250,000,630,007,840,002,510,630,000,000,009,400,940,004,390,000,000,000,002,190,000,003,450,003,760,630,000,007,840,940,000,000,940,000,000,001,250,001,250,310,630,000,310,310,000,000,000,000,000,00

Kh

22,3

0

1,330,005,332,331,670,670,001,000,330,000,000,330,330,330,001,335,002,670,002,000,000,001,000,334,330,337,671,330,672,001,332,000,001,330,670,000,000,000,005,670,000,000,006,000,000,000,000,000,000,000,001,330,001,002,336,670,000,000,000,330,001,330,001,001,67

Kh

22,7

0

1,320,000,000,000,000,000,000,000,661,320,000,000,330,000,002,630,662,630,004,610,001,640,990,000,000,335,262,960,008,220,330,000,000,001,640,000,000,000,001,321,640,000,336,580,990,000,000,003,290,000,001,320,002,960,660,000,000,000,000,000,000,000,000,000,00

Kh

23,0

0

0,670,001,000,000,000,670,001,671,000,000,000,331,002,000,001,670,672,670,007,670,001,000,330,000,000,003,330,670,008,000,330,000,000,001,670,000,004,330,004,672,000,001,335,670,330,330,000,330,330,000,001,670,002,000,000,000,000,000,000,000,000,000,000,000,00

Lagena spp. Lenticulina spp. Marginulina spp. Marssonella oxycona

0,33 2,67 0,00 0,00 1,00 1,63 1,00 2,99 5,33 2,45 4,32 0,00 0,983,33 9,00 0,00 7,02 6,31 3,92 9,30 2,66 6,00 3,36 4,32 2,60 6,561,67 0,33 0,00 3,51 1,00 0,98 0,33 1,00 0,00 0,61 0,33 0,00 0,980,67 0,33 0,00 0,00 0,66 0,00 0,33 0,00 0,33 0,31 0,00 0,00 0,00

0,00 1,32 4,06 0,66 2,00 1,64 1,00 2,19 0,005,74 4,30 7,81 1,99 9,33 7,24 4,00 6,90 5,660,00 0,00 0,00 2,32 0,33 1,64 1,00 1,25 0,000,00 0,33 1,56 0,33 1,00 1,32 0,00 0,94 0,00

Table 1 and Continues (a, b, c, d, e & f). Relative abundance of benthic foraminiferal species in the Kharrouba sectioncalculated from about 300 specimens contained in > 63 μm fraction of clayey samples. Low values calculatedin clayey samples Kh19.90, Kh19.60, Kh19.30 and Kh19 are representative of E1 Bizone. Low values calculatedin calcareous samples are indicated by (*).

391

L. ZILI & D. ZAGHBIB–TURKI

Page 8: Foraminiferal Biostratigraphy and Palaeoenvironmental

Samples

Alabamina midwayensisAllomorphina trochoidesAmmodiscus glabratusAmmodiscus peruvianusAmmosphaeroidina sp. Angulogerina muralisAnomalinoides acutaAnomalinoides praeacutaAnomalinoides rubiginosusAnomalinoides welleriAnomalinoides zitteliAragonia aragonensisAragonia velascoensisAnomalinoides spp.Astacolus ovatusBathysiphon gerochiBathysiphon sp.1 Bolivina crenulataBolivina spp.Brizalina spp.Bulimina grataBulimina kochiensis Bulimina midwayensisBulimina paleocenicaBulimina semicostataBulimina trinitatensisBulimina tuxpamensisBulimina spp.Chrysalogonium spp.Cibicides spp.Cibicidoides agrestisCibicidoides alleniCibicidoides barnetti Cibicidoides crebbsiCibicidoides hyphalus Cibicidoides mundulaCibicidoides propriusCibicidoides pseudoperlucidusCibicidoides velascoensisCibicidoides spp.Clavulinoides amorpha Coryphostoma midwayensisCoryphostoma sp.Dentalina spp.Dorothia bullettaDorothia retusaDorothia spp.Fissurina spp.Fursenkoina spp.Gaudryina aissanaGaudryina inflataGaudryina pyramidataGaudryina spp.Gavelinella danicaGlobocassidulina subglobosaGlomospira charoidesGlomospira sp.4Guttulina communisGyroidinoides globosusGyroidinoides spp.Hanzawaia ammophilaHaplophragmoides spp.Hormosina velascoensisKarrerulina conversaKarrerulina horridaLagena spp.Lenticulina spp.Marginulina spp.Marssonella oxycona

Kh

21,8

0

0,330,004,002,000,000,000,001,670,000,330,000,000,670,000,001,338,673,000,003,670,000,000,000,000,000,005,671,000,000,004,330,670,000,000,000,000,002,670,002,333,670,000,006,000,000,000,000,000,000,000,002,330,002,002,333,330,000,000,000,000,330,000,001,332,670,674,670,000,00

Kh

21,6

02,000,001,331,330,000,000,670,330,670,000,000,000,672,000,003,331,670,000,002,670,331,002,000,000,000,006,000,000,004,331,000,000,000,001,670,000,006,000,006,332,000,00

0,004,000,670,000,001,000,000,000,006,330,003,330,670,330,000,000,000,000,000,000,000,330,002,336,330,331,00

Kh

21,2

0

2,950,000,000,000,000,000,001,641,640,000,000,000,664,920,000,331,310,660,004,260,000,000,330,000,980,005,570,980,003,280,001,970,000,000,000,000,002,300,005,571,970,660,005,900,660,000,000,330,000,000,002,300,001,310,660,330,000,000,000,000,000,000,000,000,660,003,930,330,98

Kh

20,7

0

0,990,002,961,320,330,000,004,280,990,000,000,000,660,000,000,990,336,910,007,890,000,990,660,330,000,001,970,000,000,001,322,630,000,000,000,000,001,970,336,252,300,660,006,910,000,000,000,000,000,000,000,990,001,320,001,320,000,000,000,000,000,000,660,000,662,301,971,970,00

Kh

20,2

0

2,330,000,000,330,000,000,002,670,000,000,000,000,002,670,000,330,670,000,003,000,002,331,000,000,000,009,670,670,002,330,000,000,000,000,670,000,003,330,009,331,000,00

0,003,332,330,000,001,330,330,000,003,000,002,330,330,330,000,000,000,000,000,000,000,000,003,338,000,670,33

Kh

19,9

0

0,000,006,384,260,000,001,060,000,000,000,000,00

0,000,000,006,3811,703,190,000,000,00

0,000,000,000,000,0014,891,060,001,060,000,000,006,380,000,000,000,000,004,262,130,000,003,190,000,000,000,000,000,000,001,060,000,000,007,450,000,000,000,000,001,060,000,000,000,003,190,000,00

Kh

19,6

0

0,000,005,063,800,000,000,000,000,630,630,000,00

0,000,000,008,8611,394,430,002,530,00

0,000,000,000,000,003,800,000,001,270,000,000,002,530,630,000,000,000,000,000,630,000,0013,920,000,000,000,000,000,000,000,630,001,270,636,960,000,000,000,000,000,000,002,531,900,005,060,000,00

Kh

19,3

0

0,000,410,000,410,000,000,820,000,001,630,000,410,000,410,002,450,000,410,009,80

0,411,630,000,000,000,006,120,000,007,760,821,630,410,001,220,000,004,900,416,532,040,000,004,900,820,000,000,410,410,000,002,040,004,491,630,000,000,000,000,000,820,000,000,000,000,416,120,820,00

Kh

19,0

0

1,140,00

0,000,570,000,000,570,000,003,410,001,700,001,700,000,000,001,700,009,090,00

2,270,000,000,000,001,143,980,003,412,270,000,000,006,820,00

0,005,680,007,392,270,000,000,001,140,000,001,140,000,000,002,840,000,000,000,000,000,000,000,000,000,000,000,000,001,146,250,570,57

Kh

18,7

0

2,330,000,330,330,000,000,001,000,000,000,000,330,000,000,000,663,650,000,006,310,330,660,330,000,000,001,331,990,001,001,330,000,000,000,330,000,001,000,3311,961,660,000,009,301,000,000,000,000,000,000,003,320,001,330,330,330,000,660,000,000,000,000,000,330,003,995,651,000,00

Kh

18,0

0

0,990,660,001,970,330,000,000,990,000,000,000,000,001,320,001,974,281,640,003,290,00

0,000,000,663,290,004,610,000,001,970,000,000,000,000,330,000,000,990,0011,183,620,000,006,910,000,000,000,000,000,000,005,260,000,001,971,320,000,000,000,000,000,000,000,000,991,973,290,660,00

Kh

17,8

0

0,660,001,331,000,660,000,001,660,000,330,000,66

0,000,000,001,991,661,990,005,650,00

1,000,000,335,320,002,990,330,003,652,990,000,000,000,660,000,000,000,008,312,660,000,005,320,000,000,000,330,330,000,662,990,002,330,331,000,000,000,000,000,330,000,000,000,003,325,981,000,33

Kh

17,6

0

1,670,000,000,000,000,000,000,000,002,670,001,00

0,001,000,001,001,000,000,0013,670,00

3,330,000,001,000,333,003,330,001,673,670,000,000,000,000,000,000,000,004,670,670,000,002,330,000,000,001,335,000,000,000,000,330,671,330,670,000,001,000,000,000,000,000,000,334,674,000,670,67

Kh

17,4

0

2,650,000,330,660,000,330,000,000,331,660,000,00

0,001,320,000,330,331,321,992,320,33

0,000,660,990,660,332,650,000,005,632,980,000,001,320,000,000,002,320,006,951,320,000,003,971,320,000,000,990,660,000,001,320,000,661,990,330,000,000,000,000,330,000,000,330,001,993,640,330,00

Kh

17,2

0

0,320,320,001,590,320,320,000,000,002,550,000,32

0,002,870,005,410,960,000,000,960,00

0,320,640,000,640,004,460,640,002,232,870,000,000,000,960,000,000,640,004,782,550,000,0011,460,000,000,000,000,002,232,872,230,001,910,000,640,000,000,320,000,000,000,000,000,001,595,730,640,32

Kh

17,0

0

0,000,002,240,960,000,000,000,320,002,240,000,32

0,001,600,001,920,960,000,004,490,00

2,240,320,320,640,001,280,000,002,880,000,000,000,000,960,000,001,920,006,732,560,000,327,370,640,000,001,280,001,600,641,920,001,920,000,000,000,000,320,000,000,000,000,000,001,606,092,560,96

Kh

16,8

0

1,330,000,330,000,000,330,000,000,003,670,000,670,002,330,001,330,331,330,005,670,00

2,000,000,670,000,002,000,000,334,67

3,670,000,000,001,330,000,004,000,004,672,330,000,007,330,000,000,000,331,00

0,000,001,000,000,670,000,33

0,000,000,000,000,000,000,000,000,002,677,670,000,33

Kh

16,6

0

0,520,000,002,850,000,000,000,000,262,330,000,78

0,001,300,002,851,550,520,006,740,00

0,781,040,520,520,001,300,000,007,770,000,000,000,000,000,000,000,520,0011,921,810,260,008,030,000,000,000,000,000,260,002,070,000,524,400,520,000,001,040,000,000,00

0,260,520,002,593,891,300,00

Kh

16,4

0

1,290,000,322,250,000,000,001,290,002,570,001,29

0,002,250,000,320,002,570,008,680,00

3,860,320,002,890,001,930,000,005,140,000,000,000,001,930,000,000,960,004,501,610,000,005,790,640,000,000,640,000,000,000,000,001,290,960,320,000,000,000,000,000,000,000,000,003,864,181,610,64

Kh

16,3

0

2,330,330,330,000,000,000,000,000,331,330,001,00

0,000,000,002,000,000,330,002,670,00

0,000,330,330,000,001,330,000,006,000,330,000,000,002,000,000,000,000,0010,334,000,000,003,330,670,000,000,000,000,330,001,330,001,002,000,330,000,330,330,000,000,000,000,000,005,679,671,330,67

Kh

16,1

0

0,320,320,320,320,000,000,000,000,001,610,000,320,004,180,004,180,001,610,005,470,00

0,320,640,001,610,000,640,960,001,612,250,000,000,000,960,000,001,930,006,112,570,000,008,040,960,000,000,642,250,000,000,640,000,642,250,320,000,321,290,000,000,000,000,000,003,228,040,640,32

Kh

15,9

0

0,330,00

0,001,000,000,000,000,001,331,990,002,330,004,320,000,000,331,990,008,310,00

1,331,330,000,660,001,992,990,004,320,330,000,000,000,330,000,000,000,006,312,660,000,004,980,330,000,001,000,000,330,001,000,001,993,320,000,000,000,660,000,000,000,000,000,005,655,98

0,330,00

Table 1b.

