27
- 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

Embed Size (px)

Citation preview

Page 1: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 1 -

PCSI-MPSI

2ème Période

Modélisation cinématiquedes mécanismes

Statique du solide

D.Feautrier

Page 2: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 2 - Méthode d’analyse d’un mécanisme

Partie 1

Méthode d’analyse d’un mécanisme

1.1 Modélisation des liaisons

1.1.1 Introduction

L’objectif de ce chapitre est de donner une méthode qui permet de construire un schéma cinématique d’un

mécanisme. Pour cela il faut être capable de modéliser cinématiquement les liaisons entre les différents

solides composant un mécanisme donné.

1.1.2 Classe d’équivalence cinématique

L’ensemble des solides d’un mécanisme sans mouvement relatif constitue une classe d’équivalence ciné-

matique.

En général, pour plus de clarté, on numérote les classes d’équivalence.

Page 3: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 3 -

1.1.3 Analyse des zones de contact entre classes d’équivalence

1.2 Cinématique du contact ponctuel

Soient deux solides et en contact ponctuel au point . Soit le plan tangent à et en .

Afin de déterminer le modèle cinématique associé à une liaison mécanique, il convient d’analyser lagéométrie des zones de contact entre les deux classes d’équivalence. On distingue trois types de géométrie des zones de contact :

• Contact ponctuel • Contact linéaire • Contact surfacique

Le tableau suivant regroupe les différentes possibilités d'associations de surfaces élémentaires :

1 2 I Π 1 2 P

Page 4: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 4 - Méthode d’analyse d’un mécanisme

Le torseur cinématique de par rapport à s’écrit en P :

Par définition, on appelle vecteur vitesse de glissement au point le vecteur

On pose où :

• est appelé vecteur rotation de pivotement

• est appelé vecteur rotation de roulement

Propriété : Le vecteur vitesse de glissement du point du solide par rapport au solide appartient au

plan tangent .

Remarque : On dit qu’il y a roulement sans glissement si

, et

1.3 Liaisons normalisées

1.3.1 Repère local associé à une liaison

Les liaisons les plus courantes rencontrées en mécaniques sont normalisées. Cette norme à uniquement

pour but de définir des possibilités de mouvement autorisées par une liaisons entre deux classes d’équiva-

lence sans préjuger de la conception technologique de la liaison.

Les mouvements relatifs autorisé dépendent de la nature des surfaces en contact. Les surfaces prises en

comte par la désignation normalisée sont les surfaces simples : sphère, plan, cylindre. L’association des

surfaces donnent des contacts ponctuels, linéiques ou surfaciques de formes diverses. C’est de l’associa-

tions de ces surfaces que résultent les mouvements possibles.

2 1 V 2 1⁄( ){ } Ω 2 1⁄( )

V P 2 1⁄∈( ) P

=

P V P S2 S1⁄∈( )

Ω 2 1⁄( ) Ωn 2 1⁄( ) Ωt 2 1⁄( )+=

Ωn 2 1⁄( )

Ωt 2 1⁄( )

P 2 1

Π

V P 2 1⁄,( ) 0= Ωn 2 1⁄( ) 0= Ωt 2 1⁄( ) 0≠( )

Page 5: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 5 -

Pour décrire à un instant donné les translations

et les rotations autorisées par une liaison, on

place judicieusement sur cette liaison un repère

de façon à décomposer le mou-

vement relatif entre les deux solides en six

mouvements élémentaires qui seront paramé-

trés par six paramètres (position et orientation)

indépendants : trois translations d’axe , ou

et trois rotations autour des axes ,

et . Le repère est

appelé repère local associé à une liaisons.

1.3.2 Degrés de liberté d’une liaison

Le nombre de degrés de liberté d’une liaison entre deux solides est le nombre de mouvements élémentaires

indépendants que la liaison autorise (nombre de rotations et de translations suivant les axes du repère

local). Il est au maximum de six (voir chapitre «paramétrés de la position de deux solides dans l’espace»).

1.3.3 Modèles cinématiques associés aux liaisons

En fonction de la géométrie de la zone de contact on va autoriser ou supprimer des degrés de liberté.

