14
Didier Gottignies 3 mars 2011 1 Introduction Implants actifs : Définition Législation Information Batterie Types d’implant actuellement sur le marché Zones d’implantation classiques Implants et crémation Que dit la loi Responsabilité Quel est le risque pour l’installation Accidents reportés IMPLANT ACTIFS ET CREMATION: Un problème bien réel...

IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

  • Upload
    vudang

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

1  

   

Introduction  

Implants  actifs  :  

  Définition  

  Législation  

  Information  Batterie  

Types  d’implant  actuellement  sur  le  marché  

Zones  d’implantation  classiques  

Implants  et  crémation  

  Que  dit  la  loi  

  Responsabilité  

  Quel  est  le  risque  pour  l’installation  

  Accidents  reportés  

 

 

 

 

 

 

 

 

 

 

 

 

IMPLANT  ACTIFS  ET  CREMATION:    Un  problème  bien  réel...  

Page 2: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

2  

Introduction  

 

C’est  un  fait.    De  plus  en  plus  souvent,  on  retrouve  des  objects  singuliers  dans  les  cendres  des  crématoriums.    Dents,  tige  de  colonne  vertébrale,  arthrodèse,  visses  et  plaques,  électrodes,  pacemaker,  pompes  à  morphine,    prothèse  de  hanche,  genou  etc.  En  fait  actuellement  on  est  vraiment  en  route  vers  l’homme  bionique  qui  va  pouvoir  compenser  ses  déficits,  pallier  à  des  manques  et  augmenter  ses  capacités  déficiente.    C’est  la  chirurgie  augmentative.  

Evidemment  ces  artifices  ne  vont  faire  que  pallier  un  temps  les  déficits  mais  la  grande  faucheuse  reste  bien  au  bout  de  chaque  chemin.      

La  problématique  des  déchets  se  fait  alors  d’actualité.    Quel  sera  le  devenir  de  ces  déchets  dans  le  sol  ou  de  plus  en  plus  fréquemment  dans  l’incinérateur?        

Devrez-­‐vous  démonter  toute  cette  chirurgie  pour  la  recycler  ?  probablement  que  oui,  un  jour,  mais  quand  ?  

 

 

Définition  implant:  

 

Implants  (art.  28  et  35  de  la  loi  du  14/09/1984)  :    «  Un  implant  est  un  dispositif  médical  qui  est  implanté  partiellement  ou  totalement  par  une  intervention  dans  le  corps  humain  ou  une  ouverture  naturelle  ou  qui  remplace  une  partie  du  tissu  épithélial.  Il  est  destiné  à  demeurer  en  place  après  l’intervention  pendant  une  période  d’au  moins  trente  jours.  L’implant  ne  peut  être  retiré  que  par  une  intervention  chirurgicale  ou  médicale  ».    Exemples  :  stimulateurs  cardiaques  implantables,  prothèses  de  hanche,  lentilles  intra-­‐oculaires,  valves  cardiaques,  stents,  .  

 

 

 

 

 

 

Page 3: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

3  

 

Implant  Actif  

 

Tout  dispositif  médical  dépendant  pour  son  fonctionnement  d'une  source  d'énergie  électrique  ou  de  toute  source  d'énergie  autre  que  celle  générée  directement  par  le  corps  humain  ou  par  la  pesanteur  et  agissant  par  conversion  de  cette  énergie.  Ne  sont  pas  considérés  comme  des  dispositifs  médicaux  actifs  les  dispositifs  médicaux  destinés  à  transmettre  de  l'énergie,  des  substances  ou  d'autres  éléments,  sans  modification  significative,  entre  un  dispositif  médical  actif  et  le  patient.  

 

Législation  

 

3  JUIN  2010.  -­‐  Arrêté  du  Gouvernement  wallon  déterminant  les  conditions  sectorielles  relatives  aux  crématoriums  et  modifiant  l'arrêté  du  Gouvernement  wallon  du  30  juin  1994  relatif  aux  déchets  d'activités  hospitalières  et  de  soins  de  santé  14.  Tout  implant  fonctionnant  sur  pile  est  enlevé  de  la  dépouille;    14  MAI  2004.  -­‐  Arrêté  du  Gouvernement  flamand  portant  organisation,  aménagement  et  gestion  des  cimetières  et  établissements  crématoires  Art.  28.  Lorsque  le  défunt  porte  un  implant  qui  fonctionne  sur  pile,  celle-­‐ci  doit  être  enlevée  avant  l'inhumation  ou  la  crémation.  

 

Information  Batterie  

 

En  ce  qui  concerne  les  stimulateurs  cardiaques  ou  tout  autre  appareil  alimenté  par  une  batterie,  il  est  nécessaire  de  prendre  en  compte  le  type  de  batterie  utilisée.  Les  batteries  sont  placées  à  l’intérieur  d’un  boîtier  en  métal  qui  contient  le  matériel  et  les  composants  électroniques.  Les  principaux  types  de  batterie  utilisés  pour  les  pacemakers  sont  les  suivants  :    1°)    Les  batteries  au  lithium  à  longue  durée  (cinq  –  dix  ans)  sont  les  plus  communes.  Si  exposées  aux  fortes  températures  de  crémation,  elles  se  décomposent  en  produisant  des  petites  déflagrations  qui  normalement  n’endommagent  pas  les  structures  réfractaires  des  équipements  de  crémation.    Les  expériences  qui  ont  été  menées  indiquent  que  le  processus  de  crémation  peut  être  tenu  sous  contrôle  à  des  températures  opérationnelles  normales,  et  ce,  sans  créer  de  problème  particulier  au  four  de  crémation.  

Page 4: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

4  

 2°)    Les  batteries  à  durée  de  vie  brève  (deux  ans)  normalement  utilisées  jusque  dans  les  années  septante  étaient  à  base  de  mercure/zinc  et/ou  nickel/cadmium.  Aujourd’hui,  elles  ne  sont,  normalement,  plus  utilisées  dans  les  implants.    3°)    Les  batteries  alimentées  par  des  radionucléides  (généralement  l’isotope  du  plutonium  Pu-­‐238)  sont  encore  utilisées  dans  de  nombreux  pays  comme  les  USA  et  les  pacemakers  qui  utilisent  ce  type  de  batterie  doivent  obligatoirement  être  enlevés  avant  le  processus  de  crémation.  Il  s’agit  ici  d’une  mesure  de  sécurité  qui  est  obligatoire  dans  de  nombreux  pays  européens  même  si  la  fabrication  du  pacemaker  (normalement  en  titane)  assure  qu’il  est  à  même  de  supporter  les  températures  de  crémation  sans  risquer  d’être  endommagé  ou  de  subir  des  altérations  structurelles.        

 

Qu’est-­‐ce  qu’une  pile  au  Lithium  ?    

 Une  pile  au  Lithium  est  constituée  d’un  boitier  étanche  en  Titane,  dans  lequel  est  empilé  :  -­‐ Le  fond  de  boite  en  Titane  qui  sera  le  pôle  positif.    -­‐ Au  fond,  on  place  la  cathode  en  dioxyde  de  manganèse.  -­‐ Puis  l’électrolyte.    -­‐ Vient  ensuite  Un  séparateur.    -­‐ Par-­‐dessus  l’anode  en  lithium    -­‐ Et  pour  finir  le  couvercle  étanche  en  Titane  avec  son  joint  qui  sera  le  pôle  négatif.  