392

PALEOCENE–EOCENE TRANSITION IN TUNISIA

Page 9: Foraminiferal Biostratigraphy and Palaeoenvironmental

Samples

Alabamina midwayensisAllomorphina trochoidesAmmodiscus glabratusAmmodiscus peruvianusAmmosphaeroidina sp. Angulogerina muralisAnomalinoides acutaAnomalinoides praeacutaAnomalinoides rubiginosusAnomalinoides welleriAnomalinoides zitteliAragonia aragonensisAragonia velascoensisAnomalinoides spp.Astacolus ovatusBathysiphon gerochiBathysiphon sp.1 Bolivina crenulataBolivina spp.Brizalina spp.Bulimina grataBulimina kochiensis Bulimina midwayensisBulimina paleocenicaBulimina semicostataBulimina trinitatensisBulimina tuxpamensisBulimina spp.Chrysalogonium spp.Cibicides spp.Cibicidoides agrestisCibicidoides alleniCibicidoides barnetti Cibicidoides crebbsiCibicidoides hyphalus Cibicidoides mundulaCibicidoides propriusCibicidoides pseudoperlucidusCibicidoides velascoensisCibicidoides spp.Clavulinoides amorpha Coryphostoma midwayensisCoryphostoma sp.Dentalina spp.Dorothia bullettaDorothia retusaDorothia spp.Fissurina spp.Fursenkoina spp.Gaudryina aissanaGaudryina inflataGaudryina pyramidataGaudryina spp.Gavelinella danicaGlobocassidulina subglobosaGlomospira charoidesGlomospira sp.4Guttulina communisGyroidinoides globosusGyroidinoides spp.Hanzawaia ammophilaHaplophragmoides spp.Hormosina velascoensisKarrerulina conversaKarrerulina horridaLagena spp.Lenticulina spp.Marginulina spp.Marssonella oxycona

Kh

15,6

01,000,330,000,000,000,000,000,000,333,320,001,990,004,320,001,660,000,330,006,980,001,660,000,001,660,002,331,330,331,990,330,000,000,000,330,000,000,660,009,300,330,660,003,650,000,000,000,000,660,001,000,330,001,001,000,330,000,000,000,000,000,000,000,000,002,665,321,660,33

Kh

15,2

00,660,000,332,980,000,330,000,000,662,980,001,660,003,970,000,990,990,330,004,300,000,331,320,331,320,003,310,000,003,640,000,000,000,000,000,000,003,640,005,632,980,330,007,950,330,000,001,320,660,000,333,310,002,320,000,000,000,660,000,000,000,000,000,000,003,316,290,000,99

Kh

14,8

0

1,000,000,000,330,000,330,000,000,662,330,001,660,003,650,001,000,001,000,004,980,002,330,000,000,000,001,660,000,005,320,000,000,000,001,000,000,001,330,007,640,660,000,009,970,660,000,000,000,000,000,331,000,000,000,330,000,000,001,000,000,000,000,000,000,004,659,631,330,33

Kh

14,5

0

0,000,000,000,000,000,000,000,000,331,000,000,670,002,330,002,670,004,330,004,000,000,670,330,000,000,006,332,330,332,330,000,000,000,003,000,000,002,330,005,000,000,000,0015,000,670,000,000,005,670,000,670,000,000,000,000,000,000,000,000,330,000,000,000,000,002,006,332,330,00

Kh

14,1

0

0,000,000,000,000,000,000,000,331,673,000,000,670,001,670,000,670,000,330,003,330,001,670,330,000,000,335,671,000,002,002,000,000,000,332,000,000,000,330,0013,672,330,000,0012,330,330,000,000,335,000,000,331,000,000,000,670,000,000,000,000,000,000,000,000,000,002,337,331,000,33

Kh

13,7

0

3,00

0,00

0,00

0,33

0,00

0,00

0,00

0,00

0,00

5,33

2,33

7,00

0,00

1,33

0,00

0,33

0,00

0,33

0,00

1,67

0,00

0,33

0,67

0,000,00

0,00

3,33

0,00

0,00

2,00

0,000,00

0,00

0,00

3,33

0,00

0,00

0,33

0,00

10,67

1,33

0,00

0,00

4,33

0,33

0,00

0,00

0,00

1,00

0,00

1,67

2,67

0,00

2,00

0,33

0,00

0,00

0,00

0,00

0,00

0,67

0,00

0,00

0,00

0,00

3,00

7,00

0,00

3,00

Kh

13,3

5

0,000,000,321,620,000,000,000,000,004,220,000,320,001,620,000,002,270,970,007,140,001,950,000,000,650,001,950,650,004,550,000,000,000,002,600,000,000,000,0011,042,270,000,004,220,000,000,001,302,920,000,001,300,001,622,600,000,000,320,000,000,000,000,000,000,003,904,220,650,32

Kh

12,5

0

0,330,330,000,000,000,000,000,000,003,330,330,670,000,000,000,000,331,670,009,330,002,670,000,000,000,679,005,000,672,670,000,000,000,001,670,000,000,000,009,670,000,000,004,670,000,000,000,000,670,000,331,670,000,330,670,000,000,000,000,000,000,000,000,000,002,007,000,670,00

Kh

11,8

0

1,330,000,330,000,000,000,000,000,004,000,000,000,004,000,002,670,003,673,337,670,000,001,670,000,330,007,336,000,330,670,000,000,000,002,000,000,000,000,007,670,330,000,002,000,330,000,000,335,670,000,000,000,002,000,670,000,000,000,000,000,000,000,000,000,002,334,330,670,00

Kh

10,8

5

0,660,000,330,000,000,000,001,660,335,320,001,000,003,320,001,000,000,660,000,330,000,331,000,000,000,003,321,000,001,666,310,000,000,003,650,000,002,330,007,971,660,000,005,320,000,000,000,002,990,000,000,330,000,660,000,000,001,000,001,990,000,000,000,000,001,668,640,330,66

Kh

9,00

5,950,000,000,000,000,000,000,000,000,000,000,000,0010,710,001,191,191,190,002,380,000,000,001,191,190,000,004,760,000,000,000,000,000,002,380,000,000,000,0013,100,000,000,007,140,000,000,000,000,000,001,190,000,000,000,000,000,000,000,001,190,000,000,000,000,000,004,760,000,00

Kh

7,50

3,330,000,670,000,000,000,000,000,005,671,000,330,002,000,004,331,330,670,673,330,002,332,330,000,000,333,003,000,002,330,000,000,000,001,000,000,000,330,004,001,000,330,005,670,330,000,000,001,670,001,001,000,000,330,670,670,000,000,000,670,000,000,00

0,000,000,3311,001,000,00

Kh

6,50

4,300,332,651,660,000,000,000,000,000,660,662,650,000,000,006,952,980,990,001,990,000,660,660,330,000,001,990,990,005,960,660,000,000,003,970,000,000,330,007,281,321,320,009,600,330,000,330,000,660,000,000,330,993,310,662,320,000,000,000,330,000,000,000,000,000,333,640,000,99

Kh

5,70

2,250,320,320,640,000,000,000,000,002,570,002,570,000,000,000,000,000,003,223,220,002,250,320,000,000,001,930,000,324,820,000,000,000,001,930,000,000,000,0011,253,540,000,007,720,960,000,000,641,610,000,000,960,000,321,611,290,000,000,001,930,000,000,000,000,001,935,790,960,96

Kh

4,55

4,001,002,000,670,000,000,000,000,006,670,000,330,002,670,000,003,000,000,000,000,001,000,670,000,000,002,000,000,000,001,000,000,000,001,330,000,000,670,0014,332,000,000,002,330,000,000,000,330,000,000,333,670,000,670,001,330,000,000,000,000,330,000,000,000,001,337,001,330,00

Kh

3,40

1,000,671,671,330,000,000,000,000,004,000,000,000,000,000,007,330,330,001,331,000,000,670,000,330,000,002,001,000,333,670,000,000,000,003,000,000,005,000,007,672,000,000,0011,000,000,000,000,000,670,330,000,670,001,002,001,330,000,000,001,000,000,000,000,000,001,676,331,000,33

Kh

2,50

2,610,000,981,630,000,000,000,000,335,560,331,310,000,000,005,231,960,000,005,560,000,000,000,000,000,330,651,310,653,270,000,000,000,000,000,000,003,590,0013,400,980,000,006,210,000,000,000,000,000,000,001,310,003,270,653,270,000,330,330,000,000,000,000,000,002,617,520,000,65

Kh

1,75

1,141,142,841,990,000,000,000,000,002,840,001,140,000,000,003,981,990,000,000,000,003,410,570,280,000,002,840,000,854,550,000,000,570,001,420,000,000,000,007,673,132,270,007,952,560,000,000,000,850,000,570,850,001,140,573,690,001,140,000,000,000,000,000,000,850,286,821,421,14

Table 1c.

393

L. ZILI & D. ZAGHBIB–TURKI

Page 10: Foraminiferal Biostratigraphy and Palaeoenvironmental

Morozovella Marginodentata Zone (E3)It is a Partial Range Zone. The HO of Morozovellavelascoensis marks its base and the LO of Morozovellaformosa indicates its top (Pearson et al. 2006). In theKharrouba section, across the 13.6-m-thick E3 Zone,the nominate zone taxon is associated with M.subbotinae, M. aequa, Subbotina roesnaesensis,Chiloguembelina wilcoxensis and Subbotinapseudoeocaena.

Morozovella Formosa Zone (E4)This spans the interval between the LO ofMorozovella formosa and the LO of Morozovella

aragonensis. In the Kharrouba section, only the lowerpart of this zone (~2 m) has been investigated in thiswork. In it, the zone biomarker is associated withChiloguembelina wilcoxensis and diverseMorozovellids (e.g., Morozovella marginodentata, M.formosa, M. lensiformis, M. subbotinae) andAcarininids (e.g. Acarinina interposita, A. quetra).

Benthic Foraminifera Through the Cretaceous and Cenozoic periods,benthic foraminifera with calcareous andagglutinated tests make up different assemblages,depending on their palaeodepth habitats, oxygen andnutrients supply. About the palaeodepth, based on

Samples

Kh

31,4

0

Kh

28,9

0

Kh

28,1

0

Kh

27,7

0

Kh

27,0

0

Kh

26,0

0

Kh

25,6

0

Kh

25,3

5

Kh

25,0

5

Kh

24,8

5

Kh

24,6

5

Kh

24,4

5

Kh

24,2

5

Kh

23,8

5

Kh

23,6

0

Kh

23,4

0

Kh

23,2

0

Kh

22,0

5

Kh

22,2

0

Kh

22,3

0

Kh

22,7

0

Kh

23,0

0

0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,67 0,00 0,00 0,00 0,00

0,00 0,33 0,00 0,00 0,00 0,66 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,66 0,00 0,31 0,00

0,00 0,00 0,00 0,00 0,31 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,31

0,00 0,00 0,33 0,33 0,31 0,66 1,95 0,00 0,00 0,33 0,00 3,31 1,33 0,33 0,00 0,00 0,000,00 0,00 0,00 0,33 0,61 0,00 0,00 0,00 0,30 0,00 1,25 0,66 0,00 0,00 0,67 0,31 0,00

0,00 0,00 0,33 0,33 2,45 1,99 0,00 0,98 1,21 0,66 0,63 0,33 2,33 0,99 1,00 0,63 0,002,61 1,00 0,33 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Nodosaria longiscataNodosaria parianaNodosaria spp.

Nonion havaensisNonionella spp.

Nothia robustaNuttallides truempyiOridorsalis umbonatusOsangularia plummeraePleurostomella brevisPleurostomella paleocenicaPleurostomella spp.

Pseudoglandulina obesaPseudoglandulina strobulus Pseudoglandulina spp.

Psammosphaera irregularisPsammosphaera spp.

Pseudonodosinella spp.

Pullenia coryelliPullenia jarvisiPullenia quinquelobaPullenia spp.

Fissurina spp. Quadrimorphina allomorphinoidesRecurvoides retroseptusReticulophragmoides jarvisiReticulophragmoides spp.Rzehakina epigonaSaccammina spp.Saracenaria sp.Siphogenerinoides elegantaSpiroplectammina spectabilisSpiroplectammina spp.Spiroplectinella dentataSpiroplectinella subhaeringensisStensioeina beccariiformis Stilostomella spp. Tappanina selmensisTappanina sp.1

Tritaxia spp.

Trochamminopsis altiformisUvigerina proboscideaUnknown speciesVaginulopsis spp.

Valvulineria sp.

