114
ethode multipˆ ole rapide pour les calculs tridimensionnels de propagation des ondes (visco)´ elastodynamiques Marc Bonnet 1 1 UMA (Dept. of Appl. Math.), POems, UMR 7231 CNRS-INRIA-ENSTA ENSTA, PARIS, France [email protected] collaborateurs: St´ ephanie Chaillat (th` ese 2005-08), Eva Grasso (th` ese 2008-11), Jean-Fran¸cois Semblat (IFSTTAR) eminaire LAMSID, 18 octobre 2011 Marc Bonnet (POems, ENSTA) ethode multipˆ ole rapide pour ondes (visco)´ elastiques 1 / 71

Méthode multipôle rapide pour les calculs … · collaborateurs: St ephanie Chaillat (th ese 2005-08), Eva Grasso (th ese 2008-11), Jean-Fran˘cois Semblat (IFSTTAR) S eminaire

Embed Size (px)

Citation preview

Methode multipole rapide pour les calculstridimensionnels de propagation des ondes

(visco)elastodynamiques

Marc Bonnet1

1UMA (Dept. of Appl. Math.), POems, UMR 7231 CNRS-INRIA-ENSTAENSTA, PARIS, France

[email protected]

collaborateurs: Stephanie Chaillat (these 2005-08), Eva Grasso (these 2008-11),Jean-Francois Semblat (IFSTTAR)

Seminaire LAMSID, 18 octobre 2011

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 1 / 71

Plan

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 2 / 71

Principes

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 3 / 71

Principes

Integral representation and integral equation (e.g. Laplace)

∆u = 0 (in Ω) + unspecified well-posed BCs

Integral representation of u based on two ingredients:(i) Reciprocity identity:∫

Ω

(u∆v − v∆u) dV =

∫∂Ω

(uv,n − vu,n) dV (u,n ≡∇u ·n)

(ii) Fundamental solution:

∆G (x, ·) + δ(·−x) = 0 (in O⊃Ω) =⇒ G (x, ξ) = O(‖ξ−x‖−1)

Choosing v =G (x, ·) in (i) yields the integral representation formula:

u(x) =

∫∂Ω

(G (x, ξ)u,n(ξ)− G,n(x, ξ)u(ξ)

)dSξ (x∈Ω)

A limiting process as x∈Ω→ z∈ ∂Ω yields the singular integral equation:

1

2u(z) +

∫∂Ω

(G,n(z, ξ)u(ξ)− G (z, ξ)u,n(ξ)

)dSξ = 0 (z∈ ∂Ω)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 4 / 71

Principes

Integral representation and integral equation

Outline of the boundary integral equation method:

I Insert given boundary data;

I Solve for the remaining boundary unknown

I Then, invoke integral representation for evaluation of field at interior points

Main features:

I BIE formulations assume linear (and usually homogeneous) referenceconstitutive properties;

I Nonlinear constitutive properties allowable, but at a cost (domain integrals);

I BIE formulations are closest generalizations of analytic solution methods toarbitrary geometries−→ powerful and accurate, but not general-purpose;

I BIE formulations particularly well suited to unbounded media idealizations(decay and/or radiation conditions are built-in)−→ (electromagnetic, acoustic, elastic) waves,−→ coupled problems (electro-mechanical, [soil/fluid]-structure,...)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 5 / 71

Principes

Collocation BEM

I Partition ∂Ω into elements (possibly curvilinear and with curvilinear edges):

∂Ω = ∪Nee=1Ee

I Isoparametric representation (most commonly used) of ∂Ω and unknown φ:

x =

n(e)∑q=1

Nq(a)xq

φ(x) =

n(e)∑q=1

Nq(a)φq

I Enforce integral equation at the NN nodes x = x1, . . . , xNN .I If xP 6∈Ee (nonsingular element integral): Gaussian quadrature;I If xP ∈Ee (singular element integral): specialized treatment.

I Leads to linear system of equations

Aϕ = b (A∈RN×N , b∈RN)

I Matrix A square, fully-populated, invertible, non-symmetric.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 6 / 71

Principes

Collocation BEM

I Partition ∂Ω into elements (possibly curvilinear and with curvilinear edges):

∂Ω = ∪Nee=1Ee

I Isoparametric representation (most commonly used) of ∂Ω and unknown φ:

x =

n(e)∑q=1

Nq(a)xq

φ(x) =

n(e)∑q=1

Nq(a)φq

ξ( )

a

1

2

3

12

a

e

E

_

a

_

a

ex

xx

I Enforce integral equation at the NN nodes x = x1, . . . , xNN .I If xP 6∈Ee (nonsingular element integral): Gaussian quadrature;I If xP ∈Ee (singular element integral): specialized treatment.

I Leads to linear system of equations

Aϕ = b (A∈RN×N , b∈RN)

I Matrix A square, fully-populated, invertible, non-symmetric.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 6 / 71

Principes

Limitations of “traditional” BEM

CPU for the main steps of traditional BEMs:

(a) Set-up of A: CPU = O(N2);

(b) Solution using direct solver (usually LU factorization): CPU = (N3);

(c) Evaluation of integral representations at M points: CPU = O(N ×M).

Besides:

(d) O(N2) memory needed for storing A.=⇒ Problem size N at most O(104)

Reasons for (a)-(d):

I G (x, ξ) non-zero for all (x, ξ);

I Element matrices Ae(xP) recomputed for each new collocation point xP .

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 7 / 71

Principes

Overcoming the limitations of “traditional” BEM

Two issues:

1. To accelerate the BEM (i.e. to reduce its O(N3) complexity)

2. To increase permitted problem sizes.

Main ideas:

(i) Iterative solution of BEM matrix equation (usually GMRES)=⇒ CPU = O(N2 × NI), with usually NI/N → 0;

(ii) Acceleration of matrix-vector product Aϕ for given density ϕ.=⇒ complexity lower than O(N2).

Several strategies available for developing fast BEMsThe Fast Multipole Method (FMM) is the most developed to date.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 8 / 71

Principes

Origins of the FMM: fast computation of potentials

Φ(xi ) = C

Nξ∑j=1

qj‖ξj −xi‖

(1≤ i ≤Nx)

C = (4πε0)−1, electric charges qj (electrostatic), C =G, masses qj (gravitation)

I Straightforward computation: CPU =O(NxNξ);I Reason: influence coefficient ‖ξj −xi‖−1 depends on both xi and ξj ;

I Fast summation (Greengard, 1985): CPU =O(Nx +Nξ)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 9 / 71

Principes

Origins of the FMM: fast computation of potentials

Φ(xi ) = C

Nξ∑j=1

qj‖ξj −xi‖

(1≤ i ≤Nx)

C = (4πε0)−1, electric charges qj (electrostatic), C =G, masses qj (gravitation)

I Straightforward computation: CPU =O(NxNξ);I Reason: influence coefficient ‖ξj −xi‖−1 depends on both xi and ξj ;I Fast summation (Greengard, 1985): CPU =O(Nx +Nξ)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 9 / 71

Principes

Iterative solution of integral equation

Model problem:

find φ,

∫∂Ω

G (x, ξ)φ(ξ) dSξ = b(x), i.e. [Aφ](x) = b(x) (x ∈ ∂Ω)

Krylov vector: Aϕ discretized version of

[Aφ](x) =

∫∂Ω

G (x, ξ)φ(ξ) dSξ

Integral operator A: a generalization to infinite-dimensional function spaces (hereH−1/2(∂Ω)) of the concept of matrix.

I Using traditional BEM: CPU = O(N2) for each evaluation of Aϕ;

I Aim of the Fast Multipole Method: evaluation of Aϕ at CPU cost lowerthan O(N2).

