9
Annales de Paléontologie 102 (2016) 69–77 Disponible en ligne sur ScienceDirect www.sciencedirect.com Article original Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae) in the uppermost Santonian-Campanian deposits (Abtalkh Formation) from the Kopet-Dagh Range (NE Iran) Restes de saccocomidés (Crinoidea, Roveacrinida, Saccocomidae) dans les dépôts d’âge Santonien terminal-Campanien (Formation Abtalkh) de la chaîne du Kopet-Dag (nord-est de l’Iran) Bruno Ferré a,, Atusa Honarmand b , Abbas Ghaderi b , Mohammad Vahidinia b a Dame du Lac 213, 3, rue Henri-Barbusse, 76300 Sotteville-lès-Rouen, France b Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran a r t i c l e i n f o Article history: Received 24 November 2015 Accepted 4 February 2016 Available online 5 March 2016 Keywords: Roveacrinida Saccocomidae Applinocrinus Cretaceous Santonian Campanian Abtalkh Formation Iran Eastern Tethys a b s t r a c t The washing residues of uppermost Santonian-Campanian marly sediments of the Abtalkh Formation from the Kopet-Dagh Range (NE Iran) provided numerous echinoderm plates among which centrodorsal plates assignable to roveacrinids. These latter are assigned to genus Applinocrinus Peck (Roveacrinida, Saccocomidae). The Iranian occurrence is a major milestone between the Indian occurrence of A. ramaraoi Jain and Mallikarjuna (Campanian), these of A. cretaceus Peck from the Late Cretaceous Boreal Basins (Anglo-Paris basin, Saxony basin), these of A. texanus Peck from the Gulf of Mexico, and those figured from the Maastrichtian Gramame Formation of Brazil (Microcalamoides Bonet). These specimens provide a better constrain in the palaeogeographic reconstruction of Tethyan seaways and represent a potential candidate as a fossil index in the Late Cretaceous stratigraphy of the Kopet-Dagh Range. Such a biozonal potential will be later on confirmed and correlated with the standard reference ammonite zones. © 2016 Elsevier Masson SAS. All rights reserved. Mots clés : Roveacrinida Saccocomidae Applinocrinus Crétacé Santonien Campanien Formation Abtalkh Iran Téthys orientale r é s u m é Les résidus de lavage de sédiments marneux d’âge Santonien terminal-Campanien de la Formation Abtalkh dans la Chaîne du Kopet-Dagh (NE Iran) ont livré de nombreux ossicules d’échinoderme parmi lesquels des plaques centrodorsales attribuées à des microcrinoïdes rovéacrinides. Ces derniers sont attribués au genre Applinocrinus Peck (Roveacrinida, Saccocomidae). Le matériel iranien constitue un jalon important entre l’occurrence indienne de A. ramaraoi Jain and Mallikarjuna (Campanien), celles de A. cretaceus Peck dans les bassins boréaux du Crétacé supérieur (bassin Anglo-Parisien, bassin de Saxe), celles de A. texanus Peck dans le golfe du Mexique et celles connues dans la Formation Gramame (Maastrichtien) du Brésil (Microcalamoides Bonet). Ces spécimens permettent une meilleure définition dans la reconstruction paléogéographique des voies marines téthysiennes et représentent un candidat potentiel (fossile index de zone) pour la stratigraphie du Crétacé supérieur de la Chaîne du Kopet-Dagh. Un tel potentiel biozonal devra être confirmé ultérieurement et corrélé aux zones de référence standards d’ammonites. © 2016 Elsevier Masson SAS. Tous droits réservés. Corresponding author. E-mail addresses: bruno [email protected] (B. Ferré), [email protected] (A. Honarmand), [email protected] (A. Ghaderi), [email protected] (M. Vahidinia). http://dx.doi.org/10.1016/j.annpal.2016.02.002 0753-3969/© 2016 Elsevier Masson SAS. All rights reserved.

Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

A

Sut

RdK

Ba

b

ARAA

KRSACSCAIE

MRSACSCFIT

(

0

Annales de Paléontologie 102 (2016) 69–77

Disponible en ligne sur

ScienceDirectwww.sciencedirect.com

rticle original

accocomid remains (Crinoidea, Roveacrinida, Saccocomidae) in theppermost Santonian-Campanian deposits (Abtalkh Formation) fromhe Kopet-Dagh Range (NE Iran)

estes de saccocomidés (Crinoidea, Roveacrinida, Saccocomidae) dans les dépôts’âge Santonien terminal-Campanien (Formation Abtalkh) de la chaîne duopet-Dag (nord-est de l’Iran)

runo Ferréa,∗, Atusa Honarmandb, Abbas Ghaderib, Mohammad Vahidiniab

Dame du Lac 213, 3, rue Henri-Barbusse, 76300 Sotteville-lès-Rouen, FranceDepartment of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran

a r t i c l e i n f o

rticle history:eceived 24 November 2015ccepted 4 February 2016vailable online 5 March 2016

eywords:oveacrinidaaccocomidaepplinocrinusretaceousantonianampanianbtalkh Formation

ranastern Tethys

a b s t r a c t

The washing residues of uppermost Santonian-Campanian marly sediments of the Abtalkh Formationfrom the Kopet-Dagh Range (NE Iran) provided numerous echinoderm plates among which centrodorsalplates assignable to roveacrinids. These latter are assigned to genus Applinocrinus Peck (Roveacrinida,Saccocomidae). The Iranian occurrence is a major milestone between the Indian occurrence of A. ramaraoiJain and Mallikarjuna (Campanian), these of A. cretaceus Peck from the Late Cretaceous Boreal Basins(Anglo-Paris basin, Saxony basin), these of A. texanus Peck from the Gulf of Mexico, and those figuredfrom the Maastrichtian Gramame Formation of Brazil (Microcalamoides Bonet). These specimens providea better constrain in the palaeogeographic reconstruction of Tethyan seaways and represent a potentialcandidate as a fossil index in the Late Cretaceous stratigraphy of the Kopet-Dagh Range. Such a biozonalpotential will be later on confirmed and correlated with the standard reference ammonite zones.

© 2016 Elsevier Masson SAS. All rights reserved.

ots clés :oveacrinidaaccocomidaepplinocrinusrétacéantonienampanienormation Abtalkh

r é s u m é

Les résidus de lavage de sédiments marneux d’âge Santonien terminal-Campanien de la FormationAbtalkh dans la Chaîne du Kopet-Dagh (NE Iran) ont livré de nombreux ossicules d’échinoderme parmilesquels des plaques centrodorsales attribuées à des microcrinoïdes rovéacrinides. Ces derniers sontattribués au genre Applinocrinus Peck (Roveacrinida, Saccocomidae). Le matériel iranien constitue unjalon important entre l’occurrence indienne de A. ramaraoi Jain and Mallikarjuna (Campanien), cellesde A. cretaceus Peck dans les bassins boréaux du Crétacé supérieur (bassin Anglo-Parisien, bassin deSaxe), celles de A. texanus Peck dans le golfe du Mexique et celles connues dans la Formation Gramame

ran (Maastrichtien) du Brésil (Microcalamoides Bonet). Ces spécimens permettent une meilleure définitionléogé

éthys orientale dans la reconstruction pa

potentiel (fossile index de zonUn tel potentiel biozonal devrad’ammonites.

∗ Corresponding author.E-mail addresses: bruno [email protected] (B. Ferré), [email protected] (A. H

M. Vahidinia).

http://dx.doi.org/10.1016/j.annpal.2016.02.002753-3969/© 2016 Elsevier Masson SAS. All rights reserved.

ographique des voies marines téthysiennes et représentent un candidat

e) pour la stratigraphie du Crétacé supérieur de la Chaîne du Kopet-Dagh.

