52
hn Guy COLLIN, 2014-12- 29 MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE Chapitre 5

MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

  • Upload
    dyami

  • View
    44

  • Download
    0

Embed Size (px)

DESCRIPTION

MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE. Chapitre 5. Guy Collin, DSF-UQAC, 2012-06-29. L’électron autour du noyau. Pour compléter l’étude de l’électron, il est tout naturel de connaître les propriétés de l’assemblage des électrons dans un atome, autour d’un noyau. - PowerPoint PPT Presentation

Citation preview

Page 1: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

Guy COLLIN, 2014-12-29

MÉTHODES THÉORIQUES

D’ÉTUDE DU NUAGE

ÉLECTRONIQUE

Chapitre 5

Page 2: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

L’électron autour du noyau Pour compléter l’étude de l’électron, il est tout

naturel de connaître les propriétés de l’assemblage des électrons dans un atome, autour d’un noyau.

· Comment peut-on étudier cet assemblage ?· Quelles sont les lois qui régissent cet assemblage ? · Comment la mécanique classique peut aider à la

compréhension de ce système « solaire » ?· Qu’est-ce que la mécanique ondulatoire vient apporter

à la connaissance de cet assemblage ?

Page 3: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Introduction RUTHERFORD a montré qu’un atome possède un

noyau central très petit et des électrons tournant sur des orbites.

BOHR a proposé une explication détaillée des spectres atomiques et, en particulier, du spectre de l’hydrogène.

Mais nous verrons que la mécanique classique est impuissante à décrire les phénomènes.

Seule l’assimilation de l’électron à une onde conduit à une théorie cohérente.

Page 4: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le spectre de l’hydrogène

Si on provoque une décharge électrique dans une atmosphère raréfiée d’hydrogène, on observe l’émission d’une lumière pourpre.

Cette lumière analysée au spectrographe peut être séparée en un certain nombre de fréquences.

Ce spectre de raies est caractéristique de l’élément. Ces mêmes raies ou fréquences apparaissent

également en absorption (raies noires sur fond continu) dans le spectre du soleil par exemple.

Page 5: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le spectre de l’hydrogène : dispositif expérimental

Faisceau de lumière provenant d’une

lampe à hydrogène Écran

Fentes Système dispersif

®

®®

Page 6: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le spectre de l’hydrogène : résultats dans le visible, série de BALMER

D’autres séries similaires sont observables dans l’ultraviolet et dans l’infrarouge.

longueur d’onde, nm

limite

400 500 600 700

Page 7: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le spectre de l’hydrogène en absorption

Le spectre est identique à celui observé en émission, en négatif.

®

®

Réservoir d’hydrogène

Système dispersif et analytique

Lumière blanche

Page 8: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Émission - absorption

Spectre continu

Spectre d’émission

Spectre d’absorption

Gaz très chaud

Gaz froid

Page 9: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le spectre de l’hydrogène

Les fréquences de chaque raie, dans chaque série, ont pu être liées par une formule empirique.

Dans le visible : n = c RH [1/4 - 1/n2] où n > 2C’est la série de BALMER.

Dans l’ultraviolet : n = c RH [1/1 - 1/n2] où n > 1C’est la série de LYMAN.

Dans l’infrarouge : n = c RH [1/9 - 1/n2] où n > 3C’est la série de PASCHEN, etc.

Page 10: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le spectre complet de l’hydrogène peut donc se représenter par la formule empirique :

nmn = c RH

1

m2 - 1n2 où n > m

où c est la vitesse de la lumière ; RH est la constante de RYDBERG ; RH = 109 677,58 cm-1.

Rationalisation du spectre de H atomique

Page 11: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Rationalisation du spectre de H atomique

Le principe de combinaison énoncé par RITZ découle immédiatement de la formule précédente.

Le nombre d’onde d’une raie spectrale peut s’exprimer sous la forme d’une différence de deux termes algébriques analogues appelés termes spectraux :

n̄ mn = Tm - Tn avec Tn = RH / n2

Page 12: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le fameux cm-1

Les énergies sont données en cm-1. Le nombre d’onde n = 1 / l est mesuré en cm- 1 si l

est exprimé en cm. Un nombre d’onde n = 1 cm- 1 correspond à une

fréquence égale à c / 1, soit à une énergie h n = h c.

1 cm- 1 = 6,62 × 10- 27 ergs·s × 3 1010 /s

= 1,986 × 10- 16 ergs (système CGS)

Page 13: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

La théorie électromagnétique L’électron se comporte comme un émetteur classique

et devrait rayonner de l’énergie électromagnétique à la même fréquence que celle de sa rotation.