 Dans  ce  type  de  pile,  n’ayez  aucune  crainte  il  n’y  a  rien  de  radioactif,  cependant  elles  sont  très  dangereuses.    Les  constituants  de  ces  piles.  Le  lithium  (Li)  est  un  métal  blanc,  appartenant  à  la  famille  des  alcalins,  il  est  le  plus  léger  de  tous  les  corps  solides,  sa  densité  est  de  0,53.  Il  fond  à  180,54  °C,  et  entre  en  ébullition  à  1336°C.  Le  dioxyde  de  manganèse  (MnO2)  se  trouve  à  l’état  naturel  de  couleur  noire  ou  brun,  chauffé  en  présence  d’air  le  dioxyde  se  décompose  vers  535°C  en  Mn2O3,  c’est  un  composé  très  réactif,  qui  réagit  vivement  à  chaud  notamment  avec  des  produits  tels  le  soufre  et  les  sulfures  qui  se  dégagent  des  corps  lors  d’une  crémation,  ou  d’une  incinération,  et  peut  provoquer  une  explosion.  Ce  produit  est  de  plus  classé  nocif  pour  la  santé  par  inhalation,  et  ou  ingestion.  

 

 

 

 

Page 5: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

5  

Types  d’implants  actifs  

 

 

  Pacemaker,  défibrillateur,  neurostimulateur,  pompe  implantable  

Neurochirurgie Pompes programmables implantables Pompes avec débit constant Neurostimulateurs (douleur) Neurostimulateurs rechargeables Valves d'hydrocéphalie Oto-rhino-laryngologie Implants cochléaires Implants cochléaires bilatéraux Prothèses de la parole Urologie Stimulateurs de la vessie Neurostimulateurs pour dysfonction des voies urinaires inférieures + électrodes et accessoires Sphincter urinaire artificiel Chirurgie de l'abdomen et pathologie du système digestif Stimulateurs pour incontinence fécale - graciloplastie

Stimulateurs pour incontinence fécale – stimulation du nerf sacré

Sphincter anal artificiel

Chirurgie du thorax et cardiologie Stimulateurs cardiaques Valves cardiaques Tuteurs coronaires Chirurgie des vaiseaux sanguin Endoprothèses

Neurochirurgie Neurostimulateurs DBS Stimulateurs du nerf vague Neurostimulateurs ischémie Neurostimulateur et accessoires en cas de trouble obsessionnel compulsif (obsessive compulsive disorder) (C) Chirurgie du thorax et cardiologie Coeur artificiel Moniteur cardiaque implantable

Neurochirurgie Chirurgie de l'abdomen et pathologie du système digestif Vidéocapsules endoscopiques 01-03-2010

Convention de revalidation

Défibrillateurs cardiaques Electrodes pour défibrillateurs cardiaques (D)  

Page 6: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

6  

Zones  d’implantation  classique  

   

   

Attention  à  contrôler  également  dans  le  haut  des  fesses  

 

Types  d’implants  :  

             

 

 

 

     

 

Page 7: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

7  

Quels  sont  les  risques  ?  

 

 

 

⇒ pour  le  personnel  ⇒ pour  l’installation  ⇒ pour  l’environnement  ⇒ Pour  le  souvenir  du  défunt  

De  tels  dispositifs  sont  souvent  considérés  comme  potentiellement  dangereux  pour  les  structures  du  four  de  crémation  ainsi  que  pour  la  santé  et  le  bien-­‐être  des  opérateurs  travaillant  sur  l’équipement  de  crémation.  De  même  que  toute  personne  défunte  ayant  subi  des  traitements  à  base  de  substances  radioactives  doit  être  mise  en  quarantaine  avant  d’être  incinérée.  En  effet,  lorsqu’un  pacemaker  est  soumis  à  de  fortes  températures,  son  conteneur  en  métal  peut  se  casser  et  dégager  des  gaz  qui  s’épandent  rapidement  (accompagnés  de  petites  explosions)  susceptibles  de  provoquer  l’extinction  de  la  flamme  des  brûleurs.  D’ailleurs,  il  est  nécessaire  d’informer  les  opérateurs  de  la  présence  d’un  pacemaker  dans  le  corps  du  défunt  avant  qu’il  ne  soit  incinéré.  Avant  toute  chose,  il  faut  retirer  le  pacemaker  du  corps  du  défunt  avant  la  crémation.  Dans  l’éventualité  où  ce  type  d’appareil  serait  identifié  et  ne  puisse  être  enlevé,  la  crémation  doit  être  menée  comme  d’habitude  mais  en  prenant  malgré  tout  quelques  précautions  :  -­‐ L’opérateur  doit  rester  en  proximité  du  four  afin  de  pouvoir,  si  nécessaire,  

rallumer  rapidement  les  brûleurs  dont  la  flamme  se  serait  éteinte  accidentellement  durant  le  processus  ;  

-­‐ L’opérateur  ne  doit,  pour  aucune  raison,  regarder  à  travers  les  portes  d’inspection  ou  les  fenêtres  de  contrôle  à  l’intérieur  de  la  chambre  de  crémation.  En  effet,  en  cas  de  rupture  du  pacemaker,  il  est  possible  que  les  gaz  dégagés  dans  la  chambre  de  crémation  s’épandent  très  rapidement.  L’opérateur  risque  alors  de  blesser  gravement  ses  yeux.    

-­‐  Dans  les  piles  Mercure/zinc  d’ancienne  génération,  une  production  d’hydrogène  est  réalisée  lors  de  la  décharge  de  la  batterie.    L’hydrogène  étant  un  gaz  explosif,  il  concours  à  augmenter  la  puissance  de  l’explosion.    Sans  compter  que  l’explosion  produit  des  gaz  toxiques  et  une  projection  de  matière  potentiellement  contaminée  du  corps.  Les  batteries  au  lithium  ont  remplacé  les  mercure/zinc  mais  en  restant  toujours  aussi  si  pas  plus  dangereuses.  D'une  part,  cette  situation  entraîne  un  traumatisme  moral  pour  la  famille  du  défunt,  dont  le  travail  du  deuil  sera  entaché  par  cet  incident.  

 -­‐  

Page 8: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

8  

Mais  alors  que  doit  on  faire  ?  

   

     Dans  le  cas  du  décès  d’un  porteur  de  stimulateur  cardiaque,  cet  appareil  doit  obligatoirement  être  retiré  soit  par  un  médecin,  soit  par  un  thanatopracteur.  En  effet,  le  lithium  contenu  dans  la  pile  du  stimulateur  va  exploser  à  partir  de  180°C  (point  de  fusion  du  lithium)  laissant  libre  accès  aux  composants  du  boitier,  sachant  que  la  température  d’un  four  de  crémation  varie  de  600  à  1100°C,  il  y  aura  une  violente  réaction  du  dioxyde  de  manganèse  dès  535°C,  et  cela  constitue  un  risque  majeur  pour  le  personnel  et  l’installation  du  crématorium.  Même  dans  le  cas  où  il  devrait  y  avoir  inhumation,  le  retrait  du  stimulateur  cardiaque  est  obligatoire  du  fait  qu’il  se  peut  que  la  famille  demande  ultérieurement  une  exhumation  aux  fins  de  crémation.  Très  important  !  Il  faut  se  rappeler  qu’entre  les  années  1972  et  1989  des  stimulateurs  cardiaques  à  combustible  nucléaire  ont  été  implantés,  certains  corps  inhumés  dans  cette  période  peuvent  être  porteur  de  ce  type  d’appareil  radioactif,  mais  aussi  de  1990  à  nos  jours  des  corps  inhumés  peuvent  être  porteur  d’un  stimulateur  à  pile  au  lithium,  la  législation  de  cette  époque  n’exigeait  pas  le  retrait.  La  plus  grande  prudence  est  requise  pour  toute  exhumation  avec  ou  sans  crémation  des  restes  humains.  