R O x y z, , ,( )

x yz O x,( )

O y,( ) O z,( ) R O x y z, , ,( )

*

Page 6: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 6 - Méthode d’analyse d’un mécanisme

*

Page 7: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 7 -

1.3.4 Graphe des liaisons

Le graphe des liaisons d’un mécanisme est une représentation plane qui sert à décrire les liaisons entre les

classes d’équivalence d’un mécanisme. Dans ce graphe, les classes d’équivalence sont schématisés par des

cercles et les liaisons par des arcs joignant ces cercles (voir exemple p10)

1.3.5 Schéma cinématique minimal

Le schéma cinématique minimal d’un mécanisme est une représentation géométrique plane ou spatiale du

graphe minimal des liaisons. Pour construire ce schéma, on dessine les symboles normalisés des liaisons en

respectant les caractéristiques géométriques relatives des différentes liaisons (parallélisme, orthogonalité,

perpendicularité, coaxialité,...). Par contre, il est inutile d’avoir un positionnement dimensionnel précis.

Les solides sont représentés par des traits continus qui relient les symboles normalisés des liaisons.

1.4 Torseurs cinématiques des liaisons normalisées

Le tableau ci-après définit les torseurs cinématiques des liaisons normalisées introduites précédemment. Le

torseur cinématique du mouvement du solide 2 par rapport au solide 1 s’écrit en O, origine du repère local

associé à la liaison,

Posons dans la base du repère local : et

On peut alors écrire le torseur cinématique des deux façons suivantes,

Suivant la nature de la liaison, une ou plusieurs composantes du torseur cinématique sont nulles et le tor-

seur prend une forme particulière, avec le maximum de composantes nulles en correspondance directe avec

les degrés de liberté de la liaison, appelé forme canonique du torseur.

V 2 1⁄( ){ } Ω 2 1⁄( )

V O 2 1⁄∈( ) O

=

Ω 2 1⁄( ) ωxx ωyy ωzz+ +=V O 2 1⁄∈( ) vxx vyy vzz+ +=

V 2 1⁄( ){ }

ωx vx

ωy vy

ωz vz O x y z, ,( ),

ωxx ωyy ωzz+ +

vxx vyy vzz+ +O

= =

Page 8: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 8 - Méthode d’analyse d’un mécanisme

Tableau des liaisons normalisées

Page 9: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 9 -

Page 10: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 10 - Méthode d’analyse d’un mécanisme

1.5 Exemple : Pompe Oscillante

Schéma cinématique :

Dessin technique :

Graphe de liaisons :

Page 11: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 11 -

Remplir le tableau ci-dessous pour chacune des liaisons :

1.6 Liaisons cinématiquement équivalentes

1.6.1 Définition

Deux solides et étant liés entre eux par des liaisons parfaites, on appelle liaison équivalente laliaison fictive qui caractérise globalement la liaison entre et du point de vue cinématique.

Attention : La liaison équivalente n’a aucune valeur technologique mais elle permet de globaliser mathé-matiquement l’étude des degrés de liberté.

1.6.2 Association de liaisons en parallèle

Soient deux solides et liés entre eux directement par des liaisons usuelles .

sont des liaisons dites en parallèle.

Symboles de schématisation Degrés de liberté

Torseurs cinématiques

associés 2D 3D

Tx = Rx =

Ty = Ry = L2/1

Tz = Rz =

Tx = Rx =

Ty = Ry = L2/3

Tz = Rz =

Tx = Rx =

Ty = Ry = L3/4

Tz = Rz =

S1 S2S1 S2

S1 S2 L1 L2 L3 …, , ,

S1 S2

L1

L2

L3

L1 L2 L3, ,

Page 12: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 12 - Méthode d’analyse d’un mécanisme

Si l’on remplace les liaisons usuelles par leur liaison équivalente le graphe est le suivant,

1.6.3 Associations de liaison en série

Soient deux solides et liés entre eux par une chaîne cinématique ouverte constituée de solides et deliaisons usuelles :

Si l’on remplace les liaisons usuelles par leur liaison équivalente le graphe équivalent est le suivant,

1.6.4 Etude des liaisons en parallèle

Lorsque deux solides sont liés entre eux par un groupement de m liaisons mises en parallèle, les mouve-

ments relatifs existant entre les deux solides sont ceux appartenant simultanément aux liaisons composan-

tes,

(1)

1.6.5 Etude des liaisons en série

Lorsque deux solides et sont liés entre eux par un groupement de liaisons mises en série par l’inter-médiaire d’autres solides, les mouvements relatifs existant entre et sont représentés par tous lesmouvements que peuvent transmettre les liaisons composantes,

(2)

1.6.6 Structure des mécanismes

On distingue trois principale structure de mécanisme suivant que le graphe de liaison est ouvert ou bouclé.

