28

Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Relative Error Model Redu tion ForDistributed Parameter SystemsPeter BennerZentrum f�ur Te hnomathematikFa hberei h 3/Mathematik und InformatikUniversit�at BremenE-mail: benner�math.uni-bremen.deURL: http://www.math.uni-bremen.de/~benner

5th SIAM Conferen e onControl and Its Appli ationsSan Diego, July 11{14, 2001MS51 { Model Redu tion of Large-S ale Systems

Page 2: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Overview Overview� Distributed parameter systems� Relative error model redu tion� Balan ed sto hasti trun ation (BST)� Computing the Gramians{ Solving large, sparse Lyapunov equations{ Solving large, sparse algebrai Ri ati equations� Performan e results� Con lusions

Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 1

Page 3: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Distributed Parameter SystemsDistributed Parameter SystemsGiven Hilbert spa esX { state spa e,U { ontrol spa e,Y { output spa e,and operatorsA : dom(A) � X ! X ;B : U ! X ;C : X ! Y :Then, a linear distributed parameter system inabstra t form is given by_x = Ax+ Bu; x(0) = x0 2 X ;y = Cx:Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 2

Page 4: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Distributed Parameter Systems ExampleParaboli PDE in domain 2 R d(heat equation, onve tion-di�usion equation)�x�t = dXi;j=1 �x��i �aij(�) �x��j�+ dXi=1 bi(�)�x��i + x+Bu(t);� 2 ; t > 0with initial and boundary onditions (� = �1 [ �2 [ �3)x(�; t) = B1u1(t); � 2 �1;���x(�; t) = B2u2(t); � 2 �2;x(�; t) + ���x(�; t) = B3u3(t); � 2 �3;x(�; 0) = x0(�); � 2 ;y = Cx; t � 0� B = 0 =) boundary ontrol problem� Bj = 0 8j =) point ontrol problemWeak formulation, use test fun tions v 2 V = H 10()=) distributed parameter system.Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 3

Page 5: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Distributed Parameter SystemsDis retizationConsider sequen e of subspa es Xn � X withdim(Xn) = n < 1, su h that 8' 2 X there exists'n 2 Xn with limn!1 k'n � 'kX = 0:De�ne orthogonal proje tion �n : X ! Xn and< An'n; n >X := � < A'n; n >X 8'n; n 2 Xn;Bn := �nB;Cn := CjXn ;=) �nite dimensional linear system_xn = Anxn +Bnun; x(0) = �nx0;yn = Cnxn:

Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 4

Page 6: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Distributed Parameter SystemsMatrix RepresentationGalerkin approa h, spa e dis retization by �niteelement method (FEM) =)M _x = �Kx+Bu; x(0) = x0;y = Cx;with� sti�ness matrix K 2 R n�n,� mass matrix M 2 R n�n,� B 2 R n�m,� C 2 R p�n,where A := �M�1K;B := M�1B:Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 5

Page 7: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Relative error model redu tionLinear Dynami al SystemsConsider ontinuous time-invariant system_x(t) = Ax(t) +Bu(t); t > 0; x(0) = x0;y(t) = Cx(t) +Du(t);not ne essarily minimal.Assume� n state variables, i.e., x(t) 2 R n, n = order ofthe system;� m inputs, i.e., u(t) 2 Rm;� p � m outputs, i.e., y(t) 2 R p;� n large, A sparse, m; p� n;� A stable, i.e., � (A) � C � =) system is stable;� D has full (row) rank, i.e., DDT is non-singular.(D = 0 =) set D = � Ip 0 �.)Corresponding transfer fun tion isG(s) = C(sI �A)�1B +D:Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 6

Page 8: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Relative error model redu tionRelative Error Model Redu tionWant redu ed-order model_~x(t) = ~A~x(t) + ~B~u(t); k = 0; 1; 2; : : : ;~y(t) = ~C~x(t) + ~D~u(t);of order `� n with ~u(t) 2 Rm, ~y(t) 2 R p su h thatk�relk1 is \small";where the relative error �rel is de�ned by~G(s) = G(s)(I +�rel):If G(s) is square (p = m), then relative error modelredu tion problem an be formulated asminorder( ~G)�` kG�1(G� ~G)k1;where approximation quality measured by H1-normkGk1 = ess sup!2R �max(G(|!)):Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 7