Un  pacemaker  non  retiré  provoque  une  «  explosion  »  qui  risque  de  déplacer  les  briques  du  four  et  surtout  un  glaçage  de  ces  briques  qui  les  empêchera  de  rayonner  la  chaleur  pour  les  prochaines  crémations…  quand  l’appareil  n’est  pas  mis  totalement  hors  d’usage.  

 

 

 

 

 

 

 

 

 

 

 

Page 9: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

9  

Les  Pompes  =  Bombes  !  

 

 

 

 

 

 

Types  de  Pompes  :  

Pompe  à  Gaz  (N-­‐Butane)  

Ce  sont  des  pompes  mécaniques  contenant  un  gaz  à  l’intérieur  (N-­‐Butane  car  le  Fréon  est  devenu  interdit  à  cause  de  la  couche  d’ozone…  ).    Le  réservoir  de  gaz  pousse  le  produit  vers  l’extérieur  et  est  limité  par  un  fin  capillaire.  

 

 

   

Pompe  électronique  

Ce  sont  des  pompes  avec  batteries  Lithium  mais  en  plus  avec  du  gaz  !    On  combine  les  risques.    La  batterie  alimente  un  moteur  qui  va  contrôler  l’administration  de  médicament  

 

 

 

 

 

 

 

 

 

Page 10: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

10  

Accidents  reportés  

 

 

 

 

1  Pacemaker  explosif  !  

 

 

 

 

 

 

 

 

Sudden  pain  on  pacemaker  pocket  followed  by  explosion  in  a  patient  with  a  permanent  pacemaker.  

Ruiz-­‐Santana  S,  Aguado-­‐Bourrey  JM,  Martin-­‐Rodriguez  A,  Perez-­‐Arriaga  M.  

Abstract  Une  femme  de  81  portant  un  pacemaker  alimenté  par  une  batterie  mercure/zinc  à  ressentit  une  violente  douleur  à  son  pacemaker  suivi  d’une  violente  explosion.  

PMID:  3816328  [PubMed  -­‐  indexed  for  MEDLINE]Free  Article  

a hand-held metal detector might be useful in identifyingpacemakers in mortuaries.

R E S U L T S

The overall questionnaire response rate was 78%. Though47% of the 188 crematoria staff who responded hadpersonal experience of pacemaker explosions at some pointin their career, those explosions were reported to beuncommon (Table 1). Indeed, 41% of staff, when asked toestimate event frequency, reported no events and 27%estimated events once in every 10 years. However, 5% ofrespondents reported pacemaker explosions occurring onceor more a year.

Of the 71 crematoria that had reported distress ordamage as a result of pacemaker explosions, the commonestconsequences were the noise of the explosion and damageto the cremator doors and brickwork—32 (45%) and 30(42%) crematoria, respectively. The cremator was damagedbeyond repair in 3% of cases and in one case the explosionscaused injury to staff. The remains of pacemakers werefound after 15% of explosions.

The procedure for checking that pacemakers wereremoved before cremation was as follows. 99% ofcrematoria staff check the cremation forms to ensure thatthe doctor signing the form has confirmed that there is nopacemaker in the body. 54% of crematoria staff also discussthe case with the funeral director to check that thepacemaker has been removed from the body. Only 9% ofcrematoria staff ask the relatives whether a pacemaker ispresent. 16% make other enquiries (e.g. speaking to thecoroner’s office, mortuary staff, hospital, or medical refereeor placing a reminder slip with the cremation form for theattention of the attending doctor).

Most crematoria staff believe that checking thecremation form is the best method of ensuring thatpacemakers have been removed before cremation. How-ever, only 5% of them knew about implantable cardiacdefibrillators and their explosive potential (one centre

reported a large explosion caused by the cremation of abody containing an implantable cardiac defibrillator). 54%believe that a hand-held metal detector might help identifypacemakers and other implantable devices that couldexplode.

D I S C U S S I O N

This is the first published report of the frequency andconsequences of pacemaker explosions in crematoria.Though these explosions are infrequent, in some crematoriathere is more than one explosion per year. Pacemakerexplosions can damage the cremator, breaking doors orbrickwork. The noise of an explosion may cause distress.Sometimes, pacemaker remains are found. Injury to staff isfortunately rare.

Today, most pacemakers are driven by the lithium/iodine-PVP energy source. At room temperature thesedevices are benign. However, during cremation, whentemperatures reach 1300 8C (2400 8F) for 90 minutes,iodine forms a gas that rapidly expands, causing thepacemaker casing to burst. A chemical reaction also causesan explosion: at 180.5 8C lithium melts and reacts with thegaseous iodine to release in less than 1 second the energywhich would be expended over several years (about64 kcal/mol).

Pacemakers now in the design stage will be potentiallymore explosive and also more difficult to detect postmortem: both manufacturers and patients favour smallerpacemakers that have greater energy. Solid cathode, liquidelectrolyte systems such as the lithium/carbon mono-fluoride and lithium/manganese dioxide pacemakers havegreater gravimetric energy density (watt h/mm3) and aretherefore likely to be future cardiac pacemaker powersources10.

Cremation forms must be completed by medical staff toprevent the inappropriate cremation of pacemakers. Ourstudy demonstrates that most crematoria staff rely on acompleted and accurate cremation form to ensure thatpacemakers are not present in the body. Since it is againstthe code of practice of crematoria staff to open sealedcoffins, they depend on others to provide accurateinformation. Indeed, many crematoria staff discuss theissue of pacemakers with funeral directors, who are able toinspect the body in an attempt to prevent the cremation ofpacemakers.

As a result of the first reported incident, in 19765, twosupplementary questions were added to form B of theCremation Act certificate. They remain in use and ask (a)Has a pacemaker or any radioactive material been insertedin the deceased (yes or no)?; (b) If so, has it been removed(yes or no)? If (b) is answered in the negative, the medicalreferee may, under Regulation 12 of the Cremation354

J O U R N A L O F T H E R O Y A L S O C I E T Y O F M E D I C I N E V o l u m e 9 5 J u l y 2 0 0 2

Table 1 F r e q u e n c y o f p a c e m a k e r e x p lo s io n s in c r e m a t o ri a in t h e U K a se s ti m a t e d b y c r e m a t o ri a s t a ff

F r e q u e n c y o f e x p l o s i o n so c c u r r i n g i n t h e U K

C r e m a t o r i a s t a f f r e p o r t i n ge v e n t a t t h i s f r e q u e n c y ( % )

N e v e r 4 1

O n c e e v e ry 1 0 y e a rs 2 7

O n c e e v e ry 5 y e a rs 1 4

O n c e e v e ry 2 y e a rs 6

O n c e a y e a r 3

G r e a t e r t h a n o n c e a y e a r 2

N o t a n s w e r e d 7

Page 11: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

11  

 

 

   

 Pacemaker  Blamed  As  Explosion  Inside  Coffin  Halts  Cremation              

Saturday,  27  May  2006  

A  MINOR  explosion  in  a  coffin  rocked  Carlisle’s  crematorium  after  a  funeral  service  yesterday  afternoon.  The  cause  is  still  being  investigated  –  but  it  is  believed  to  have  been  the  result  of  a  pacemaker  being  left  inside  a  body.  