être confirmé ultérieurement et corrélé aux zones de référence standards

© 2016 Elsevier Masson SAS. Tous droits réservés.

onarmand), [email protected] (A. Ghaderi), [email protected]

Page 2: Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

7 Paléon

1

EIcPonEPs1amtfKtt(iriBposFKotAbs

daan2

1

bam

1

lf(tcmNt1tssls

0 B. Ferré et al. / Annales de

. Introduction

The Kopet-Dagh range stretches over nearly 700 km in a WNW-SE direction east of the Caspian Sea, as a natural border betweenran and Turkmenistan (Fig. 1). There a gently-folded rock suc-ession displays between 5000 and 8000 m of Lower Jurassic toaleogene sedimentary deposits. The base of this succession isnly exposed in the eastern part of this mountain range, on Ira-ian territory. The Kopet-Dagh Basin was formed on Hercynian toarly Cimmerian basement, at the southern margin of the Turanianlatform, after the Middle Triassic orogeny as a result of the clo-ure of the Hercynian Ocean in northeast Iran (Berberian and King,981; Ruttner, 1993; Alavi et al., 1997; Golonka, 2004). There existsn anticline, which has been eroded down to pre-Jurassic base-ent over an area extending for ∼20 km long and 15 km wide. In

his basin, sedimentation was nearly continuous and conformablerom the Jurassic through Neogene (Afshar Harb, 1969, 1979, 1994;alantari, 1969, 1987). The thickness of these strata is usually more

han 4000 m, but reduces to about 2500 m in the eastern part ofhe basin. The shallow, glauconitic sandstone is overlain by a thick2000 m) sequence of pelagic marls, chalks and shales, indicatingncreased subsidence (Davoudzadeh and Schmidt, 1984). Tempo-ary emergence, without any noticeable folding, affected the regionn the Paleocene, resulting in the deposition of the Pestehligh Rededs (Afshar Harb, 1979). As a result, the Kopet-Dagh range dis-lays the most complete Cretaceous succession in northern Iran, i.e.ver 3000 m-thick deposits consisting in marine shales, marly lime-tones, and subordinate sandstones (Stocklin, 1968). The Abtalkhormation is one of the important Late Cretaceous units within theopet-Dagh sedimentary basin. This formation is composed mainlyf marls, shales, and silty marls. Up to now, few studies investigatedhe biostratigraphy of the Upper Cretaceous units including thebtalkh Formation (Table 1), but neglected its palaeoenvironmentecause of the lack of obvious bedding that hampers following thetratigraphic succession through the middle part of the formation.

Previous studies on the Upper Cretaceous stratigraphy and basinevelopment in the southern part of the Kopet-Dagh revealedbundant and diversified benthic and planktonic foraminiferalssemblages (e.g.: Afshar Harb, 1979; Vahidinia, 2007), along withumerous calcareous nannofossils (Hadavi, 2004; Foroughi et al.,014) and dinoflagellates (Ghourchaei et al., 2015).

.1. Location of study outcrop

The studied succession is located in the Central Kopet-Daghasin, 55 km NW of Dargaz City, next to the village of Bahadorkhannd close to the geographical border between Iran and Turk-enistan (58◦ 35′ 01′′ E and 37◦ 41′ 25′′ N) (Fig. 2A).

.2. Stratigraphical frame

The Abtalkh Formation overlies comformably on the last chalkyimestone bed of the Abderaz Formation (Fig. 2B), and is itself com-ormably overlain by the predominantly sandy Nayzar FormationFig. 2C). According to Afshar Harb (1994) and Aghanabati (2004),he Abtalkh Formation in its type-locality is transitional and liesonformably on the Abderaz Formation and under the Neyzar For-ation. In some parts of the western Kopet-Dagh, the absence of theeyzar, even Kalat, and Pestehligh Formations respectively makes

he Chehelkaman Formation lying disconformably (Afshar Harb,994; Fakouri, 1996). From its type-locality of eastern Kopet-Dagh,he Abtalkh Formation (some 700 to 1000 m-thick from east to

outh; Afshar Harb, 1979) is composed of pale grey to bluish-greenhales and siltstones, interlayered with limestones. Similarly, theithostratigraphical succession of the Bahadorkhan section is theame as that in the type section; however, the thickness of the

tologie 102 (2016) 69–77

formation is lesser than that in the type area with only 407.5 m(Figs. 2B–C, 3).

