21
© Vattenfall AB High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall Research and Development AB SE-81426 Älvkarleby, Sweden Farid Alavyoon Forsmarks Kraftgrupp AB SE-74203 Östhammar, Sweden Pascal Veber, Lars Andersson Onsala Ingensjörsbyrå AB SE-43437 Kungsbacka, Sweden Carsten ‘t Mannetje Forsmarks Kraftgrupp AB SE-74203 Östhammar, Sweden Urban Andersson, Jan Eriksson, Mats Henriksson Vattenfall Research and Development AB SE-81426 Älvkarleby, Sweden Claes Andersson Ringhals AB SE-43022 Väröbacka , Sweden

High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB

High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new

validation experiment

Johan WestinVattenfall Research and Development ABSE-81426 Älvkarleby, Sweden

Farid AlavyoonForsmarks Kraftgrupp ABSE-74203 Östhammar, Sweden

Pascal Veber, Lars Andersson Onsala Ingensjörsbyrå ABSE-43437 Kungsbacka, Sweden

Carsten ‘t MannetjeForsmarks Kraftgrupp ABSE-74203 Östhammar, Sweden

Urban Andersson, Jan Eriksson,Mats Henriksson

Vattenfall Research and Development ABSE-81426 Älvkarleby, Sweden

Claes AnderssonRinghals ABSE-43022 Väröbacka , Sweden

Page 2: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 2

Outline

• Background– Previous work by the authors

• New experimental validation test case (2006)

• Computational results (Fluent)– Mesh dependence study– Large Eddy Simulations (LES) compared with Detached Eddy

Simulations (DES)

• Concluding remarks

Page 3: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 3

Background (1)Introduction

• Temperature fluctuations can cause thermal fatigue

• Interesting case for CFD-validation (unsteady flow, large fluctuation levels)

• Static mixers or thermal sleeves can be installed to reduce the risk for thermal fatigue (but expensive)

• Desirable with accurate predictions of the risk for thermal fatigue

• Structural analysis require boundary conditions1) Amplitudes of temperature fluctuations2) Frequencies of temperature fluctuations3) Heat transfer to the wall

Static mixer (MIX-331)

Page 4: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 4

4450 mm

2840 mm

1000 mm

1168 mm

D1=123 mm

D2=190 mm

R=225 mm

3000 mm

R=1100 mm

D=600 mm

D=200 mm4450 mm

2840 mm

1000 mm

1168 mm

D1=123 mm

D2=190 mm

R=225 mm

3000 mm

R=1100 mm

D=600 mm

D=200 mm4450 mm

2840 mm

1000 mm

1168 mm

D1=123 mm

D2=190 mm

R=225 mm

3000 mm

R=1100 mm

D=600 mm

D=200 mm

Background (2)Previous work by the present authors

• Model test of a plant specific T-junction performed in 2002– Geometry including upstream bends– Temperature fluctuations near the wall

measured with thermocouples– Several test cases (flow ratios)

• Computational studies– Unsteady RANS failed to predict the temp. fluctuations– LES showed promising results– Still discrepancies (amplitude and frequencies overpredicted)– Complicated and uncertain inflow boundary conditions

• Need for more validation data and well-documented inflow boundary conditions

Page 5: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 5

New model tests for validation of CFD (2006)Test rig overview

• Fully developed pipe flow in the cold water inlet pipe (>80 diameters straight section upstream the T-junction)

• Pipe diameters 140 mm (cold) and 100 mm (hot)

>200

0 (>

20D

)

>12200 (>80D)

Stagnation chamberDN400 Cold water

Hotwater

High-levelreservoir

Stagnation chamberDN300

x

z

• Focus on one test case– T 15 C– Constant flow ratio Qcold/Qhot=2– Equal inlet velocities in the cold

and hot water pipe

Page 6: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 6

10D 15D 20D

180°

90° 270°

4D 6D 8D2D

T11-T12

T-junction T31-T32

T-junction model and measurements

• Thermocouples( 0.13 and 0.07 mm)

– Located 1 mm from the wall

– Frequency response 30-45 Hz

• Lased Doppler Velocimetry (LDV)– Inlet-BCs at x/D=-3 and z/D=-3.1– Profiles at x/D=2.6 and 6.6– Measurements at T 15 C and isothermal