It  is  understood  that  members  of  the  family  involved  have  been  informed  of  what  happened.  

No-­‐one  was  hurt  in  the  incident  and  there  was  no  disruption  to  funeral  services  or  cremations.  

The  crematorium,  in  Dalston  Road,  is  operated  by  the  city  council’s  bereavement  services  department.  It  is  the  only  one  in  north  Cumbria.    

*Fmm the Intensive Care Unit and the Radiodiagnostic Service,Hospital de M#{233}rida, Badajoz, Spain.

Reprint requests: Dr Ruiz-Santana, c/Felix Valverde Lillo No. 8-3#{176},Edxficio Aihambra, Merida (Badajoz), Spain 06800

CHEST I 91 I 3 I MARCH, 1987 467

were practically the same as those of his brother (Table 1).Both were subsequently treated with mechanical ventilation by

pneumobelts during the night and two other resting hours duringthe day time. A trial ofusingjackets instead ofpneumobelts was notacceptable to the patients. Their symptoms gradually improved andthey returned to their work and to a quite acceptable normal life. Thelast examination (Table 1) showed only mild improvement of respira-tory muscular strength and alveolar ventilation in the first patientand an improvement in lung volume, alveolar ventilation and inmuscle strength in the second. However, it should be emphasizedthat there was no evidence of recovery of the diaphragmatic activityon EMG or any change in the snifftest at fluoroscopy in both of them.During a four-year follow-up of patient A and about 18 months inpatient B, no evidence of systemic neuromuscular disease or othermetabolic, degenerative or proliferative disorders appeared.

DIscussIoN

The diagnosis of bilateral paralysis of the diaphragm in

these cases is supported by: 1) the patient’s complaint ofsevere dyspnea in the supine position, in the absence of heartfailure; 2) contraction of the inspiratory accessory musclesduring inspiration and contraction ofabdominal muscles dur-

ing expiratory, in the absence of obstructive lung disease; 3)

marked reduction oflung volume, without evidence of lung

and heart disease or thoracic deformity; 4) significant de-crease of VC in the supine as compared to the upright

position; 5) significant loss ofinspiratory muscle strength; 6)

paradoxic upward movement of both diaphragms during

sniffing at fluoroscopy; 7) absence ofdiaphragmatic response

to electric stimulation of the phrenic nerve.

At this stage of the disease, it was not possible to distin-guish between primary muscle or nerve lesion. The etiology

remained obscure. No other concomitant or previous infec-

tion, metabolic, degenerative or proliferative neuromuscular

or systemic disorder was found. It appears, thus, to be anisolated lesion ofgenetic origin. Its precise onset could not beestablished, but it is most unlikely to be congenital because

evidence exists that both patients were in excellent physical

condition up until the last few years. It is possible that the

paralysis developed gradually over the years and that for a

while the accessory muscles compensated for the deteriorat-ing function of the diaphragm. The clinical manifestations

only became apparent when the overloaded accessory mus-

des failed to accomplish their compensatory task. This

hypothesis of muscular fatigue is supported by the fact that

after resting with mechanical ventilation, the accessory

muscles regained their functional capacity, which led to asignificant improvement in one patient and partial improve-

ment in the second.To the best of our knowledge, similar cases of familial

bilateral paralysis of the diaphragm of late onset have notbeen previously described.

REFERENCES

1 Norio R, Kaariainen H, RapolaJ, Herva R, Kekomaki M. Familialcongenital diaphragmatic defects. Am J Med Genetics 1984;17:471-83

2 Toriello HV, Higgins JV, Jones AS, Radecki LL. Pulmonary anddiaphragmatic agenesis. Am J Med Genetics 1985; 21:87-92

3 Derenne J PH, Macklem P1 Rousos CH. The respiratorymuscles: Mechanics, control and pathophysiology, part III. AmRev Respir Dis 1978; 118:581-601

Sudden Pain on Pacemaker Pocketfollowed by Explosion in a Patientwith a Permanent Pacemaker*S. Ruiz-Santana, M.D.; J, M. Aguado-Bourrey, M.D.;

A.Martin-Rodriguez, M.D.; and M. Perez-Arriaga, M.D.

An 81-year-old woman with a mercury-zinc powered perma-nent pacemaker experienced the sudden pain on herpacemaker pocket followed by an explosion. We are awareof no other report of the spontaneous and symptomaticbursting of a generator battery with fracture of the pulsegenerator capsule.

n 81-year-old woman with a permanent pacemaker wasadmitted after having experienced, while she sat sew-

ing comfortably in her house, a sudden intense pain in her

pacemaker pocket followed by an explosion, as ifthe roof hadfallen down on her, together with protrusion of the adjacentskin. The patient had received a Medtronic permanent VVI

pacemaker, model 5951, with a unipolar lead six years earlier.

FIGURE 1 A and B. Posteroanterior and lateral chest roentgenogramtaken on admission show the burst battery protruding from thefractured pulse generator capsule (arrow), gas in the pacemakerpocket (double arrow) together with subcutaneous emphysema(multiple arrows) and multiple metallic fragments produced afterthe spontaneous bursting of one of the generator batteries.

© 1987 American College of Chest Physicians by guest on February 13, 2011chestjournal.chestpubs.orgDownloaded from

\

4

I

468 Sudden Pain of Pacemaker Pocket (Ruiz-Santana et a!)

This mercury-zinc-powered pacemaker had been implantedbecause of complete heart block associated with sympto-matic bradycardia. She denied any kind of trauma or infec-tion. Otherwise, the patient’s medical history was non-contributory. Physical examination revealed subcutaneousemphysema over the pacemaker pocket, regular pulse rate at40 bpm, and blood pressure of 170/70 mm Hg. The re-mainder of the physical examination and the screening

laboratory tests were unremarkable. An ECG demonstratedthird-degree atrioventricular block and failure of the pacing

system. A PA and lateral chest x-ray examination obtained

during admission is shown in Figure 1, A and B.

Posteroanterior and lateral chest roentgenogram show theburst battery protruding from the fractured pulse generatorcapsule, gas in the pacemaker-pocket together with sub-cutaneous emphysema, and multiple metallic fragmentsproduced after the spontaneous bursting of one of themercury-zinc pulse generator batteries.