No noticeable work has dealt with the macrofauna of theAbtalkh Formation. In contrast, this formation has focused most ofthe attention from foraminifer workers (e.g. Vahidinia, 2007; Nyaziet al., 2013; Ahmadi et al., 2013; Ghourchaei et al., 2015) and cal-careous nannofossil researchers of Iran (e.g. Hadavi and Karami,2000; Hadavi and Sanati, 2000; Hadavi and Shokri, 2000; Hadaviand Khodadadi, 2002; Hadavi and Notghi Moghaddam, 2002, 2011;Hadavi, 2004) during the last decade.

Vahidinia (2007) recognized respectively: the Dicarinellaasymetrica–Globotruncana ventricosa Interval Zone, Globotrun-cana ventricosa–Globotruncana falsostuarti Interval Zone andGlobotruncana falsostuarti–Heterohelix Assemblage Zone whichcoined the age of the Abtalkh Formation as Early Campanian–Early-Middle Maastrichtian in the type area, at the Chahchaheh andHamam-Qaleh sections in central to eastern Kopet-Dagh. In themeantime, in the Padeha section, Ahmadi et al. (2013) believed theAbtalkh Formation to be latest Late Santonian–Early Maastrichtian;Nyazi et al. (2013) confirmed an earliest Early Campanian to LateCampanian age at the Qareh Sou section (respectively in easternand central Kopet-Dagh). Based on the planktonic foraminiferalcontent, Ghourchaei et al. (2012) dated the upper part of theAbtalkh Formation of the Gansseri-Mayaroensis Zones, i.e. a plainMaastrichtian age; however, Ghourchaei et al. (2015) assigned thewhole formation to Late Campanian–Maastrichtian at the Aitamirsyncline section (western Kopet-Dagh).

Hadavi and Notghi Moghaddam (2002), Hadavi and Khodadadi(2002), and finally Hadavi (2004) casted and refined the nannofossilbiozonation framework of the Abtalkh Formation in the stratotypicarea: the topmost chalky limestone of the Abderaz Formation wasthen determined as Early Campanian in age (Hadavi and NotghiMoghaddam, 2002). The first 70 m (lower part) of the Abtalkh For-mation (CC18a to CC22a–c coeval zones; zonation from Sissingh,1977, modified in Perch-Nielsen, 1985) was dated Late Campanian.The upper part of the formation documents Sissingh’s CC25c zone.Consequently, they considered the age of the Abtalkh Formation asEarly Campanian to Late Maastrichtian. Foroughi et al. (2014) pre-sented a new biozonal scheme for the Abtalkh Formation based onthe calcareous nannobiozonation of the Tethyan realm (Burnett,1998). They identified the respective biozones, from bottom totop: part of UC14dTP, UC15bTP, UC15cTP, UC15dTP and a part ofUC16 biozones in the Padeha and Jalilabad sections a latest EarlyCampanian–latest Late Campanian age for the Abtalkh Formation.

Preliminary biostratigraphic data (Hornamand, Vahidinia andGhaderi, ongoing study) from planktonic foraminifera confirmedthe existence of the Globotruncana elevata through Globotruncanahavanensis Zones and coined a Campanian age for the Bahadorkhanstratigraphic section (Fig. 3).