Leq

S1 S2Leq

S1 S2

S1 S3

L1S4 S2

L3L2

Leq

S1 S2Leq

Veq{ } V1{ } V2{ } … Vm{ }= = = =

S1 S2S1 S2

Veq{ } Vj{ }

j 1=

m

∑=

Page 13: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 13 -

1.6.6.1 Chaîne ouverte (type robot)

1.6.6.2 Chaîne simple fermée : exemple d’un engrenage

1.6.6.3 Chaîne complexe fermée : exemple d’un train d’engrenage

En seconde année, on définira la notion de mobilité d’une chaîne cinématique qui permet de définir le

nombre de paramètres cinématiques réellement indépendants en fonction du nombre de degrés de liberté

total caractérisant les liaisons entre les classes d’équivalence.

0

12

3

4

1

23

4

L01

L12 L23

L34⇔

Schéma cinématique Graphe de liaison associé

1

20

1

2

L01 L12

L02

Schéma cinématique Graphe de liaison associé

1 0

3

4 ⇔0

1

4

L01

L04

3L34

L03

Schéma cinématique Graphe de liaison associé

L13

Page 14: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 14 - Méthode d’analyse d’un mécanisme

1.6.7 Exemple 1 : Presse de modélisme

Etudes possible :

• Déterminer les classes d’équivalence,

• Faire le graphe des liaisons

• Déterminer la liaison équivalente entre les classes d’équivalence {1}={10,13,12,11} et {0}={00,01,02,03,04,05}

• Déterminer la mobilité cinématique du mécanisme

Page 15: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 15 -

1.6.8 Exemple 2 : Pompe Oscillante

Etudes Possible : On pose

• Effectuer le graphe des liaisons,

• L’entrée étant la rotation de S1 et la sortie la translation de S2 par rapport à S3, déterminer la loi entrée

sortie . Pour cela écrire la relation de fermeture géométrique, .

• Déterminer la vitesse de translation du piston S2 par rapport à S3 en fonction de , et des paramètres géométriques. Pour cela écrire la relation de fermeture cinématique,

AB λ t( )x2=

λ f α( )= OB OA AB+=

α α·

V S2 S3⁄( ){ } V S2 S1⁄( ){ } V S1 S0⁄( ){ } V S0 S3⁄( ){ }+ +=

Page 16: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 16 - Statique du solide

Partie 2

Statique du solide

2.1 Actions mécanique

2.1.1 Définition

On appelle action mécanique toute cause susceptible de maintenir un système matériel au repos, de créer ou

de modifier un mouvement, de déformer un solide.

2.1.2 Classification

• Actions mécaniques à distance : D’origine gravitationnelle ou électrique. Ces actions mécaniques, dites également volumiques, s’exercent en chaque point du système matériel.

• Actions mécaniques de contact (liaison entre deux solides) : Ces actions mécaniques, dites également surfaciques, s’exercent en tout d’une surface de contact commune à deux solides.

2.1.3 Modélisation des actions mécaniques

La modélisation des actions mécaniques peut se faire soit d’un point de vue local ou d’un point de vue glo-

bal suivant l’objectif de l’étude envisagée :

• la modélisation locale a pour but d’étudier l’action mécanique dans la zone où elle s’exerce (champ de pesanteur, champ de pressions de contact,...).

• la modélisation globale, par un torseur, caractérise globalement l’action mécanique dans le but d’appli-quer, par exemple, le principe fondamental de la statique.

Page 17: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 17 -

2.2 Modélisation locale des actions mécaniques

2.2.1 Représentation par un champ de forces

Les actions mécaniques à distance, ou de contact, qu’exerce un système matériel 1 sur un système matériel

2 sont représentées en tout point de 2, ou d’une partie de 2, par un champ de glisseur (vecteurs libre)

défini relativement à un élément de mesure (longueur , surface ou volume élémentaires).