Vulvulina mexicanaVulvulina advena

Total specimens

1,00

0,005,33

0,00

0,33

1,67

6,00

3,33

0,00

0,00

1,00

1,67

0,000,00

0,330,00

0,00

0,00

0,00

1,33

0,000,00

0,67

0,00

0,000,00

0,00

4,67

0,00

0,00

0,00

0,670,00

0,00

0,330,00

0,67

1,67

0,000,00

0,000,00

1,670,000,00

0,67

2,33

300

0,67

0,001,67

0,33

0,00

6,00

4,33

0,33

0,00

0,00

0,00

1,67

0,000,00

0,000,00

0,00

0,00

0,00

1,33

0,000,00

0,33

0,00

0,000,00

0,00

3,000,00

0,00

0,00

0,000,00

0,00

0,670,00

0,00

4,67

0,000,00

0,000,00

1,000,000,00

0,00

0,00

300

0,00

0,0011,11

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,000,00

0,000,00

0,00

0,00

0,00

11,11

0,000,00

0,00

0,00

0,000,00

0,00

0,000,00

0,00

0,00

0,000,00

0,00

0,000,00

0,00

0,00

0,000,00

0,000,00

0,000,000,00

0,00

0,00

9*

1,75

0,008,77

1,75

0,00

0,00

1,75

0,00

1,75

0,00

0,00

0,00

0,000,00

0,000,00

0,00

0,00

0,00

0,00

0,000,00

0,00

0,00

0,000,00

0,00

3,510,00

0,00

0,00

0,000,00

0,00

0,001,75

0,00

0,00

0,000,00

0,000,00

24,560,000,00

1,75

0,00

57*

2,99

0,663,99

0,00

0,00

0,00

1,99

1,99

0,33

1,66

1,00

0,33

0,330,33

0,000,00

0,00

0,66

0,66

0,00

1,000,00

0,33

0,00

0,000,00

0,00

3,320,00

0,00

1,33

0,330,00

0,00

0,330,33

1,99

1,33

0,000,00

0,000,00

2,330,000,00

1,66

0,33

301

0,98 2,66 0,00 0,00 0,00 0,00 0,97 0,33 0,30 0,66 0,00 0,00 0,00 0,00 0,00 0,00 2,83

0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,636,54 6,64 6,98 3,00 4,89 3,99 3,90 1,64 3,93 2,98 3,75 3,31 1,33 6,25 2,33 1,25 5,03

0,65 0,00 0,00 0,00 0,61 0,00 0,00 0,00 0,00 0,99 0,00 0,00 0,00 0,00 0,00 0,00 0,00

0,00 0,00 1,33 1,00 0,31 0,33 0,00 0,66 0,00 0,00 0,31 0,00 1,00 0,33 0,00 0,31 0,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

5,23 8,31 5,65 3,33 3,67 4,32 6,17 7,87 12,39 10,60 6,25 3,31 7,67 6,91 3,33 3,13 5,03

0,33 1,66 0,33 1,67 0,00 0,66 0,32 0,66 0,60 0,33 0,31 2,32 2,33 5,92 1,00 2,19 0,94

0,00 0,00 0,33 0,33 0,00 0,00 0,00 0,33 0,30 0,66 0,00 0,00 0,33 0,33 0,00 0,00 0,00

1,63 0,33 3,32 0,00 1,83 0,00 0,32 1,31 1,21 1,32 0,31 2,32 0,67 1,32 0,00 0,00 0,00

3,59 1,33 0,33 0,00 0,00 0,00 1,62 0,33 0,91 0,99 0,31 0,66 0,33 1,32 1,33 3,13 0,00

0,65 0,00 1,66 2,33 0,00 4,98 0,00 0,00 0,00 0,00 1,88 0,00 3,33 0,00 0,00 0,00 0,00

0,33 0,00 0,33 0,33 0,00 0,00 0,00 0,66 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,63 0,00

0,00 0,00 0,00 0,00

0,33 0,00 0,00 0,00

0,33 1,00 0,00 0,33

0,00 0,00 0,00 0,00

0,00 0,00 0,00 0,00

0,00 0,00 0,00 0,00

2,61 5,32 2,99 5,67

0,00 0,00 0,00 0,00

0,00 0,00 0,00 0,00

1,63 0,00 1,33 0,33

0,00 0,33 0,00 0,000,00 0,00 0,00 0,00

0,00 0,00 0,66 0,00

3,59 6,64 3,65 4,00

0,00 0,00 0,00 0,000,33 0,00 0,33 0,00

0,00 0,00 0,66 0,33

0,00 0,00 0,33 0,000,00 0,00 0,00 0,00

0,00 0,00 0,00 0,000,00 0,00 0,00 0,00

1,31 2,33 1,66 0,000,00 0,00 0,00 0,00

0,65 0,00 0,00 0,00

1,31 0,66 0,00 0,00

0,00 0,00 0,00 0,33

306 301 301 300

0,00 0,00 0,00

0,00 0,00 0,00

0,00 0,33 0,00

0,00 0,00 0,00

0,61 0,66 0,97

0,00 0,00 2,27

7,95 3,99 5,190,00 0,00 0,65

0,00 0,33 0,00

0,00 0,66 0,32

0,00 0,00 0,32

0,31 0,00 0,00

0,92 1,33 1,62

1,53 0,66 0,65

0,00 0,00 0,000,00 0,66 0,00

0,31 1,33 0,320,92 0,00 1,950,00 0,00 0,65

0,00 0,00 0,000,00 0,00 0,00

3,67 1,66 0,000,00 0,00 0,000,00 0,00 0,00

0,00 1,00 0,00

0,61 0,33 0,32

327 301 308

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

0,33 0,00 0,00 0,00 0,00 0,00 0,66 0,00 0,00 0,00

0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,31 0,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000,66 0,60 1,32 0,00 0,00 0,00 0,00 0,33 0,00 0,000,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,94

4,92 3,02 5,63 5,63 6,62 4,00 3,29 2,67 5,96 0,94

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

0,33 0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00

0,00 0,00 0,33 0,94 5,63 0,00 0,00 0,67 0,00 1,57

0,00 0,60 0,66 0,00 0,33 0,00 0,00 0,00 0,00 4,09

0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00

5,90 4,53 2,98 0,00 2,98 1,33 0,00 0,00 0,00 0,001,64 0,91 0,33 2,19 0,66 0,67 0,00 1,33 1,88 2,52

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

0,00 0,00 0,00 0,00 1,32 0,00 0,99 1,00 0,00 0,00

0,98 1,21 0,00 0,31 0,66 0,00 0,00 0,00 3,13 0,00

0,00 0,00 1,32 1,56 0,99 0,00 0,00 0,33 0,31 0,310,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,94 0,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,00 0,00

0,00 0,00 0,00 0,00 0,99 0,00 0,00 0,00 0,00 0,00

0,00 0,60 0,66 0,00 0,33 0,00 3,29 2,00 0,00 0,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000,00 0,00 0,00 0,31 0,00 0,00 0,33 0,00 0,00 0,000,33 0,00 0,00 0,31 0,66 0,00 0,66 0,67 1,57 0,310,66 1,51 0,00 0,94 0,00 0,33 0,00 0,00 1,57 0,31

305 331 302 320 302 300 304 300 319 318

Table 1d.

394

PALEOCENE–EOCENE TRANSITION IN TUNISIA

Page 11: Foraminiferal Biostratigraphy and Palaeoenvironmental

calcareous or agglutinated species composition ofthese assemblages, the authors (Berggren & Aubert1975; Tjalsma 1977; Tjalsma & Lohmann 1983; VanMorkhoven et al. 1986; Kaminski & Gradstein 2005)have defined distinct faunas or type of assemblagese.g., Midway Fauna (MF: indicative of shallowmarine environment, including calcareous andagglutinated species), Velasco Fauna (VF: indicativeof bathyal and abyssal environment and based onlyon calcareous species), agglutinated AbyssalAssemblage (AA), Flysch-type Assemblage (FTA)and Slope Marl Assemblage (SMA).

In the Kharrouba section, the studied deposits arerich in benthic foraminifera belonging to more than

102 species. At least, 60% of these species areassumed to be cosmopolitan in the deep sea duringthe Paleocene and Eocene periods. They arecomposed of species with agglutinated andcalcareous tests showing varied relative abundanceacross the Paleocene–Eocene transition interval,enabling us to reconstruct the palaeodepth at theKharrouba location.

Calcareous Hyaline Benthic ForaminiferaBenthic foraminiferal assemblages from theKharrouba section contain abundant representativesof cosmopolitan calcareous species. A total of 70

Samples

Kh

21,8

0

Kh

21,6

0

Kh

21,2

0

Kh

20,7

0

Kh

20,2

0

Kh

19,9

0

Kh

19,6

0

Kh

19,3

0

Kh

19,0

0

Kh

18,7

0

Kh

18,0

0

Kh

17,8

0

Kh

17,6

0

Kh

17,4

0

Kh

17,2

0

Kh

17,0

0

Kh

16,8

0

Kh

16,6

0

Kh

16,4

0

Kh

16,3

0

Kh

16,1

0

Kh

15,9

0

0,00 0,00 0,00 0,00 0,00 2,13 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,32 0,009,67 6,33 5,90 4,61 3,67 3,19 3,16 0,41 5,68 1,99 4,93 5,32 2,00 10,60 4,14 6,73 4,00 9,84 4,18 13,00 5,14 3,650,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00 0,00 0,32 0,00 0,00 0,00 0,00 0,00 0,000,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,67 0,33 0,64 0,00 0,67 0,26 0,96 1,00 0,00 1,000,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

4,00 2,33 8,85 11,51 6,67 3,19 4,43 8,98 5,11 7,64 4,93 6,64 3,67 9,60 2,23 3,85 6,67 4,66 5,47 3,67 4,82 6,982,33 1,00 1,64 0,00 0,67 1,06 0,63 1,22 1,14 0,33 0,33 1,00 1,00 1,66 4,46 5,13 2,00 1,30 3,22 2,00 3,86 4,650,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,64 0,33 0,00 0,00 0,00 0,00 0,000,67 0,67 0,66 1,64 0,00 0,00 0,00 0,82 1,14 0,00 1,32 0,00 0,33 0,00 1,91 0,00 1,33 0,26 0,00 2,33 1,61 0,000,33 2,33 1,97 1,64 0,67 0,00 0,63 1,22 0,57 1,33 0,33 1,99 5,33 1,66 1,59 1,28 5,00 0,78 2,89 0,67 2,89 1,000,00 0,00 0,00 0,00 3,00 0,00 0,00 0,00 3,98 3,65 1,97 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,33 0,00 4,650,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,32 0,00 0,26 0,32 0,00 0,00 0,00

0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,67 0,33 0,00 1,60 0,00 0,00 0,00 0,00 0,00 0,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00 0,00

0,67 0,00 0,00 0,66 0,33 2,13 0,63 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,32 0,00 0,00 0,00 0,00 0,33 0,00 0,000,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,001,33 2,00 1,97 0,33 1,33 0,00 0,00 0,41 5,11 1,99 0,00 0,33 0,00 0,66 1,91 0,96 0,00 1,30 0,32 2,33 0,00 0,00

0,00 0,67 0,33 0,33 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,33 0,32 0,32 0,00 0,00 0,00 0,00 0,00 0,000,67 1,33 1,97 0,00 0,33 0,00 0,00 0,41 0,57 1,99 0,99 1,00 1,33 1,66 2,55 1,60 1,67 0,26 1,29 2,00 0,96 1,000,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,66 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,66 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,000,00 0,33 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000,00 0,00 0,00 0,00 0,00 0,00 0,63 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,002,67 0,00 0,00 0,66 0,67 1,06 0,00 0,00 0,00 0,00 0,99 0,00 0,67 0,00 0,32 0,32 0,00 0,78 0,32 0,00 0,00 0,000,00 0,00 0,00 0,00 0,00 0,00 1,27 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,001,67 2,33 5,57 7,24 6,67 3,19 2,53 3,67 3,41 6,31 2,63 2,66 4,00 3,31 4,14 4,49 5,00 2,07 6,11 2,00 4,82 1,660,00 0,00 0,00 0,00 0,00 0,00 1,27 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,32 0,00 0,64 0,000,67 0,00 1,64 0,66 0,00 0,00 0,63 0,00 0,00 0,00 0,33 1,00 0,67 0,00 0,00 0,00 0,00 0,00 0,96 0,67 0,32 0,001,33 0,00 0,00 0,66 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,26 0,00 0,00 0,00 0,00

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,57 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,001,00 3,00 0,33 2,30 0,00 0,00 3,16 0,41 0,00 0,33 1,32 0,33 2,00 1,66 2,55 1,92 1,00 0,00 0,96 0,67 2,25 1,330,00 1,33 1,31 0,33 0,00 1,06 0,00 2,45 0,00 1,99 0,99 2,99 1,33 2,32 0,96 3,21 2,00 1,81 3,86 2,67 1,93 2,990,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000,00 0,00 0,00 0,33 0,00 1,06 0,63 0,00 0,00 1,33 0,33 0,00 0,00 0,33 0,64 0,32 0,00 0,00 0,00 0,33 0,00 0,000,67 0,33 4,92 0,99 0,33 1,06 0,00 4,49 2,84 3,99 8,22 4,65 8,33 3,64 0,64 0,64 0,67 2,07 0,64 1,33 0,96 0,660,00 0,00 0,66 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,33 0,00 0,00 0,33 0,00 0,00 1,33 0,26 0,96 0,00 0,00 0,000,00 0,33 0,00 0,00 0,00 0,00 0,00 0,41 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,000,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,52 0,00 0,00 0,00 0,000,00 0,00 0,33 0,33 0,00 0,00 0,63 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,330,33 0,00 1,97 0,00 3,33 1,06 0,00 0,41 1,14 0,00 1,32 0,00 0,00 0,99 2,55 1,60 2,00 0,00 0,96 1,00 0,32 0,000,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,96 0,00 0,00 0,00 0,00 0,00 0,000,00 0,00 0,00 0,00 0,67 0,00 0,00 0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