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 10 / 71

Principes

FMM: main ideas

[Aφ](x) =

∫∂Ω

G (x, ξ)φ(ξ) dSξ

I Main idea: seek to reuse element integrations (w.r.t. ξ) when collocationpoint x is changed;

I Method: express the fundamental solution as a “sum of products”:

G (x, ξ) =∞∑n=0

gn(x)hn(ξ) or G (x, ξ) =

∫g(x, s)h(ξ, s) ds

and truncate at suitable level p (truncated series, or quadrature rule):

G (x, ξ) =

p∑n=0

gn(x)hn(ξ)+εG (p) or G (x, ξ) =

p∑n=0

g(x, sn)h(ξ, sn)+εG (p)

I Consequence: (e.g. using truncated-series form)

[Aφ](x) =

p∑n=0

gn(x)

∫∂Ω

hn(ξ)φ(ξ) dSξ + ε(p)

The p integrations are independent on x and are reusable as x is changed.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 11 / 71

Principes

FMM: main ideas

[Aφ](x) =

∫∂Ω

G (x, ξ)φ(ξ) dSξ

I Main idea: seek to reuse element integrations (w.r.t. ξ) when collocationpoint x is changed;

I Method: express the fundamental solution as a “sum of products”:

G (x, ξ) =∞∑n=0

gn(x)hn(ξ) or G (x, ξ) =

∫g(x, s)h(ξ, s) ds

and truncate at suitable level p (truncated series, or quadrature rule):

G (x, ξ) =

p∑n=0

gn(x)hn(ξ)+εG (p) or G (x, ξ) =

p∑n=0

g(x, sn)h(ξ, sn)+εG (p)

I Consequence: (e.g. using truncated-series form)

[Aφ](x) =

p∑n=0

gn(x)

∫∂Ω

hn(ξ)φ(ξ) dSξ + ε(p)

The p integrations are independent on x and are reusable as x is changed.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 11 / 71

Principes

FMM: main ideas

[Aφ](x) =

∫∂Ω

G (x, ξ)φ(ξ) dSξ

I Main idea: seek to reuse element integrations (w.r.t. ξ) when collocationpoint x is changed;

I Method: express the fundamental solution as a “sum of products”:

G (x, ξ) =∞∑n=0

gn(x)hn(ξ) or G (x, ξ) =

∫g(x, s)h(ξ, s) ds

and truncate at suitable level p (truncated series, or quadrature rule):

G (x, ξ) =

p∑n=0

gn(x)hn(ξ)+εG (p) or G (x, ξ) =

p∑n=0

g(x, sn)h(ξ, sn)+εG (p)

I Consequence: (e.g. using truncated-series form)

[Aφ](x) =

p∑n=0

gn(x)

∫∂Ω

hn(ξ)φ(ξ) dSξ + ε(p)

The p integrations are independent on x and are reusable as x is changed.Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 11 / 71

Principes

Multipole expansion of e ikr/r

“diagonal form” (Epton and Dembart 1995)

eik|ξ−x|

|ξ − x| =ik

4πlim

L→+∞

∫s∈S

e ik s.ξGL(s; r0; k)e−ik s.xd s

GL(s; r0; k) =L∑

p=0

(2p + 1)iph(1)p (k |r0|)Pp

(cos(s, r0)

)(Transfer function)

ξ

ξ0 x0

x

r r0

Convergence as L→ +∞ guaranteed if |r− r0| ≤ (2/√

5)|r|

→ Helmholtz, Maxwell, elastodynamics (frequency domain)

Upon truncation of transfer function and numerical quadrature over unit sphere:

eik|ξ−x|

|ξ − x| ≈ik

∑q

wqeik sq.ξGL(s; r0; k)e−ik s.x

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 12 / 71

Principes

Multipole expansion of e ikr/r

“diagonal form” (Epton and Dembart 1995)

eik|ξ−x|

|ξ − x| =ik

4πlim

L→+∞

∫s∈S

e ik s.ξGL(s; r0; k)e−ik s.xd s

GL(s; r0; k) =L∑

p=0

(2p + 1)iph(1)p (k |r0|)Pp

(cos(s, r0)

)(Transfer function)

ξ

ξ0 x0

x

r r0

Convergence as L→ +∞ guaranteed if |r− r0| ≤ (2/√

5)|r|

→ Helmholtz, Maxwell, elastodynamics (frequency domain)

Upon truncation of transfer function and numerical quadrature over unit sphere:

eik|ξ−x|

|ξ − x| ≈ik

∑q

wqeik sq.ξGL(s; r0; k)e−ik s.x

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 12 / 71

FMM elastodynamique

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 13 / 71

FMM elastodynamique

Motivation

Modelling of elastic wave propagation in large/unbounded domains

I Soil-structure interaction

I Site effects

I Computational forward solution method for inverse problems

Pros and cons of BEMs for elastic wavesFEM, FDM, DG...

→ Domain mesh

→ Approx. radiation conditions

→ Sparse matrix

BEM

→ Surface mesh (i.e. reduced dimensionality)

→ Exact radiation conditions

→ Fully-populated matrix

BEM adequate for large (unbounded) media with simple (linear) properties.Fully-populated BEM influence matrix is a priori a severe limiting factor

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 14 / 71

FMM elastodynamique

Motivation

Modelling of elastic wave propagation in large/unbounded domains

I Soil-structure interaction

I Site effects

I Computational forward solution method for inverse problems

Pros and cons of BEMs for elastic wavesFEM, FDM, DG...

→ Domain mesh

→ Approx. radiation conditions

→ Sparse matrix

BEM

→ Surface mesh (i.e. reduced dimensionality)

→ Exact radiation conditions

→ Fully-populated matrix

BEM adequate for large (unbounded) media with simple (linear) properties.Fully-populated BEM influence matrix is a priori a severe limiting factor

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 14 / 71

FMM elastodynamique

Standard BEM (3-D elastodynamics, frequency domain)

Governing integral equation for boundary displacements and tractions

cik(x)ui (x) =

∫∂Ω

[ti (x)Uk

i (x, ξ;ω)− ui (x)T ki (x, ξ;ω)

]dSξ (x ∈ ∂Ω)

Full-space elastodynamic fundamental solutions

Uki (x, ξ;ω) =

1

4πk2Sµ

(δik

∂2

∂xq∂ξq− ∂2

∂xk∂ξi

)G (|x− ξ|; kS) +

∂2

∂xi∂ξkG (|x− ξ|; kP)

T ki (x, ξ;ω) = Cijh`

∂ξ`Ukh (x, ξ;ω)nj(ξ)

G (z ; k) =exp(ikαz)

4πzfund. sol. Helmholtz eqn.

BEM discretization =⇒ fully-populated system of linear equations.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 15 / 71

FMM elastodynamique

Standard BEM (3-D elastodynamics, frequency domain)

Governing integral equation for boundary displacements and tractions

cik(x)ui (x) =

∫∂Ω

[ti (x)Uk

i (x, ξ;ω)− ui (x)T ki (x, ξ;ω)

]dSξ (x ∈ ∂Ω)

Full-space elastodynamic fundamental solutions

Uki (x, ξ;ω) =

1

4πk2Sµ

(δik

∂2

∂xq∂ξq− ∂2

∂xk∂ξi

)G (|x− ξ|; kS) +

∂2

∂xi∂ξkG (|x− ξ|; kP)

T ki (x, ξ;ω) = Cijh`

∂ξ`Ukh (x, ξ;ω)nj(ξ)

G (z ; k) =exp(ikαz)

4πzfund. sol. Helmholtz eqn.

BEM discretization =⇒ fully-populated system of linear equations.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 15 / 71

FMM elastodynamique

Standard BEM (3-D elastodynamics, frequency domain)

Governing integral equation for boundary displacements and tractions

cik(x)ui (x) =

∫∂Ω

[ti (x)Uk

i (x, ξ;ω)− ui (x)T ki (x, ξ;ω)

]dSξ (x ∈ ∂Ω)

Full-space elastodynamic fundamental solutions

Uki (x, ξ;ω) =

1

4πk2Sµ

(δik

∂2

∂xq∂ξq− ∂2

∂xk∂ξi

)G (|x− ξ|; kS) +

∂2

∂xi∂ξkG (|x− ξ|; kP)

T ki (x, ξ;ω) = Cijh`

∂ξ`Ukh (x, ξ;ω)nj(ξ)

G (z ; k) =exp(ikαz)

4πzfund. sol. Helmholtz eqn.