Par définition une force élémentaire est une action mécanique modélisable par un glisseur :

• une force élémentaire de contact en un point de l’action mécanique de 1 sur 2 a un vecteur associé

(ou si la surface de contact peut être assimilée à une ligne).

• un force élémentaire à distance en un point du volume de 1 a un vecteur associé .

On appelle densité du champ de force relativement à l’élément de surface (ou ) ou à l’élément

de volume .

La modélisation locale est donc réalisée par des champs de force.

2.3 Modélisation globale des actions mécaniques

2.3.1 Moment d’une force en un point

Soit une force s’exerçant en un point P et un point A de l’espace à trois dimension dis-

tinct de P.

On appelle alors moment en A de la force , le vecteur «moment»,

Pdμ dl ds dv

dF P( ) f P( ) dμ⋅=

P

dF P( ) f P( ) ds⋅= dF P( ) f P( ) dl⋅=

P dF P( ) f P( ) dv⋅=

f P( ) ds dldv

dF P( ) f P( ) ds⋅=

dF P( ) MA AM dF P( )∧=

Page 18: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 18 - Statique du solide

2.3.2 Représentation par un torseur

Les actions mécaniques qu’exerce un système matériel 1 sur un système matériel 2 étant représentées loca-

lement par un champ de glisseur défini relativement à un élément de mesure , on peut leur associer en un

point quelconque, le torseur à la structure suivante :

(3)

Ce torseur appelé torseur des actions mécaniques de 1 sur 2 au point caractérise globalement l’action

mécanique de 1 sur 2.

Remarque : Deux actions mécaniques seront dites équivalentes si elles ont le même torseurs en un même

point.

2.3.3 Action mécanique de contact surfacique : modélisation locale

Soient deux solides 1 et 2 en contact suivant une surface . L’action mécanique de 1 sur 2 est représentée

en chaque point de par la densité surfacique de force . On admet que plan tangent

aux deux solides 1 et 2. Alors la densité surfacique de force se décompose suivant un vecteur normal au

plan , et un vecteur contenu dans , .

On appelle,

_ la densité surfacique normale des forces de contact ou pression de contact de l’action méca-

nique de 1 sur 2.

_ la densité surfacique tangentielle des forces de contact, au point , de l’action mécanique de

1 sur 2.

dμA

T 1 2→( ){ } R 1 2→( )

M A 1, 2→( ) A

fP 1 2→( ) μdP 2∈∫

AP fP 1 2→( )∧ μdP 2∈∫

= =

A

SP S fP 1 2→( ) P Π∈

Π nP 1 2→( ) Π tP 1 2→( )

nP 1 2→( )

tP 1 2→( ) P

Page 19: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 19 -

Un densité surfacique s’exprime en mégapascals (MPa) avec .

Lorsqu’il y a contact, le vecteur est toujours orienté du solide 1 vers le solide 2.

2.3.4 Loi de Coulomb

Définitions :

Soit la vitesse de glissement au point , du mouvement du solide 2 par rapport au solide 1.

• On dit qu’il y a adhérence au point entre les solides 1 et 2 si : .

• On dit qu’il y a glissement au point entre les solides et si :

Les lois de Coulomb sont des lois expérimentales qui donnent des informations sur les densités surfaciques

normales et tangentielles des forces de contact lorsqu’il y a adhérence et lorsqu’il y a frottement au point

.

1er cas : il y a frottement et glissement relatif au point

1MPa 1N mm2⁄=

nP 1 2→( )

P V P 2 1⁄∈( )

P V P 2 1⁄∈( ) 0=

P 1 2 V P 2 1⁄∈( ) 0≠

P

P

Page 20: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 20 - Statique du solide

Dans ce cas . La densité surfacique des forces de contact au point est alors telle que,

Les deux premières relations indiquent que la densité surfacique tangentielle des forces de contact est

opposée au vecteur vitesse de glissement au point dans le mouvement de 1 sur 2.

L’interprétation géométrique que l’on peut en faire est qu’il existe un angle tel que appelé

angle de frottement et qui est le demi angle au somment d’un zone appelé cône de frottement d’axe perpen-

diculaire sur lequel se situe . La position de sur le cône de frottement est fixée

par la vitesse de glissement.