0,00 0,00 0,00 0,33 2,00 1,06 0,63 1,22 0,00 1,00 0,00 0,00 0,67 1,32 1,27 0,00 0,00 1,81 0,00 1,33 0,96 0,000,00 1,67 0,66 0,00 0,33 0,00 0,00 0,00 0,00 1,00 0,33 0,66 0,33 1,32 0,32 1,60 0,67 0,00 0,32 0,00 0,32 0,33

300 300 305 304 300 94 158 245 176 301 304 301 300 302 314 312 300 386 311 300 311 301

Nodosaria longiscataNodosaria parianaNodosaria spp.Nonion havaensisNonionella spp.Nothia robustaNuttallides truempyiOridorsalis umbonatusOsangularia plummeraePleurostomella brevisPleurostomella paleocenicaPleurostomella spp.Pseudoglandulina obesaPseudoglandulina strobulus Pseudoglandulina spp.Psammosphaera irregularisPsammosphaera spp.Pseudonodosinella spp.Pullenia coryelliPullenia jarvisiPullenia quinquelobaPullenia spp.Fissurina spp. Quadrimorphina allomorphinoidesRecurvoides retroseptusReticulophragmoides jarvisiReticulophragmoides spp.Rzehakina epigonaSaccammina spp.Saracenaria sp.Siphogenerinoides elegantaSpiroplectammina spectabilisSpiroplectammina spp.Spiroplectinella dentataSpiroplectinella subhaeringensisStensioeina beccariiformis Stilostomella spp.Tappanina selmensisTappanina sp.1Tritaxia spp.Trochamminopsis altiformisUvigerina proboscideaUnknown speciesVaginulopsis spp. Valvulineria sp.Vulvulina mexicanaVulvulina advena

Total specimens

Table 1e.

395

L. ZILI & D. ZAGHBIB–TURKI

Page 12: Foraminiferal Biostratigraphy and Palaeoenvironmental

calcareous species are recognized. Among thesecalcareous species, 30 are typical of the Velasco-fauna (VF) (Figure 2) as defined firstly by Tjalsma(1977) and in more detail by Tjalsma & Lohmann(1983) and Van Morkhoven et al. (1986). In thissection, the indicative species of the Velasco fauna(VF) represent ~71% of the total calcareousforaminifera. They are divided into three successiveassemblages (Figure 2).

The oldest one (spanning the P5 zone), is themost diversified in VF species (e.g., Globocassidulinasubglobosa, Nuttallides truempyi, Cibicidoides spp.,Oridorsalis umbonatus, Anomalinoides spp.,

Gyroidinoides spp., Tappanina selmensis, Buliminaspp.). In this Paleocene assemblage, especiallyAragonia velascoensis, Stensioeina beccariiformis, andCibicidoides mundula disappeared before reachingthe base of earliest Eocene zone (E1).

The medium assemblage includes inherited VFspecies from the oldest assemblage. Several of themgradually disappear during the E1-E3 intervaldeposition (e.g., Anomalinoides rubiginosus,Bulimina trinitatensis, Bolivina spp., Bulimina grata,Bulimina semicostata, Cibicidoides crebbsi,Cibicidoides velascoensis, Cibicidoides alleni,Gyroidinoides globosus, Pullenia coryelli, Pullenia

Samples

Kh

15,6

0

Kh

15,2

0

Kh

14,8

0

Kh

14,5

0

Kh

14,1

0

Kh

13,7

0

Kh

13,3

5

Kh

12,5

0

Kh

11,8

0

Kh

10,8

5

Kh

9,00

Kh

7,50

Kh

6,50

Kh

5,70

Kh

4,55

Kh

3,40

Kh

2,50

Kh

1,75

Nodosaria longiscataNodosaria parianaNodosaria spp.Nonion havaensisNonionella spp. Nothia robustaNuttallides truempyiOridorsalis umbonatusOsangularia plummeraePleurostomella brevisPleurostomella paleocenicaPleurostomella spp. Pseudoglandulina obesaPseudoglandulina strobulus Pseudoglandulina spp. Psammosphaera irregularisPsammosphaera spp.Pseudonodosinella spp. Pullenia coryelliPullenia jarvisiPullenia quinquelobaPullenia spp.Fissurina spp. Quadrimorphina allomorphinoidesRecurvoides retroseptusReticulophragmoides jarvisiReticulophragmoides spp. Rzehakina epigonaSaccammina spp. Saracenaria sp. Siphogenerinoides elegantaSpiroplectammina spectabilisSpiroplectammina spp. Spiroplectinella dentataSpiroplectinella subhaeringensisStensioeina beccariiformis Stilostomella spp. Tappanina selmensisTappanina sp.1 Tritaxia spp.Trochamminopsis altiformisUvigerina proboscideaUnknown speciesVaginulopsis spp. Valvulineria sp. Vulvulina mexicanaVulvulina advena

Total specimens

0,000,005,320,000,000,007,315,320,330,332,660,000,000,001,660,000,000,330,332,330,000,000,330,000,000,000,005,980,000,000,000,000,002,991,990,000,000,000,330,000,000,001,000,001,000,331,00

301

0,000,002,650,000,000,005,632,650,000,331,320,000,000,000,000,000,000,000,330,990,000,000,000,000,000,330,003,970,000,000,000,000,003,312,980,000,660,990,000,000,000,000,990,660,331,320,00

302

0,000,004,650,000,000,0010,303,650,000,660,000,000,330,000,000,000,001,660,000,001,000,000,000,000,000,000,002,660,000,000,000,000,001,332,330,000,000,000,000,000,000,002,990,000,002,330,00

301

0,000,001,670,000,000,00

5,671,000,330,002,330,000,000,000,000,000,001,330,330,670,000,000,000,000,000,000,001,330,000,330,330,000,003,001,670,000,670,330,000,000,000,006,670,000,331,000,00

300

0,000,003,670,000,000,003,331,671,000,332,000,000,000,000,000,000,001,000,001,330,670,000,000,000,000,000,004,670,000,000,000,000,001,002,330,000,000,000,000,000,000,002,330,000,000,330,00

300

0,000,003,000,000,330,002,673,671,33

0,000,000,000,000,000,000,000,002,330,672,330,000,001,670,000,000,000,005,000,000,000,000,000,002,331,330,001,670,330,000,000,000,000,330,000,001,330,00

300

0,000,004,550,001,300,004,553,570,003,570,320,000,000,000,000,320,000,000,001,301,620,000,000,000,000,000,002,270,000,000,000,000,002,273,570,000,000,970,650,000,000,320,970,000,000,000,32

308

0,000,008,670,001,670,006,672,330,33

0,001,672,670,330,000,000,330,000,670,000,001,670,000,000,000,000,000,002,670,000,000,000,000,331,330,330,000,001,330,000,000,000,000,000,000,000,670,00

300

0,000,007,670,000,330,004,001,330,001,331,000,000,000,000,000,000,001,000,330,002,000,000,000,000,000,000,002,000,000,000,000,000,000,670,330,000,331,330,000,000,000,004,330,000,000,000,33

300

0,000,003,320,000,000,003,991,330,000,331,660,000,000,000,000,000,001,000,661,000,000,000,000,000,000,000,006,980,000,000,000,000,003,326,640,000,000,000,000,000,000,000,660,000,001,660,00

301

0,000,001,190,001,190,0017,860,000,000,000,001,190,000,003,570,000,002,380,000,000,000,000,000,000,000,000,005,950,000,000,000,000,000,000,000,000,000,000,000,000,000,005,950,000,001,190,00

84*

0,000,002,330,001,000,005,005,001,001,000,000,000,001,000,000,000,000,000,001,330,000,000,000,000,000,000,005,000,001,000,000,000,001,002,000,000,000,000,000,000,000,005,670,000,000,000,00

300

0,000,003,310,000,660,000,000,331,990,990,330,000,000,000,000,000,001,990,001,320,000,000,000,000,000,000,337,620,000,000,660,660,001,320,000,000,990,330,330,000,000,000,990,000,330,330,00

302

0,000,002,250,000,961,292,570,960,323,542,570,000,000,000,000,000,000,640,001,930,000,000,000,000,000,000,009,000,000,000,000,000,322,251,290,001,610,000,000,000,000,000,000,320,000,000,00

311

0,000,0011,330,000,002,005,001,670,000,000,001,670,000,000,000,000,002,670,670,670,000,000,000,670,000,000,005,000,000,000,000,000,003,330,670,000,330,330,000,000,000,000,670,000,001,330,00

300

0,000,004,330,670,000,001,333,330,330,331,670,000,330,000,000,000,001,670,001,330,000,000,000,000,000,000,006,000,000,330,000,000,002,332,000,000,670,000,000,000,000,000,330,000,001,330,00

300

0,000,006,860,000,000,001,631,311,630,000,002,290,330,000,000,000,000,650,002,940,000,000,000,330,000,000,001,310,000,000,650,000,002,610,000,000,000,000,000,000,000,000,650,000,000,980,00

306

0,000,002,560,280,571,421,421,420,001,140,850,000,000,000,000,000,000,850,001,420,000,000,000,850,000,000,006,531,140,000,000,000,001,990,000,000,000,000,000,000,000,001,700,000,001,420,00

352

Table 1f.

396

PALEOCENE–EOCENE TRANSITION IN TUNISIA

Page 13: Foraminiferal Biostratigraphy and Palaeoenvironmental

397

L. ZILI & D. ZAGHBIB–TURKI

quinqueloba, Hanzawaia ammophila, Uvigerinaproboscidea, Stilostomella spp., Siphogenerinoideseleganta, Tappanina selmensis, Tappanina sp.1).

The youngest assemblage, spanning the E4 zone,becomes reduced in VF. Therefore, at the base of thiszone the assemblage is composed of Aragoniaaragonensis, Bulimina midwayensis, Buliminatuxpamensis, Cibicidoides hyphalus, Cibicidoidesbarnetti, Coryphostoma midwayensis,Globocassidulina subglobosa, Gavelinella danica,Oridorsalis umbonatus and Nuttallides truempyi.

Other recognized hyaline calcareous species inthe Kharrouba section (40) are assumed to beeurybath (ECF) and are less useful indicators ofpalaeodepth e.g., Anomalinoides praeacuta, A. acuta,Pleurostomella brevis, P. paleocenica, Pullenia jarvisi,Alabamina midwayensis, Allomorphina trochoides,Cibicidoides pseudoperlucidus, Saracenaria sp.(Figure 2).

Agglutinated Benthic ForaminiferaIn the Kharrouba section, 32 out of a total of 102benthic foraminifera are agglutinated species. Theyshow varied relative abundances (Figures 3 & 4). Allare representatives of the deep sea agglutinatedbenthic foraminiferal assemblages. Among them,eleven species (11) suggest the Abyssal Assemblage(AA) by Kaminski & Gradstein (2005), such asAmmodiscus glabratus, A. peruvianus, Karrerulinahorrida, K. conversa, Bathysiphon spp. (e.g., B. gerochiand B. sp.1), Reticulophragmoides spp.,Pseudonodosinella spp., Haplophragmoides spp.,associated with Glomospira charoides andReticulophragmoides jarvisi. However, seven (7)species suggest the Flysch-type Assemblage (FTA) byKaminski & Gradstein (idem.), e.g.,Spiroplectammina spectabilis, Hormosinavelascoensis, Trochamminopsis altiformis,Psammosphaera spp., P. irregularis, Nothia robusta,Rzehakina epigona. Fifteen (14) other species suggestthe Slope Marls Assemblage (SMA) by Kaminski &Gradstein (ibid.), e.g. Spiroplectinellasubhaeringensis, S. dentata, Clavulinoides amorpha,Dorothia bulletta, D. retusa, Gaudryina inflata, G.aissana, G. pyramidata, Marssonella oxycona,Tritaxia spp., Vulvulina advena, V. mexicana,Ammosphaeroidina sp., Reticulophragmoides jarvisi.

Supplementary Palaeobathymetric Proxies Planktonic /Benthic Ratio (P/B)This ratio is calculated as following: P/ (P + B) × 100.In all clayey samples from the Kharrouba section, theP/B ratio values exceed 90%, with an average of~95% (Figure 3). This result corroborates ourpalaeodepth interpretation. Therefore, withreference to the modern oceans, high P/B ratiovalues are also indicative of deep sea environments(Mackensen et al. 1993; Gage & Brey 1994; SenGupta 2000).

