190
Repr´ esentations des polynˆ omes, algorithmes et bornes inf´ erieures Bruno Grenet sous la direction de Pascal Koiran et Natacha Portier Jeudi 29 novembre 2012

Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Representations des polynomes,

algorithmes et bornes inferieures

Bruno Grenet

sous la direction de Pascal Koiran et Natacha Portier

Jeudi 29 novembre 2012

Page 2: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Representations of polynomials,

algorithms and lower bounds

Bruno Grenet

supervised by Pascal Koiran and Natacha Portier

Thursday, November 29, 2012

Page 3: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Representation of Univariate Polynomials

P(X ) = X 10 − 4X 8 + 8X 7 + 5X 3 + 1

Representations

◮ Dense:

[1, 0,−4, 8, 0, 0, 0, 5, 0, 0, 1]

◮ Sparse:

{

(10 : 1), (8 : −4), (7 : 8), (3 : 5), (0 : 1)}

2 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 4: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Representation of Multivariate Polynomials

P(X ,Y ,Z ) = X 2Y 3Z 5 − 4X 3Y 3Z 2 + 8X 5Z 2 + 5XYZ + 1

Representations

◮ Dense:

[1, . . . ,−4, . . . , 8, . . . , 5, . . . , 1]

◮ Lacunary (supersparse):

{

(2, 3, 5 : 1), (3, 3, 2 : −4), (5, 0, 2 : 8), (1, 1, 1 : 5), (0 : 1)}

2 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 5: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Representation of Multivariate Polynomials

P(X ,Y ,Z ) = X 2Y 3Z 5 − 4X 3Y 3Z 2 + 8X 5Z 2 + 5XYZ + 1

Representations

◮ Dense:

[1, . . . ,−4, . . . , 8, . . . , 5, . . . , 1]

◮ Sparse:

{

(||, |||, ||||| : 1), (|||, |||, || : −4), (|||||, , || : 8), (|, |, | : 5), (, , : 1)}

◮ Lacunary (supersparse):

{

(2, 3, 5 : 1), (3, 3, 2 : −4), (5, 0, 2 : 8), (1, 1, 1 : 5), (0 : 1)}

2 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 6: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = X 4 + 4X 3Y + 6X 2Y 2 + 4XY 3 + X 2Z + 2XYZ

+ Y 2Z + X 2 + Y 4 + 2XY + Y 2 + Z 2 + 2Z + 1

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 7: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 8: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 9: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )2((X + Y )2 + (Z + 1)

)+ (Z + 1)2

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 10: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )4 +((Z + 1) + (X + Y )2

)(Z + 1)

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 11: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )4 +((Z + 1) + (X + Y )2

)(Z + 1)

X Y

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 12: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )4 +((Z + 1) + (X + Y )2

)(Z + 1)

X Y Z 1

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 13: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )4 +((Z + 1) + (X + Y )2

)(Z + 1)

X Y Z 1

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 14: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )4 +((Z + 1) + (X + Y )2

)(Z + 1)

X Y Z 1

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 15: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )4 +((Z + 1) + (X + Y )2

)(Z + 1)

X Y Z 1

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 16: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )4 +((Z + 1) + (X + Y )2

)(Z + 1)

X Y Z 1

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 17: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Circuits

Q(X ,Y ,Z ) = (X + Y )4 + (Z + 1)2 + (X + Y )2(Z + 1)

= (X + Y )4 +((Z + 1) + (X + Y )2

)(Z + 1)

X Y Z 1

3 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 18: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Branching Programs

s

X

Y

X

X

Yt

Z

4 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 19: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Branching Programs

s

X

Y

X

X

Yt

Z

XZ

4 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 20: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Branching Programs

s

X

Y

X

X

Yt

Z

X (Y + Z )

4 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 21: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Branching Programs

s

X

Y

X

X

Yt

Z

(X + Y )(Y + Z )

4 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 22: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Branching Programs

s

X

Y

X

X

Yt

Z

2XY

4 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 23: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Arithmetic Branching Programs

s

X

Y

X

X

Yt

Z

2XY + (X + Y )(Y + Z )

4 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 24: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Some questions

◮ Links between representations

5 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 25: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Some questions

◮ Links between representations

• Circuits• Branching programs• Determinant of matrices

5 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 26: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Some questions

◮ Links between representations

• Circuits• Branching programs• Determinant of matrices

◮ Smallest representations of some polynomials

5 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 27: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Some questions

◮ Links between representations

• Circuits• Branching programs• Determinant of matrices

◮ Smallest representations of some polynomials

• Determinant• Permanent

5 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 28: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Some questions

◮ Links between representations

• Circuits• Branching programs• Determinant of matrices

◮ Smallest representations of some polynomials

• Determinant• Permanent

◮ Complexity of problems concerning polynomials

5 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 29: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Some questions

◮ Links between representations

• Circuits• Branching programs• Determinant of matrices

◮ Smallest representations of some polynomials

• Determinant• Permanent

◮ Complexity of problems concerning polynomials

• Existence of roots dense, sparse

5 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 30: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Some questions

◮ Links between representations

• Circuits• Branching programs• Determinant of matrices

◮ Smallest representations of some polynomials

• Determinant• Permanent

◮ Complexity of problems concerning polynomials

• Existence of roots dense, sparse• Factorization lacunary

5 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 31: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Some questions

◮ Links between representations

• Circuits• Branching programs• Determinant of matrices

◮ Smallest representations of some polynomials

• Determinant• Permanent

◮ Complexity of problems concerning polynomials

• Existence of roots dense, sparse• Factorization lacunary• Polynomial Identity Testing circuit

5 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 32: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Outline

1. Resolution of polynomial systems

2. Determinantal Representations of Polynomials

3. Factorization of lacunary polynomials

6 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 33: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

1. Resolution of polynomial systems

Page 34: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Is there a (nonzero) solution?

X 2 + Y 2 − Z 2 = 0

XZ + 3XY + YZ + Y 2 = 0

XZ − Y 2 = 0

8 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 35: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Is there a (nonzero) solution?

X 2 + Y 2 − Z 2 = 0

XZ + 3XY + YZ + Y 2 = 0

XZ − Y 2 = 0

Input: System of polynomials f = (f1, f2, f3),fj ∈ Z[X ,Y ,Z ], homogeneous

Question: Is there a point a = (a1, a2, a3) ∈ C3, nonzero, s.t.

f1(a) = f2(a) = f3(a) = 0?

8 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 36: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Is there a (nonzero) solution?