2. Roveacrinid crinoids (Microfacies and isolated ossicles)

Echinodermal macrofauna was previously seldom studied inIran; most echinoderm occurrences were published in gross micro-facies studies towards biostratigraphical purposes (Bozorgnia andBanafti, 1964). Very few studies dealt with Mesozoic echinodermsand even fewer focused on crinoids (for Triassic: Kristan-Tollmann,1991; Salamon et al., 2012). In microfacies, few studies concernedthe sections of skeletal plates. Lombard (1937) was the first toillustrate saccocomid sections, first considered as incertae sedis,then as algae Eothrix alpina (Lombard, 1945). Brönnimann (1955)

erected genus Lombardia for sections from middle Tithonian ofCuba, similar to those figured by Lombard (1945). Verniory (1954,1955, 1956, 1960, 1961, 1962) fully illustrated and demonstratedthat sections of both authors were genuine sections of ossicles
Page 3: Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

B. Ferré et al. / Annales de Paléontologie 102 (2016) 69–77 71

Fig. 1. General geographical map of northeastern Iran and the Kopet-Dag range area, and location of the studied section.

Carte géographique du nord-ouest de l’Iran et de la chaîne du Kopet-Dag et localisation de la zone d’étude.

Table 1Brief review of paleontological and stratigraphical studies on the Abtalkh Formation.Bref historique des études paléontologiques et stratigraphiques de la Formation Abtalkh.

Authors Section Location Age BiostratigraphicalGroup

Geographicalcoordinates

Ghourchaei et al.,2014

Aitamirsyncline

WesternKopet-Dagh

Late Campanian– Maastrichtian

PlanktonicForaminifera

57◦40′21′′E37◦20′00′′N

Foroughi et al., 2014 Jalilabad CentralKopet-Dagh

uppermost EarlyCampanian– uppermost LateCampanian

Nanofossils 59◦45′10′′E36◦57′50′′N

Foroughi et al., 2014 Padeha EasternKopet-Dagh

uppermost EarlyCampanian– uppermost LateCampanian

Nanofossils 60◦44′00′′E36◦06′47′′N

Ahmadi et al., 2013 Padeha EasternKopet-Dagh

uppermost Late Santonian– Early Maastrichtian

PlanktonicForaminifera

60◦44′40′′E36◦06′24′′N

Nyazi et al., 2013 Qareh Sou CentralKopet-Dagh

lowermost EarlyCampanianto Late Campanian

PlanktonicForaminifera

59◦42′03′′E36◦56′38′ ′N

Vahidinia, 2007 Mozdouran,Chahchaheh,Hamam-Qaleh

Central toEasternKopet-Dagh

Early Campanian– Early Maastrichtian

PlanktonicForaminifera

Hadavi, 2004 Chahchaheh EasternKopet-Dagh

Early CampanianLate Maastrichtian

Nanofossils 60◦19′40′′E36◦38′55′′N

Rahaghi, 1971, in:Afshar Harb, 1994

Type section EasternKopet-Dagh

Campanian–Maastrichtian PlanktonicForaminifera

36◦09’35′′N60◦35’30′′E

Kalantari, 1969 Padeha, Padali,Shourijeh andNar

EasternKopet-Dagh

Coniacian–Maastrichtian PlanktonicForaminifera

o3sptr(yBesttaaa

Bozorgnia andBanafti, 1964

Type sectionandChahchaheh

EasternKopet-Dagh

f genus Saccocoma Agassiz. Verniory (1954–1962) reconstructedD skeletal plates of Saccocoma from oriented sections of Juras-ic deposits of Switzerland. Rasmussen (1961) and Peck (1973)roduced stratigraphical and taxonomical reviews of isolated Cre-aceous roveacrinids. In the mid-90s, Ferré and Berthou (1993)edefined roveacrinid microfacies of mid-Cretaceous Sergipe BasinBrazil). Since then, a few studies focused on the systematic anal-sis of roveacrinid sections (Dias-Brito and Ferré, 2001; Ferré anderthou, 1994; Ferré and Dias-Brito, 1999; Ferré et al., 1999; Ferrét al., 2005); a growing number of bio- and litho-stratigrapherstarted mentionning roveacrinid sections and microfacies fromheir field and lab observations. As far as Iran geology and bios-