Agglutinated/Calcareous Ratio (A/C)This ratio is calculated as following: Agglutinatedspecimens / (Agglutinated specimens + Calcareousspecimens) × 100. In the Kharrouba section, thevalues of this ratio in the studied samples vary from8% to 38% with an average of ~21% (Figure 3).Except for samples Kh19.90 and Kh19.60 from theE1 Zone (Figure 3), this ratio shows an importantincrease and reaches higher values (respectively48.94% and 51.9%). The abrupt change in this ratiocoincides with an interval of partially dissolvedcalcareous tests which may indicate more corrosiveand acidic water at the sea floor (Green et al. 1993).

Discussion Based on the planktonic foraminiferal biozones, weillustrate that the Kharrouba section contains one ofthe most complete Paleocene–Eocene transitionintervals. It records all the standard biozones in thisinterval with the relevant marker species. Comparedwith the Dababiya section, which is the GlobalStratotype Section and Point (GSSP) for thePaleocene/Eocene boundary, the Kharrouba sectionshows that the Paleocene also ends with the M.velascoensis Zone (=P5, Berggren & Pearson 2005).However, as in the Dababiya section, the Eoceneinterval starts with the first occurrence of theAcarinina sibaiyaensis marker of the E1 Zone(Berggren & Pearson 2005). The base of thisnominate zone marks the Paleocene/Eocene (P/E)boundary. Our results show that in the Kharroubasection, this lowest Eocene zone (E1) is developed,but it is more condensed than in the Dababiya

Page 14: Foraminiferal Biostratigraphy and Palaeoenvironmental

Clav

ulin

oide

s am

orph

a

Glo

mos

pira

cha

roid

es

Hap

loph

ragm

oide

s spp

.Ka

rrer

ulin

a co

nver

sa

Kar

reru

lina

horr

ida

Mar

sson

ella

oxy

cona

Not

hia

robu

sta

Retic

uloph

ragm

oides

spp

.

Rze

haki

na e

pigo

na

Retic

uloph

ragm

oides

jarv

isi

Spiro

plecta

mmina

spec

tabilis

Vulv

ulin

a m

exic

ana

Mor

ozov

ella

vel

asco

ensi

s (=

P5)

M

oroz

ovel

la m

argi

node

ntat

a (=

E3)

Kh 1,75

Kh 2,50

Kh 3,40

Kh 4,55

Kh 10,85

Kh 13,70

Kh 14,50

Kh 15,20

Kh 16,10

Kh 17,00

Kh 17,60

Kh 5,70

Kh 6,50

Kh 7,50

Kh 9,00

Kh 11,80

Kh 12,50

Kh 18,30

Kh 19,30

Kh 26,00

Kh 27,00

Kh 28,90

Kh 31,40

Kh 22,20

Kh 21,20

Kh 20,20

Kh 24,25

Kh 25,05

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29M.

form

osa

(=

E4)

A. sibaiya-ensis (= E1)

Pse

udoh

astig

erin

a w

ilcox

ensi

s (=

E2)

Kh 23,20

10%20%

30%

U1

U2

U3

U4

U5SA

MP

LE

S

LIT

HO

LO

GY

AG

E U

PPE

R P

AL

EO

CE

NE

L

OW

ER

EO

CE

NE

LO

WE

R Y

PR

ESI

AN

U

PP

ER

TH

AN

ET

IAN

TH

ICH

NE

SS (m

)

UN

ITS

Bat

hysi

phon

spp

.

Dor

othi

a sp

p.

Gau

dryi

na s

pp.

Am

mod

iscu

s sp

p.

Spiro

plec

tam

min

a sp

p.

BIO

ZO

NE

S

35

8 7 4

6 1 2

92

.MM

.aso

mro)4

E=(

YG

YO

LO

HTI

L

EG

A

)m(

SSE

NH

CIH

T

SE

NO

ZOI

B

57

41

.ppssediomggmaagrhpooplpaap

HHa

asrevnocanilurerraKKa

dih

lit

R

isivrajjasediomggmaagrhpoopluciteR

siislibattacepsspanimmattacellepooprripSSp

57,1hKKh

052hKKh

%01%02

SE

LP

MAS

STI

NU

38

62

ahprrpomaseesdioniiluvallaCCl

adirrohanilurerra

KKa

anocyxxyoallenossra

MMa

atsuboraihto

NNo

.ppsseesdiomggmarhpoopluciteR

anogiigpeepanikahez

R

anacixeexm

aniluvluVVu

.ppsaniyrryddrua

G

.ppsani

mmattacellepoopripSSp

sediorahcaripsspo

molG

.ppsnohpiipsyhhyta

B

.ppsaihtoro

D

.ppssucsiddo

mm

A

)3E

=(atatnedonigrrga

m 12

22

32

42

52

62

72

82

of (fo (f

EN

EC

O

NAIS

ER

05,2hKKh

04,3hKKh

55,4hKKh

07,5hKKh

05,6hKKh

05,7hKKh

00,9hKK

%0203

5U

%

allevozorrooMM

o

31

41

51

61

71

81

91

02

ani regiigtsah) 2

E=(

sisne

OE

RE

WO

L

RP

YR

EW

OL

58,01hKKh

07,31hKKh

05,41hKK

02,51hKKh

01,61hKKh

00,71hKKh

06,71hKKh

08,11hKKh

05,21hKKh

4U

)5P=(

sisneocsal

6

7

8

9

01

11

21

31

-ayyaiiyabiibs.A)1E=(sisne

hoduesP

exocliw

ENN

EC

OE

LAA

NAI

TE

NA

H

0

03,81hKKh

033,,9911hhKKhKKh

0

02,22hKKh

02,12hKKh

022,,0022hhKK

52,42hKKh

50,52hKKh

02,32hKKh

3U

levallevozorroo

MMo

1

2

3

4

5APPAR

EPPU

HT

RE

PP

U

00,62hKK

00,72hKKh

09,82hKKh

04,13hKKh1U

2U

3U

398

PALEOCENE–EOCENE TRANSITION IN TUNISIA

Figure 4. Relative abundance of the most characteristic deep-water agglutinated benthic foraminiferal species (DWAF) (>1%) across the Paleocene–Eocene transition interval in the Kharrouba section (for 1–8 see Figure 2).

Page 15: Foraminiferal Biostratigraphy and Palaeoenvironmental

399

L. ZILI & D. ZAGHBIB–TURKI

section (90 cm in the Kharrouba section vs. ~2.20 min the Dababiya section). Hence we contend that theKharrouba section shows a continuous and completePaleocene–Eocene transition. In thePseudohastigerina wilcoxensis/Morozovellavelascoensis Zone (=E2), it is also more condensed(~3.2 cm) than in the Dababiya section (~13.25 cm)(Berggren & Ouda 2003; Aubry et al. 2007).

In this Tunisian complete section, the calculatedPlanktonic/Benthic ratio (P/B) in the clayey studiedsamples (> 90%) indicates an open sea and deepwater palaeoenvironment (Premoli-Silva & Bolli1973; Derbel-Damak 1993). The decrease of the P/Bratio values observed in calcareous beds (e.g.,Kh28.90 and Kh28.10) may be related toenvironmental instability and a probable temporarysea shallowing as suggested by Boris (2003)elsewhere. However, the Agglutinated/Calcareousratio (A/C) calculated in the Kharrouba sectionsshow that in most samples, the values range between8% and 38% (Figure 3). These values, are higher thanthose calculated in the northern Sinai (Egypt) by El-Nady (2005) for coeval deposits (5% to 14%).However, the sudden increase of this ratio (from19.67% in sample Kh20.20 to 48.94% in sampleKh19.90), coincides with the P/E boundary and thebase of the Acarinina sibaiyaensis Zone (E1) (Figure3). Several authors contend that a global warmingevent starting at the earliest Eocene, the InitialEocene thermal maximum (IETM), initiatedacidification and corrosivity in deep water (Zachos etal. 2005; Higgins & Schrag 2006; Zili et al. 2009).Such acidification, suggesting low pH values in deepwater (Parker & Athearn 1959; Hunger 1966; Greenet al. 1993), is corroborated in the Kharrouba sectionby the increase in the A/C ratio values and the partialdissolution features in calcareous tests.

The estimated frequency values average ofplanktonic foraminifera (~95%), of agglutinatedbenthic foraminifera (~0.92%), and of calcareousbenthic foraminifera (~3.87%), placed on atriangular plot by Bignot (2001), allow the plausiblepalaeodepth in the Kharrouba section to be deduced.By this method, we confirm that during thePaleocene–Eocene transition interval, theKharrouba area was located in a deep marineenvironment, above the CCD and the lysocline(Figure 6).

Moreover, the benthic foraminiferal speciescontent in this complete section, with bothcalcareous and agglutinated tests, provides consistentinformation on the seafloor palaeodepth of theKharrouba location. In the lower part of the section,the calcareous benthic foraminiferal species,suggesting the deep sea Velasco-type fauna (Figure5), are frequent (e.g., Aragonia velascoensis,Cibicidoides velascoensis, Stensioeina beccariiformis,Nuttallides truempyi, Anomalinoides rubiginosus,Bulimina trinitatensis, Gyroidinoides globosus). Thesespecies indicate a lower bathyal to abyssalenvironment (Berggren & Aubert 1975; Tjalsma &Lohmann 1983; Alegret et al. 2001; Katz et al. 2001;Alegret & Thomas 2007). However, Cibicidoideshyphalus, Pullenia coryelli, Oridorsalis umbonatus,are assumed to inhabit a less deep middle bathyalenvironment (Tjalsma & Lohmann 1983; VanMorkhoven et al. 1986; Alegret et al. 2001, 2003).

The upper part of the Kharrouba section containsalso deep sea species (e.g., Aragonia aragonensis, B.midwayensis, B. grata, B. semicostata, Cibicidoidesdayi, C. crebbsi, C. mundula, C. barnetti,Coryphostoma midwayensis, Gavelinella danica,Globocassidulina subglobosa, Hanzawaia ammophila,P. quinqueloba, Uvigerina proboscidea,Siphogerinoides eleganta). Most of these species aredocumented in the bathyal DSDP Hole in theAtlantic Ocean (Berggren & Aubert 1975; Tjalsma1977; Tjalsma & Lohmann 1983; Van Morkhoven etal. 1986). They suggest a lower bathyal environmentexceeding 1000 m in palaeodepth. Other calcareousbenthic foraminiferal species present in theKharrouba section, assumed to be deep sea dwellers(e.g., Pullenia coryelli and Aragonia spp.), wereobserved also in the Zumaya section in the NorthAtlantic. There, the estimated environment is lowerbathyal (Ortiz 1995). Compared with Zumayasection, in the Kharrouba section the assemblagesare richer in calcareous species and poorer in speciesindicative of palaeodepth exceeding 1500 m.Therefore, Kharrouba assemblages also suggest alower bathyal environment like that in the Zumayasection (Zili et al. 2009), but presumably slightlyshallower.