Pacemaker complications are usually classified in two

major categories: medical complications,’ and those relatedto improper function of the pacemaker.2 Among the latter,spontaneous fracture ofthe pulse generator capsule has beenreported only rarely,3’4 and attributed to defective manufac-ture.4 However, spontaneous and symptomatic bursting ofone ofthe generator batteries originating or releasing gas that

FIGURE 2. Pacemaker pulse generator showingthe burst battery and the capsule fracture.

produced subcutaneous emphysema, has not, to our knowl-edge, been previously reported. We also consider it of

interest to point out that gas (hydrogen) formation has been,

among others, one of the most relevant problems with the

mercury cells. This stimulated the introduction of newerenergy sources, such as lithium, that do not evolve any gas.2

Because of the patient’s symptoms, we inserted a tempo-rary pacemaker and removed the malfunctioning generator(Fig 2), while she was in the intensive care unit.

Several days after admission the patient received a perma-nent lithium-iodine powdered Medtronic pacemaker and,

soon after, she was discharged without further incidence.

REFERENCES

1 Phibbs B, Marriott H. Complications of permanent transvenouspacing. N Engl J Med 1985; 312:1428-32

2 Steiner RM, Tegtmeyer CJ. The radiology ofcardiac pacemakers.In: Morse D, Steiner RM, Parsonnet V. eds. A guide to cardiacpacemakers. Philadelphia: FA Davis Company, 1983:27-70

3 Rickards A, Norman J. Clinical classification of generator andelectrode failures. Pace 1980; 3:17-23

4 Rubio-Alvarez J, Fuster-Siebert M, Salgado-Conde JL, Sierra-Q uiroga 1’Iglesias-Carreno C, Garcia-Bengochea JB. Causas pocofrecuentes del malfuncionamiento de marcapasos: Presentaci#{243}nde dos casos. Estimulaci#{243}n cardiaca 1982; 3:168-171

© 1987 American College of Chest Physicians by guest on February 13, 2011chestjournal.chestpubs.orgDownloaded from

\

4

I

468 Sudden Pain of Pacemaker Pocket (Ruiz-Santana et a!)

This mercury-zinc-powered pacemaker had been implantedbecause of complete heart block associated with sympto-matic bradycardia. She denied any kind of trauma or infec-tion. Otherwise, the patient’s medical history was non-contributory. Physical examination revealed subcutaneousemphysema over the pacemaker pocket, regular pulse rate at40 bpm, and blood pressure of 170/70 mm Hg. The re-mainder of the physical examination and the screening

laboratory tests were unremarkable. An ECG demonstratedthird-degree atrioventricular block and failure of the pacing

system. A PA and lateral chest x-ray examination obtained

during admission is shown in Figure 1, A and B.

Posteroanterior and lateral chest roentgenogram show theburst battery protruding from the fractured pulse generatorcapsule, gas in the pacemaker-pocket together with sub-cutaneous emphysema, and multiple metallic fragmentsproduced after the spontaneous bursting of one of themercury-zinc pulse generator batteries.

Pacemaker complications are usually classified in two

major categories: medical complications,’ and those relatedto improper function of the pacemaker.2 Among the latter,spontaneous fracture ofthe pulse generator capsule has beenreported only rarely,3’4 and attributed to defective manufac-ture.4 However, spontaneous and symptomatic bursting ofone ofthe generator batteries originating or releasing gas that

FIGURE 2. Pacemaker pulse generator showingthe burst battery and the capsule fracture.

produced subcutaneous emphysema, has not, to our knowl-edge, been previously reported. We also consider it of

interest to point out that gas (hydrogen) formation has been,

among others, one of the most relevant problems with the

mercury cells. This stimulated the introduction of newerenergy sources, such as lithium, that do not evolve any gas.2

Because of the patient’s symptoms, we inserted a tempo-rary pacemaker and removed the malfunctioning generator(Fig 2), while she was in the intensive care unit.

Several days after admission the patient received a perma-nent lithium-iodine powdered Medtronic pacemaker and,

soon after, she was discharged without further incidence.

REFERENCES

1 Phibbs B, Marriott H. Complications of permanent transvenouspacing. N Engl J Med 1985; 312:1428-32

2 Steiner RM, Tegtmeyer CJ. The radiology ofcardiac pacemakers.In: Morse D, Steiner RM, Parsonnet V. eds. A guide to cardiacpacemakers. Philadelphia: FA Davis Company, 1983:27-70

3 Rickards A, Norman J. Clinical classification of generator andelectrode failures. Pace 1980; 3:17-23

4 Rubio-Alvarez J, Fuster-Siebert M, Salgado-Conde JL, Sierra-Q uiroga 1’Iglesias-Carreno C, Garcia-Bengochea JB. Causas pocofrecuentes del malfuncionamiento de marcapasos: Presentaci#{243}nde dos casos. Estimulaci#{243}n cardiaca 1982; 3:168-171

© 1987 American College of Chest Physicians by guest on February 13, 2011chestjournal.chestpubs.orgDownloaded from

Page 12: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

12  

A  council  spokesperson  said:  “There  was  a  minor  explosion  within  the  crematorium’s  cremator  yesterday  afternoon.    

“The  machinery  continued  to  operate  normally  and  there  was  no  lasting  damage.  

“Staff  members  overseeing  the  machinery  were  unharmed  and  are  investigating  the  possible  cause.  

“Cremations  continued  as  planned  and  there  were  no  disruptions  to  services.”  

It  is  understood  that  prior  to  cremations,  it  is  the  responsibility  of  the  family  and  funeral  director  to  ensure  that  nothing  is  within  a  coffin  which  may  cause  an  explosion.  

In  this  instance,  it  is  believed  the  go-­‐ahead  for  the  cremation  had  been  given  by  two  doctors.  

Pacemakers  should  be  removed  before  cremation.  

http://www.newsandstar.co.uk/news/viewarticle.aspx?id=364828  

 

 

 

 

les  defibrillateur  explosent  encore  plus  fort  

 

 

 

 

 

 

a hand-held metal detector might be useful in identifyingpacemakers in mortuaries.

R E S U L T S

The overall questionnaire response rate was 78%. Though47% of the 188 crematoria staff who responded hadpersonal experience of pacemaker explosions at some pointin their career, those explosions were reported to beuncommon (Table 1). Indeed, 41% of staff, when asked toestimate event frequency, reported no events and 27%estimated events once in every 10 years. However, 5% ofrespondents reported pacemaker explosions occurring onceor more a year.

Of the 71 crematoria that had reported distress ordamage as a result of pacemaker explosions, the commonestconsequences were the noise of the explosion and damageto the cremator doors and brickwork—32 (45%) and 30(42%) crematoria, respectively. The cremator was damagedbeyond repair in 3% of cases and in one case the explosionscaused injury to staff. The remains of pacemakers werefound after 15% of explosions.

The procedure for checking that pacemakers wereremoved before cremation was as follows. 99% ofcrematoria staff check the cremation forms to ensure thatthe doctor signing the form has confirmed that there is nopacemaker in the body. 54% of crematoria staff also discussthe case with the funeral director to check that thepacemaker has been removed from the body. Only 9% ofcrematoria staff ask the relatives whether a pacemaker ispresent. 16% make other enquiries (e.g. speaking to thecoroner’s office, mortuary staff, hospital, or medical refereeor placing a reminder slip with the cremation form for theattention of the attending doctor).

Most crematoria staff believe that checking thecremation form is the best method of ensuring thatpacemakers have been removed before cremation. How-ever, only 5% of them knew about implantable cardiacdefibrillators and their explosive potential (one centre

reported a large explosion caused by the cremation of abody containing an implantable cardiac defibrillator). 54%believe that a hand-held metal detector might help identifypacemakers and other implantable devices that couldexplode.