BEM discretization =⇒ fully-populated system of linear equations.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 15 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamique

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 16 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Decomposition of Helmholtz fundamental solution

Multipole expansion formula (“diagonal form”, Epton and Dembart 1995)

ξ

ξ0 x0

x

r r0

G (|ξ − x|; k) =ik

16π2lim

L→+∞

∫s∈S

e ik s.ξGL(s; r0; k)e−ik s.xd s

GL(s; r0; k) =L∑

p=0

(2p + 1)iph(1)p (k |r0|)Pp

(cos(s, r0)

)(Transfer function)

Convergence as L→ +∞ guaranteed if |r− r0| ≤ (2/√

5)|r|

Multipole expansion of elastodynamic fundamental solution:

Uki (x, ξ;ω) = lim

L→+∞

∫s∈S

[e ikP s.ξ Uk;P

i ;L (s; r0, kP) e−ikP s.x

+ e ikS s.ξ Uk;Si ;L (s; r0, kS) e−ikS s.x

]d s

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 17 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Decomposition of Helmholtz fundamental solution

Multipole expansion formula (“diagonal form”, Epton and Dembart 1995)

ξ

ξ0 x0

x

r r0

G (|ξ − x|; k) =ik

16π2lim

L→+∞

∫s∈S

e ik s.ξGL(s; r0; k)e−ik s.xd s

GL(s; r0; k) =L∑

p=0

(2p + 1)iph(1)p (k |r0|)Pp

(cos(s, r0)

)(Transfer function)

Convergence as L→ +∞ guaranteed if |r− r0| ≤ (2/√

5)|r|

Multipole expansion of elastodynamic fundamental solution:

Uki (x, ξ;ω) = lim

L→+∞

∫s∈S

[e ikP s.ξ Uk;P

i ;L (s; r0, kP) e−ikP s.x

+ e ikS s.ξ Uk;Si ;L (s; r0, kS) e−ikS s.x

]d s

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 17 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Decomposition of Helmholtz fundamental solution

Multipole expansion formula (“diagonal form”, Epton and Dembart 1995)

ξ

ξ0 x0

x

r r0

G (|ξ − x|; k) =ik

16π2lim

L→+∞

∫s∈S

e ik s.ξGL(s; r0; k)e−ik s.xd s

GL(s; r0; k) =L∑

p=0

(2p + 1)iph(1)p (k |r0|)Pp

(cos(s, r0)

)(Transfer function)

Convergence as L→ +∞ guaranteed if |r− r0| ≤ (2/√

5)|r|

Multipole expansion of elastodynamic fundamental solution:

Uki (x, ξ;ω) = lim

L→+∞

∫s∈S

[e ikP s.ξ Uk;P

i ;L (s; r0, kP) e−ikP s.x

+ e ikS s.ξ Uk;Si ;L (s; r0, kS) e−ikS s.x

]d s

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 17 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Single-level FMM

Boundary of interest enclosed incubic grid

d

∂Ω

Cy

Cx

Ω

d

Cy

Cx

Ωd

Interior problem Exterior problem

Condition |r− r0| ≤ (2/√

5)|r|assured if x and ξ lie innon-adjacent cells

Cx

Cξ ∈ (A(Cx))Cξ 6∈ (A(Cx))

Ω

d

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 18 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Single-level FMM

Matrix-vector product ←− evaluation of integral operator

I Must compute e.g.:

[Kt](x) :=

∫∂Ω

ti (x)Uki (x, ξ;ω) dSξ (for given solution candidate t)

I Split integrals into near and FM contributions:∫∂Ω

=∑

Cξ∈A(Cx )

∫∂Ω∩Cξ

+∑

Cξ /∈A(Cx )

∫∂Ω∩Cξ

[Kt](x) = [Kt]near(x) + [Kt]FM(x)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 19 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Single-level FMM

Matrix-vector product ←− evaluation of integral operator

I Must compute e.g.:

[Kt](x) :=

∫∂Ω

ti (x)Uki (x, ξ;ω) dSξ (for given solution candidate t)

I Split integrals into near and FM contributions:∫∂Ω

=∑

Cξ∈A(Cx )

∫∂Ω∩Cξ

+∑

Cξ /∈A(Cx )

∫∂Ω∩Cξ

[Kt](x) = [Kt]near(x) + [Kt]FM(x)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 19 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Single-level FMM algorithm: principle

ξ0

ξ1 ξ2

ξ3 ξ4

∫∂Ω∩Cξ

ti (x)Uki (x, ξ;ω) dSξ (x∈Cx 6∈ A(Cξ), for given solution candidate t)

=

∫s∈S

∫∂Ω∩Cξ

ti (x)e ikP s.ξ dSξ

Uki ;L(s; r0, kP) e−ikP s.x d s + [terms with kS]

I compute multipole moments for each cell Cξ and quadrature pointI Transfer (M2L) from Cξ to non-adjacent CxI Evaluate FM contribution to matrix-vector productI Add near contribution to matrix-vector product (computed using standard

BEM techniques)

Complexity of single-level elastodynamic FMM: O(N3/2) / GMRES iter.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 20 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Single-level FMM algorithm: principle

ξ0

ξ1 ξ2

ξ3 ξ4

∫∂Ω∩Cξ

ti (x)Uki (x, ξ;ω) dSξ (x∈Cx 6∈ A(Cξ), for given solution candidate t)

=

∫s∈S

∫∂Ω∩Cξ

ti (x)e ikP s.ξ dSξ

Uki ;L(s; r0, kP) e−ikP s.x d s

+ [terms with kS]

I compute multipole moments for each cell Cξ and quadrature point

I Transfer (M2L) from Cξ to non-adjacent CxI Evaluate FM contribution to matrix-vector productI Add near contribution to matrix-vector product (computed using standard

BEM techniques)

Complexity of single-level elastodynamic FMM: O(N3/2) / GMRES iter.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 20 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Single-level FMM algorithm: principle

ξ0

ξ1 ξ2

ξ3 ξ4

Cx

x0

x1

x2

x3

x4

∫∂Ω∩Cξ

ti (x)Uki (x, ξ;ω) dSξ (x∈Cx 6∈ A(Cξ), for given solution candidate t)

=

∫s∈S

∫∂Ω∩Cξ

ti (x)e ikP s.ξ dSξ

Uki ;L(s; r0, kP)

e−ikP s.x d s

+ [terms with kS]

I compute multipole moments for each cell Cξ and quadrature pointI Transfer (M2L) from Cξ to non-adjacent Cx

I Evaluate FM contribution to matrix-vector productI Add near contribution to matrix-vector product (computed using standard

BEM techniques)

Complexity of single-level elastodynamic FMM: O(N3/2) / GMRES iter.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 20 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Single-level FMM algorithm: principle

ξ0

ξ1 ξ2

ξ3 ξ4

Cx

x0

x1

x2

x3

x4

∫∂Ω∩Cξ

ti (x)Uki (x, ξ;ω) dSξ (x∈Cx 6∈ A(Cξ), for given solution candidate t)

=

∫s∈S

∫∂Ω∩Cξ

ti (x)e ikP s.ξ dSξ

Uki ;L(s; r0, kP) e−ikP s.x d s + [terms with kS]

I compute multipole moments for each cell Cξ and quadrature pointI Transfer (M2L) from Cξ to non-adjacent CxI Evaluate FM contribution to matrix-vector product

I Add near contribution to matrix-vector product (computed using standardBEM techniques)

Complexity of single-level elastodynamic FMM: O(N3/2) / GMRES iter.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 20 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Single-level FMM algorithm: principle

ξ0

ξ1 ξ2

ξ3 ξ4

Cx

x0

x1

x2

x3

x4

∫∂Ω∩Cξ

ti (x)Uki (x, ξ;ω) dSξ (x∈Cx 6∈ A(Cξ), for given solution candidate t)

=

∫s∈S

∫∂Ω∩Cξ

ti (x)e ikP s.ξ dSξ

Uki ;L(s; r0, kP) e−ikP s.x d s + [terms with kS]

I compute multipole moments for each cell Cξ and quadrature pointI Transfer (M2L) from Cξ to non-adjacent CxI Evaluate FM contribution to matrix-vector productI Add near contribution to matrix-vector product (computed using standard

BEM techniques)

Complexity of single-level elastodynamic FMM: O(N3/2) / GMRES iter.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 20 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Single-level FMM algorithm: principle

ξ0

ξ1 ξ2

ξ3 ξ4

Cx

x0

x1

x2

x3

x4

∫∂Ω∩Cξ

ti (x)Uki (x, ξ;ω) dSξ (x∈Cx 6∈ A(Cξ), for given solution candidate t)

=

∫s∈S

∫∂Ω∩Cξ

ti (x)e ikP s.ξ dSξ

Uki ;L(s; r0, kP) e−ikP s.x d s + [terms with kS]

I compute multipole moments for each cell Cξ and quadrature pointI Transfer (M2L) from Cξ to non-adjacent CxI Evaluate FM contribution to matrix-vector productI Add near contribution to matrix-vector product (computed using standard

BEM techniques)

Complexity of single-level elastodynamic FMM: O(N3/2) / GMRES iter.Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 20 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3

...

level `= ¯ (leaf)

→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N logN)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 21 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3

...

level `= ¯ (leaf)→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N logN)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 21 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3

...

level `= ¯ (leaf)→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N logN)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 21 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3

...

level `= ¯ (leaf)