ratigraphy are concerned, saccocomid microfacies are ratherbundant and are used to constrain the Jurassic-Cretaceous bound-ry. As for Cretaceous, only van Buchem et al. (1996) figured

roveacrinid-microfacies level from the Cretaceous deposits of

Santonian–Maastrichtian PlanktonicForaminifera

the Arabian platform (Cenomanian-Turonian Natih Formation ofN-Oman). Therefore, the material described herein sets a most valu-able milestone for both Iranian paleobiodiversity and stratigraphy.

Saccocomids (Saccocoma Agassiz and Crassicoma Sieverts-Doreck and Hess, in: Hess, 2002, for the Jurassic relatives,Applinocrinus Peck for Cretaceous representatives), are a groupof pelagic crinoids, characteristic of outer inner-shelf and upperslope deposits. They are noticeably abundant in the Upper Juras-sic deposits (Saccocoma marls and limestones; see Nicosia andParisi, 1979; Manni and Nicosia, 1984; Manni et al., 1992; Krohand Lukeneder, 2009) and occur in definite index Cretaceous levelsof the Tethyan realm and beyond (South America, see Lima, 2002;

Barragán and Diaz, 2004; Lima and Koutsoukos, 2006; Kietzmannand Palma, 2009). Their whole skeletton (ca 5 cm in diameter, com-prising a single theca and five dichotomous arms) consists of a largenumber of arm plates (Brodacki, 2006), the disarticulation of these
Page 4: Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

72 B. Ferré et al. / Annales de Paléontologie 102 (2016) 69–77

Fig. 2. A. Location map of the Bahadorkhan section NW of Dargaz City; B. General view (to the north) of the Bahadorkhan village and position of the boundary between theA tion lA généraA sur le

l(i

3

pM

cA

tU

adssroeTarsooe

btalkh Formation and Neyzar Formation; C. Lower boundary of the Abtalkh Forma. Carte de localisation de la coupe de Bahadorkhan, NW de la ville de Dargaz ; B. Vue

btalkh et la Formation Neyzar ; C. Limite inférieure de la Formation Abtalkh reposant

atter being responsible for the highly recognizable microfaciessoon after death, the plates dissociate, break down and crumblento the soft muddy sediments).

. Systematics

In the following, we are adopting the suprageneric systematicsroposed in the Treatise on Invertebrate Paleontology (Hess andessing, 2011).Class Crinoidea Miller, 1821Subclass Articulata Zittel, 1879Order Roveacrinida Sieverts-Doreck, 1953Family Saccocomidae d’Orbigny, 1852Genus Applinocrinus Peck, 1973

Applinocrinus sp.Figs. 4A–L, 5A–LMaterial: 48 specimens among which 24 figured, all isolated

entrodorsal plates (Repository numbers: FUM-AH#101 to FUM-H#124 for figures).

Repository: The illustrated specimens are housed in the collec-ions (Department of Geology, Faculty of Sciences) of the Ferdowsiniversity of Mashhad (Mashhad, Iran).

Description: All the plates are centrodorsals whose size is rel-tively homogenous. They are mostly pentagonal in outline. Theyisplay finely crenulated suture margins, with 7–9 crenulae peride. All plates are slightly convex and possess upward-divergingides. Their outer side is finely corrugated and covered by 3–4 thinadiating ridgelets on each side of the main radial ridge; the 8 radialrnamental ridges terminate at the crenulated margin. The betterxpressed the ornamentation, the coarser the crenulated sutures.he relatively smaller plates show a rather coarse corrugation and

rather prominent basal bowl. They appear covered by 5 thickadiating ridges. The inner surface of most plates is smooth. The

pecimens with coarse ornamentation display a basal umbo that isne-third the size of the whole ossicle and rises slightly above thessicle level. In specimens with fine ribs this umbo is minute, orven lacking. The precise shape of small centrodorsals is difficult to

ocated on the last chalky limestone bed (ch.) of the Abderaz Formation.le (vers le nord) du village de Bahadorkhan et position de la limite entre la Formation

dernier niveau de calcaire crayeux (ch.) de la Formation Abderaz.

ascertain because of gross architecture. However in finely ribbedspecimens this basal plate displays a minute umbo rising above theoverall finely ribbed outer surface.