X 2 + Y 2 − Z 2 = 0

XZ + 3XY + YZ + Y 2 = 0

XZ − Y 2 = 0

Input: System of polynomials f = (f1, f2, f3),fj ∈ Z[X ,Y ,Z ], homogeneous

Question: Is there a point a = (a1, a2, a3) ∈ C3, nonzero, s.t.

f (a) = 0?

8 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 37: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

More on the homogeneous case

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ Kn+1 s.t. f (a) = 0?

9 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 38: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

More on the homogeneous case

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ Kn+1 s.t. f (a) = 0?

◮ s < n + 1: Always Yes ( trivial answer)

9 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 39: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

More on the homogeneous case

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ Kn+1 s.t. f (a) = 0?

◮ s < n + 1: Always Yes ( trivial answer)

◮ s > n + 1: Hard problem (NP-hard)

9 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 40: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

More on the homogeneous case

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ Kn+1 s.t. f (a) = 0?

◮ s < n + 1: Always Yes ( trivial answer)

◮ s > n + 1: Hard problem (NP-hard)

◮ s = n + 1: Resultant: Algebraic tool to answer the question

9 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 41: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

More on the homogeneous case

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ Kn+1 s.t. f (a) = 0?

◮ s < n + 1: Always Yes ( trivial answer)

◮ s > n + 1: Hard problem (NP-hard)

◮ s = n + 1: Resultant: Algebraic tool to answer the question

Trivial? Easy? Hard?

9 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 42: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Definitions

POLSYS(K)

Input: f1, . . . , fs ∈ K[X1, . . . ,Xn]

Question: Is there a ∈ Kn s.t. f (a) = 0?

10 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 43: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Definitions

POLSYS(K)

Input: f1, . . . , fs ∈ K[X1, . . . ,Xn]

Question: Is there a ∈ Kn s.t. f (a) = 0?

HOMPOLSYS(K)

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ Kn+1 s.t. f (a) = 0?

10 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 44: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Definitions

POLSYS(K)

Input: f1, . . . , fs ∈ K[X1, . . . ,Xn]

Question: Is there a ∈ Kn s.t. f (a) = 0?

HOMPOLSYS(K)

Input: f1, . . . , fs ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ Kn+1 s.t. f (a) = 0?

RESULTANT(K)

Input: f1, . . . , fn+1 ∈ K[X0, . . . ,Xn], homogeneous

Question: Is there a nonzero a ∈ Kn+1 s.t. f (a) = 0?

10 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 45: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Upper bounds

Proposition (Koiran’96)

Under the Generalized Riemann Hypothesis, POLSYS(Z) ∈ AM.

11 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 46: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Upper bounds

Proposition (Koiran’96)

Under the Generalized Riemann Hypothesis, POLSYS(Z) ∈ AM.

Class Arthur-Merlin

NP ⊆ AM = BP · NP ⊆ ΠP2

11 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 47: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Upper bounds

Proposition (Koiran’96)

Under the Generalized Riemann Hypothesis, POLSYS(Z) ∈ AM.

Corollary

Under GRH, HOMPOLSYS(Z) and RESULTANT(Z) belong to AM.

Class Arthur-Merlin

NP ⊆ AM = BP · NP ⊆ ΠP2

11 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 48: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Upper bounds

Proposition (Koiran’96)

Under the Generalized Riemann Hypothesis, POLSYS(Z) ∈ AM.

Corollary

Under GRH, HOMPOLSYS(Z) and RESULTANT(Z) belong to AM.

Proof. Remove the unwanted zero root: Add∑

iXiYi − 1 to the system.

Class Arthur-Merlin

NP ⊆ AM = BP · NP ⊆ ΠP2

11 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 49: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Upper bounds

Proposition (Koiran’96)

Under the Generalized Riemann Hypothesis, POLSYS(Z) ∈ AM.

Corollary

Under GRH, HOMPOLSYS(Z) and RESULTANT(Z) belong to AM.

Proof. Remove the unwanted zero root: Add∑

iXiYi − 1 to the system.

Class Arthur-Merlin

NP ⊆ AM = BP · NP ⊆ ΠP2

Positive characteristics

If p is prime, (HOM)POLSYS(Fp) & RESULTANT(Fp) are in PSPACE.

11 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 50: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Known lower bounds

Notation: F0 = Q

12 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 51: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Known lower bounds

Notation: F0 = Q

Proposition (Folklore)

For p = 0 or prime, POLSYS(Fp) & HOMPOLSYS(Fp) are NP-hard.

12 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 52: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Known lower bounds

Notation: F0 = Q

Proposition (Folklore)

For p = 0 or prime, POLSYS(Fp) & HOMPOLSYS(Fp) are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern’93)

RESULTANT(Z) is NP-hard.

12 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 53: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Known lower bounds

Notation: F0 = Q

Proposition (Folklore)

For p = 0 or prime, POLSYS(Fp) & HOMPOLSYS(Fp) are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern’93)

RESULTANT(Z) is NP-hard.

◮ Same results with degree-2 polynomials.

12 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 54: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Known lower bounds

Notation: F0 = Q

Proposition (Folklore)

For p = 0 or prime, POLSYS(Fp) & HOMPOLSYS(Fp) are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern’93)

RESULTANT(Z) is NP-hard.

◮ Same results with degree-2 polynomials.

POLSYS HOMPOLSYS RESULTANT

Z NP-hard NP-hard NP-hardFp NP-hard NP-hard Open

12 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 55: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Known lower bounds

Notation: F0 = Q

Proposition (Folklore)

For p = 0 or prime, POLSYS(Fp) & HOMPOLSYS(Fp) are NP-hard.

Proposition (Folklore, see Heintz-Morgenstern’93)

RESULTANT(Z) is NP-hard.

◮ Same results with degree-2 polynomials.

POLSYS HOMPOLSYS RESULTANT

Z NP-hard NP-hard NP-hardFp NP-hard NP-hard Open

◮ What happens for RESULTANT(Fp), p > 0?

12 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 56: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:# homogeneous polynomials ≥ # variables

13 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 57: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:# homogeneous polynomials ≥ # variables

◮ Two strategies:

13 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 58: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:# homogeneous polynomials ≥ # variables

◮ Two strategies:

• Reduce the number of polynomials

13 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 59: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:# homogeneous polynomials ≥ # variables

◮ Two strategies:

• Reduce the number of polynomials• Increase the number of variables

13 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 60: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:# homogeneous polynomials ≥ # variables

◮ Two strategies:

• Reduce the number of polynomials• Increase the number of variables

13 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 61: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:# homogeneous polynomials ≥ # variables

◮ Two strategies:

• Reduce the number of polynomials• Increase the number of variables

Theorem (G.-Koiran-Portier’10-12)

Let p be a prime number.