→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N logN)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 21 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3

...

level `= ¯ (leaf)

→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N logN)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 21 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3

...

level `= ¯ (leaf)

→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N logN)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 21 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3...

level `= ¯ (leaf)

→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N logN)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 21 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3... level `= ¯ (leaf)

→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N logN)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 21 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Multi-level FMM

level `= 0

level `= 1

level `= 2

level `= 3... level `= ¯ (leaf)

→ highest level for which FMM is applicable.

computation organization based onrecursive subdivision (oc-tree)

Complexity of multi-level elastodynamic FMM: O(N logN)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 21 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Previous work on elastodynamic FMM

I 2-D frequency-domain (Chen et al., Comp. Mech., 1997)

I 3-D frequency-domain, low-frequency, crack problems, N = O(6×104)(Yoshida, PhD thesis, 2001)

I 3-D frequency-domain, diagonal form (Fujiwara, Geoph. J. Int., 2000)I Level-independent value of truncation parameter L;I low-frequency seismology-oriented examples; N = O(2×104)

I 3-D time domain (Takahashi et al., Engng. Anal. Bound. Elem., 2003)

I Present work:

(a) incorporation of recent advances in Maxwell FMM;(b) Multi-region problems;(c) N = O(5×105 − 106)

Skip

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 22 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Summary of computational issues

Implementation issues

I Elastodynamic FMM: L and Q are level-dependentI Transfer function

GL(s; r0; k) =L∑

p=0

(2p + 1)iph(1)p (k|r0|)Pp

(cos (s, r0)

)I Choice of truncation parameter:

I L too small: convergence not reached for GL (s; r0; k);

I L too large: divergence of h(1)p

I Empirical formula used: L=√

3kSd + Cεlog10(√

3kSd + π)(see Darve 2000 and Sylvand 2002 for Maxwell eqns)

→ upward (downward) pass features (inverse) extrapolation step

I Importance of optimal memory management

I Preconditioning of GMRES (see later)

Complexity analysis

=⇒ O(Nlog(N))/iter (instead of O(N2)/iter for standard BEM)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 23 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Numerical verification of theoretical complexity, Helmholtz

Example: sphere under uniform normal velocity. Mesh refinement, meshdensity / wavelength kept fixed

N. Nemitz, MB, Eng. Anal. Bound. Elem, 32 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 24 / 71

FMM elastodynamique Formulation multi-niveau mono-domaine

Numerical verification of theoretical complexity, elastodynamics

1e+02 1e+03 1e+04 1e+05 1e+06

N

1e-02

1e+00

1e+02

1e+04

CPU

/ite

r (s

)

BEMO(N

2)

single-level FMM

O(N3/2

)multi-level FMMO(N log

2N)

S. Chaillat, MB, J.F. Semblat, Comp. Meth. Appl. Mech. Engng., 197 (2008)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 25 / 71

FMM elastodynamique Formulation multi-niveau multi-domaine

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamique

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 26 / 71

FMM elastodynamique Formulation multi-niveau multi-domaine

Studied configurations

All examples concern geometrical configurations involving:

I a semi-infinite homogeneous reference medium,

I a given number of finite homogeneous regions

Ω1

Ω2

Ω3

Ω4Γ

Γ12

Γ13

Γ1

Γ4

Γ14

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 27 / 71

FMM elastodynamique Formulation multi-niveau multi-domaine

Implementation

Interpolation:I Three-noded triangular BE

I piecewise-linear interpolation of displacements

I piecewise-constant interpolation of tractions

Single region FMM applied independently in each subdomain

I definition of an octree in each sub-domain

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 28 / 71

FMM elastodynamique Formulation multi-niveau multi-domaine

Implementation

Interpolation:I Three-noded triangular BE

I piecewise-linear interpolation of displacements

I piecewise-constant interpolation of tractions

Single region FMM applied independently in each subdomain

I definition of an octree in each sub-domain

Ω2

Ω1

Ω2

Ω1

Octree Ω1, level 2 Octree Ω2, level 2

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 28 / 71

FMM elastodynamique Formulation multi-niveau multi-domaine

Continuous multi-domain BEM formulation (total field)

I In the semi-infinite homogeneous medium Ω1:

cik(x)ui (x) +

∫∂Ω1

ui (y)T ki dSy −

∫Γ1

ti (y)Uki dSy

= cFik(x)uFi (x) +

∫ΓF

uFi (y)T ki dSy , ∀x ∈ ∂Ω1

uF free field (incident and reflected waves from free surface ΓF)

I In the finite region Ω` (2 ≤ ` ≤ n):

cik(x)u`mi (x)+

∫Γ`

u`i (y)Tk(`)i dSy+

`−1∑m=2

∫Γ`m

(um`i (y)T

k(`)i +tm`i (y)U

k(`)i

)dSy

+n∑

m=`+1

∫Γ`m

(u`mi (y)T

k(`)i − t`mi (y)U

k(`)i

)dSy = 0, ∀x ∈ Γ`m

Formulation in terms of total fields (perfect bonding conditions)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 29 / 71

FMM elastodynamique Formulation multi-niveau multi-domaine

Linear combinations of collocations on interfaces

Single region FMM applied independently in each sub-domain (collocation:red nodes + blue element centers)

I Over-determined system;

I Contribution of Ωi and of Ωj to collocation on interface Γij are linearlycombined (optimal coefficients chosen using numerical experiments)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 30 / 71

FMM elastodynamique Exemples: effets de site simplifies

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamique

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 31 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a hemispherical valley

x, y

z

plane P wave

R

D = 5R

free surface

elastic half-spaceA

B C

(N = 17409)

I µ2 = 0.3µ1, ρ2 = 0.6ρ1, ν1 = 0.25, ν2 = 0.3

I Low frequency: comparison with Sanchez-Sesma (1983) and Delavaud (2007)

I Higher frequency: FMM

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 32 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a hemispherical valley

Comparaison with earlier results, kPR = 0.5

I Sanchez-Sesma, 1983 (semi-analytical)

I Delavaud, 2007 (spectral finite element method)

x, yz

R

D = 5R

A

B Cs

0 1 2x/R

0

1

2

3

4

5

6

disp

lace

men

t mod

ulus

|uy| (present FMM)

|uy| (Sanchez-Sesma 1983)

|uy| (Delavaud 2007, SEM)

|uz| (present FMM)

|uz| (Sanchez-Sesma 1983)

|uz| (Delavaud 2007, SEM)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 33 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a hemispherical valley

Comparaison with earlier results, kPR = 0.7:

I Sanchez-Sesma, 1983 (semi-analytical)

I Delavaud, 2007 (spectral finite element method)

x, yz

R

D = 5R

A

B Cs

0 2x/R

0

1

2

3

4

5

6

disp

lace

men

t mod

ulus

|uy| (present FMM)

|uy| (Sanchez-Sesma 1983)

|uy| (Delavaud 2007, SEM)

|uz| (present FMM)

|uz| (Sanchez-Sesma 1983)

|uz| (Delavaud 2007, SEM)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 34 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a hemispherical valley

Results for a higher frequency kPR = 1N = 84 882 (76 iterations, single-proc. 3 GHz PC)

x, yz

R

D = 5R

A

B Cs

0 1 2x/R

0

1

2

3

4

5

6

disp

lace

men

t mod

ulus

|uy| (present FMM)

|uz| (present FMM)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 35 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a hemispherical valley

Results for a higher frequency kPR = 2N = 190 299 (627 iterations, single-proc. 3 GHz PC) =⇒ preconditioning?

x, yz

R

D = 5R

A

B Cs

0 1 2r / a

0

1

2

3

4

5

6

7

disp

lace

men

t mod

ulus

|uz| (present FMM)

|uy| (present FMM)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 36 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a two-layered hemisphericalvalley

free surfacea

Ω3

Ω2

r

D = 5a

plane P wave

z

x

h3

h2

semi-infinite medium Ω1

µ2

µ1=µ3

µ2= 0.3;

ρ2

ρ1=ρ3

ρ2= 0.6; ν1 = 0.25; ν2 = ν3 = 0.30

h2 =√

2a/(1 +√

2); h3 = a/(1 +√

2)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 37 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a two-layered hemisphericalvalley

Basin and free-surface N = 91, 893 Close-up on the two-layered basin

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 38 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a two-layered hemisphericalvalley