Il perd progressivement de l’énergie à mesure qu’il rayonne. Il se rapproche du noyau, donc il augmente sa vitesse.

Les fréquences émises ne devraient donc pas être discrètes mais continues.

La théorie électromagnétique classique est donc incapable d’expliquer un spectre de raies.

Page 14: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

La théorie de BOHR

Les postulats de BOHR : un postulat mécanique - Parmi les orbites

réalisables pour un électron tournant autour d’un noyau, seules certaines d’entre elles formant une suite discontinue sont possibles.

un postulat optique - Dans un état stationnaire, l’atome n’émet ni n’absorbe aucune radiation.

Page 15: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

La théorie de BOHR Les transitions possibles :

soit émission du quantum hn = Em - En si Em > En

soit absorption du quantum hn = En - Em si Em < En

L’électron peut passer d’un état stable d’énergie Em à un état stable En.

Hypothèse simplificatrice des orbites circulaires. Il admit aussi, sans preuves expérimentales, que la

quantité physique quantifiée est le moment cinétique.Én

ergi

e

Em

En

Page 16: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Les orbites possibles sont celles dont le moment cinétique est égal à un nombre entier de fois h/2 p .

r = m u r = n h / 2p = n n est un nombre entier. C’est le nombre quantique. Il fixe la valeur d’autres paramètres du système, par

exemple, le rayon des orbites et l’énergie de l’atome.

Niveaux d’énergie de l’atome d’hydrogène

Page 17: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Niveaux d’énergie de l’atome d’hydrogène

Le mouvement circulaire uniforme de l’électron autour du noyau est caractérisé par l’équilibre entre la force centrifuge et la force de COULOMB :

Le rayon de l’orbite devient :

m u2r =

Z e2

r2 × 1

4 p o (SI)

r = n2 h2

4 p2 m e2 Z · 4 p o (SI)

Page 18: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

L’énergie de l’atome C’est la somme de

l’énergie potentielle et de l’énergie

cinétique :

Énergie totale

Énergie potentielle

Énergie cinétique 12 m u2 =

Z e2 2 r ·

1 4 p o

- Z e2

2 r · 1

4 p o (SI)

-Z e2

4 p o r où 1

4 p o = 8,99 109 N·m2·C -2

Page 19: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

L’énergie d’un niveau de l’atomeOn obtient l’énergie

d’un niveau :

RH = 109 737 cm-1

En = 2 p2 m e4 Z2

( 4 p o )2 h2 · 1n2 (SI)

Si l’électron passe de l’état stationnaire m à l’état stationnaire n, on a échange d’un quantum hn tel que :

hn Em - En = 2 p2 m e4 Z2

h2

1

m2 - 1n2 ·

1

4 p o 2

Pour H, Z = 1 nmn = c RH

1

m2 - 1n2 =

2 m e4

16 o2 h2

1

m2 - 1n2

Page 20: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Valeurs numériques de r et u

On obtient l’état stable ou état fondamental en donnant à n la plus petite valeur n = 1.

Le rayon r, pour n = 1, est 0,529 177 × 10-1 nm. La vitesse u la plus grande est atteinte pour

l’orbite n = 1 : v1/c = 7,29 10-3. Correction de relativité extrêmement faible.

Page 21: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

L’atome, le modèle de BOHR

Page 22: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le d

iagr

amm

e de

s niv

eaux

d’é

nerg

ie

Page 23: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

P+

e-

E = h cl

Excitation

atomique

Désexcitation

atomique

Cas de l’atome d’hydrogène

E = h cl

Excitation et désexcitation atomique

Page 24: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29Dépt des sciences fond., 2008-04-09

Excitation et désexcitation atomique

Désexcitation

atomique

par absorption - émission de lumière

Excitation

atomique

E = h cl

e-

e-

e-

E = h cl

Page 25: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Énergie d’excitation et d’ionisation

L’énergie d’excitation est l’énergie nécessaire pour faire passer l’atome de l’état fondamental n = 1 au premier état excité n = 2. Pour l’hydrogène : E2 - E1 = 10,19 eV.

L’énergie d’ionisation est l’énergie qu’il faut fournir à l’atome pour séparer complètement l’électron du noyau. Cette séparation correspond à la valeur

n = qui correspond à r = . Pour l’hydrogène : E - E1 = 13,58 eV.

Page 26: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Atomes hydrogénoïdes

Les spectres des atomes ou des ions possédant un seul électron tels que 2H, He+, Li++,... sont très analogues à celui de l’hydrogène atomique.