13 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 62: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:# homogeneous polynomials ≥ # variables

◮ Two strategies:

• Reduce the number of polynomials• Increase the number of variables

Theorem (G.-Koiran-Portier’10-12)

Let p be a prime number.

◮ RESULTANT(Fp) is NP-hard for sparse polynomials.

13 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 63: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Hardness in positive characteristics

◮ HOMPOLSYS(Fp) is NP-hard:# homogeneous polynomials ≥ # variables

◮ Two strategies:

• Reduce the number of polynomials• Increase the number of variables

Theorem (G.-Koiran-Portier’10-12)

Let p be a prime number.

◮ RESULTANT(Fp) is NP-hard for sparse polynomials.

◮ RESULTANT(Fq) is NP-hard for dense polynomials for some q = ps .

13 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 64: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 65: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

f1(X )... (unchanged)

fn(X )

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 66: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

f1(X )...

fn(X )fn+1(X ) + λY 2

1

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 67: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

f1(X )...

fn(X )fn+1(X ) + λY 2

1

fn+2(X )− Y 21 + λY 2

2

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 68: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

f1(X )...

fn(X )fn+1(X ) + λY 2

1

fn+2(X )− Y 21 + λY 2

2...

fs−1(X ) − Y 2s−n−2 + λY 2

s−n−1

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 69: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

f1(X )...

fn(X )fn+1(X ) + λY 2

1

fn+2(X )− Y 21 + λY 2

2...

fs−1(X ) − Y 2s−n−2 + λY 2

s−n−1

fs(X ) − Y 2s−n−1

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 70: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

f1(X )...

fn(X )fn+1(X ) + λY 2

1

fn+2(X )− Y 21 + λY 2

2...

fs−1(X ) − Y 2s−n−2 + λY 2

s−n−1

fs(X ) − Y 2s−n−1

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 71: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

f1(X )...

fn(X )fn+1(X ) + λY 2

1

fn+2(X )− Y 21 + λY 2

2...

fs−1(X ) − Y 2s−n−2 + λY 2

s−n−1

fs(X ) − Y 2s−n−1

◮ f (a) = 0 =⇒ g(a, 0) = 0

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 72: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

f1(X )...

fn(X )fn+1(X ) + λY 2

1

fn+2(X )− Y 21 + λY 2

2...

fs−1(X ) − Y 2s−n−2 + λY 2

s−n−1

fs(X ) − Y 2s−n−1

◮ f (a) = 0 =⇒ g(a, 0) = 0

◮ Find λ such that (g(a, b) = 0 =⇒ b = 0)

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 73: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Proof idea

f (X ): s degree-2 homogeneous polynomials in Fp[X0, . . . ,Xn]

From f (X ) to g(X ,Y )

g(X ,Y ) =

f1(X )...

fn(X )fn+1(X ) + λY 2

1

fn+2(X )− Y 21 + λY 2

2...

fs−1(X ) − Y 2s−n−2 + λY 2

s−n−1

fs(X ) − Y 2s−n−1

◮ f (a) = 0 =⇒ g(a, 0) = 0

◮ Find λ such that (g(a, b) = 0 =⇒ b = 0 =⇒ f (a) = 0)

14 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 74: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

◮ NP-hardness results for square homogeneous systems ofpolynomials over finite fields

15 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 75: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

◮ NP-hardness results for square homogeneous systems ofpolynomials over finite fields

◮ Result on the evaluation of the resultant polynomial

15 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 76: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

◮ NP-hardness results for square homogeneous systems ofpolynomials over finite fields

◮ Result on the evaluation of the resultant polynomial

Main open problem

◮ Improve the PSPACE upper bound in positive characteristics. . .

◮ . . . or the NP lower bound.

15 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 77: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

2. Determinantal Representations of

Polynomials

Page 78: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Determinant

Definition

Sn = permutations of {1, . . . , n}

detA =∑

σ∈Sn

(−1)ǫ(σ)n∏

i=1

Ai ,σ(i)

17 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 79: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Determinant

Definition

Sn = permutations of {1, . . . , n}

detA =∑

σ∈Sn

(−1)ǫ(σ)n∏

i=1

Ai ,σ(i)

det

a b c

d e f

g h i

= aei + bfg + cdh − afh − bdi − ceg

17 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 80: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Determinantal representations

2XY+(X+Y )(Y+Z ) = det

0 2 0 0 Y X 0 00 −1 X 0 0 0 0 00 0 −1 Y 0 0 0 00 0 0 −1 0 0 0 10 0 0 0 −1 1 0 00 0 0 0 0 −1 Z Y

0 0 0 0 0 0 −1 1−1 0 0 0 0 0 0 0

18 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 81: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Determinantal representations

2XY+(X+Y )(Y+Z ) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 0 0 0 0 Y 0 X 0 0 0 0 12

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 00 −1 0 X 0 0 0 0 0 0 0 0 0 0 00 0 X 0 −1 0 0 0 0 0 0 0 0 0 00 0 0 −1 0 Y 0 0 0 0 0 0 0 0 00 0 0 0 Y 0 −1 0 0 0 0 0 0 0 00 0 0 0 0 −1 0 0 0 0 0 0 0 1 0Y 0 0 0 0 0 0 0 −1 0 0 0 0 0 00 0 0 0 0 0 0 −1 0 1 0 0 0 0 0X 0 0 0 0 0 0 0 1 0 −1 0 0 0 00 0 0 0 0 0 0 0 0 −1 0 Z 0 Y 00 0 0 0 0 0 0 0 0 0 Z 0 −1 0 00 0 0 0 0 0 0 0 0 0 0 −1 0 1 00 0 0 0 0 0 1 0 0 0 Y 0 1 0 112

0 0 0 0 0 0 0 0 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

18 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 82: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Determinantal representations

2XY+(X+Y )(Y+Z ) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 0 0 0 0 Y 0 X 0 0 0 0 12