Validation of BEM-BEM coupling method with two-layers of the same material:

k(1)P a/π = 1

a

Ω2r

D = 5a

Ω1

One layer

a

Ω2

r

D = 5a

Ω1 Ω3

Two layers with same material

0 1 2r /a

0

1

2

3

4

5

6

disp

lace

men

t mod

ulus

|uz|, two layers same material

" , one layer|uy|, two layers same material

" , one layer

N = 91, 893 (240 iter., 48s / iter, single-proc. 3 GHz PC)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 39 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a two-layered hemisphericalvalley

Validation of BEM-BEM coupling method with two-layers of the same material:

k(1)P a/π = 1

a

Ω2r

D = 5a

Ω1

One layer

a

Ω2

r

D = 5a

Ω1 Ω3

Two layers with same material 0 1 2r /a

0

1

2

3

4

5

6

disp

lace

men

t mod

ulus

|uz|, two layers same material

" , one layer|uy|, two layers same material

" , one layer

N = 91, 893 (240 iter., 48s / iter, single-proc. 3 GHz PC)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 39 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a two-layered hemisphericalvalley

Results with two layers of different materials: comparison with results for

homogeneous basin, k(1)P a/π = 1

a

Ω2r

D = 5a

Ω1

One layera

Ω2

r

D = 5a

Ω1 Ω3

Two layers

0 1 2r /a

0

5

10

15

disp

lace

men

t mod

ulus

|uz|, two layers

" , one layer|uy|, two layers

" , one layer

N = 91, 893 (248 iter., 48s / iter, single-proc. 3 GHz PC)−→ High amplification at the basin center;−→ Different wavelengths;

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 40 / 71

FMM elastodynamique Exemples: effets de site simplifies

Example: plane P-wave scattered by a two-layered hemisphericalvalley

Results with two layers of different materials: comparison with results for

homogeneous basin, k(1)P a/π = 1

a

Ω2r

D = 5a

Ω1

One layera

Ω2

r

D = 5a

Ω1 Ω3

Two layers 0 1 2r /a

0

5

10

15

disp

lace

men

t mod

ulus

|uz|, two layers

" , one layer|uy|, two layers

" , one layer

N = 91, 893 (248 iter., 48s / iter, single-proc. 3 GHz PC)−→ High amplification at the basin center;−→ Different wavelengths;

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 40 / 71

FMM elastodynamique Exemples: effets de site simplifies

Time-domain results

Time-domain surface response: [ux ] [ux (truncated)]

Chaillat S., Bonnet M., Semblat J.F., Geophys. J. Int., 2009Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 41 / 71

FMM elastodynamique Exemples: effets de site simplifies

Preconditioning

A simple strategy implemented, based on flexible GMRES (preconditioner:low-accuracy GMRES for near-interaction matrix).

Example: Diffraction of plane P- or SV-wave by a semi-ellipsoidal basin (b = 2a)

Ω2

D = 8a

Dfree surface A B

C

a E

z

yθplane P– or SV–wave

infinite elastic half space Ω1

ν(1) = ν(2) = 1/3, µ(2) = 1/4µ(1), ρ(2) = ρ(1), θ = 0, 30

Computational data:

k(1)P a/π N ¯

1; ¯2 CPU time (s)

per iter.

1 278, 304 4; 3 111

1.5 685, 830 6; 5 199

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 42 / 71

FMM elastodynamique Exemples: effets de site simplifies

Preconditioning

A simple strategy implemented, based on flexible GMRES (preconditioner:low-accuracy GMRES for near-interaction matrix).

Example: Diffraction of plane P- or SV-wave by a semi-ellipsoidal basin (b = 2a)

Ω2

D = 8a

Dfree surface A B

C

a E

z

yθplane P– or SV–wave

infinite elastic half space Ω1

ν(1) = ν(2) = 1/3, µ(2) = 1/4µ(1), ρ(2) = ρ(1), θ = 0, 30

Computational data:

k(1)P a/π N ¯

1; ¯2 CPU time (s)

per iter.

1 278, 304 4; 3 111

1.5 685, 830 6; 5 199

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 42 / 71

FMM elastodynamique Exemples: effets de site simplifies

Preconditioning

I ⇒ Simple preconditioning already very efficient

I ⇒ Comparative study with other preconditioning strategies used inelectromagnetic FMM (under way)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 43 / 71

FMM elastodynamique Exemple: modelisation simplifiee de la vallee de Grenoble

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamique

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 44 / 71

FMM elastodynamique Exemple: modelisation simplifiee de la vallee de Grenoble

Diffraction of an incident plane wave by an alpine valley (Grenoble)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 45 / 71

FMM elastodynamique Exemple: modelisation simplifiee de la vallee de Grenoble

Diffraction of an incident plane wave by an alpine valley (Grenoble)

Mechanical parameters

I Bedrock Ω1:c

(1)P = 5, 600 m.s−1, c

(1)s = 3, 200 m.s−1 and ρ(1) = 2, 720 kg.m−3

I Homogeneous layer Ω2:

c(2)P = 1, 988 m.s−1, c

(2)s = 526 m.s−1 and ρ(2) = 2, 206 kg.m−3

Tentative model, with several simplifications:

I Topography outside the sedimentary basin not considered (reduction DOFs)

I Only one layer (reduction DOFs+pb mesh generation)

I North ends of the valley closed artificially (pb mesh generation)

I Simplified incident motion (incident plane wave)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 46 / 71

FMM elastodynamique Exemple: modelisation simplifiee de la vallee de Grenoble

Diffraction of an incident plane wave by an alpine valley (Grenoble)

Mechanical parameters

I Bedrock Ω1:c

(1)P = 5, 600 m.s−1, c

(1)s = 3, 200 m.s−1 and ρ(1) = 2, 720 kg.m−3

I Homogeneous layer Ω2:

c(2)P = 1, 988 m.s−1, c

(2)s = 526 m.s−1 and ρ(2) = 2, 206 kg.m−3

Tentative model, with several simplifications:

I Topography outside the sedimentary basin not considered (reduction DOFs)

I Only one layer (reduction DOFs+pb mesh generation)

I North ends of the valley closed artificially (pb mesh generation)

I Simplified incident motion (incident plane wave)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 46 / 71

FMM elastodynamique Exemple: modelisation simplifiee de la vallee de Grenoble

Diffraction of an incident plane wave by an alpine valley (Grenoble)

λ(1)S

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 47 / 71

FMM elastodynamique Exemple: modelisation simplifiee de la vallee de Grenoble

Diffraction of an incident plane wave by an alpine valley (Grenoble)

Diffraction of a vertical incident plane P–wave by the Alpine valley:

0 7.86 15.73 23.59 31.46

Modulus of the z-componentof displacement, f = 0.6 Hz.

Solution: N = 141, 288,747 iter. (with prec.), 75 h.

=⇒ Limitation of the present FM-BEM to deal with basin problemswith high velocity contrast between two layers (non-uniform mesh)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 48 / 71

FMM viscoelastodynamique

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 49 / 71

FMM viscoelastodynamique

The free-space Helmholtz Green’s function

(∆ + K 2)G (|r|;K ) + δ(r) = 0 K (ω) = kr (ω) + iα(ω)

If α(ω) = 0: real wavenumber (elastodynamics)

G (|r|; k) =e ikr |r|

4π|r|If α(ω) > 0: complex wavenumber (viscoelastodynamics)

G (|r|;K ) =e iK |r|

4π|r| = e−iα(ω)|r| eikr (ω)|r|

4π|r|Thus, in the damped case, far (FMM) contribution decays with increasingdistance |r0| and attenuation α(ω).

I Viscoelasticity, α(ω) kr (ω);I Eddy currents, α(ω) = kr (ω);I Stokes flow α(ω) = kr (ω);I Optical tomography, α(ω)> kr (ω);

Key issue: adjustement rule for truncation parameter L= L(dcell, kr , α);

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 50 / 71

FMM viscoelastodynamique

The free-space Helmholtz Green’s function

(∆ + K 2)G (|r|;K ) + δ(r) = 0 K (ω) = kr (ω) + iα(ω)

If α(ω) = 0: real wavenumber (elastodynamics)

G (|r|; k) =e ikr |r|

4π|r|If α(ω) > 0: complex wavenumber (viscoelastodynamics)

G (|r|;K ) =e iK |r|

4π|r| = e−iα(ω)|r| eikr (ω)|r|

4π|r|Thus, in the damped case, far (FMM) contribution decays with increasingdistance |r0| and attenuation α(ω).

I Viscoelasticity, α(ω) kr (ω);I Eddy currents, α(ω) = kr (ω);I Stokes flow α(ω) = kr (ω);I Optical tomography, α(ω)> kr (ω);

Key issue: adjustement rule for truncation parameter L= L(dcell, kr , α);Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 50 / 71

FMM viscoelastodynamique

Major issues on the evaluation of the transfer function

GL(|r|; k?) =ik?