La théorie de BOHR leur est applicable. Pour He+, par exemple ( Z = 2), on obtient :

n = 4 c RH

1

m2 - 1n2

Page 27: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Transitions observées dans H et He+

H He+

m - n l (nm) m - n l (nm)

3 -2 656,21 6 - 4 656,46

4 - 2 486,07 8 - 4 486,26

5 - 2 433,99 10 - 4 434,16

6 - 2 410,12 12 - 4 410,28n = c RH

1

m

22 +

1

n

22

Page 28: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Nous avons considéré le noyau comme immobile alors qu’un système de masses libres dans l’espace ne tourne pas autour de l’une d’entre elles (si grosse soit-elle) mais plutôt autour du centre de masse de l’ensemble.

Modèle mécanique de l’atome d’hydrogène :

M r1 mr2G

Correction de masse

Page 29: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Un système mécanique de deux masses M et m liées par une barre sans masse à un moment cinétique r: r = I w 2 I = moment d’inertie.

La position du centre de masse est déterminée par les relations :

Correction de masse

r1 = m

m + M r et r2 = M

m + M r

D’où I = [m M / (m + M)] r2 = m r2

m = m M

m + M

où est la masse réduite du système.

Page 30: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Il faut donc remplacer la masse de l’électron m par la masse mappelée masse réduite du système :

La constante de RYDBERG pour l’hydrogène est donc ( Z = 1 ) :

et RH = 109 677,76 cm-1.

nmn = c 2 p2 m e4 z2

c h3 ·

1

m2 - 1n2

RH = 2 p2 m e4

c h3 × 1

1 + m

MH

Correction de masse

Page 31: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Mise en évidence des niveaux d’énergie

IP

-+

- +

Tension, V

B

C Faites attention à la suite des évènements et notez les effets de vos clics. Attendre quelques secondes entre chaque clic :- on ferme le circuit en A et

on chauffe la résistance C;- on ferme le circuit en B :

Voir les effets sur V et sur Ip.

- on ouvre le circuit en B;- on referme ce circuit;- on ouvre le circuit en A;- on ouvre le circuit en B.

H2

Photocellule

-

+

A

Page 32: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Signification physique de la fonction d’onde

La fonction d’onde y est, de par sa nature, une sorte de fonction d’amplitude.

La théorie classique des ondes mécaniques montre que l’énergie transportée par l’onde est proportionnelle au carré de l’amplitude de l’onde.

La probabilité de présence des photons est donc proportionnelle au carré de l’amplitude de l’onde lumineuse.

La probabilité de présence de l’électron en un point x, y ,z de l’espace est proportionnelle au carré y2 de l’amplitude de l’onde associée.

Page 33: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Il faut que la fonction d’onde y(x, y, z) soit : uniforme, c’est-à-dire ait une valeur unique en

chaque point de l’espace. En effet, la probabilité de trouver l’électron en un point ne peut avoir qu’une seule valeur en ce point ;

continue, c’est-à-dire qu’elle ne peut être infinie en un point ;

nulle à l’infini ; et que l’intégrale y2 dv = 1 (normalisation).

Conditions imposées à la fonction d’onde

Page 34: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

L’équation de SCHRÖDINGER permet par son intégration de déterminer les valeurs de y .

Les conditions aux limites précédentes restreignent le nombre des valeurs que l’on peut donner aux paramètres entrant dans l’équation.

Le seul paramètre inconnu est E car le potentiel U peut être déterminé lorsqu’on connaît les charges en présence.

Valeurs propres de la fonction d’onde

Page 35: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Il est commode, étant donné la symétrie sphérique du champ de forces, de passer en coordonnées polaires r,q,j :

L’atome d’hydrogène et l’équation de SCHRÖDINGER

2y + 8 p2 m

h2 ( E + e2

r ) y = 0

2y = 1r2 r

r2 yr +

1r2 sin2q

q

sinq yq +

1r2 sin2q

2yq2

Page 36: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

On verra plus loin la solution complète de l’équation de SCHRÖDINGER dans le cas de l’atome d’hydrogène.

La fonction se sépare en trois fonctions indépendantes l’une de l’autre, l’une en r, la seconde en q et la troisième en j.

Afin de satisfaire aux conditions aux limites, la résolution de chacune des trois fonctions génère l’apparition d’un nombre quantique n, , m.

La résolution de l’équation de SCHRÖDINGER

Page 37: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le nombre quantique principal n fixe les valeurs propres de l’énergie :

Le nombre quantique azimutal fixe la valeur du moment cinétique de l’électron circulant sur son orbite ou moment cinétique orbital :

E = 2 p2 m e4

h2 · 1n2 avec n = 1, 2, 3,

p = ( + 1 ) h

2 p avec = 0, 1, 2 ,3 … et < n.