D I S C U S S I O N

This is the first published report of the frequency andconsequences of pacemaker explosions in crematoria.Though these explosions are infrequent, in some crematoriathere is more than one explosion per year. Pacemakerexplosions can damage the cremator, breaking doors orbrickwork. The noise of an explosion may cause distress.Sometimes, pacemaker remains are found. Injury to staff isfortunately rare.

Today, most pacemakers are driven by the lithium/iodine-PVP energy source. At room temperature thesedevices are benign. However, during cremation, whentemperatures reach 1300 8C (2400 8F) for 90 minutes,iodine forms a gas that rapidly expands, causing thepacemaker casing to burst. A chemical reaction also causesan explosion: at 180.5 8C lithium melts and reacts with thegaseous iodine to release in less than 1 second the energywhich would be expended over several years (about64 kcal/mol).

Pacemakers now in the design stage will be potentiallymore explosive and also more difficult to detect postmortem: both manufacturers and patients favour smallerpacemakers that have greater energy. Solid cathode, liquidelectrolyte systems such as the lithium/carbon mono-fluoride and lithium/manganese dioxide pacemakers havegreater gravimetric energy density (watt h/mm3) and aretherefore likely to be future cardiac pacemaker powersources10.

Cremation forms must be completed by medical staff toprevent the inappropriate cremation of pacemakers. Ourstudy demonstrates that most crematoria staff rely on acompleted and accurate cremation form to ensure thatpacemakers are not present in the body. Since it is againstthe code of practice of crematoria staff to open sealedcoffins, they depend on others to provide accurateinformation. Indeed, many crematoria staff discuss theissue of pacemakers with funeral directors, who are able toinspect the body in an attempt to prevent the cremation ofpacemakers.

As a result of the first reported incident, in 19765, twosupplementary questions were added to form B of theCremation Act certificate. They remain in use and ask (a)Has a pacemaker or any radioactive material been insertedin the deceased (yes or no)?; (b) If so, has it been removed(yes or no)? If (b) is answered in the negative, the medicalreferee may, under Regulation 12 of the Cremation354

J O U R N A L O F T H E R O Y A L S O C I E T Y O F M E D I C I N E V o l u m e 9 5 J u l y 2 0 0 2

Table 1 F r e q u e n c y o f p a c e m a k e r e x p lo s io n s in c r e m a t o ri a in t h e U K a se s ti m a t e d b y c r e m a t o ri a s t a ff

F r e q u e n c y o f e x p l o s i o n so c c u r r i n g i n t h e U K

C r e m a t o r i a s t a f f r e p o r t i n ge v e n t a t t h i s f r e q u e n c y ( % )

N e v e r 4 1

O n c e e v e ry 1 0 y e a rs 2 7

O n c e e v e ry 5 y e a rs 1 4

O n c e e v e ry 2 y e a rs 6

O n c e a y e a r 3

G r e a t e r t h a n o n c e a y e a r 2

N o t a n s w e r e d 7

a hand-held metal detector might be useful in identifyingpacemakers in mortuaries.

R E S U L T S

The overall questionnaire response rate was 78%. Though47% of the 188 crematoria staff who responded hadpersonal experience of pacemaker explosions at some pointin their career, those explosions were reported to beuncommon (Table 1). Indeed, 41% of staff, when asked toestimate event frequency, reported no events and 27%estimated events once in every 10 years. However, 5% ofrespondents reported pacemaker explosions occurring onceor more a year.

Of the 71 crematoria that had reported distress ordamage as a result of pacemaker explosions, the commonestconsequences were the noise of the explosion and damageto the cremator doors and brickwork—32 (45%) and 30(42%) crematoria, respectively. The cremator was damagedbeyond repair in 3% of cases and in one case the explosionscaused injury to staff. The remains of pacemakers werefound after 15% of explosions.

The procedure for checking that pacemakers wereremoved before cremation was as follows. 99% ofcrematoria staff check the cremation forms to ensure thatthe doctor signing the form has confirmed that there is nopacemaker in the body. 54% of crematoria staff also discussthe case with the funeral director to check that thepacemaker has been removed from the body. Only 9% ofcrematoria staff ask the relatives whether a pacemaker ispresent. 16% make other enquiries (e.g. speaking to thecoroner’s office, mortuary staff, hospital, or medical refereeor placing a reminder slip with the cremation form for theattention of the attending doctor).

Most crematoria staff believe that checking thecremation form is the best method of ensuring thatpacemakers have been removed before cremation. How-ever, only 5% of them knew about implantable cardiacdefibrillators and their explosive potential (one centre

reported a large explosion caused by the cremation of abody containing an implantable cardiac defibrillator). 54%believe that a hand-held metal detector might help identifypacemakers and other implantable devices that couldexplode.

D I S C U S S I O N

This is the first published report of the frequency andconsequences of pacemaker explosions in crematoria.Though these explosions are infrequent, in some crematoriathere is more than one explosion per year. Pacemakerexplosions can damage the cremator, breaking doors orbrickwork. The noise of an explosion may cause distress.Sometimes, pacemaker remains are found. Injury to staff isfortunately rare.

Today, most pacemakers are driven by the lithium/iodine-PVP energy source. At room temperature thesedevices are benign. However, during cremation, whentemperatures reach 1300 8C (2400 8F) for 90 minutes,iodine forms a gas that rapidly expands, causing thepacemaker casing to burst. A chemical reaction also causesan explosion: at 180.5 8C lithium melts and reacts with thegaseous iodine to release in less than 1 second the energywhich would be expended over several years (about64 kcal/mol).

Pacemakers now in the design stage will be potentiallymore explosive and also more difficult to detect postmortem: both manufacturers and patients favour smallerpacemakers that have greater energy. Solid cathode, liquidelectrolyte systems such as the lithium/carbon mono-fluoride and lithium/manganese dioxide pacemakers havegreater gravimetric energy density (watt h/mm3) and aretherefore likely to be future cardiac pacemaker powersources10.

Cremation forms must be completed by medical staff toprevent the inappropriate cremation of pacemakers. Ourstudy demonstrates that most crematoria staff rely on acompleted and accurate cremation form to ensure thatpacemakers are not present in the body. Since it is againstthe code of practice of crematoria staff to open sealedcoffins, they depend on others to provide accurateinformation. Indeed, many crematoria staff discuss theissue of pacemakers with funeral directors, who are able toinspect the body in an attempt to prevent the cremation ofpacemakers.