16π2

∫s∈S

e ik? s.(y−y0)

[ L∑`=1

(2`+ 1)i`h(1)` (|k?r0|)P`(〈s, r0〉)

]e−ik? s.(x−x0)d s

1. Evaluation of h(1)` (z)

If β = 0 (elastodynamics):

I Divergence at ` |z | and at |z | → 0

I Stop-subdivision criterion for the octree: dmin = αλS (λS : S-wavewavelength)

In elastodynamics has been empirically found α = 0.3 [Chaillat et al. 08]

If β > 0 (viscoelastodynamics):

I Evaluation of h(1)` (z) with complex argument [Toit, 90; Heckmann, 01]

I Real-wavenumber stop size criterion holds

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 51 / 71

FMM viscoelastodynamique

Major issues on the evaluation of the transfer function

GL(|r|; k?) =ik?

16π2

∫s∈S

e ik? s.(y−y0)

[ L∑`=1

(2`+ 1)i`h(1)` (|k?r0|)P`(〈s, r0〉)

]e−ik? s.(x−x0)d s

2. Truncation of the infinite series on L

If β = 0 (elastodyn.):

I Error bound analysis [Darve, 00]: there exist four constants C1,C2,C3,C4

such that (for any chosen error level ε > 1 )

L = C1 + C2k |r − r0|+ C3ln(k |r − r0|) + C4lnε−1 ⇒ |GL − Ganalyt | < ε

with C1,C2,C3,C4 empirically determined

I In 3-D elastodynamics [Chaillat et al., 08]

L(|kd |) =√

3|kd |+ 7.5Log10(√

3|kd |+ π)

If β > 0 (viscoelastodyn.): adjustment rule for L(|k?d |, β)??Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 51 / 71

FMM viscoelastodynamique Evaluation de la fonction de transfert pour k complexe

1. Principes

2. FMM elastodynamique

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 52 / 71

FMM viscoelastodynamique Evaluation de la fonction de transfert pour k complexe

Empirical observations on approximated Green’s function GL(|r|; k?)

Influence of damping factor βI choice of most unfavorable case

I study of GL approximation ofG : error ε = |GL − G |/|G |

d

x

xy

y

0

0

Fig: εr isovalues maps for two points atr0 = y0 − x0 = 2d and

r′ = (y − y0) + (x0 − x) = 0.8D;

β = 0 (top), β = 0.1 (bottom).

−9−8

−8−8

−7

−7

−7−7

−7

−7

−6

−6

−6

−6−6

−6

−5

−5

−5

−5−5

−5−5

−5

−4

−4

−4

−4

−4 −4−4

−4

−4

−4−4

−3

−3

−3

−3

−3

−3−3

−3

−3

−2

−2

−2

−2

−1

−1

−1

−1

−2

−2

−2

−2

−2

−1

−1

−1

−1

−1−6−6 −2

−8 −6

−5

−1

−5

|k*d|

L

r0=2d

r’= 0.8Dβ =0

5 10 15 20

10

20

30

40

50

60

70

−10

−8

−6

−4

−2LogǫL = |k∗D|

−6−6

−5

−5

−5

−5−5

−5

−4

−4

−4

−4

−4−4

−4

−4

−4−3

−3−3

−3

−3

−3

−3

−3

−3

−3

−3

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−4−4

−5

−4

−5−5

−5−6 −6

−6

−7

|k*d|

L

r0=2d

r’= 0.8Dβ =0.1

5 10 15 20

10

20

30

40

50

60

70

−10

−8

−6

−4

−2LogǫL = |k∗D|

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 53 / 71

FMM viscoelastodynamique Evaluation de la fonction de transfert pour k complexe

Determination of the truncation parameter L(|k?d |, β)

GL(|r|; k?) =ik?

16π2

∫s∈S

e ik? s.(y−y0)

[ L∑`=1

(2`+ 1)i`h(1)` (|k?r0|)P`(〈s, r0〉)

]e−ik? s.(x−x0)d s

We empirically seek C1, C2 in

L(|k?d |, β) =√

3|k?d |+ (7.5 + C1β)Log10(√

3|k?d |+ π) + C2β

to guarantee a relative error ζ constant for 0 ≤ β ≤ 0.1

ζ2(C1,C2, β) = (∑β

∑|k?d|

∑|r′|

∣∣G − GL

∣∣2)/(∑β

∑|k?d|

∑|r′||G |2)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 54 / 71

FMM viscoelastodynamique Evaluation de la fonction de transfert pour k complexe

Determination of the truncation parameter L(|k?d |, β)

GL(|r|; k?) =ik?

16π2

∫s∈S

e ik? s.(y−y0)

[ L∑`=1

(2`+ 1)i`h(1)` (|k?r0|)P`(〈s, r0〉)

]e−ik? s.(x−x0)d s

We empirically seek C1, C2 in

L(|k?d |, β) =√

3|k?d |+ (7.5 + C1β)Log10(√

3|k?d |+ π) + C2β

to guarantee a relative error ζ constant for 0 ≤ β ≤ 0.1

ζ2(C1,C2, β) = (∑β

∑|k?d|

∑|r′|

∣∣G − GL

∣∣2)/(∑β

∑|k?d|

∑|r′||G |2)

I For given ζ, takingC2 = 0 savescomputational time(O(N2) integrationpoints s per level)

0.00180.002

0.0

02

0.0

02

0.0

022

0.0022

0.0022

0.0

022

0.0022

0.0

024

0.0

024

0.0024

0.0024

0.0

026

0.0026

0.0026

0.0028

0.0028

0.0

03

0.0030.00320.00340.003620

21

21

21

22

22

22

22

23

23

23

24

24

C1

C2

10 20 30 40 50

10

20

30

40

50 ζ

L

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 54 / 71

FMM viscoelastodynamique Evaluation de la fonction de transfert pour k complexe

Determination of the truncation parameter L(|k?d |, β)

GL(|r|; k?) =ik?

16π2

∫s∈S

e ik? s.(y−y0)

[ L∑`=1

(2`+ 1)i`h(1)` (|k?r0|)P`(〈s, r0〉)

]e−ik? s.(x−x0)d s

We empirically seek C1, C2 in

L(|k?d |, β) =√

3|k?d |+ (7.5 + C1β)Log10(√

3|k?d |+ π) + C2β

to guarantee a relative error ζ constant for 0 ≤ β ≤ 0.1

ζ2(C1,C2, β) = (∑β

∑|k?d|

∑|r′|

∣∣G − GL

∣∣2)/(∑β

∑|k?d|

∑|r′||G |2)

I We can keep onlyone constantC = 60

0 0.05 0.110

−4

10−3

10−2

10−1

β [-]

ξ

(C1,C

2)=(0,0) Uniform

(C1,C

2)=(60,0) Uniform

(C1,C

2)=(50,50) Uniform

(C1,C

2)=(0,0) Gaussian

(C1,C

2)=(60,0) Gaussian

(C1,C

2)=(50,50) Gaussian

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 54 / 71

FMM viscoelastodynamique Evaluation de la fonction de transfert pour k complexe

Determination of the truncation parameter L(|k?d |, β)

GL(|r|; k?) =ik?

16π2

∫s∈S

e ik? s.(y−y0)

[ L∑`=1

(2`+ 1)i`h(1)` (|k?r0|)P`(〈s, r0〉)

]e−ik? s.(x−x0)d s

We empirically seek C1, C2 in

L(|k?d |, β) =√

3|k?d |+ (7.5 + C1β)Log10(√

3|k?d |+ π) + C2β

to guarantee a relative error ζ constant for 0 ≤ β ≤ 0.1

ζ2(C1,C2, β) = (∑β

∑|k?d|

∑|r′|

∣∣G − GL

∣∣2)/(∑β

∑|k?d|

∑|r′||G |2)

Proposed relation for L

L(|k?d |, β) =√

3|k?d |+ (7.5 + 60β)Log10(√

3|k?d |+ π)

(reduces to the real-wavenumber relation when β = 0)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 54 / 71

FMM viscoelastodynamique Validation (exemple mono-domaine)

1. Principes

2. FMM elastodynamique

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 55 / 71

FMM viscoelastodynamique Validation (exemple mono-domaine)

Diffraction of a vertically-incident P-wave by a spherical cavity

I Known exact solution [Eringen1975]

I Non-dimensional frequency ηP = kPR/π

I 10 points per λS

R

Ω

P-wave

x

zy

Problem Pressurized cavity

Mesh sphere3 sphere4 sphere5

Pb size 7 686 30 726 122 886

ηP 1.5 3 6

Nb. levels 4 5 6

Table: Reference tests for the cavity problems.