During the lower Eocene, the assemblages in theKharrouba section are dominated by N. truempyi,

Page 16: Foraminiferal Biostratigraphy and Palaeoenvironmental

Cibicidoides spp., T. selmensis and A. Aragonensis, asin several DSDP Sites (Thomas & Shackleton 1996),e.g., Site 762 (indicative of 1000–1500 m depth) andSite 747 (indicative of 2000–3000 m depth). Thedominance of N. truempyi is also mentioned in the

Pacific Site 577 (indicative of 1500 m depth). Incontrast, in the shallower sites, such as Site 748(indicative of 600–2000 m depth) and Site 752(indicative of 500–1000 m depth), the assemblagesare dominated by Stilostomella spp., Lenticulina spp.,

PALEOCENE–EOCENE TRANSITION IN TUNISIA

400

Kh 1,75

Kh 2,50

Kh 3,40

Kh 4,55

Kh 10,85

Kh 13,70

Kh 14,50

Kh 15,20

Kh 16,10

Kh 17,00

Kh 17,60

Kh 5,70

Kh 6,50

Kh 7,50

Kh 9,00

Kh 11,80

Kh 12,50

Kh 18,30

Kh 19,30

Kh 26,00

Kh 27,00

Kh 28,90

Kh 31,40

Kh 22,20

Kh 21,20

Kh 20,20

Kh 24,25

Kh 25,05

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Kh 23,20

Anom

alin

oide

s rub

igin

osus

Ara

goni

a ar

agon

ensi

s

Ara

goni

a ve

lasc

oens

is

Bul

imin

a tu

xpam

ensi

s

Bul

imin

a m

idw

ayen

sis

Bul

imin

a tr

inita

tens

is

Cib

icid

oide

s al

leni

Cib

icid

oide

s hy

phal

us

Cory

phos

tom

a m

idwa

yens

is

Gav

elin

ella

dan

ica

Glo

boca

ssid

ulin

a su

bglo

bosa

Nut

talli

des

true

mpy

i

Ori

dors

alis

um

bona

tus

Pul

leni

a co

ryel

liP

ulle

nia

quin

quel

oba

Siph

ogen

erin

oide

s ele

gant

a

Sten

sioe

ina

becc

ariif

orm

is

Tapp

anin

a se

lmen

sis

Tapp

anin

a sp

.1

10%20%

30%

U1

U2

U3

U4

U5

SAM

PL

ES

UP

PE

R P

AL

EO

CE

NE

L

OW

ER

EO

CE

NE

TH

ICH

NE

SS

(m)

UN

ITS

Mor

ozov

ella

vel

asco

ensi

s (=

P5)

M

oroz

ovel

la m

argi

node

ntat

a (=

E3)

M

. for

. m

osa

(= E

4)

Pseu

doha

stig

er.

ina

wilc

oxen

sis

(= E

2)B

IOZ

ON

ES

AG

E

35

8 7 4

6

LIT

HO

LO

GY

1 2

A. sibaiya-ensis (= E1)

)m(

SS

EN

HCI

HT

SE

NO

ZOI

B

EG

A 35

874

6YG

OL

OH

TIL 1 2

susoniggiibursedionilamonA

sisneocsalevainogar

A

sisnetatinirtani

miluB

inellasediodicibi

C

illeyrryocainellu

Paboleuqniuq

ainelluP

simroffoiifiracceb

anieoisnetSSt

SE

LP

MAS

STI

NU

sisnenogaraainogar

Asisneyaay

wdim

animilu

B

sulahpyyphhysediodicibi

C

sisneyaaywdim

amotsohpyyprryoCCo

acinadallenileva

Gasobolgglbus

aniludissacobolG

sutanobmu

silasrrsodirO

attanaggaelesedionirenegohpiipSSi

1.psaninappppaapTTa

sisnemapxxpuuxt

animilu

B

iyppymm

peurt

sedillattuNN

u

sisnemles

aninappppaapTTa

12

22

32

42

52

62

72

82

92

EN

EC

OE

)3E

=(atatneddeonigrrga

.rr.offo.MM

.aso

m)4

E=(

57,1hK

05,2hK

04,3hK

55,4hK

07,5hK

05,6hK

05,7hK

00,9hK

A

0

%01%02

%03

5U

A

11

21

31

41

51

61

71

81

91

02

-

RE

WO

L

mallevozorroo

MMo

rr. egiigt sahodues PPssi snexoox cli

wani

) 2E=(

ayiiyabis.A

0

58,01hK

07,31hK

05,41hK

02,51hK

01,61hK

00,71hK

06,71hK

08,11hK

05,21hK

03,81hK

033,9911hhKK

4U

y

2

3

4

5

6

7

8

9

01

11

EN

EC

OE

LAPPA

RE

PP

U

)5P=(

sisneocsalevallevozo

)1E=(sisne

0

00,62hK

00,72hK

09,82hK

02,22hK

02,12hK

022,,0022hhKK

52,42hK

50,52hK

02,32hK

2U

3U

1

orrooMM

o

04,13hK1U

Figure 5. Relative abundance of the most characteristic deep-water hyaline calcareous benthic foraminiferal speciesDWCF (> 1%) across the Paleocene–Eocene transition interval in the Kharrouba section (for 1–8 see Figure 2).

Page 17: Foraminiferal Biostratigraphy and Palaeoenvironmental

Anomalinoides capitatus / A. danicus (synonym of G.danica in work) and Cibicidoides spp. Theseshallower species are rare to absent in the Kharroubasection. In the Caravaca section (southern Spain),the assemblages are dominated by Buliminathanetensis, B. macilenta, B. callahani, B. alazanensisand B. bradburyi (Canudo et al. 1995). These species,indicative of a yet shallower environment (200–1000m depth) according Ortiz (1995) and Canudo et al.(1995), are exclusively absent at the Kharroubasection.

In the southern Tethys margin, in the Dababiyasection, indicative of an outer shelf environment(150–200 m depth) (see Alegret et al. 2005; Ernst etal. 2006), the assemblages contain abundantrepresentatives of shallow water, e.g., Loxostomoidesapplinae, Valvulineria scrobiculata, Osangulariaplummerae (Alegret et al. 2005; Alegret & Ortiz2006). Further south, at Gebel Duwi (Egypt), thecalcareous benthic foraminiferal assemblages reveala middle neritic environment (75–100 m depth).

They are characterized by large Frondicularia taxaindicative of outer neritic to upper bathyalenvironments (Speijer et al. 1996). All these shallowdwelling taxa (e.g., Loxostomoides applinae,Frondicularia) are also absent from the Kharroubasection but they are present in central Tunisia(Aubert & Berggren 1976; Salaj 1980; Karoui-Yaakoub 2006).

However, the high abundance of Tappaninaselmensis leads to some controversy. This species isassumed to be outer neritic (Van Morkhoven et al.1986; Olsson & Wise 1987; Liu et al. 1997) or bathyal(Thomas 1990; Speijer & van der Zwaan 1994). Infact, this oligotrophic cosmopolitan species becameopportunistic under low oxygen and/or highproductivity conditions (Speijer & van der Zwaan1994; Kuhnt et al. 1996; Thomas 2003). In our view,the dominance of this species in the deepassemblages should not be related to palaeodepthchanges but rather to changing oxygen and trophicconditions triggered by the Initial Eocene Thermal

L. ZILI & D. ZAGHBIB–TURKI

401

25

50

25

25

50

50

75

75

75

100 %

100 %100 %

Agg

lutina

ted

bent

hic

fora

min

ifer

a Calcareous benthic foram

inifera

Planktonic foraminifera

Deep-sea above CCDdeep-sea below CCD

Upper neritic

Lowerneritic

Kharrouba

Lag

oonal

Figure 6. Estimated paleoenvironment of the Kharrouba section based on calculated frequencies ofPlanktonic foraminifera, Calcareous benthic foraminifera and Agglutinated benthic foraminiferaplaced on a triangular plot by Bignot (2001).

Page 18: Foraminiferal Biostratigraphy and Palaeoenvironmental

Maximum (IETM). This response suggests anintensified flux of organic carbon from the oceansurface to the deep ocean and its subsequent burialthrough biochemical feedback mechanisms (Bains etal. 2000).

In short, in this complete section, the benthicforaminifera provide more information toreconstruct environmental conditions in northernTunisia. Most of the recognised species, both withcalcareous and agglutinated tests, are cosmopolitanand restricted to particular depth/trophicconditions.

In addition, the species assemblages provideaccurate information on the palaeoenvironments inthe Kharrouba section, located at the southernTethys margin, referring to depth range tolerance ofsome agglutinated species.

In the lower part of the Kharrouba section theassemblage contains Glomospira charoides with anaverage of (~1%), Bathysiphon (~3.5%) andAmmodiscus (~2.5%). This assemblage suggests aFlysch to Abyssal fauna (Kaminski & Gradstein2005). The Rzehakina epigona species (~4%) isconsidered to be a deep marine dweller (Tjalsma &Lohmann 1983; Van Morkhoven et al. 1986; Killopset al. 2000). Therefore, the Ammodiscus-Glomospira-Rzehakina assemblage from the Kharrouba sectionrecalls the ‘Biofacies B’ (Kuhnt et al. 1989) in theNorth Atlantic, indicative also of an abyssalenvironment. Nevertheless, other specimensbelonging to the Dorothia, Gaudryina, Saccamminaand Nothia genera, present in the Kharrouba section,are elsewhere assumed to be typical Flysch fauna(Ortiz 1995; Kaminski & Gradstein 2005). Therepresentatives of these two genera are described inthe Anthering section (Austria) on the northernTethys margin and are also considered to be typicalof an abyssal environment (Egger et al. 2000, 2003).In addition, Dorothia spp., Spiroplectamminaspectabilis, Reticulophragmoides spp., Nothia robusta,Marssonella oxycona, Haplophragmoides spp.,Karrerulina horrida, K. conversa are present but lessdominant (Figure 4). Recent Karrerulinarepresentatives are common in the Atlantic abyssalplains (Kuhnt et al. 2000; Kaminski & Gradstein2005). Gaudryina pyramidata is assumed to beamong the bathyal species, reaching depths

exceeding 1000 m and even 2000 m (Tjalsma &Lohmann 1983; Katz et al. 2001). According toTjalsma & Lohmann (1983) and Kaminski &Gradstein (2005), most of these deep species areindicative of a bathyal environment. The estimatedpalaeodepth may be around 1500 m.

In the Kharrouba section, from the earliestEocene, significant quantitative changes in deep seabenthic foraminifera are observed. Therefore, withinthe dark clay interval between samples Kh19.90 toKh18.00 (Figure 4) across the E1 biozone interval,several bioevents must be taken into account: (1)sudden increase in the relative abundance ofAmmodiscus spp., Bathysiphon spp., Glomospiracharoides; (2) slight increase in the relativeabundance of Haplophragmoides spp., Karrerulinaconversa, Reticulophragmoides jarvisi,Reticulophragmoides spp., Spiroplectammina spp.; (3)important decrease in the relative abundance ofRzehakina epigona; (4) slight decrease in the relativeabundance of Spiroplectammina spectabilis,Marssonella oxycona. The ‘Glomospira event’ wasdocumented elsewhere in the Tethys Realm as well asin the North Atlantic Ocean (Kaminski & Gradstein2005). These benthic foraminiferal events coincidealso with the Acarinina sibaiyaensis Zone (E1)interval and are markers of the P/E boundary. Acoeval and similar disturbance in agglutinatedbenthic foraminifera across the P/E boundary wasalso noted by several authors (Ortiz 1995; Alegret etal. 2005; Kaminski & Gradstein 2005; Zili et al. 2008)elsewhere in Spain (Zumaya and Caravaca sections)and in Egypt (Dababiya section).

In summary, taking in account the tolerancedepth of the all benthic species collected from theKharrouba section, we estimate that this location wasin a deep environment above CCD and the lysocline,at between 1200 m and 1500 m palaeodepth. Itmeans that the Kharrouba section is more similar toZumaya than the other studied sections (Figure 7).

ConclusionIn the Kharrouba section, all the standard planktonicforaminiferal biozones of the Paleocene–Eocenetransition are present and expanded, as in theDababiya section. The uppermost Paleocene Zone

PALEOCENE–EOCENE TRANSITION IN TUNISIA

402

Page 19: Foraminiferal Biostratigraphy and Palaeoenvironmental

(P5) is succeeded by the initial Eocene Zone (E1).This E1 Zone is noted for the first time in Tunisiaand spans 90 cm in the Kharrouba section. Thisconfirms that this section is continuous andcomplete across the P–E transition. This completesection shows that the deep sea benthic foraminifera(DWBF) diversified during this period. The high P/Bratio and the high relative abundance of deep seabenthic foraminiferal species with calcareous andagglutinated tests suggest a lower bathyalenvironment above the CCD and the lysocline. Manycalcareous species present in the Kharrouba sectionare among those comprising the Velaco Fauna. Thesespecies are restricted to bathyal-abyssal habitats.

An amalgamated fauna of deep sea dwellers withagglutinated taxa suggesting slope, flysch and evenabyssal assemblages are also present. Therefore, bothcalcareous and agglutinated deep sea species suggesta lower bathyal environment above the lysocline atdepths of 1200–1500 m. This estimated depthconsolidates the palaeogeographical map proposedby Dercourt et al. (1985) and Meulenkamp et al.(2000) for the northern Tunisia area included in thesouthern margin of the Tethys Ocean during theearly Eocene.

At the P/E boundary, a severe disturbanceaffected this deep sea fauna. With ultimate disasterconditions, with oxygen decrease and/or nutrientsupply increase, T. selmensis became the mostdominant deep sea dweller. This cosmopolitanspecies behaved as an opportunist species under thestressful conditions at the P/E boundary triggered bya global warming event.

AcknowledgmentsThis work was funded by the Research Unit (DPS):UR: 02/UR/10–02. The authors thank Pr. MohamedMoncef Turki from the University of Tunis El Manar,Faculty of Sciences of Tunis and leader of theResearch Unit (DPS), for his help during the fieldmissions and for his encouragement and hisconstructive suggestions to improve the initialversion of our manuscript. The authors are gratefulto Pr. Eustoquio Molina from the University ofZaragoza, for his constructive comments allowing usto improving the initial version of our manuscript.They thank Pr. Habib Ajroud, from the University ofMannouba, for improving the English language ofour manuscript. The English of the final text is editedby John A. Winchester.

L. ZILI & D. ZAGHBIB–TURKI

403

0 m

Kharrouba

Dababiya

Zumaya

Caravaca

- 2000

-1000

- 200

- 3000

AB

YS

SAL

Low

erM

idd.

Uppe

r.