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 00 −1 0 X 0 0 0 0 0 0 0 0 0 0 00 0 X 0 −1 0 0 0 0 0 0 0 0 0 00 0 0 −1 0 Y 0 0 0 0 0 0 0 0 00 0 0 0 Y 0 −1 0 0 0 0 0 0 0 00 0 0 0 0 −1 0 0 0 0 0 0 0 1 0Y 0 0 0 0 0 0 0 −1 0 0 0 0 0 00 0 0 0 0 0 0 −1 0 1 0 0 0 0 0X 0 0 0 0 0 0 0 1 0 −1 0 0 0 00 0 0 0 0 0 0 0 0 −1 0 Z 0 Y 00 0 0 0 0 0 0 0 0 0 Z 0 −1 0 00 0 0 0 0 0 0 0 0 0 0 −1 0 1 00 0 0 0 0 0 1 0 0 0 Y 0 1 0 112

0 0 0 0 0 0 0 0 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

◮ Complexity of the determinant

18 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 83: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Determinantal representations

2XY+(X+Y )(Y+Z ) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 0 0 0 0 Y 0 X 0 0 0 0 12

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 00 −1 0 X 0 0 0 0 0 0 0 0 0 0 00 0 X 0 −1 0 0 0 0 0 0 0 0 0 00 0 0 −1 0 Y 0 0 0 0 0 0 0 0 00 0 0 0 Y 0 −1 0 0 0 0 0 0 0 00 0 0 0 0 −1 0 0 0 0 0 0 0 1 0Y 0 0 0 0 0 0 0 −1 0 0 0 0 0 00 0 0 0 0 0 0 −1 0 1 0 0 0 0 0X 0 0 0 0 0 0 0 1 0 −1 0 0 0 00 0 0 0 0 0 0 0 0 −1 0 Z 0 Y 00 0 0 0 0 0 0 0 0 0 Z 0 −1 0 00 0 0 0 0 0 0 0 0 0 0 −1 0 1 00 0 0 0 0 0 1 0 0 0 Y 0 1 0 112

0 0 0 0 0 0 0 0 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

◮ Complexity of the determinant

◮ Determinant vs. Permanent: Algebraic “P = NP?”

18 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 84: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Determinantal representations

2XY+(X+Y )(Y+Z ) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 0 0 0 0 Y 0 X 0 0 0 0 12

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 00 −1 0 X 0 0 0 0 0 0 0 0 0 0 00 0 X 0 −1 0 0 0 0 0 0 0 0 0 00 0 0 −1 0 Y 0 0 0 0 0 0 0 0 00 0 0 0 Y 0 −1 0 0 0 0 0 0 0 00 0 0 0 0 −1 0 0 0 0 0 0 0 1 0Y 0 0 0 0 0 0 0 −1 0 0 0 0 0 00 0 0 0 0 0 0 −1 0 1 0 0 0 0 0X 0 0 0 0 0 0 0 1 0 −1 0 0 0 00 0 0 0 0 0 0 0 0 −1 0 Z 0 Y 00 0 0 0 0 0 0 0 0 0 Z 0 −1 0 00 0 0 0 0 0 0 0 0 0 0 −1 0 1 00 0 0 0 0 0 1 0 0 0 Y 0 1 0 112

0 0 0 0 0 0 0 0 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

◮ Complexity of the determinant

◮ Determinant vs. Permanent: Algebraic “P = NP?”

◮ Links between circuits, ABPs and the determinant

18 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 85: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Circuits

YX Z

YX YX Z

X X Y X Y ZYX

2X (X + Y ) + (X + Y )(Y + Z )

YX Z

Arithmetic circuit

Size 6

Inputs 3

19 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 86: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Circuits

YX Z

YX YX Z

X X Y X Y ZYX

2X (X + Y ) + (X + Y )(Y + Z )

YX YX Z

Weakly-skew circuit

Size 6

Inputs 5

19 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 87: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Circuits

YX Z

YX YX Z

X X Y X Y ZYX

2X (X + Y ) + (X + Y )(Y + Z )

X X Y X Y ZYX

Formula

Size 7

Inputs 8

19 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 88: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Proposition (Valiant’79)

Formula of size s Determinant of a matrix of dimension (s+2)

20 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 89: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s Determinant of a matrix of dimension (s+1)

20 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 90: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’08)

Weakly-skew circuit of size s with i inputs

Determinant of a matrix of dimension (s + i + 1)

20 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 91: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Formulas to Branching Programs

ϕ1 ϕ2

s

B1

B2

t=t1

t2α β

ϕ1

s

B1

t

ϕ2

B2

α β

21 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 92: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Formulas to Branching Programs

X Y

ϕ1 ϕ2

s

B1

B2

t=t1

t2α β

ϕ1

s

B1

t

ϕ2

B2

α β

21 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 93: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Formulas to Branching Programs

X Y

X

Y

ϕ1 ϕ2

s

B1

B2

t=t1

t2α β

ϕ1

s

B1

t

ϕ2

B2

α β

21 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 94: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Formulas to Branching Programs

X Y ZY

X

Y

ϕ1 ϕ2

s

B1

B2

t=t1

t2α β

ϕ1

s

B1

t

ϕ2

B2

α β

21 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 95: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Formulas to Branching Programs

X Y ZY

X

Y

Y

Z

ϕ1 ϕ2

s

B1

B2

t=t1

t2α β

ϕ1

s

B1

t

ϕ2

B2

α β

21 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 96: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Formulas to Branching Programs

X Y ZYX X Y

X

Y

Y

Z

ϕ1 ϕ2

s

B1

B2

t=t1

t2α β

ϕ1

s

B1

t

ϕ2

B2

α β

21 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 97: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Formulas to Branching Programs

X Y ZYX X Y

X

Y

Y

ZY

X

2

ϕ1 ϕ2

s

B1

B2

t=t1

t2α β

ϕ1

s

B1

t

ϕ2

B2

α β

21 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 98: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Formulas to Branching Programs

X Y ZYX X Y

X

Y

Y

ZY

X

2

s

t

ϕ1 ϕ2

s

B1

B2

t=t1

t2α β

ϕ1

s

B1

t

ϕ2

B2

α β

21 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 99: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Determinants

X

Y

Y

ZY

X

2

s

t

22 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 100: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Determinants

X

Y

Y

ZY

X

2

s

t

−1

22 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 101: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Determinants

X

Y

Y

ZY

X

2

s

t

−1

M =

0 2 0 0 Y X 0 00 −1 X 0 0 0 0 00 0 −1 Y 0 0 0 00 0 0 −1 0 0 0 10 0 0 0 −1 1 0 00 0 0 0 0 −1 Z Y

0 0 0 0 0 0 −1 1−1 0 0 0 0 0 0 0

22 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 102: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Determinants