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 56 / 71

FMM viscoelastodynamique Validation (exemple mono-domaine)

Diffraction of a vertically-incident P-wave by a spherical cavity

I Known exact solution [Eringen1975]

I Non-dimensional frequency ηP = kPR/π

I 10 points per λS

R

Ω

P-wave

x

zy

0 0.05 0.110

−3

10−2

10−1

β[-]

RM

S e

rror

C=0C=60C=120C=150

0 0.05 0.110

0

101

102

β[-]

CP

U/ite

r [s

]

0 0.05 0.110

0

101

102

103

β[-]

Nb. iter

Error, CPU time and iter. # for various values of C at ηP = 3

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 56 / 71

FMM viscoelastodynamique Validation (exemple mono-domaine)

Diffraction of a vertically-incident P-wave by a spherical cavity

I Known exact solution [Eringen1975]

I Non-dimensional frequency ηP = kPR/π

I 10 points per λS

R

Ω

P-wave

x

zy

0 0.05 0.110

−3

10−2

10−1

β[-]

RM

S e

rror

ClassicL−relProposedL−rel

0 0.05 0.110

1

102

β[-]

CP

U/ite

r [s

]

0 0.05 0.110

0

101

102

103

β [-]

Nb. iter

Comparison classic / proposed L-relation at ηP = 6

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 56 / 71

FMM viscoelastodynamique Validation (exemple mono-domaine)

Diffraction of a vertically-incident P-wave by a spherical cavity

1 1.5 2 2.5 3−1.5

−1

−0.5

0

0.5

1

r/R

rad

ial d

isp

l.

θ = 0

1 1.5 2 2.5 3

−0.5

0

0.5

r/R

rad

ial d

isp

l.

θ = π/4

R

Ω

P-wave

(a)(b)

(c)

(d)(e)

x

zy

1 1.5 2 2.5 3−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

r/R

rad

ial d

isp

l.

θ = π/2

1 1.5 2 2.5 3−8

−6

−4

−2

0

2

4

6

r/R

rad

ial d

isp

l.

θ = π

1 1.5 2 2.5 3−2

−1

0

1

2

r/R

rad

ial d

isp

l.θ = 3/4π

Comparison FMM/analytical solutions (ηP = 3) for different azimuths anddamping factors

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 57 / 71

FMM viscoelastodynamique Formulation multi-niveau multi-domaine

1. Principes

2. FMM elastodynamique

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 58 / 71

FMM viscoelastodynamique Formulation multi-niveau multi-domaine

BE-BE coupling strategy [Chaillat et al., 09]

I Domain partition: Ω = ∪iΩi , 1 ≤ i ≤ n

I Each subregion is treated separately (n octrees, single FMM in each Ωi )

I Linear combination of BE equations from collocation at shared points orelements to ensure a global square system of equations

Multi-regionvalidation problem

0 0.05 0.110

−3

10−2

10−1

100

β [-]

RM

S e

rro

r

Classic L−rel(Cavity wall)

Classic L−rel(Interface)

Proposed L−rel(Cavity wall)

Proposed L−rel(Interface)

0 0.05 0.110

1

102

103

β [-]

CP

U/ite

r [s

]

Classic L−rel

Proposed L−rel

0 0.05 0.110

1

102

103

β [-]

Nb

. ite

r

Classic L−rel

Proposed L−rel

Comparison between the relations for the truncationparameter

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 59 / 71

FMM viscoelastodynamique Formulation multi-niveau multi-domaine

BE-BE coupling strategy [Chaillat et al., 09]

I Domain partition: Ω = ∪iΩi , 1 ≤ i ≤ n

I Each subregion is treated separately (n octrees, single FMM in each Ωi )

I Linear combination of BE equations from collocation at shared points orelements to ensure a global square system of equations

Multi-regionvalidation problem

0 0.05 0.110

−3

10−2

10−1

100

β [-]

RM

S e

rro

r

Classic L−rel(Cavity wall)

Classic L−rel(Interface)

Proposed L−rel(Cavity wall)

Proposed L−rel(Interface)

0 0.05 0.110

1

102

103

β [-]

CP

U/ite

r [s

]

Classic L−rel

Proposed L−rel

0 0.05 0.110

1

102

103

β [-]

Nb

. ite

r

Classic L−rel

Proposed L−rel

Comparison between the relations for the truncationparameter

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 59 / 71

FMM viscoelastodynamique Formulation multi-niveau multi-domaine

BE-BE coupling strategy [Chaillat et al., 09]

I Domain partition: Ω = ∪iΩi , 1 ≤ i ≤ n

I Each subregion is treated separately (n octrees, single FMM in each Ωi )

I Linear combination of BE equations from collocation at shared points orelements to ensure a global square system of equations

Multi-regionvalidation problem

0 0.05 0.110

−3

10−2

10−1

100

β [-]

RM

S e

rro

r

Classic L−rel(Cavity wall)

Classic L−rel(Interface)

Proposed L−rel(Cavity wall)

Proposed L−rel(Interface)

0 0.05 0.110

1

102

103

β [-]

CP

U/ite

r [s

]

Classic L−rel

Proposed L−rel

0 0.05 0.110

1

102

103

β [-]

Nb

. ite

r

Classic L−rel

Proposed L−rel

Comparison between the relations for the truncationparameter

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 59 / 71

FMM viscoelastodynamique Exemple: effet de site simplifie

1. Principes

2. FMM elastodynamique

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 60 / 71

FMM viscoelastodynamique Exemple: effet de site simplifie

Propagation of an incident P-wave in a semi-spherical alluvial basin

I Properties: µ1 = 2, ν1 = 0.25, ρ1 = 2 and µ2 = 0.3µ1, ν2 = 1/3, ρ2 = 0.6ρ1

I Normalized frequency :k(1)P R/π = 0.5, 0.7

I Problem size: 15 306

I Truncation radius D = 5R

Bassin geometry and mesh

P-wavez

y

o

Bassin geometry

X Y

Z

Bassin mesh

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 61 / 71

FMM viscoelastodynamique Exemple: effet de site simplifie

Propagation of an incident P-wave in a semi-spherical alluvial basin

I Properties: µ1 = 2, ν1 = 0.25, ρ1 = 2 and µ2 = 0.3µ1, ν2 = 1/3, ρ2 = 0.6ρ1

I Normalized frequency :k(1)P R/π = 0.5, 0.7

I Problem size: 15 306

I Truncation radius D = 5R

Comparison with literature results for elastodynamics [Chaillat et al., 09]

0 1 20

1

2

3

4

5

6

y/R

dis

pla

ce

me

nt

mo

du

lus

k(1)P R/π = 0.5

0 1 20

1

2

3

4

5

6

dis

pla

cem

ent m

odulu

s

|uz|, β=0 (Chaillat et al.,2009)

|uz|, β=0 (present FMM)

|uz|, β=0.05 (present FMM)

|uz|, β=0.1 (present FMM)

|uy|, β=0 (Chaillat et al.,2009)

|uy|,β=0 (present FMM)

|uy|, β=0.05 (present FMM)

|uy|, β=0.1 (present FMM)

k(1)P R/π = 0.7

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 61 / 71

FMM viscoelastodynamique Exemple: effet de site simplifie

Propagation of an incident P-wave in a semi-spherical alluvial basin

I Properties: µ1 = 2, ν1 = 0.25, ρ1 = 2 and µ2 = 0.3µ1, ν2 = 1/3, ρ2 = 0.6ρ1

I Normalized frequency :k(1)P R/π = 0.5, 0.7

I Problem size: 15 306

I Truncation radius D = 5R

Sensitivity of the solution to the free-surface truncation ⇒ Smallest truncation radiusD ?Basin surface displacements at k

(1)P R/π = 0.5 for different free surface truncation radii D =

2, 4, 10, 15, 20

0 0.2 0.4 0.6 0.8 12

3

4

5

6

y/R

dis

pla

cem

ent m

odulu

s

β = 0

|uz|, D=20R

|uz|, D=2R

|uz|, D=4R

|uz|, D=10R

|uz|, D=15R

β = 0

0 0.2 0.4 0.6 0.8 12

3

4

5

6

y/R

dis

pla

cem

ent m

odulu

s

β = 5

|uz|, D=20R

|uz|, D=2R

|uz|, D=4R

|uz|, D=10R

|uz|, D=15R

β = 0.05

The sensitivity to the surface truncation is reduced by increasing dampingMarc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 61 / 71