BA

TH

YA

L

NERITIC

- 600

CCD

Selja

Lysocline

AA

SMA

FT

A

Deep-sea agglutinated benthic foraminifera: AA (Abyssal Assemblage), FTA (Flysch-Type Assemblage), SMA (Slop Marl Assemblage)

Deep-sea benthic foraminifera: VF (Velasco Fauna)

VF

CCD: Carbonate Compensation Depth Tunisian section Egyptian section Spanish section

MF

Eurybath benthic foraminifera: MF (Midway Fauna)

0 m

- 2000

-1000

- 200

- 3000

- 600

m0r

0001-

002-

0

ewo

L.ddi

M.reppUL

AYY

AH

TA

B

CITIREN

06-

ajlljeS

AS

A

MS

F

T

F

V

FMM

ayibaabbaD

m0

0

L

002-

0003-

ASS

YB

ALB

AA

TF

V

ebdetanitulggaaes-peeD

maroffocihtnebaes-peeeD

maroffocihtnebhtabyruE

lbmessAlassybA(AA:areffeinimaroffocihtne

)a)nuaFocsaleVVe(FV:areffeinim

)a)nuaFyaaywdiM(FM:areffeinim

MS,)egalbmemssAepyTTy--ThcsylF(ATTAF,)egal

)egalbmemssAlraMpolS(AM

maroffocihtnebaespeeeD

snepmoCetanobraC:DCC

)a)nuaFocsaleVVe(FV:areffeinim

htpeDnoitas itcesnaanisinuTTu

noi noitcesnanitpygE

noitceshsinanpS

Figure 7. Estimated palaeodepth of Kharrouba (Northern Tunisia) compared with those of Selja (Southern Tunisia),Zumaya and Caravaca (Spain) and Dababiya (Egypt). AA– Abyssal Assemblage; FTA– Flysch-tpe Assemblages;SMA– Slope Marl Assemblage, MF– Midway Fauna; VF– Velasco Fauna.

Page 20: Foraminiferal Biostratigraphy and Palaeoenvironmental

PALEOCENE–EOCENE TRANSITION IN TUNISIA

404

ALEGRET, L. & THOMAS, E. 2001. Upper Cretaceous and lowerPaleogene benthic foraminifera from northeastern Mexico.Micropaleontology 47, 269–316.

ALEGRET, L., MOLINA, E. & THOMAS, E. 2001. Benthic foraminifera atthe Cretaceous/Tertiary boundary around the Gulf of Mexico.Geology 29, 891–894.

ALEGRET, L., MOLINA, E. & THOMAS, E. 2003. Benthic foraminiferalturnover across the Cretaceous/Paleogene boundary at Agost(southeastern Spain): paleoenvironmental inferences. MarineMicropaleontology 48, 251–279.

ALEGRET, L. & ORTIZ, S. 2006. Global extinction event in benthicforaminifera across the Paleocene/Eocene boundary at theDababiya Stratotype section. Micropaleontology 52, 48–63.

ALEGRET, L., ORTIZ, S., ARENILLAS, I. & MOLINA, E. 2005.Paleoenvironmental turnover across the Paleocene/Eoceneboundary at the Stratotype section in Dababiya (Egypt) basedon benthic foraminifera. Terra Nova 17, 526–536.

ALEGRET, L. & THOMAS, E. 2007. Deep-sea environments across theCretaceous/Paleogene boundary in the eastern South AtlanticOcean (ODP Leg 208, Walvis Ridge). MarineMicropaleontology 64, 1–17.

AUBERT, J. & BERGGREN, W.A. 1976. Paleocene benthonicforaminiferal biostratigraphy and paleoecology of Tunisia.Bulletin du Centre de Recherche Pau–SNPA 10, 379–469.

AUBRY, M.P., OUDA, K., DUPUIS, C., BERGGREN, W.A., VAN

COUVERING, J.A., ALI, J., BRINKHUIS, H., GINGERICH, P.R.,HEILMANN-CLAUSEN, C., HOOKER, J., KENT, D.V., KING, C.,KNOX, R.W.O.B., LAGA, P., MOLINA, E., SCHMITZ, B., STEURBAUT,E. & WARD, D.R. 2007. The Global Standard Stratotype-sectionand Point (GSSP) for the base of the Eocene Series in theDababiya section (Egypt). Episodes 30, 271–286.

BAINS, S.R., NORRIS, R.D., CORIFELS, R. & FAUL, K.L. 2000.Termination of global warmth at the Paleocene/Eoceneboundary through productivity feedback. Nature 407, 171–174.

BERGGREN, W.A. & AUBERT, J. 1975. Paleocene benthonicforaminiferal biostratigraphy, biogeography and paleoecologyof Atlantic-Tethyan regions: midway-type fauna.Palaeogeography, Palaeoclimatology, Palaeoecology 18, 73–192.

BERGGREN, W.A. & MILLER, K.G. 1989. Cenozoic bathyal and abyssalcalcareous benthic foraminiferal zonation. Micropaleontology35, 308–320.

BERGGREN, W.A. & OUDA, K. 2003. Upper Paleocene–Lower Eoceneplanktonic foraminiferal biostratigraphy of the Dababiyasection, Upper Nile Valley (Egypt). Micropaleontology 49, 61–92.

BERGGREN, W.A. & PEARSON, P.N. 2005. A revised tropical tosubtropical Paleogene planktonic foraminiferal zonation.Journal of Foraminiferal Research 35, 279–298.

BERGGREN, W.A., KENT, D.V., SWISHER, C.C. & AUBRY, M.P. 1995. Arevised Cenozoic geochronology and chronostratigraphy. In:BERGGREN, W.A., KENT, D.V. & HARDENBOL, J. (eds),Geochronology, Time Scales and Global StratigraphicCorrelations: A Unified Temporal Framework for an HistoricalGeology. Society of Economic Paleontologists andMineralogists, Special Volume 54, 129–212.

BIGNOT, G. 2001. Introduction à la micropaléontologie. CollectionGéosciences. Cordon and Breach-Editions des archivescomptemporaines, 1–258.

BOLLI, H.M. 1957. The genera Globigerina and Globorotalia in thePaleocene–Lower Eocene Lizard Springs Formation ofTrinidad, B.W.I. Bulletin of the U.S. National Museum 215, 61–82.

BOLLI, H.M., BECKMANN, J.P. & SAUNDERS, J.B. 1994. BenthicForaminiferal Biostratigraphy of the South Caribbean Region.Cambridge University Press.

BORIS, V. 2003. On the Potential of small benthic foraminifera aspaleoecological indicators: Recent advances. Geology andGeophysics 46, 189–194.

BUROLLET, P.F. 1956. Contribution à l’étude stratigraphique de laTunisie centrale. Annales des mines et de la géologie 18, 32–181.

CANUDO, J.I., KELLER, G., MOLINA, E. & ORTIZ, N. 1995. Plankticforaminiferal turnover and δ13C isotopes across thePaleocene–Eocene transition at Caravaca and Zumaya, Spain.Palaeogeography, Palaeoclimatology, Palaeoecology 114, 75–100.

CULVER, S.J. & BUZAS, M.A. 2000. Global latitudinal species diversityGradient in deep-sea foraminifera. Deep-sea Research 147,259–275.

DERBEL-DAMAK, F. 1993. Biostratigraphie, sédimentologie etpaléoenvironnement du passage Mio–Pliocène de la régionNabeul–Hammamet (Cap–Bon–Tunisie). PhD Thesis, TunisUniversity, Tunis-Tunisia [unpublished].

DERCOURT, J., ZONENSHAIN, L.P., RICOU, L.E., KAZMIN, V.G., LE

PICHON, X., KNIPPER, A., GRANDJAQUET, C., SOROCHTIN, O.,GEYSSANT, J., LEPVRIER, C., SBORSHCHIKOV, V., BOULIN, 1. J.,BIJU–DUVAL, B., SIBUET, J. C., SAVOSTIN, V., WESTPHAL, M. &LAUER, J.P. 1985. Présentation de 9 cartes paléogéographiquesau 1/20 000 000e, s'étendant de l'Atlantique au Pamir pour lapériode du Lias à l'Actuel. Bulletin de la Société géologique deFrance 8, 637–652.

ELLIS, B.F. & MESSINA, A.R. 1940. Catalogues of Micropalaeontology:Foraminifera, Ostracoda, Diatoms. New York PaleontologyPress.

El-NADY, H. 2005. The impact of Paleocene/Eocene (P/E) boundaryevents in northern Sinai, Egypt, Planktonic foraminiferalbiostratigraphy and faunal turnovers. Revue de Paléobiologie24, 1–16.

References

Page 21: Foraminiferal Biostratigraphy and Palaeoenvironmental

EGGER, H., HEILMANN-CLAUSEN, C. & SCHMITZ, B. 2000. ThePaleocene/Eocene boundary interval of a Tethyan deep-seasection (Austria) and its correlation with the North Sea basin.Bulletin de la Société géologique de France 171, 207–216.

EGGER, H., FENNER, J., HEILMANN-CLAUSEN, C., RÖGL, F.,SACHSENHOFER, R.F. & SCHMITZ, B. 2003. Paleoproductivity ofthe northwestern Tethyan margin (Anthering Section, Austria)across the Paleocene–Eocene transition. Geological Society ofAmerica, Special Paper 369, 133–146.

ERNST, S.R., GUASTI, E., DUPUIS, C. & SPEIJER R.P. 2006.Environmental perturbation in the southern Tethys across thePaleocene/Eocene boundary (Dababiya, Egypt): Foraminiferaland clay mineral records. Marine Micropaleontology 60, 89–111.

FOURNIÉ, D. 1978. Nomenclature lithostratigraphique des séries duCrétacé supérieur au Tertiaire de Tunis. Bulletin des Centres deRecherches Exploration–Production Elf–Aquitaine 2, 97–148.

GAGE, J.D. & BREY, T. 1994. P/B ratios in deep-sea brittle stars. In :DAVID, B., GUILLE, A., FÈRAL, J.P., ROUX, M. (eds), EchinodermsThrough Time. AA Balkema, Rotterdam, 421–426.

GREEN, M.A., ALLER, R.C. & ALLER, J.Y. 1993. Carbonate dissolutionand temporal abundances of foraminifera in Long IslandSound sediments. Limnology and Oceanography 38, 331–345.

GUASTI, E., KOUWENHOVEN, T.J., BRINKHUIS, H. & SPEIJER, R.P. 2005.Paleocene sea-level and productivity changes at the southernTethyan margin (El Kef, Tunisia). Marine Micropaleontology55, 1–17.

HIGGINS, J.A. & SCHRAG, D.P. 2006. Beyond methane: Towards atheory for the Paleocene–Eocene Thermal Maximum. Earthand Planetary Science Letters 245, 523–537.

HUNGER, A.A. 1966. Distribution of foraminifera. Netarts Bay,Oregon State University, 1–123.

KAROUI-YAAKOUB, N. 2006. Effet du réchauffement climatique globalsur le comportement des foraminifères benthiques del’intervalle du passage Paléocène–Eocène de la coupe d’Ellès(Tunisie). Revue de Paléobiologie 25, 575–591.

KAMINSKI, M.A. & GRADSTEIN, F.M. 2005. Atlas of PaleogeneCosmopolitan Deep-water Agglutinated Foraminifera.Grzybowski Foundation, Special Publication 10.

KAMINSKI, M.A, KUHNT, W. & RADLEY, J.D. 1996. Paleocene–Eocene deep water agglutinated foraminifera from theNumidian Flysch (Rif, Northern Morocco): their significancefor paleoceanography of the Gibraltar gateway. Journal ofMicropaleontology 15, 1–19.

KATZ, M.E., CRAMER, B.S., MOUNTAIN, G.S., KATZ, S. & MILLER, K.G.2001. Uncorking the bottle: What triggered thePaleocene/Eocene thermal maximum methane release?Paleoceanography 16, 549–562.

KILLOPS, S.D., HOLLIS, C.J., MORGANS, H.E.G., SUTHERLAND, R., FIELD,B.D. & LECKIE, D.A. 2000. Paleoceanographic significance ofLate Paleocene dysaerobia at the shelf/slope break around NewZealand. Palaeogeography, Palaeoclimatology, Palaeoecology156, 51–70.

KUHNT, W., COLLINS, C. & SCOTT, D.B. 2000. Deep-wateragglutinated foraminiferal assemblages across the Gulf Stream:distribution patterns and taphonomy. In: HART, M.B.,KAMINSKI, M.A. & SMART, C.W. (eds), Proceedings of the 5th

International Workshop on Agglutinated Foraminifera (IWAFV). Grzybowski Foundation, Special Publication 7, 261–298.

KUHNT, W., KAMINISKI, M.A. & MOULLARD, M. 1989. Late Cretaceousdeep-water agglutinated foraminiferal assemblages from theNorth Atlantic and its marginal seas. Geologische Rundschau78, 1121–1140.