X

Y

Y

ZY

X

2

s

t

−1

M =

0 2 0 0 Y X 0 00 −1 X 0 0 0 0 00 0 −1 Y 0 0 0 00 0 0 −1 0 0 0 10 0 0 0 −1 1 0 00 0 0 0 0 −1 Z Y

0 0 0 0 0 0 −1 1−1 0 0 0 0 0 0 0

detM =∑

σ∈Sn

(−1)ǫ(σ)n∏

i=1

Mi ,σ(i)

22 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 103: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Determinants

X

Y

Y

ZY

X

2

s

t

−1

M =

0 2 0 0 Y X 0 00 −1 X 0 0 0 0 00 0 −1 Y 0 0 0 00 0 0 −1 0 0 0 10 0 0 0 −1 1 0 00 0 0 0 0 −1 Z Y

0 0 0 0 0 0 −1 1−1 0 0 0 0 0 0 0

detM =∑

σ∈Sn

(−1)ǫ(σ)n∏

i=1

Mi ,σ(i)

◮ Cycle covers ⇐⇒ Permutations

22 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 104: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Determinants

X

Y

Y

ZY

X

2

s

t

−1

M =

0 2 0 0 Y X 0 00 −1 X 0 0 0 0 00 0 −1 Y 0 0 0 00 0 0 −1 0 0 0 10 0 0 0 −1 1 0 00 0 0 0 0 −1 Z Y

0 0 0 0 0 0 −1 1−1 0 0 0 0 0 0 0

detM =∑

σ∈Sn

(−1)ǫ(σ)n∏

i=1

Mi ,σ(i)

◮ Cycle covers ⇐⇒ Permutations

◮ Up to signs, det(M) = sum of the weights of the cycle covers of G

22 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 105: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Branching Program for the Permanent

detA =∑

σ∈Sn

(−1)ǫ(σ)n∏

i=1

Ai ,σ(i)

det

a b c

d e f

g h i

= aei + bfg + cdh− afh− bdi − ceg

23 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 106: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Branching Program for the Permanent

perA =∑

σ∈Sn

n∏

i=1

Ai ,σ(i)

det

a b c

d e f

g h i

= aei + bfg + cdh− afh− bdi − ceg

23 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 107: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Branching Program for the Permanent

perA =∑

σ∈Sn

n∏

i=1

Ai ,σ(i)

per

a b c

d e f

g h i

= aei + bfg + cdh+ afh+ bdi + ceg

23 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 108: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Branching Program for the Permanent

perA =∑

σ∈Sn

n∏

i=1

Ai ,σ(i)

per

a b c

d e f

g h i

= aei + bfg + cdh+ afh+ bdi + ceg

Theorem (G.’12)

There exists a branching program of size 2n repre-senting the permanent of dimension n.

23 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 109: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Branching Program for the Permanent

perA =∑

σ∈Sn

n∏

i=1

Ai ,σ(i)

per

a b c

d e f

g h i

= aei + bfg + cdh+ afh+ bdi + ceg

Theorem (G.’12)

There exists a branching program of size 2n repre-senting the permanent of dimension n.

X11

X12

X13

X21

X23

X31

X32

X33

X22

s

t

23 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 110: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Permanent versus Determinant

Corollary

The permanent of dimension n is a projection of the determinant

of dimension N = 2n − 1.

24 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 111: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Permanent versus Determinant

Corollary

The permanent of dimension n is a projection of the determinant

of dimension N = 2n − 1.

per

a b c

d e f

g h i

= det

0 a d g 0 0 00 1 0 0 i f 00 0 1 0 0 c i

0 0 0 1 c 0 f

e 0 0 0 1 0 0h 0 0 0 0 1 0b 0 0 0 0 0 1

24 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 112: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’08)

Weakly-skew circuit of size s with i inputs

Determinant of a matrix of dimension (s + i + 1)

25 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 113: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’08)

Weakly-skew circuit of size s with i inputs

Determinant of a matrix of dimension (s + i + 1)

Theorem (G.-Kaltofen-Koiran-Portier’11)

If the underlying field has characteristic 6= 2,

25 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 114: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’08)

Weakly-skew circuit of size s with i inputs

Determinant of a matrix of dimension (s + i + 1)

Theorem (G.-Kaltofen-Koiran-Portier’11)

If the underlying field has characteristic 6= 2,

◮ Formula of size s Symmetric determinant of dimension 2s + 1

25 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 115: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Proposition (Liu-Regan’06, G.-Kaltofen-Koiran-Portier’11)

Formula of size s Determinant of a matrix of dimension (s+1)

Proposition (Toda’92, Malod-Portier’08)

Weakly-skew circuit of size s with i inputs

Determinant of a matrix of dimension (s + i + 1)

Theorem (G.-Kaltofen-Koiran-Portier’11)

If the underlying field has characteristic 6= 2,

◮ Formula of size s Symmetric determinant of dimension 2s + 1

◮ Weakly-skew circuit of size s with i inputs

Symmetric determinant of dimension 2(s + i) + 1

25 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 116: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Symmetric

Determinants

X

Y

Y

ZY

X

2

s

t

26 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 117: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Symmetric

Determinants

X

Y

Y

ZY

X

2

s

t

26 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 118: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Symmetric

Determinants

X

Y

Y

ZY

X

2

s

t

26 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 119: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Symmetric

Determinants

X

Y

Y

ZY

X

2

s

t

1/2

26 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 120: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Symmetric

Determinants

X

Y

Y

ZY

X

2

s

t

1/2

S =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 0 0 0 0 Y 0 X 0 0 0 0 12

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 00 −1 0 X 0 0 0 0 0 0 0 0 0 0 00 0 X 0 −1 0 0 0 0 0 0 0 0 0 00 0 0 −1 0 Y 0 0 0 0 0 0 0 0 00 0 0 0 Y 0 −1 0 0 0 0 0 0 0 00 0 0 0 0 −1 0 0 0 0 0 0 0 1 0Y 0 0 0 0 0 0 0 −1 0 0 0 0 0 00 0 0 0 0 0 0 −1 0 1 0 0 0 0 0X 0 0 0 0 0 0 0 1 0 −1 0 0 0 00 0 0 0 0 0 0 0 0 −1 0 Z 0 Y 00 0 0 0 0 0 0 0 0 0 Z 0 −1 0 00 0 0 0 0 0 0 0 0 0 0 −1 0 1 00 0 0 0 0 0 1 0 0 0 Y 0 1 0 112

0 0 0 0 0 0 0 0 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

26 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 121: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

From Branching Programs to Symmetric

Determinants

X

Y

Y

ZY

X

2

s

t

1/2

S =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 0 0 0 0 Y 0 X 0 0 0 0 12