La résolution de l’équation de SCHRÖDINGER

Page 38: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Le nombre quantique magnétique m fixe la valeur de la projection du moment cinétique sur un axe de référence Pz = m h / 2p.

avec n = 1, 2, 3, . . . avec = 0, 1, 2 ,3 avec < n et m = -, - + 1, . . . , - 1,

La résolution de l’équation de SCHRÖDINGER

Page 39: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Orbites elliptiques

Moment angulaire autour d’un point fixe

L’énergie d’une orbite elliptique est légèrement différente de celle d’une

orbite circulaire.

= r®

m u®

m ur

L

Plan

2 rr

Page 40: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Orbite circulaire et orbite ondulatoire

Ondes de DE BROGLIE associée a un

électron circulant autour d’un

noyau.

noyaure

Page 41: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

x

yz

x

z

yx

z

y

Orbitale 3py Orbitale 3pz Orbitale 3px

Quelques orbitales atomiques : n = 3

Page 42: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Quelques orbitales atomiques : n = 3

y

x

z

x

z

y

x

z

yx

z

Orbitale 3dxy Orbitale 3dyz Orbitale 3dxz

Les axes des orbitales sont successivement dans les plans xy, yz et xz.

Page 43: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Quelques orbitales atomiques : n = 3

x

yz

x

z

y

Orbitale 3dz2Orbitale 3dx2-y2

Page 44: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Fonction de distribution radiale : orbitales sphériques 1s et 2s

1s

2s

Probabilité

r

Page 45: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Les raies de l’hydrogène résultent du passage d’un niveau à un autre. Si on a un seul niveau pour chaque valeur de n, les raies doivent être simples.

Or, avec des appareils à très grande dispersion, les raies se révèlent multiples.

Par exemple, chaque raie de la série de BALMER, est double.

SOMMERFELD a résolu le problème en considérant des orbites elliptiques.

Orbites elliptiques de BOHR - SOMMERFELD

Page 46: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

On a vu que avec n = 1, 2, 3, . . . = 0, 1, 2 ,3, . . .avec < n.

Pour n =1 , ne peut prendre que la valeur 0. Pour n =2 , ne peut prendre que la valeur 0 et 1. Pour n =3 , ne peut prendre que la valeur 0, 1 et 2. Si le niveau n =1 est unique = 0, le niveau n = 2 est

dédoublé. Les 2 sous niveaux ont la même énergie déterminée par n = 2. On dit que ce niveau est dégénéré.

Orbites elliptiques de BOHR - SOMMERFELD

Page 47: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Sur un diagramme d’énergie, on doit retrouver cette dégénérescence : 2 sous niveaux.

On devrait retrouver deux transitions légèrement différentes pour tenir compte de l’excentricité de l’orbitale n=2, = 1.

Transitions électroniques

n=1, = 0

n=2 = 0, = 1

Éne

rgie

®

Or la série de LYMANN est simple.

Page 48: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

La transition n = 2 ® n = 3 devrait comporter au moins 6 raies (6 transitions).

Transitions électroniques

n=2 = 0, = 1

Éne

rgie

®

n=3

= 0, = 1, = 2

Ce n’est pas le cas : les raies sont doubles.

Il y a donc une limitation aux transitions permises.

Page 49: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

La loi de conservation du moment angulaire orbital (loi analogue à la loi de la conservation de la quantité de mouvement) établit une règle de sélection.

Celle-ci est telle que ± 1. Il y a 3 transitions permises,

dont 2 possèdent la même énergie.

Transitions électroniques

n=2 = 0, = 1

Éne

rgie

®

n=3

= 0, = 1, = 2

Page 50: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

La règle de sélection La règle de sélection découle de la nécessité

d’une variation du moment dipolaire en cours de transition électronique.

Les transitions de type ns ® ms, entre orbitales sphériques ne montrent pas une telle variation, ni entre celles de même excentricité et orientées selon la même direction.

Page 51: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Conclusion La spectroscopie visible et ultraviolette est un outil

puissant d’accessibilité aux propriétés du nuage électronique entourant le noyau central.

La mécanique classique, via l’introduction du postulat de BOHR, permet de comprendre et même de quantifier plusieurs aspects de ces propriétés.

L’application de la mécanique quantique, l’équation de SCHRÖDINGER, à l’atome d’hydrogène (hydrogénoïdes) permet d’introduire de manière logique les nombres quantiques.

Page 52: MÉTHODES THÉORIQUES D’ÉTUDE DU NUAGE ÉLECTRONIQUE

hn

2014-12-29

Conclusion

L’introduction des orbites elliptiques de SOMMERFELD vient compléter l’explication des phénomènes observés.

Cependant toutes les transitions ne sont pas permises. Seules les transitions obéissant à la règle de sélection ± 1 sont possibles et observables.