KUHNT, W., MOULLARD, M. & KAMINISKI, M.A. 1996. Ecologicalstructuring and evolution of deep sea agglutinatedforaminifera – a review. Revue de Micropaléontologie 39, 271–281.

LEVIN, L.A., ETTER, R.J., REX, M.A., GOODAY, A.J., SMITH, C.R.,PINEDA, J., STUART, C.T., HESSLER, R.R. & PAWSON, D. 2001.Environmental influences on regional deep-sea speciesdiversity. Annual Review of Ecology and Systematics 32, 51–93.

LIU, C., BROWNING, J.V., MILLER, K.G. & OLSSON, R.K. 1997.Paleocene benthic foraminiferal biofacies and sequencestratigraphy, Island Beach borehole, New Jersey. In: MILLER,K.G., NEWELL, W. & SNYDER, S.W. (eds), Proceedings of ODP,Science Results, 150X. College Station, TX (Ocean DrillingProgram), 267–275.

MACKENSEN, A., HUBBERTEN, H.W., BICKERT, FISCHER, G. & FÜTTERER,D.K. 1993. The d13C in benthic foraminiferal tests of Fontbotiawuellerstorfi (Schwager) relative to the d13C of dissolvedinorganic carbon in southern ocean deep water: implicationsfor glacial ocean circulation models. Paleoceanography 8, 587–610.

MEULENKAMP, J.E., SISSINGH, W., CALVO, J.P., DAAMS, R., LONDEIX, L.,CAHUZAC, B., KOVAC, M., NAGYMAROSY, A., BADESCU, D., RUSU,A., STUDENCKA, B., BENIAMOVSKII, V.N., SCHERBA, I.G., ROGER,J., PLATEL, J.P., HIRSCH, F., SADEK, A., ABDEL-GAWAD, G.I.,ZAGHBIB-TURKI, D., BEN ISMAIL-LATTRACHE, K., BOUAZIZ, S.,KAROUI-YAAKOUB, N. & YAICH, C. 2000. Early to MiddleYpresian (55–51 Ma). In: DERCOURT, J., GAETANI, M.,VRIELYNCK, B., BARRIER, É., BIJU-DUVAL, B., BRUNET, M.F.,CADET, J.P., CRASQUIN, S. & SANDULESCU, M. (eds), Atlas Peri-Tethys, Palaeogeographical maps. CCGM/CGMW, Paris 155–162.

MOLINA, E., ARENILLAS, I. & PARDO, E. 1999. High resolution plankticforaminiferal biostratigraphy and correlation across thePaleocene/Eocene boundary in the Tethys. Bulletin de laSociété géologique de France 174, 521–530.

MURRAY, J.W. 1991. Ecology and Palaeoecology of BenthicForaminifera. Longman, Harlow, 1–343.

OLSSON, R.K. & WISE, S.W. 1987. Upper Paleocene to middle Eocenedepositional sequences and hiatuses in the New Jersey AtlanticMargin. In: ROSS, C. & HAMAN, D. (eds), Timing andDepositional History of Eustatic Sequences: Constraints onSeismic Stratigraphy. Cushman Foundation for ForaminiferalResearch Publication 24, 99–112.

L. ZILI & D. ZAGHBIB–TURKI

405

Page 22: Foraminiferal Biostratigraphy and Palaeoenvironmental

ORTIZ, N. 1995. Differential patterns of benthic foraminiferalextinctions near the Paleocene/Eocene boundary in the NorthAtlantic and the western Tethys. Marine Micropaleontology 26,341–359.

ORTIZ, S. 2006. Análisis de eventos del Paleógeno con foraminíferosbentónicos. Taxonomía, reconstrucción paleoambiental yaplicación cronoestratigráfica. PhD Thesis, ZaragozaUniversity, Zaragoza, Spain [unpublished].

PARDO, A., KELLER, G. & OBERHÄNSLI, H. 1999. Paleocologic andpaleo-oceanographic evolution of the tethyan realm during thePaleocene–Eocene transition. Journal of ForaminiferalResearch 29, 37–57.

PARKER, F.L. & ATHEARN, W.D. 1959. Ecology of marsh foraminiferain Poponesset Bay, Massachusetts. Journal of Paleontology 33,333–343.

PEARSON, P.N., OLSSON, R.K., HEMLEBEN, C., HUBER, B.T. &BERGGREN, W.A. 2006. Atlas of Eocene Planktonic Foraminifera.Cushman Foundation for Foraminiferal Research, SpecialPublication.

PREMOLI-SILVA, I. & BOLLI, H.M. 1973. Late Cretaceous to Eoceneplanktonic foraminifera and stratigraphy of Legs 15 sites in theCaribbean Sea. Initial Report of the Deep Sea Drilling Project15, 449–547.

RADIONOVA, E.P., KHOKHLOVA, I.E., BENIAMOVSKILL, V.N.,SHCHERBININA, E.A., IAKOVLEVA, A.I. & SADCHIKOVA, T.A. 2001.Paleocene/Eocene transition in the northeastern Peri-Tethysarea: Sokolovskii key section of the Turgay Passage(Kazakhstan). Bulletin de la Société géologique de France 172,245–256.

REX, M.A., MCCLAIN, C.R., JOHNSON, N.A., ETTER, R.J., ALLEN, J.A.,BOUCHET, P. & WARÉN, A. 2005, A source-sink hypothesis forabyssal biodiversity. American Naturalist 165, 163–178.

SAID, R. 1978. Etude stratigraphique et micropaléontologique dupassage Crétacé–Tertiaire du synclinal d’Ellès (région Siliana-Sers) Tunisie centrale. PhD Thesis, Pierre et Marie CurieUniversity, Paris, France [unpublished].

SALAJ., J. 1980. Microbiostratigraphie du Crétacé et du Paléogène de laTunisie septentrionale et orientale (Hypostra-totypes Tunisiens).Institut Géologique de Dionyz Stur, Bratislava, 1–238.

SEN GUPTA, B.K. 2000. Modern Foraminifera. Kluwer AcademicPublication.

SPEIJER, R.P. 1994. Extinction and Recovery Patterns in BenthicForaminiferal paleocommunities across the Cretaceous/Paleogene and Paleocene/Eocene Boundaries. GeologicaUltraiectina 124, 1–191.

SPEIJER, R.P. & VAN DER ZWAAN, G.J. 1994. The differential effect ofthe Paleocene/Eocene boundary event: extinction andsurvivorship in shallow to deep water Egyptian benthicforaminiferal assemblages. In: SPEIJER, R.P. (ed), Extinction andRecovery Patterns in Benthic Foraminiferal PaleocommunitiesAcross the Cretaceous–Paleogene and Paleogene–EoceneBoundaries. Geologica Ultraiectina 124, 121–168.

SPEIJER, R.P., VAN DER ZWAAN, G.J. & SCHMITZ, B. 1996. The impact ofPaleocene–Eocene boundary events on middle neritic benthicforaminiferal assemblages from Egypt. MarineMicropaleontology 28, 99–132.

THOMAS, E. 1990. Late Cretaceous–early Eocene mass extinctions inthe deep sea. In: SHARPTON, V.L. & WARD, P.D. (eds), GlobalCatastrophes in Earth History: An Interdisciplinary Conferenceon Impacts, Volcanism, and Mass Mortality. Geological Societyof America, Special Paper 247, 481–495.

THOMAS, E. 2003. Extinction and food at the sea floor: a high-resolution benthic foraminiferal record across the InitialEocene Thermal Maximum, Southern Ocean Site 690. In:WING, S.L., GINGERICH, P., SCHMITZ, B. & THOMAS, E. (eds),Causes and Consequences of Globally Warm Climates in theEarly Paleogene. Geological Society of America, Special Paper369, 319–332.

THOMAS, E. 2007. Cenozoic mass extinctions in the deep sea; whatdisturbs the largest habitat on Earth? In: MONECHI, S.,COCCIONI R. & RAMPINO, M. (eds), Large EcosystemPerturbations: Causes and Consequences. Geological Society ofAmerica, Special Paper 424, 1– 424.

THOMAS, E. & SHACKLETON, N.J. 1996. The Paleocene–Eocenebenthic foraminiferal extinction and stable isotopic anomalies.In: KNOX, R.W.O'B., CORFIELD, R.M. & DUNAY, R.E. (eds),Correlation of the Early Paleogene in Northwest Europe.Geological Society, London, Special Publications 101, 401–441.

TJALSMA, R.C.1977. Cenozoic Foraminifera from the South Atlantic,DSDP leg 36. In: BARKER DALZIEL, P., I.W.D., DINKELMAN, M.G.,ELLIOTT, D.H., GOMBOS, J.A.M., LONARDI, A., PLAFKER, G.,TARNEY, J., THOMPSON, R.W., TJALSMA, R.C., VON DER BORCH,C.C. & WISE, J.S.W. (eds), Initial Report of the Deep Sea DrillingProject 36, 493–518.

TJALSMA, R.C. & LOHMANN, G.P. 1983. Paleocene–Eocene bathyaland abyssal benthic foraminifera from the Atlantic Ocean.Micropaleontology, Special Publication 4, 1–90.

VAN MORKHOVEN, E.P.C.M., BERGGREN, W.A. & EDWARDS, A.S. 1986.Cenozoic cosmopolitan deep-water benthic foraminifera.Bulletin des Centres de Recherches Exploration-Production Elf–Aquitaine 11, 1– 421.

ZACHOS, J.C., RÖHL, U., SCHELLENBERG, S.A., SLUIJS, A., HODELL, D.A.,KELLY, D.C., THOMAS, E., NICOLO, M., RAFFI, I., LOURENS, L.J.,MCCARREN, H. & KROON, D. 2005. Rapid acidification of theocean during the Paleocene–Eocene thermal maximum.Science 308, 1611–1615.

ZILI, L., ZAGHBIB-TURKI, D., ALEGRET, L., ARENILLAS, I. & MOLINA, E.2009. Foraminiferal turnover across the Paleocene/Eoceneboundary at the Zumaya section, Spain: record of a bathyalgradual mass extinction. Revista Mexicana de CienciasGeológicas 26, 729 –744.

ZILI, L., ZAGHBIB-TURKI, D. & ARENILLAS, I. 2008. Plankticforaminiferal biostratigraphy and eventstratigraphy across thePaleocene/Eocene boundary at Kharrouba (Tunisia).Geotemas 10, 1285–1288 [in Spanish with English abstract].

PALEOCENE–EOCENE TRANSITION IN TUNISIA

406

Page 23: Foraminiferal Biostratigraphy and Palaeoenvironmental

L. ZILI & D. ZAGHBIB–TURKI

407

PLATE I

X is used to indicate magnification. SEM: Scanning Electronic Microscope. LM: Light Microscope.

1– Bathysiphon gerochi; X100; SEM; sample Kh 25.65;2– Bathysiphon sp.1; X 71; LM; Kh 22.30;3– Ammodiscus peruvianus; X 80; LM; sample Kh 31.40;4– Ammodiscus glabratus; X 220; LM; sample Kh 22.30;5– Glomospira charoides; X 150; SEM; sample Kh 25.65;6– Rzehakina epigona; X 100; LM; sample Kh 31.40;7– Ammosphaeroidina sp. ; X152; LM; sample Kh 22.30;8– Spiroplectinella subhaeringensis; X106; LM; sample Kh 17.80;9– Vulvulina advena; X75; LM; sample Kh 17.80;10– Spiroplectammina spectabilis; X57; LM; sample Kh 31.40;11– Clavulinoides amorpha ; X100; LM; sample Kh 31.40;12– Marssonella oxycona; X100; SEM; sample Kh 2.50;13– Dorothia bulletta; X61; LM; sample Kh 31.40;14– Gaudryina pyramidata; X100; LM; sample Kh 22.20;15– Bulimina tuxpamensis; X62; LM; sample Kh 31.40;16– Bulimina trinitatensis; X60; LM; sample Kh 17.80;17– Bulimina midwayensis; X200; SEM; sample Kh 24.25;18– Aragonia aragonensis; X100; SEM; sample Kh 27.00;19– Siphogenerinoides eleganta; X150; SEM; sample Kh 22.20;20– Tappanina selmensis; X750; SEM; sample Kh23.20;21– Gavelinella danica; umbilical view; X100; SEM; sample Kh 24.20;22– Gavelinella danica; lateral view; X100; SEM; sample Kh 24.20;23– Gavelinella danica; spiral view; X100; SEM; sample Kh 24.20;24– Cibicidoides alleni; spiral view; X100; SEM; sample Kh 24.20;25– Cibicidoides alleni; lateral view; X100; SEM; sample Kh 24.20;26– Cibicidoides alleni; X100; SEM; sample Kh 24.20;27– Pullenia coryelli; lateral view; X150; SEM; sample Kh31.40;28– Pullenia coryelli; umbilical view; X150; SEM; sample Kh 31.40.

Page 24: Foraminiferal Biostratigraphy and Palaeoenvironmental

PALEOCENE–EOCENE TRANSITION IN TUNISIA

408