Size: ca. 0.5 mm in full width [Min: 0.341-Mean: 0.493-Max:0.600].

Discussion: According to Jagt (1999), A. cretaceus (Bather) andA. texanus Peck represent two extreme ecophenotypic variants of asingle species, stating a rather wide morphological variation of the-cal ornamentation. Therefore, Jagt synonymized these two speciessince both morphotypes may co-occur in the same beds.

The smaller specimens from Iran displaying an umbo at thecenter of the centrodorsal plate resemble A. texanus Peck for itselongate silhouette, A. ramaraoi Jain and Mallikarjuna for its “basalplate ring”, and Turonian roveacrinid Roveacrinoides Rasmussen forits dorsal cup. We might assume that younger specimens possessa centrodorsal cup (with a possible vestigial stem-and-rootingdevice) as a relic of a bottom-attached stage after their planktonicstage of life (like any other echinoderm brood) and their subsequentfall down the bottom. The whole material of Iran would documenta resorbtion of stereom (detachment from the stem) during theearly stages of life towards an adult/mating stage with a pelagicpseudo-active swimming mode of life.

Taxonomic remarks: Although the specimens display obviousoriginal features from A. cretaceus (Bather)-A. texanus Peck, andfrom A. ramaraoi Jain and Mallikarjuna, we do lack of a completeor nearly complete cup to support a definitive specific diagnosis;therefore we prefer leaving their taxonomic assignment in opennomenclature.

Occurrence: The specimens at hand were found in the wash-ing residues of the samples from the following locality (Fig. 3)and the following levels (see details Fig. 4): Bahadorkhan sec-tion (Kopet-Dagh Range), uppermost Abderaz Formation andAbtalkh Formation, uppermost Santonian/Campanian (no macro-fossil zone), foraminiferal zones: from Dicarinella asymetrica Zoneto Globotruncanella havanensis Zone.

4. Stratigraphic range - Prospective biozonation

In the Kopet Dag Range macrofossils can be found easily in num-bers; however, publications of their taxonomic investigation are

Page 5: Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

B. Ferré et al. / Annales de Paléontologie 102 (2016) 69–77 73

raphi

raphiq

swb(uow1g

Fig. 3. Lithological section and synthetic stratig

Coupe lithologique et synthèse des données stratig

till seldom. Though Jurassic saccocomid microfacies are knownorldwide to locate on field and in lab the Jurassic–Cretaceous

oundary, more specifically the Kimmeridgian–Portlandian limitfor instance see Brönnimann, 1955), Cretaceous saccocomids aresually down-sighted and/or overlooked by field stratigraphers and

verspecialized micropaleontologists because of their so-calledorthlessness. Peck (1943, 1948, 1955, 1973), Rasmussen (1961,

971, 1975, 1978) and Jagt (1999) provided full-detailed strati-raphical reports; as a whole, their abundance levels (event and

cal data. PFZs: Planktonic Foraminiferal Zones.

ues. PFZs : Zones de Foraminifères planctoniques.

sequence stratigraphy) can be worthy in local, regional, and evenworldwide correlations. Besides the taxonomic piece of knowl-edge the material at hand delivers, this new find of saccocomidin late Cretaceous deposits provides an additional milestone toan event zonation, comparable to the Uintacrinus socialis Grin-

nell or Marsupites testudinarius Schlotheim Zones before theSantonian–Campanian boundary (Mitchell, 2009), and to a possiblesaccocomid biozone in a field guide. Furthermore, this also sug-gests potential future additional discoveries since Maastrichtian
Page 6: Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