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 00 −1 0 X 0 0 0 0 0 0 0 0 0 0 00 0 X 0 −1 0 0 0 0 0 0 0 0 0 00 0 0 −1 0 Y 0 0 0 0 0 0 0 0 00 0 0 0 Y 0 −1 0 0 0 0 0 0 0 00 0 0 0 0 −1 0 0 0 0 0 0 0 1 0Y 0 0 0 0 0 0 0 −1 0 0 0 0 0 00 0 0 0 0 0 0 −1 0 1 0 0 0 0 0X 0 0 0 0 0 0 0 1 0 −1 0 0 0 00 0 0 0 0 0 0 0 0 −1 0 Z 0 Y 00 0 0 0 0 0 0 0 0 0 Z 0 −1 0 00 0 0 0 0 0 0 0 0 0 0 −1 0 1 00 0 0 0 0 0 1 0 0 0 Y 0 1 0 112

0 0 0 0 0 0 0 0 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Corollary

Let M be an (n×n) matrix. Then there exists a symmetric matrix

S of dimension 23n

3 + o(n3) s.t. detM = det S .

26 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 122: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Same expressiveness:

◮ (Weakly-)Skew circuits

27 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 123: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Same expressiveness:

◮ (Weakly-)Skew circuits

◮ Branching Programs

27 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 124: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Same expressiveness:

◮ (Weakly-)Skew circuits

◮ Branching Programs

◮ Determinants

27 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 125: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Same expressiveness:

◮ (Weakly-)Skew circuits

◮ Branching Programs

◮ Determinants

◮ Symmetric Determinants in characteristic 6= 2

27 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 126: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Same expressiveness:

◮ (Weakly-)Skew circuits

◮ Branching Programs

◮ Determinants

◮ Symmetric Determinants in characteristic 6= 2

Theorem (G.-Monteil-Thomasse’12)

In characteristic 2, some polynomials cannot be represented by asymmetric determinant.

27 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 127: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Same expressiveness:

◮ (Weakly-)Skew circuits

◮ Branching Programs

◮ Determinants

◮ Symmetric Determinants in characteristic 6= 2

Theorem (G.-Monteil-Thomasse’12)

In characteristic 2, some polynomials cannot be represented by asymmetric determinant.

Main open question (Algebraic “P = NP?”)

What is the smallest N s.t. the permanent of dimension n is aprojection of the determinant of dimension N?

27 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 128: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

3. Factorization of lacunary polynomials

Page 129: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Introduction

−X 6 − X 2Y + X 5Y + XY 2 − X 4YZ − Y 2Z + X 4Z 2 + YZ 2

29 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 130: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Introduction

−X 6 − X 2Y + X 5Y + XY 2 − X 4YZ − Y 2Z + X 4Z 2 + YZ 2

= (X − Y + Z )(X 4 + Y )(Z − X )

29 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 131: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Introduction

−X 6 − X 2Y + X 5Y + XY 2 − X 4YZ − Y 2Z + X 4Z 2 + YZ 2

= (X − Y + Z )(X 4 + Y )(Z − X )

Factorization of a polynomial P

Find F1, . . . ,Ft s.t. P = F1 × · · · × Ft

29 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 132: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Introduction

−X 6 − X 2Y + X 5Y + XY 2 − X 4YZ − Y 2Z + X 4Z 2 + YZ 2

= (X − Y + Z )(X 4 + Y )(Z − X )

Factorization of a polynomial P

Find F1, . . . ,Ft s.t. P = F1 × · · · × Ft

P(X1, . . . ,Xn) =k∑

j=1

ajXα1j

1 · · ·Xαnjn

=⇒ size(P) =k∑

j=1

size(aj) + log(α1j) + · · ·+ log(αnj)

29 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 133: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Factorization of sparse univariate polynomials

P(X ) =k∑

j=1

ajXαj size(P) =

k∑

j=1

size(aj) + log(αj)

30 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 134: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Factorization of sparse univariate polynomials

P(X ) =k∑

j=1

ajXαj size(P) =

k∑

j=1

size(aj) + log(αj)

Proposition (Cucker-Koiran-Smale’98)

Polynomial-time algorithm to find integer roots if aj ∈ Z.

30 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 135: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Factorization of sparse univariate polynomials

P(X ) =k∑

j=1

ajXαj size(P) =

k∑

j=1

size(aj) + log(αj)

Proposition (Cucker-Koiran-Smale’98)

Polynomial-time algorithm to find integer roots if aj ∈ Z.

Proposition (Lenstra’99)

Polynomial-time algorithm to find factors of degree ≤ d if aj ∈ K,where K is an algebraic number field.

30 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 136: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Factorization of lacunary polynomials

Proposition (Kaltofen-Koiran’05)

Polynomial-time algorithm to find linear factors of bivariate la-cunary polynomials over Q.

31 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 137: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Factorization of lacunary polynomials

Proposition (Kaltofen-Koiran’05)

Polynomial-time algorithm to find linear factors of bivariate la-cunary polynomials over Q.

Proposition (Kaltofen-Koiran’06)

Polynomial-time algorithm to find low-degree factors of multi-

variate lacunary polynomials over algebraic number fields.

31 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 138: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Common ideas

Gap Theorem

P =ℓ∑

j=1

ajXαjY βj

︸ ︷︷ ︸

P0

+k∑

j=ℓ+1

ajXαjY βj

︸ ︷︷ ︸

P1

with α1 ≤ α2 ≤ · · · ≤ αk .

32 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 139: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Common ideas

Gap Theorem

P =ℓ∑

j=1

ajXαjY βj

︸ ︷︷ ︸

P0

+k∑

j=ℓ+1

ajXαjY βj

︸ ︷︷ ︸

P1

with α1 ≤ α2 ≤ · · · ≤ αk . Suppose that

αℓ+1 − αℓ > gap(P)

32 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 140: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Common ideas

Gap Theorem

P =ℓ∑

j=1

ajXαjY βj

︸ ︷︷ ︸

P0

+k∑

j=ℓ+1

ajXαjY βj

︸ ︷︷ ︸

P1

with α1 ≤ α2 ≤ · · · ≤ αk . Suppose that

αℓ+1 − αℓ > gap(P),

then F divides P iff F divides both P0 and P1.