2ème cas : il y a frottement et adhérence au point

Dans ce cas . La densité surfacique des forces de contact au point est alors telle que,

où est appelé coefficient d’adhérence des matériaux 1 et 2.

L’interprétation géométrique que l’on peut en faire est qu’il existe un angle tel que appelé

angle d’adhérence et qui est le demi angle au somment d’un zone appelé cône d’adhérence d’axe perpendi-

culaire à l’intérieur duquel se situe . La position du vecteur est donc a priori

totalement inconnue à l’intérieur du cône d’adhérence.

V P 1∈( ) 0≠ P

tP 1 2→( ) V P 2 1⁄∈( )∧ 0=

tP 1 2→( ) V P 2 1⁄∈( ) 0<⋅

tP 1 2→( ) f nP 1 2→( )⋅=

P

ϕ f ϕtan=

Π fP 1 2→( ) fP 1 2→( )

P

V P 2 1⁄∈( ) 0= P

tP 1 2→( ) f0 nP 1 2→( )⋅<

f0

ϕ0 f0 ϕ0tan=

Π fP 1 2→( ) fP 1 2→( )

Page 21: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 21 -

Adhérence et frottement

La détermination des coefficients de frottement et d’adhérence est délicate à cause de leur dépendance vis

à vis de nombreux paramètres :

• nature du couple de matériaux,

• état de surface,

• pression de contact,

• température de contact,

• vitesse de glissement,

• lubrification, etc

Par exemple, on a pour un couple acier/acier un coefficient de frottement compris entre 0,1 et 0,2, et un

coefficient d’adhérence compris entre 0,15 et 0,25. En général , mais reste toujours très proche. Par

mesure de simplification, on considère souvent que ces deux coefficients sont égaux.

Pour résoudre les problèmes de statique, on considérera très souvent les deux cas particulier suivant :

• On est à la limite du glissement : Le glissement est nul au point considéré mais sur le point de se pro-duire dans une direction et un sens prévisibles à l’avance,

• Il y a contact sans adhérence et sans frottement : Les deux coefficients sont très faibles, on simplifie

l’étude en disant que . Alors est perpendiculaire à .

2.3.5 Action mécanique de contact surfacique : modélisation globale

L’action mécanique de contact qu’exerce un système matériel 1 sur une surface d’un système matériel 2,

définie localement par une densité surfacique de forces , est caractérisée globalement en un

point quelconque par le torseur,

(4)

Ce torseur est à priori quelconque, mais dans le cas des liaisons normalisées entre deux solides réalisées

par contact surfacique sans frottement, le torseur d’action mécanique transmissible par chaque liaison se

simplifie et possède des propriétés que l’on mettra en évidence.

f0 f>

f f0 0= = fP 1 2→( ) Π

SfP 1 2→( )

A

T 1 2→( ){ } R 1 2→( )

M A 1, 2→( ) A

fP 1 2→( ) sdP S∈∫

AP fP 1 2→( )∧ sdP S∈∫

A

= =

Page 22: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 22 - Statique du solide

2.4 Torseurs d’actions mécanique des liaisons sans frottement

Pour chaque liaison normalisée définie en cinématique, nous allons déterminer les caractéristiques du tor-

seur d’action mécanique susceptible d’être transmis par la liaison, lorsque celle-ci est réalisée par contact

direct surfacique, linéique ou ponctuel, entre deux solide 1 et 2.

La forme du torseur d’action transmissible par une liaison réalisée par contact direct entre deux solides,

sera généralisée au torseur d’action mécanique transmissible par une liaison équivalente entre deux solides.

Le torseur d’action mécanique transmissible du solide 1 au solide 2 s’écrit au point , origine du repère

local associé à une liaison,

Posons dans la base du repère local :

et

Le torseur s’écrit alors dans sa forme générale,

(5)

Suivant la nature de la liaison, une ou plusieurs composantes du torseur d’action mécanique transmissible

sont nulles et le torseur prend une forme particulière, avec le maximum de composantes nulles en corres-

pondance directe avec les degrés de liberté de la liaison, appelé forme canonique du torseur.

Pour les liaisons normalisées étudiées, nous définirons,

• la nature de la surface de contact compatible avec le mouvement relatif des solides,

• la forme du torseur d’action mécanique transmissible par la liaison, dans le cas d’un contact sans frotte-ment,

• les points de l’espace où le torseur conserve sa forme canonique.