Page 9: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Balan ed sto hasti trun ationSto hasti Realization[Desai/Pal '84, Green '88℄For system G(s) = C(sI � A)�1B + D onsiderpower spe trum�(s) := G(s)GT (�s):Square minimum-phase right spe tral fa tor of �(s):W (s) = C(sI � A)�1B + D;where minimal state-spa e realization is given by[Anderson '67 ℄A = A;B = BDT + PCT 2 R n�p;C = D�1(C � BTQ) 2 R p�n;D = R 2 R p�p for RTR = DDT :and P = ontrollability Gramian of G;Q = observability Gramian of W:De�nition:minimum-phase system, transfer fun tion has no C +-zeros.Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 8

Page 10: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Balan ed sto hasti trun ationDe�nitionA minimal realization (A;B;C;D) of a linear systemG(s) is a balan ed sto hasti realization (BSR) i�P = Q = � = diag(�1; �2; : : : ; �n)with �1 � �2 � : : : � �n > 0:Note:� for non-minimal system an a hieveP = diag(�1;�2; 0; 0) � 0;Q = diag(�1; 0;�3; 0) � 0;�1 = diag(�1; �2; : : : ; �t) > 0� �j are Hankel singular values of W T (�s)G(s).Theorem [Desai/Pal '84 ℄There exists T 2 R n�n nonsingular su h that(A;B;C;D) = (T�1AT; T�1B;CT;D)is a BSR.Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 9

Page 11: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Balan ed sto hasti trun ationBalan ed Sto hasti Trun ation (BST)For state-spa e transformation by nonsingular T letT�1AT = � A11 A12A21 A22 � ; T�1B = � B1B2 � ;CT = � C1 C2 � :Theorem [Desai/Pal '84, Green '88/90 ℄If (T�1AT; T�1B;CT;D) is a BSR, then( ~A; ~B; ~C; ~D) := (A11; B1; C1; D)is a stable, minimal BSR with propertiesa) ~G(s) = ~C(sI` � ~A)�1 ~B + ~D satis�es relativeerror boundk�relk1 � tYj=`+1 1 + �j1� �j � 1:b) G(s)minimum-phase) ~G(s)minimum-phase.

(Re all: ~G(s) = G(s)(I +�rel))Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 10

Page 12: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Balan ed sto hasti trun ationComputation of T via Square-Root Methods[Laub/Heath/Paige/Ward '87, Tombs/Postlethwaite '87℄P , Q are nonnegative semide�nite =)P = STS; Q = RTR:Redu ed-order model is omputed from SVDSRT = [U1 U2℄ � �1 00 �2 � � V T1V T2 � ;�1 = diag(�21; : : : ; �2);�2 = diag(�2+1; : : : ; �2n):Then de�ningTl = ��1=21 V T1 R; Tr = STU1��1=21 ;the BST redu ed-order model is given by~A = TlATr; ~B = TlB; ~C = CTr; ~D = D:Balan ing-free version possible. [Varga '91 ℄Standard approa h:S;R = h����i 2 R n�n { Cholesky fa tors of P;Q:Alternative:S 2 R rank (P )�nR 2 R rank (Q)�n { full-rank fa tors of P;Q.Idea here:Find low-rank approximations to full-rank fa tors!Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 11

Page 13: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the GramiansComputing the GramiansControllability Gramian P ofG(s) = C(sI �A)�1B +Dgiven by solution of stable, nonnegative Lyapunovequation AP + PAT +BBT = 0;Observability Gramian Q ofW (s) = C(sI � A)�1B + Dis stabilizing solution of algebrai Ri ati equation(ARE)0 = CT (DDT )�1C + (A� B(DDT )�1C)TQ ++ Q(A� B(DDT )�1C) +QB(DDT )�1BTQ:=) Need to solve one Lyapunov equation andone ARE!Goal:get low-rank approximations to fa tors of P;Qdire tly.Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 12

Page 14: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the GramiansLow-rank approximationConsider spe trum of ontrollability Gramian P .Example:Linear 1D heat equation on [0; 1℄ with point ontrol,�nite element dis retization using linear B-splines, n = 100.