32 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 141: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Common ideas

Gap Theorem

P =ℓ∑

j=1

ajXαjY βj

︸ ︷︷ ︸

P0

+k∑

j=ℓ+1

ajXαjY βj

︸ ︷︷ ︸

P1

with α1 ≤ α2 ≤ · · · ≤ αk . Suppose that

αℓ+1 − αℓ > gap(P),

then F divides P iff F divides both P0 and P1.

gap(P): function of the algebraic height of P .

32 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 142: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate

lacunary polynomials over algebraic number fields.

◮ Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran’05]

33 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 143: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate

lacunary polynomials over algebraic number fields.

◮ Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran’05]

◮ gap(P) independent of the height

33 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 144: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate

lacunary polynomials over algebraic number fields.

◮ Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran’05]

◮ gap(P) independent of the height

More elementary algorithms

33 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 145: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate

lacunary polynomials over algebraic number fields.

◮ Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran’05]

◮ gap(P) independent of the height

More elementary algorithms Gap Theorem valid over any field of characteristic 0

33 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 146: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate

lacunary polynomials over algebraic number fields.

◮ Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran’05]

◮ gap(P) independent of the height

More elementary algorithms Gap Theorem valid over any field of characteristic 0

◮ Extension to multilinear factors

33 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 147: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Results

Theorem (Chattopadhyay-G.-Koiran-Portier-Strozecki’12)

Polynomial time algorithm to find multilinear factors of bivariate

lacunary polynomials over algebraic number fields.

◮ Linear factors of bivariate lacunary polynomials[Kaltofen-Koiran’05]

◮ gap(P) independent of the height

More elementary algorithms Gap Theorem valid over any field of characteristic 0

◮ Extension to multilinear factors

◮ Results in positive characteristics

33 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 148: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Linear factors of bivariate polynomials

P(X ,Y ) =k∑

j=1

ajXαjY βj

34 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 149: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Linear factors of bivariate polynomials

P(X ,Y ) =k∑

j=1

ajXαjY βj

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

34 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 150: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Linear factors of bivariate polynomials

P(X ,Y ) =k∑

j=1

ajXαjY βj

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

◮ Study of polynomials of the form∑

j

ajXαj (uX + v)βj

34 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 151: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Linear factors of bivariate polynomials

P(X ,Y ) =k∑

j=1

ajXαjY βj

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

◮ Study of polynomials of the form∑

j

ajXαj (uX + v)βj

◮ K: any field of characteristic 0

34 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 152: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P ∈ K[X ]

35 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 153: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P ∈ K[X ]

Theorem

P =

k∑

j=1

ajXαj (uX + v)βj 6≡ 0, with α1 ≤ · · · ≤ αk

35 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 154: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P ∈ K[X ]

Theorem

P =

k∑

j=1

ajXαj (uX + v)βj 6≡ 0, with α1 ≤ · · · ≤ αk

=⇒ val(P) ≤ max1≤j≤k

(

αj +

(k + 1− j

2

))

35 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 155: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P ∈ K[X ]

Theorem

P =

k∑

j=1

ajXαj (uX + v)βj 6≡ 0, with α1 ≤ · · · ≤ αk

=⇒ val(P) ≤ α1 +

(k

2

)

◮ Xαj (uX + v)βj linearly independent

35 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 156: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Bound on the valuation

Definition

val(P) = degree of the lowest degree monomial of P ∈ K[X ]

Theorem

P =

k∑

j=1

ajXαj (uX + v)βj 6≡ 0, with α1 ≤ · · · ≤ αk

=⇒ val(P) ≤ α1 +

(k

2

)

◮ Xαj (uX + v)βj linearly independent

◮ Hajos’ Lemma: if α1 = · · · = αk , val(P) ≤ α1 + (k − 1)

35 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 157: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

The Wronskian

Definition

Let f1, . . . , fk ∈ K[X ]. Then

W(f1, . . . , fk) = det

f1 f2 . . . fkf ′1 f ′2 . . . f ′k...

......

f(k−1)1 f

(k−1)2 . . . f

(k−1)k

.

36 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 158: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

The Wronskian

Definition

Let f1, . . . , fk ∈ K[X ]. Then

W(f1, . . . , fk) = det

f1 f2 . . . fkf ′1 f ′2 . . . f ′k...

......

f(k−1)1 f

(k−1)2 . . . f

(k−1)k

.

Proposition (Bocher, 1900)

W(f1, . . . , fk) 6= 0 ⇐⇒ the fj ’s are linearly independent.

36 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 159: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Wronskian & valuation

Lemma

val(W(f1, . . . , fk)) ≥k∑

j=1

val(fj)−

(k

2

)

37 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 160: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Wronskian & valuation

Lemma

val(W(f1, . . . , fk)) ≥k∑

j=1

val(fj)−

(k

2

)

Lemma

Let fj = Xαj (uX + v)βj , linearly independent, s.t. αj , βj ≥ k − 1.

val(W(f1, . . . , fk)) ≤k∑

j=1

αj

37 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 161: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Wronskian & valuation

Lemma

val(W(f1, . . . , fk)) ≥k∑

j=1

val(fj)−

(k

2

)

Lemma

Let fj = Xαj (uX + v)βj , linearly independent, s.t. αj , βj ≥ k − 1.

val(W(f1, . . . , fk)) ≤k∑

j=1

αj

Proof of the theorem.k∑

j=1

αj ≥ val(W(f1, . . . , fk)) ≥ val(P) +

k∑

j=2

αj −

(k

2

)

37 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 162: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Gap Theorem

Theorem

Let

P =

ℓ∑

j=1

ajXαj (uX + v)βj

︸ ︷︷ ︸

P0

+

k∑

j=ℓ+1

ajXαj (uX + v)βj

︸ ︷︷ ︸

P1

with u, v 6= 0, α1 ≤ · · · ≤ αk . If

αℓ+1 > max1≤j≤ℓ

(

αj +

(ℓ+ 1− j

2

))

,

then P ≡ 0 iff both P0 ≡ 0 and P1 ≡ 0.

38 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 163: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Gap Theorem

Theorem

Let

P =

ℓ∑

j=1

ajXαj (uX + v)βj

︸ ︷︷ ︸

P0

+

k∑

j=ℓ+1

ajXαj (uX + v)βj

︸ ︷︷ ︸

P1

with u, v 6= 0, α1 ≤ · · · ≤ αk . If ℓ is the smallest index s.t.

αℓ+1 > α1 +

(ℓ

2

)

,

then P ≡ 0 iff both P0 ≡ 0 and P1 ≡ 0.