Couplage FMM-FEM

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 62 / 71

Couplage FMM-FEM

A sample of previous work on (FM)BEM-FEM coupling

FEM/BEM coupling

I fluid-structure interaction [Czygan and Estorff, Eng. Anal. Bound. Elem. 02]

I elastodynamics [Andersen and Jones, J. Sound Vibrat. 06]

I Electro-encephalography [Olivi, Clerc, Papadopoulo 10]

FEM/Fast BEM coupling

I electromagnetic scattering [Sheng and Song, IEEE T. Antenn. Propag. 98]

I elastostatics [Margonari and Bonnet, Comput. Struct. 05]

I magnetostatics [Frangi et al., Comp. Mod. Eng. Sci. 06]

I fluid-structure interaction[Brunner et al., Int. J. Numer. Meth. Eng. 10]

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 63 / 71

Couplage FMM-FEM

DD: global interface problem

Original time-harmonic problem Domain decomposition (DD)

Main features:I Domain Ω 3-D piecewise-homogeneous isotropic (visco-)elastic solid

I Non-overlapping subdomains Ω = ΩB ∪ ΩFi (1 ≤ i ≤ n)

I Interfaces Γi = ∂ΩB ∩ ∂ΩFi with conforming mesh connection

I Discretization 3-noded triangular BE, 4-noded tetrahedral FE

I Interpolation Piecewise-linear of displacements, -constant of tractions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 64 / 71

Couplage FMM-FEM

DD: subdomains discretization

Finite Element subdomains

[KFi ] uFi =f TFi

+f UFi

I [KFi ] =

[KFi + iCFi − ω2MFi

]: damped dynamic stiffness matrix

I [CFi ] = a [KFi ] + b [MFi ]: damping matrix (Rayleigh)

Boundary Elements subdomain

(KBu)(x) = fB(x) (x ∈ ∂ΩB)

Fundamental solutions depend on the free-space Helmholtz Green’s function

G (|r|; k?) =e ik

?|r|

4π|r| = e−β|r|e ik|r|

4π|r|

I r = |y − x| : position vector

I k?(ω) = k(ω)[1 + iβ(ω)] : complex wavenumber (β 1)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 65 / 71

Couplage FMM-FEM

DD: subdomains discretization

Finite Element subdomains

[KFi ] uFi =f TFi

+f UFi

I [KFi ] =

[KFi + iCFi − ω2MFi

]: damped dynamic stiffness matrix

I [CFi ] = a [KFi ] + b [MFi ]: damping matrix (Rayleigh)

Boundary Elements subdomain

(KBu)(x) = fB(x) (x ∈ ∂ΩB)

Fundamental solutions depend on the free-space Helmholtz Green’s function

G (|r|; k?) =e ik

?|r|

4π|r| = e−β|r|e ik|r|

4π|r|

I r = |y − x| : position vector

I k?(ω) = k(ω)[1 + iβ(ω)] : complex wavenumber (β 1)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 65 / 71

Couplage FMM-FEM

Sequential FEM/FM-BEM coupling algorithm

Initial Guess uΓF,0 on Γ

Pre-compute FE- KF and const fU0T

Relaxation on ΓUpdate uΓ

F

FE analysis on ΩF

• Solve Dirichlet pb for uF

• Compute σΓF

BE analysis on ΩB

Solve Neumann pb for uB

(FM-accelerated GMRES iterations)

Convergence?

Stop

Yes

No

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 66 / 71

Couplage FMM-FEM

Interface Relaxation

I separate computations in subd. → use of different codes

I relaxation depends on the empirical parameter θ,uΓF ,n+1 := (1− θ)uΓ

F ,n + θuΓB,n

I convergence depends on: mesh density, problem geometry,material properties, parameter θ (see Fig.)

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

Number of iterations

RM

S e

rro

r

θ = 0.1θ = 0.2θ = 0.3

Limitation: slow! For each iteration on Γ , the FM-BEM has internal iterations(GMRES)!

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 67 / 71

Couplage FMM-FEM

Vibration isolation using trenches

I Normalized frequency : kPR/π = 0.7I Damping : noI Problem size: 4. 104 (BE subdomain), 6. 104 (FE subdomain)I Free-surface truncation radius: rBE = 2.5 rFEI Relaxation parameter: θ = 0.1I Nb Iterations: 114 external (coupling algorithm on Γ)

16 internal (FM-BEM in ΩB)

Problem geometry and subdomain meshes

x

z

y

XY

Z

FE mesh

XY

Z

BE meshMarc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 68 / 71

Couplage FMM-FEM

Vibration isolation using trenches

I Normalized frequency : kPR/π = 0.7I Damping : noI Problem size: 4. 104 (BE subdomain), 6. 104 (FE subdomain)I Free-surface truncation radius: rBE = 2.5 rFEI Relaxation parameter: θ = 0.1I Nb Iterations: 114 external (coupling algorithm on Γ)

16 internal (FM-BEM in ΩB)

Isovalues maps of X-, Y- and Z-displacements

-5.e-02

-9.e-03

8.e-03

4.e-02

3.e-01 -8.e-02

-2.e-02

8.e-04

2.e-02

8.e-02 -1.e-01

-4.e-02

1.e-04

4.e-02

1.e-01

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 68 / 71

Couplage FMM-FEM

Vibration isolation using trenches

I Normalized frequency : kPR/π = 0.7I Damping : noI Problem size: 4. 104 (BE subdomain), 6. 104 (FE subdomain)I Free-surface truncation radius: rBE = 2.5 rFEI Relaxation parameter: θ = 0.1I Nb Iterations: 114 external (coupling algorithm on Γ)

16 internal (FM-BEM in ΩB)

Comparison of the proposed FEM/FMBEM coupling results with full FMBEM re-sults

−4 −2 0 2 4

−0.5

0

0.5

x/R

rea

l ve

rtic

al d

isp

lace

me

nt

−4 −2 0 2 4

−0.6

−0.4

−0.2

0

y/R

FMBEMFEM/FMBEM

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 68 / 71

Conclusions

1. Principes

2. FMM elastodynamiqueFormulation multi-niveau mono-domaineFormulation multi-niveau multi-domaineExemples: effets de site simplifiesExemple: modelisation simplifiee de la vallee de Grenoble

3. FMM viscoelastodynamiqueEvaluation de la fonction de transfert pour k complexeValidation (exemple mono-domaine)Formulation multi-niveau multi-domaineExemple: effet de site simplifie

4. Couplage FMM-FEM

5. Conclusions

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 69 / 71

Conclusions

Conclusions

I FMM successfully extended to 3-D frequency-domain elastodynamics

I Implementation tested on exact and published solutions

I Implementation consistent with theoretical complexity

I BE models of size N = O(106) on a single-processor PC

I Simplified topographical site effect studied

I Multi-region formulation implemented, tested against published results, andrun for higher frequencies.

I Preconditioning: simple strategy successfully implemented, others understudy (e.g. SPAI)

I Multipole expansions for homogeneous and layered elastodynamic half-spaceGreen’s tensors (under progress)

I Preliminary seismological applications (framework of QSHA French project)

I Damping (complex-valued wavenumbers): thesis E. Grasso (2008-2012)

I FMBEM-FEM coupling: under progress, thesis E. Grasso (2008-2012)

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 70 / 71

Conclusions

Outlook

I Complex wavenumbers:I Investigate preconditioningI Empirical rules for low-frequency multipole expansion (Frangi, Bonnet 2010)I Extend theoretical error analysis (of. e.g. Darve) to k ∈C

I Multipole formulation for half-space Green’s tensorI Separation of variables permitted by Fourier transform in planes parallel to free

surface (Chaillat 2008)I Requires quadrature rule suitable for fast evaluation (e.g. SVD-based, Rokhlin,

Yarvin 1997); under progress

I FEM-BEM couplingI Symmetric Galerkin FM-BEM ?I Non-conforming interfacesI Reduce computational effort through geometrically-symmetric FEM-BEM

interfaces

I FMM as auxiliary for enhancing FEM:I Enrichment bases associated with small defects (see Brancherie, Dambrine

2009) or 3-D interaction integral of LEFMI Evaluate pointwise residual for (nonlinear) FEM analysis in O(N) CPU time

Marc Bonnet (POems, ENSTA) Methode multipole rapide pour ondes (visco)elastiques 71 / 71