• Single-point Lased Induced Fluorescence (LIF)– Conc. measurements at isothermal conditions

LDV measurements

Page 7: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 7

Flow visualization: 50%, 100% and 200% flow(Reynolds number: 0.5 105, 1.0 105 and 2.0 105)

Page 8: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 8

Spectra of temperature fluctuations at x=4D Various flow rates

x=4D

P vs f (Hz)No normalization

3

12 U

fDvsTP

f=4 Hz f=4 Hz

Page 9: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 9

Performed simulations and numerical settingsInfluence of computational mesh Influence of unsteady inflow-BC

1) Vortex method2) No perturbation3) Scaled isotropic turbulence

from separate input files

Comparison LES-DESLES: WALE (Wall-Adaptive

Local Eddy viscosity model)DES: SST k- model

Numerical settings• Non-iterative time advancement (NITA): 2nd order, implicit• Pressure-velocity coupling: Fractional step• Momentum eq: Bounded central differences• Pressure: PRESTO• “Law-of-the-wall” applied near the wall (y+ typically 20-50)

Case #cells tsamp(s)

Note Organization

T1vm-FKA

0.52M 29.0 4 boundary layer cells

Forsmark

OnsalaVattenfall R&D

OnsalaVattenfall R&D

Onsala

T1Bvm 0.45M 21.8 no BLcells

T2vm 0.93M 19.6 More uniform

T3vm 9.5M 8.3 Similar, but refined

Page 10: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 10

Instantaneous temperature fields

Case T2vm (0.93 Mcell) Case T3vm (9.5 Mcell)

Page 11: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 11

Simulation, 9.5 Mcell

Page 12: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 12

Temperatures near the pipe wallDifferent computational mesh

coldhot

cold

TTTTT *

Top

Bottom

Left Right

coldhot

rmsrms

TTT

TT

Page 13: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 13

Velocity fluctuations at the pipe centerlineDifferent computational mesh

bulk

rms

Uu

bulk

rms

Uw

Page 14: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 14

Velcoity spectra, pipe centreline at x=2.6DDifferent computational mesh

u-component (=streamwise) v-component (=spanwise)(not measured)

f=4 Hz

Page 15: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 15

Mean velocity profiles, x/D=2.6Different computational mesh

x

y

zx

Page 16: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 16

Velocity fluctuations, x/D=2.6Different computational mesh

x

y

zx

Page 17: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 17

Mean and fluctuating temperatures Comparison LES vs DES (mesh 0.93 Mcell)

Left Right

coldhot

rmsrms

TTT

TT

coldhot

cold

TTTTT *

Page 18: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 18

Time signalsComparison LES vs DES (x/D=4)

LES

DES

Experiment

Page 19: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 19

Modelled turbulent viscosityComparison LES vs DES

DESLES

Color scale: 0-0.2 kg/(m s)

Page 20: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 20

Concluding remarks

• Good agreement between simulation and model test results, also with fairly coarse computational mesh

– Both fluctuation amplitude and spectral distribution show good agreement

– Considerably better than in previous experiment/simulations– (Indicate that the current flow case is quite ”forgiving” for LES)

• Insensitive to variations in the (unsteady) inlet boundary conditions

• However: Clear improvement of the results with a refined mesh – Improved results in the entire computational domain with 9.5 Mcell

• Still insufficient resolution near the walls– Erroneous prediction of the near-wall mean velocity profile and the

wall-shear stress as compared to fully developed turbulent pipe flow– Detached Eddy Simulations (DES) results in better near-wall profiles,

but the tested model is too dissipative in order to give good predicitionof the temperature fluctuations

Page 21: High-cycle thermal fatigue in mixing Tees. Large-Eddy ......High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment Johan Westin Vattenfall

© Vattenfall AB 21

Interested in the Vattenfall T-junction test case?• The experimental data can be made available for those who are interested

to perform simulations• In return we expect to get access to the computational results • No restrictions to publish your results (reference to the source of the data)• Presently computations are carried out by NRG, The Netherlands (Ed

Komen et al.) and ANSYS, Germany (Frank et al.)

If you are interested to use this test case for CFD-validation, contactJohan Westin, Vattenfall Research and Development ABE-mail: [email protected]