38 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 164: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Finding linear factors

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

39 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 165: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Finding linear factors

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

◮ PIT algorithm test a given linear factor

39 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 166: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Finding linear factors

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

◮ PIT algorithm test a given linear factor

◮ How to find linear factors?

39 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 167: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Finding linear factors

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

◮ PIT algorithm test a given linear factor

◮ How to find linear factors?

Gap theorem

P(X , uX + v) ≡ 0

⇐⇒ P1(X , uX + v) ≡ · · · ≡ Ps(X , uX + v) ≡ 0

39 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 168: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Finding linear factors

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

◮ PIT algorithm test a given linear factor

◮ How to find linear factors?

Gap theorem

P(X , uX + v) ≡ 0

⇐⇒ P1(X , uX + v) ≡ · · · ≡ Ps(X , uX + v) ≡ 0

◮ Find linear factors of low-degree polynomials [Kaltofen’82, . . . , Lecerf’07]

39 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 169: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Finding linear factors

Observation

(Y − uX − v) divides P(X ,Y ) ⇐⇒ P(X , uX + v) ≡ 0

◮ PIT algorithm test a given linear factor

◮ How to find linear factors?

Gap theorem

P(X , uX + v) ≡ 0

⇐⇒ P1(X , uX + v) ≡ · · · ≡ Ps(X , uX + v) ≡ 0

◮ Find linear factors of low-degree polynomials [Kaltofen’82, . . . , Lecerf’07]

◮ K: algebraic number field

39 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 170: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Positive characteristic

(1 + X )2n

+ (1 + X )2n+1

= X 2n(X + 1)

40 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 171: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Positive characteristic

(1 + X )2n

+ (1 + X )2n+1

= X 2n(X + 1)

Theorem

Let P =

k∑

j=1

ajXαj (1 + X )βj 6≡ 0, where p > maxj(αj + βj) and

aj ∈ Fps . Then val(P) ≤ maxj(αj +(k+1−j

2

)).

40 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 172: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Positive characteristic

(1 + X )2n

+ (1 + X )2n+1

= X 2n(X + 1)

Theorem

Let P =

k∑

j=1

ajXαj (1 + X )βj 6≡ 0, where p > maxj(αj + βj) and

aj ∈ Fps . Then val(P) ≤ maxj(αj +(k+1−j

2

)).

Theorem

Let P =∑

j ajXαjY βj ∈ Fps [X ,Y ], where p > maxj(αj + βj).

Finding factors of the form (uX + vY + w) is

◮ doable in randomized polynomial time if uvw 6= 0 ;

40 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 173: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Positive characteristic

(1 + X )2n

+ (1 + X )2n+1

= X 2n(X + 1)

Theorem

Let P =

k∑

j=1

ajXαj (1 + X )βj 6≡ 0, where p > maxj(αj + βj) and

aj ∈ Fps . Then val(P) ≤ maxj(αj +(k+1−j

2

)).

Theorem

Let P =∑

j ajXαjY βj ∈ Fps [X ,Y ], where p > maxj(αj + βj).

Finding factors of the form (uX + vY + w) is

◮ doable in randomized polynomial time if uvw 6= 0 ;

◮ NP-hard under randomized reductions otherwise.

40 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 174: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Finding multilinear factors of bivariate lacunary polynomials

◮ More elementary proofs for [Kaltofen-Koiran’05]

41 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 175: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Finding multilinear factors of bivariate lacunary polynomials

◮ More elementary proofs for [Kaltofen-Koiran’05]

◮ There exists P =

k∑

j=1

ajXαj (uX + v)βj s.t. val(P) = α1 + (2k − 3)

41 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 176: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Finding multilinear factors of bivariate lacunary polynomials

◮ More elementary proofs for [Kaltofen-Koiran’05]

◮ There exists P =

k∑

j=1

ajXαj (uX + v)βj s.t. val(P) = α1 + (2k − 3)

◮ Results in large positive characteristic

41 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 177: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Conclusion

Finding multilinear factors of bivariate lacunary polynomials

◮ More elementary proofs for [Kaltofen-Koiran’05]

◮ There exists P =

k∑

j=1

ajXαj (uX + v)βj s.t. val(P) = α1 + (2k − 3)

◮ Results in large positive characteristic

Main open problem

Extend to low-degree factors of multivariate polynomials

41 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 178: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Conclusion

Page 179: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 180: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 181: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 182: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants• As lists: dense, sparse, lacunary

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 183: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants• As lists: dense, sparse, lacunary

◮ Algorithms:

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 184: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants• As lists: dense, sparse, lacunary

◮ Algorithms:

• Factorization of lacunary polynomials

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 185: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants• As lists: dense, sparse, lacunary

◮ Algorithms:

• Factorization of lacunary polynomials• Polynomial identity testing for several representations

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 186: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants• As lists: dense, sparse, lacunary

◮ Algorithms:

• Factorization of lacunary polynomials• Polynomial identity testing for several representations

◮ Lower Bounds:

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 187: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants• As lists: dense, sparse, lacunary

◮ Algorithms:

• Factorization of lacunary polynomials• Polynomial identity testing for several representations

◮ Lower Bounds:

• For the resolution of polynomial systems

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 188: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants• As lists: dense, sparse, lacunary

◮ Algorithms:

• Factorization of lacunary polynomials• Polynomial identity testing for several representations

◮ Lower Bounds:

• For the resolution of polynomial systems• For the symmetric determinantal representations in characteristic 2

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 189: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants• As lists: dense, sparse, lacunary

◮ Algorithms:

• Factorization of lacunary polynomials• Polynomial identity testing for several representations

◮ Lower Bounds:

• For the resolution of polynomial systems• For the symmetric determinantal representations in characteristic 2

• For the arithmetic complexity of the permanent

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N

Page 190: Repr´esentations des polyn ˆomes, algorithmes et bornes ...grenet/publis/SoutenanceThese.pdfRepr´esentations des polyn ˆomes, algorithmes et bornes inf´erieures Bruno Grenet sous

Resolution of polynomial systems Determinantal Representations of Polynomials Factorization of lacunary polynomials

Summary

Representations of polynomials, algorithms and lower bounds

◮ Representations of polynomials:

• By circuits, branching programs, (symmetric) determinants• As lists: dense, sparse, lacunary

◮ Algorithms:

• Factorization of lacunary polynomials• Polynomial identity testing for several representations

◮ Lower Bounds:

• For the resolution of polynomial systems• For the symmetric determinantal representations in characteristic 2

• For the arithmetic complexity of the permanent

43 / 43Bruno Grenet PhD Defense – Nov. 29, 2012

N