As a result of the first reported incident, in 19765, twosupplementary questions were added to form B of theCremation Act certificate. They remain in use and ask (a)Has a pacemaker or any radioactive material been insertedin the deceased (yes or no)?; (b) If so, has it been removed(yes or no)? If (b) is answered in the negative, the medicalreferee may, under Regulation 12 of the Cremation354

J O U R N A L O F T H E R O Y A L S O C I E T Y O F M E D I C I N E V o l u m e 9 5 J u l y 2 0 0 2

Table 1 F r e q u e n c y o f p a c e m a k e r e x p lo s io n s in c r e m a t o ri a in t h e U K a se s ti m a t e d b y c r e m a t o ri a s t a ff

F r e q u e n c y o f e x p l o s i o n so c c u r r i n g i n t h e U K

C r e m a t o r i a s t a f f r e p o r t i n ge v e n t a t t h i s f r e q u e n c y ( % )

N e v e r 4 1

O n c e e v e ry 1 0 y e a rs 2 7

O n c e e v e ry 5 y e a rs 1 4

O n c e e v e ry 2 y e a rs 6

O n c e a y e a r 3

G r e a t e r t h a n o n c e a y e a r 2

N o t a n s w e r e d 7

Page 13: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

13  

 

 

September 14, 2010 Cremation following Prostate Brachytherapy The BC Cancer Agency has been performing prostate brachytherapy using seeds of radioactive Iodine-125 since July 1998 at its Vancouver Centre. Patients have been issued with wallet cards indicating that they have received the implant and requesting that the BCCA Radiation Safety Officer be contacted for information should the patient require surgery or expire within a two year period post-implant. During their pre-implant consultation, these patients are advised that cremation will not be permitted should they die within two years. The two year period was adopted after discussions with the Registrar, Cemetery and Funeral Services, Ministry of the Attorney General, based on an analysis1 of four possible scenarios which could result from cremation of an implanted patient. In a recent article, William Que2 concludes that the body of a prostate implant patient may be safely cremated at any time, based on the assumption that the seeds rupture at the temperatures encountered in cremation and the radioactive Iodine is released through the stack of the crematorium into the atmosphere. The article cites two currently unavailable reports to the U.S. Nuclear Regulatory Commission (USNRC) and the analysis and conclusions appear to be based on USNRC regulations rather than those of the Canadian Nuclear Safety Commission. A recent case in the lower mainland indicates that the assumption that the seeds rupture during cremation is not necessarily valid. In early December, a deceased prostate implant patient was cremated nineteen (19) months post-implant. The crematorium operator detected radioactive material among the remains using a hand-held geiger counter and contacted the BC Cancer Agency for assistance. Ultimately, 99 apparently intact seeds, 2 visibly damaged seeds, and 6 radioactive fragments of seeds were recovered from cremated remains of the patient and the next body cremated and the cremation chamber itself. The original implant had consisted of 108 seeds. Subsequent assay of the apparently intact seeds demonstrated that the activity was mostly confined to the interior of the seeds with very minimal surface

Whitehead, in socioeconomic deprivation andhealth.As a short report our article must be regarded as

preliminary; we now have further data acceptedfor publication regarding metabolic control ofdiabetes and deprivation, and we are extending ourstudy to consider those diabetic patients whom wedo not usually see, to allow for possible referralbias. We agree that geographically defined diseaseregisters are desirable,4 and we would be happy toshare ideas with other research workers.We were not shown the critical letter before

publication'; this would have been courteous andwould have given us the right of concurrent reply.Finally, we agree with Douglas Altman that weshould all strive for high standards in researchwork.'

WILULAM KELLYMIRANDA KELLY

RASHADMAHMOODDiabetes Care Centre,Middlesbrough General Hospital,Middlesbrough TS5 5AZ

STEVE TURNERKEITH ITOT T

Cleveland County Council Research and Intelligence Unit,Middlesbrough TS1 2YW

1 Jones R, Scouller J, Grainger F, Lachlan M, Evans S, TorranceN. The scandal of poor medical research. BMY 1994;308:591.(26 February.)

2 Kelly WF, Mahmood R, Kelly MJ, Turner S, Elliott K.Influence of social deprivation on illness in diabetic patients.BMJ 1993;307:1115-6.

3 Robinson N, Edouard 1, Diehl A, Fuller JH. Social class andrisk factors for vascular disease in diabetes. Diabetes Metab1984;10:245-9.

4 Killalea D, Davis A, Hanstock G, Hanson J. Disease registersvaluable if geographically defined. BMY 1993;307:1499.

5 Altman DG. The scandal of poor medical research. BMJ1994;308:283-4. (29 January.)

Journals are full ofunoriginal andunimportant researchEDrroR,-I read Douglas G Altman's editorialwith a profound sense of deja vu.' Publications thathave documented the scandal of bogus scientificresearch stretch back to, and possibly beyond,Gulliver's Travels.2 Swift's allegorical account ofscientific research, depicted in Gulliver's visit tothe grand Academy of Lagado in the land ofBalnibarbi, was based on a visit in 1710 to theRoyal Society in London.

Errors in the design of studies and the analysis ofdata, misinterpretation of results, selective report-ing, and selective citation of the literature incontemporary published research are the tip of theiceberg. One of the main problems confrontingclinicians and researchers today is the enormousvolume of published material. This has increasedalmost exponentially in my specialty (anaesthesia),which I suspect is representative of many others:in 1991, 53 anaesthetic journals were publishedworldwide, compared with two in 1923.' Althoughanaesthesia has expanded enormously over thistime, each journal seems to be publishing researchthat is increasingly unoriginal, unimportant, andinvalid. Greene pointed out that many journalslaunched recently are sponsored by publishinghouses rather than professional societies.'This trend has resulted in different goals andperspectives for some journals; profit makingpublications are inevitably under pressure, how-ever subtle, to continue publishing enough articlesto stay in business.

I have two suggestions to improve moraleand reduce the number of publications. Firstly,reputable biomedical journals should publishinfornation on the number and quality of rejectedpapers. In addition, a selected number of papersthat would otherwise be rejected should be pub-lished, without modification, accompanied by aneducational and critical review. Secondly, authorsshould remain anonymous until their article has

been accepted or rejected for publication. Thisapproach might dispel the notion that the inclusionof a well known person in the list of authorsfavourably influences the acceptability of sub-mitted research.There is little more depressing for a young

researcher than to see unoriginal, unimportant,and invalid material being presented or published.Altman concludes that we need less research,better research, and research done for the rightreasons. The impetus for these changes has tocome from the top or we will discourage a wholegeneration ofdoctors from undertaking research.

IAN H LEWISShackleton Department ofAnaesthetics,Southampton University Hospitals,Southampton S09 4XY

1 Altman DG. The scandal of poor medical research. BMJ1994;308:283-4. (29 January.)

2 Swift J. Gudiver's travels. London: Penguin Classics, 1985:223-41.

3 Greene NM. Anesthesiology journals, 1992. Anesth Analg 1992;74:116-20.

Metal implants and cremadonEDrTOR,-Matthew Barry reports the metal resi-dues after cremation.' The guidance notes forthe Environmental Protection Act 1990 (PG5(9 1))define the cremation process, and all crematoriumsin the United Kingdom must comply by 1 April1998. The guidance notes refer to a minimumtemperature of 850° C in the secondary chamber,but do not give any guidance on temperatures inthe primary chamber, where any metal residueswould remain throughout the cremation process.Modem cremators that comply with the

Environmental Protection Act are computercontrolled, and it would be impossible for tem-peratures to reach 1600° C in either the primary orthe secondary chamber. The refractory brickworkwould not be stable above 1500° C. It would beextremely unusual for temperatures to approach1200° C in the primary chamber, and I have neverexperienced a case of implants reaching theirmelting point.

I have regular contact with the Department ofthe Environment, and there is no suggestion thatthe minimum temperature in any of the cremationchambers will be increased. For these reasons Icannot see the need for implants to be removedbefore cremation in the future.