O

T 1 2→( ){ } R 1 2→( )

M O 1, 2→( ) O

=

R 1 2→( ) Xx Yy Zz+ += M O 1, 2→( ) Lx My Nz+ +=

T 1 2→( ){ }X LY MZ N O

=

Page 23: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 23 -

Tableau des liaisons normalisées

Page 24: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 24 - Statique du solide

2.5 Principe fondamental de la statique

2.5.1 Equilibre d’un ensemble matériel

Un système matériel peut-être un solide ou un ensemble de solides liés entre eux par des liaisons parfai-

tes ou non.

On dira que est en équilibre par rapport à un repère si au cours du temps, chaque point de conserve

une position fixe par rapport à .

E

E R ER

Page 25: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 25 -

2.5.2 Enoncé

Il existe au moins un repère galiléen tel que pour tout système matériel en équilibre par rapport à ce

repère galiléen , le torseur d’actions mécaniques extérieures à soit nul, c’est à dire :

2.5.3 Résolution d’un problème de statique

2.5.3.1 Notion d’isostatisme et d’hyperstatisme

2.5.3.2 est un solide

• est en équilibre et on veut déterminer des relations entre les actions extérieures ou bien en déterminer

R ER E

T E E→( ){ } 0{ }=

Pb Isostatique Pb Hyperstatique

1

2

1

2

2121

E

E

T 1 E→( ){ }

T 2 E→( ){ }T i E→( ){ }

T n E→( ){ }

E

Page 26: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 26 - Statique du solide

certaines à partir d’autres supposées connues (poids,..)

• Isoler l’ensemble matériel et faire le bilan des actions mécaniques extérieures.

• Appliquer le PFS et projeter les deux relations vectorielles (résultante et moment) obtenues dans une base orthonormée.

• Résolution du système de 6 équations pour déterminer les inconnues du problème (si le problème est isostatique).

2.5.3.3 est un ensemble de solides liés par des liaisons avec graphe à chaîne ouverte

• est en équilibre, soumis à des actions extérieures supposées connues, et on veut déter-miner les torseurs d’actions mécaniques transmises par les liaisons entre les différents solides.

• Isoler n-1 solides ou ensembles de solides, puis faire le bilan des actions mécaniques extérieures à cha-que isolement.

• Pour chaque isolement appliquer le PFS et écrire les 2(n-1) relations vectorielles (résultante et moment) obtenues dans une base orthonormée.

• Résolution du système de 6(n-1) équations au plus pour déterminer les inconnues du problème.

Remarque : Un tel problème est toujours isostatique.

E

0

12

3

4

1

23

4 ⇔

Schéma cinématique Graphe de liaison associé

T 3 4→( ){ }

T 2 3→( ){ }T 1 2→( ){ }

T 0 1→( ){ }

T ext 4→( ){ }

T ext 3→( ){ }

T ext 2→( ){ }

T ext 1→( ){ }

E T ext i→( ){ }

Page 27: PCSI-MPSI 2ème Période Modélisation cinématique … periode2009.pdf · - 1 - PCSI-MPSI 2ème Période Modélisation cinématique des mécanismes Statique du solide D.Feautrier

- 27 -

2.5.3.4 est ensemble de solides liés par des liaisons avec graphe à chaîne fermée

• est en équilibre, soumis à des actions extérieures supposées connues, et on veut déter-miner les torseurs d’actions mécaniques transmises par les liaisons entre les différents solides.

• Isoler n-1 solides ou ensembles de solides, puis faire le bilan des actions mécaniques extérieures à cha-que isolement.

• Pour chaque isolement appliquer le PFS et écrire les 6(n-1) relations scalaires (résultante et moment) obtenues dans une base orthonormée.

• Résolution du système de 6(n-1) équations au plus pour déterminer les inconnues du problème.

Remarque : Un tel problème peut être hypertsatique.

E

O

A

B

C

1 2

3 4

1

2

3

4

T 2 4→( ){ }

T 3 4→( ){ }T 1 3→( ){ }

T 1 2→( ){ }

T ext 4→( ){ }

T ext 2→( ){ }

T ext 3→( ){ }

E T ext i→( ){ }