0 10 20 30 40 50 60 70 80 90 100 11010

−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

Spectrum of solution Ph for h = 0.01

Index k

λ k

Idea:P = PT � 0 =) P = ZZT = nXk=1�kzkzTk�k � 0; k > r =) P � Z(r)(Z(r))T = rXk=1�kzkzTk :Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 13

Page 15: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the GramiansApproximation quality:Example as before, he k relative residuals ofLyapunov equation forP � Z(r)(Z(r))T ; r = 1; : : : ; 100:

0 10 20 30 40 50 60 70 80 90 100

10−16

10−14

10−12

10−10

10−8

10−6

10−4

Relative residuals for low−rank approximations to P

number of columns in Z (r)

rela

tive

re

sid

ua

l

eps

Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 14

Page 16: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the GramiansADI Method for Lyapunov Equations� For A 2 R n�n stable (� (A) 2 C �), W 2 R n�w(w � n), onsider Lyapunov equationATP + PA = �WWT :� ADI-Iteration: [Wa hspress `88℄(AT + pjI)P(j�1)=2 = �WWT � Pj�1(A� pjI)(AT + pjI)PjT = �WWT � P(j�1)=2(A� pjI)with parameters pj 2 C � and pj+1 = pj if pj 62 R .� For P0 = 0 and proper hoi e of pj:limj!1Pj = P superlinear.� Re-formulation using Pj = ZjZTj yields iterationfor Zj, after onvergen e:Zjmax = � V1 : : : Vjmax �, Vj = 2 C n�w.

Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 15

Page 17: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the GramiansNewton's Method for AREsConsider0 = R(Q) = CTC + ATQ+QA�QBBTQ;with stable A.Fre h�et derivative of R(Q) at Q:R0Q : Z ! (A�BBTQ)Z + Z(A�BBTQ)Newton-Kantorovi h method :Qj+1 = Qj � �R0Qj��1R(Qj); j = 0; 1; 2; : : :=) Newton's method for AREs[Kleinman '68, Mehrmann '91, Lan aster/Rodman '95 ℄1. Q0 = 0.2. FOR j = 0; 1; 2; : : :2.1 Aj A�BBTQj =: A�BKj.2.2 Solve Lyapunov equationATj Nj +NjAj = �R(Qj).2.3 Qj+1 Qj +Nj.END FOR jPeter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 16

Page 18: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the Gramians Properties� Convergen e:{ Aj is stable 8 j � 0.{ limj!1 kR(Qj)kF = 0.{ 0 � Q1 � : : : � Qj+1 � Qj � : : : � Q1.{ limj!1Qj = Q1 � 0.{ Quadrati onvergen e rate.� Problem: need eÆ ient Lyapunov solver!� But: Q = QT 2 R n�n =) n(n+1)=2 unknowns!In general not feasible for very large problems.

Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 17

Page 19: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the GramiansFa tored Newton IterationATj Nj +NjAj = �R(Qj)mATj (Qj +Nj)| {z }=Qj+1 +(Qj +Nj)| {z }=Qj+1 Aj = �CTC �QjBBTQj| {z }=:�WjWTjLet Qj = YjY Tj for rank (Yj)� n:ATj �Yj+1Y Tj+1�+ �Yj+1Y Tj+1�Aj = �WjWTj+Need method for solving Lyapunov equations whi h omputes Yj+1 dire tly and uses stru ture of Aj,Aj = A�BKj = A � B � (BTYj) � Y Tj ;= sparse � m � �Solution: use fa tored ADI iteration!m� n) use Sherman-Morrison-Woodbury formula(A�BKj)�1 = (In+A�1B(Im�KjA�1B)�1Kj)A�1:Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 18

Page 20: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the GramiansNewton-ADI for ARE[B./Li/Penzl '00℄Solve Lyapunov equation(A�BKj)TYj+1Y Tj+1+Yj+1Y Tj+1(A�BKj) = �WjW Tjwith fa tored ADI iteration.+Obtain sequen e Z0; Z1; : : : ; Zkmax of low-rankapproximations to solution of Lyapunov equation.+Yj+1 = Zkmax.+Newton's method with fa tored iteratesQj = YjY Tj .+Fa tored solution of AREQ � YjmaxY Tjmax.Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 19