JON P LUBYFederation of British Cremation Authorities,Carshalton,Surrey SM5 3HA

1 Barry M. Metal residues after cremation. BMJ 1994;308:390.(5 February.)

Collecting data on cancerED1TOR,-Few people would disagree with S JKarp's plea for improving the collection of data onpatients with cancer.' The case Karp makes for theclinical oncology information network, however, isunconvincing. One justification claimed for thenetwork is that three studies came to erroneousconclusions in auditing the outcomes of carebecause they used data for cancer registries.2 Thisis incorrect; Karp has misunderstood the studies'design.

All three studies were based on review of casenotes; the cancer registry was used as all or part ofthe sampling frame. The third paper Karp quotes,by Chouillet et al, did not examine outcomes atall. The two others (which did) interpreted thedifferences in survival and disease free intervalwith care. Moreover, these and other studies thathave used data from cancer registries augmented

by case notes have made important observationsabout the treatment of cancer." Data from cancerregistries should not be used uncritically but willcontinue to be valuable for health services research.A new information system is not a magic

solution to the problems of inaccurate and poordata. Most errors in data result from a lack of, orpoor quality, information in the case notes. Theclinical oncology information network would bejust as dependent as Korner and cancer registrieson returns of clinical data.Most worryingly, Karp suggests that the net-

work would "belong to the Royal College ofRadiologists," which would own the summary dataand control access to them. That is unlikely to bethe best way of improving services. Althoughpeer review may be important, the evidence thatit produces a sustained improvement in healthservices in the absence of other incentives ismixed.7 The lack of improvement in care notedin the recent confidential inquiry into maternalmortality emphasises this.The reforms of the health service have resulted

in health authorities being required to commissionquality health care on behalf of their residents,which necessitates an informed dialogue betweenpurchasers and providers. For that to happen,health authorities must have adequate informationabout needs, effectiveness, and the outcome ofservices. Health authorities, general practitioners,and patients need greater openness about informa-tion. Improving our current systems (includingcancer registries) is a better investment than dupli-cating them.

IAN BASNETrCamden and Islington Health Authority,London NWI 2LJ

ALLYSON M POLLOCKDepartment of Public Health Sciences,St George's Hospital Medical School,London SW17 ORE

MIKE GILLBrent and Harrow Health Authority,Harrow,Middlesex HAl 3UJ

1 Karp SJ. Clinical oncology information network. BMJ 1994;308:147-8. (15 January.)

2 Basnett I, Gill M, Tobias JS. Variations in breast cancermanagement between a teaching and a non-teaching district.EurJ Cancer 1992;28A: 1945-50.

3 Gulliford MC, Petruckevitch A, Bumey PGJ. Survival withbladder cancer, evaluation of delay in treatment, type ofsurgeon and modality of treatment. BMJ 1991;303:437-40.

4 Chouillet AM, Bell CMJ, Hiscox JG. Management of breastcancer in southeast England. BMY 1994;308:168-70.

5 Gulliford MC, Barton JR, Boume HM. Selection for oesophagec-tomy and post-operative outcome in a defined population.Quality in Health Care 1993;2:17-20.

6 Connolly CK, Jones WG, Thorogood J, Head C, Muers MF.Investigation, treatment and prognosis of bronchial carcinomain the Yorkshire region of England. Br J Cancer 1990;61:579-83.

7 Lomas J. Teaching old and not so old docs new tricks: effective waysto implement research findings. Ontario: Centre for HealthEconomics and Policy Analysis, McMasters University, 1993.(Working paper 93-4.)

Collapse ofthe health service inGeorgiaEDrrOR,-Like its neighbours Armenia andAzerbaijan, Georgia struggles with the politicaland economic backlash of the disintegration of theSoviet Union. Planning for most sectors of societywas previously done in Moscow, and the economywas based on imports from Russia, includingtourists and vaccines. Relations with Russia arestrained at present, and trade is much reduced.Last year the violent secession of Abkhazia andSouth Ossetia forced 300 000 Georgians to flee andseek refuge in Georgia, which is an additionalburden for the government.The state run health system is grinding to a halt.

During winter there is a lack of energy for heatinghospitals and clinics. Patients rarely visit healthinstitutions anyway owing to lack of transport,

BMJ VOLUME 308 19 MARCH 1994 791

Page 14: IMPLANTACTIFSETCREMATION:Unproblème !bien!réel! · etc.!En!faitactuellementon!estvraimenten!route!vers!l’homme!bionique!qui!va ... !stimulateurs!cardiaques!implantables,!prothèses!de!hanche,!lentilles!intraE

Didier  Gottignies  3  mars  2011  

 

14  

contamination. The presence of apparently intact seeds in the cremated remains effectively changes the issue from one of public health (exposure to radioiodine released through the crematorium stack) to one of occupational health (potential exposure of crematorium staff to free radioiodine if the remains are processed in the normal manner). A typical implant would require a period of twenty (20) months to decay to the point where the total activity remaining in the implant was equal to the Annual Limit of Intake (ALI) of Iodine-125 by inhalation for workers. At this time, the BC Cancer Agency considers it prudent to maintain our recommendation that cremation not be permitted for two years post-implant. This provides an additional two half-lives and results in 1

Kennelly, G.M., “Prostate Brachytherapy and Cremation: An Estimate of Hazards”, presented at the Annual Meeting of the Canadian Radiation Protection Association, Montreal, June 2000. Que, W., “Radiation safety issues regarding the cremation of the body of an I-125 prostate implant patient”, Journal of Applied Clinical Medical Physics, Vol. 2, No. 3, Summer 2001, pp.174-177. 2a typical implant containing one-quarter of an ALI. The actual fraction of the activity in the remains which is likely to be inhaled by a worker is unknown at this time. A further recommendation to the funeral service providers will be that only major bone fragments - which are unlikely to contain any seeds - be processed. While the wallet cards carried by patients have resulted in physicians contacting the BC Cancer Agency for information if future surgery is contemplated, they have - at least in the case above - failed to provide the desired level of information to funeral service providers. Although the therapy completion letter currently sent to the referring physicians by the BCCA radiation oncologists contains a request that the presence of the implant be noted on the “Medical Certificate of Death”, this has not always been the case. The BC Cancer Agency would greatly appreciate the assistance of the physicians and members of the Coroner’s Service in the province in ensuring that the funeral service providers receive notification regarding the presence of a radioactive implant via the “Medical Certificate of Death”. Rather than worry about post-implant time frames, physicians and coroners should simply note the presence of any implants known to them. This notification will alert funeral service providers to contact the BC Cancer Agency for information regarding the implant and any recommended procedures to follow based on the actual activity remaining at the time. Wayne A. Beckham PhD MACPSEM FCCPM Adjunct Professor, UVic Physics & Astronomy Dept. UVic/BCCA Medical Physics Graduate Program Director Provincial Medical Physics Leader Radiation Safety Officer BC Cancer Agency, Vancouver Island CentreJune 7, 2010nt.

Conclusion.  

Oui,  le  risque  est  grand  d’oublier  un  implant  actif  dans  le  corps  humain  et  oui,  il  y  a  un  risque  pour  l’installation  d’incinération.  

Le  dépistage  et  la  traçabilité  des  implants  requièrent  toute  notre  attention  pour  le  bien  de  la  famille,  du  personnel,  de  la  nature  et  des  installations  de  crémation.