Page 21: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the GramiansAppli ation to BST� Approximation of ontrollability Gramian P withlow-rank ADI for Lyapunov equation.� For solving ARE with Newton's method, needslight modi� ation: right-hand side of Lyapunovequation an not be written as �WjWTj .RHS = �CT (DDT )�1C+QjB(DDT )�1BTQj=: � ~C ~CT + ~Bj ~BTjwith DDT > 0.Lyapunov equation is non-singular linear system=) writeATj Qj+1 +Qj+1Aj = � ~CT ~C + ~BTj ~BjasATj (Qj+1 �Qj+1) + (Qj+1 �Qj+1)Aj= �WjWTj � ��WjWTj �:=) Solve two Lyapunov equations per step.Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 20

Page 22: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Computing the GramiansProblemneed fa tor of~Q := Qjmax �Qjmax= ZjmaxZTjmax � ZjmaxZTjmax � 0:Solution [Varga/Fasol '93, Varga '00℄Get full-rank fa tor from stable, nonnegativeLyapunov equationAT (RTR) + (RTR)A+ CTC = 0where C = D�TC � BD�1 ~Qand D = [ DT 0 ℄Uis an LQ fa torization of D.Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 21

Page 23: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Performan e Results Performan e ResultsMatlab implementation using the Lyapa k Toolbox(T. Penzl, 1999).Example 1 [Tr�oltzs h/Unger '99, Penzl '99℄� Optimal ooling of steel pro�les.� Model: boundary ontrol for linear 2D heat equation.xt = �x; x 2 x+ x� = uk; x 2 �k; k = 1; : : : ; 6;x� = 0; x 2 �7:=) n = 821, m = p = 6� FEM dis retization, initial mesh:

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Γ7

Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 22

Page 24: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Performan e ResultsExample 1, ontinued� Dis retization leads to systemM _x = �Kx+Bu; x(0) = x0;y = Cx:Solution of linear systems of equations:{ Bandwidth redu tion in M;N using reverse Cuthill-M Kee algorithm.{ Instead of A = �M�1K onsiderA = �M�1C KM�TC ;where MC = (sparse) Cholesky fa tor of M .{ Cholesky fa torization and solution of `shifted' linearsystems using sparse dire t method.{ Use ten ADI parameters y li ally.� Order of redu ed-ordel model: ` = 50.� Error bound:k�relk1 �Qtj=`+1 1+�j1��j � 1 = 1:75 � 10�5.Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 23

Page 25: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Performan e Results Example 1, Sti�ness Matrix

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 5395

Sparsity Pattern of Stiffness Matrix

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 5395

Sparsity Pattern of Stiffness Matrix After Reverse Cuthill−McKee Reordering

Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 23.1

Page 26: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Performan e ResultsExample 1, Cholesky Fa tor of Mass Matrix

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 58373

Sparsity Pattern of Cholesky Factor of Mass Matrix

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 12038

Sparsity Pattern of Cholesky Factor of Mass MatrixAfter Reverse Cuthill−McKee Reordering

Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 23.2

Page 27: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Performan e ResultsExample 1, Model Redu tion Performan eFrequen y Response (Magnitude)

10−4

10−2

100

102

104

106

10−5

10−4

10−3

10−2

10−1

100

Frequency (ω rad/sec.)

Gai

n

From u3 to y

1

full−order reduced−order

10−4

10−2

100

102

104

106

10−6

10−5

10−4

10−3

10−2

10−1

100

Frequency (ω rad/sec.)

Gai

n

From u5 to y

2

full−order reduced−order

Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 24

Page 28: Relative - Max Planck Society€¦ · Benner} Zentrum f ur T echnomathematik Universit at Bremen 1. Distributed P a rameter Systems Distributed P a rameter Systems Given Hilb ert

Con lusions Con lusions� Balan ed sto hasti trun ation model redu tionmethods{ with low-rank ADI for solving Lyapunovequations,{ low-rank ADI based Newton's method forsolving AREs,{ and using low-rank fa tors of Gramiansyield eÆ ient method, appli able to large-s alesystems.� Open problems/in progress:{ Whi h a ura y for Lyapunov equationsneeded?{ EÆ ient olumn ompression te hnique to keepnumber of olumns in ADI iterates low.{ A eleration of Newton's method using linesear h or trust region without residualevaluation possible?Peter Benner } Zentrum f�ur Te hnomathematik } Universit�at Bremen } 25