74 B. Ferré et al. / Annales de Paléontologie 102 (2016) 69–77

Fig. 4. SEM photographs of centrodorsal plates of Applinocrinus sp., Uppermost Santonian-Campanian deposits, Abtalkh Formation, Kopet-Dag Range, NE Iran (A–C. uppermostSantonian; D–L. Campanian). A. Sample no. 12, FUM-AH#101; B. Sample no. 14, FUM-AH#102; C. Sample no. 18, FUM-AH#103; D. Sample no. 18, FUM-AH#104; E. Sampleno. 30, FUM-AH#105; F. Sample no. 30, FUM-AH#106; G. Sample no. 24, FUM-AH#107; H. Sample no. 42, FUM-AH#108; I. Sample no. 42, FUM-AH#109; J. Sample no. 52,FUM-AH#110; K. Sample no. 52, FUM-AH#111; L. Sample no. 54, FUM-AH#112. Scale bar: 100 �m.Clichés MEB de pièces centrodorsales du genre Applinocrinus des sédiments d’âge Santonien terminal-Campanien, Formation Abtalkh, Chaîne du Kopet-Dag, NE Iran (A–C. Santoniensupérieur ; D–L. Campanien). A. Échantillon no 12, FUM-AH#101 ; B. Échantillon no 14, FUM-AH#102 ; C. Échantillon no 18, FUM-AH#103 ; D. Échantillon no 18, FUM-AH#104 ; E.Échantillon no 30, FUM-AH#105 ; F. Échantillon no 30, FUM-AH#106 ; G. Échantillon no 24, FUM-AH#107 ; H. Échantillon no 42, FUM-AH#108 ; I. Échantillon no 42, FUM-AH#109; J. Échantillon no 52, FUM-AH#110 ; K. Échantillon no 52, FUM-AH#111 ; L. Échantillon no 54, FUM-AH#112. Barre d’échelle : 100 �m.

Page 7: Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

B. Ferré et al. / Annales de Paléontologie 102 (2016) 69–77 75

Fig. 5. SEM photographs of centrodorsal plates of Applinocrinus sp., Campanian, Abtalkh Formation, Kopet-Dag Range, NE Iran. A. Sample no. 42; FUM-AH#113; B. Sampleno. 30, FUM-AH#114; C. Sample no. 33, FUM-AH#115; D. Sample no. 52, FUM-AH#116; E. Sample no. 30, FUM-AH#117; F. Sample no. 55, FUM-AH#118; G. Sample no.55, FUM-AH#119; H. Sample no. 64, FUM-AH#120; I. Sample no. 64, FUM-AH#121; J. Sample no. 64, FUM-AH#122; K. Sample no. 64, FUM-AH#123; L. Sample no. 33;FUM-AH#124. Scale bar: 100 �m.Clichés MEB de pièces centrodorsales du genre Applinocrinus des sédiments campaniens, Formation Abtalkh, Chaîne du Kopet-Dag, NE Iran. Échantillon no 42 ; FUM-AH#113 ;B. Échantillon no 30, FUM-AH#114 ; C. Échantillon no 33, FUM-AH#115 ; D. Échantillon no 52, FUM-AH#116 ; E. Échantillon no 30, FUM-AH#117 ; F. Échantillon no 55, FUM-AH#118 ; G. Échantillon no 55, FUM-AH#119 ; H. Échantillon no 64, FUM-AH#120 ; I. Échantillon no 64, FUM-AH#121 ; J. Échantillon no 64, FUM-AH#122 ; K. Échantillon no 64,FUM-AH#123 ; L. Échantillon no 33 ; FUM-AH#124. Barre d’échelle : 100 �m. A.

Page 8: Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

7 Paléon

ctcsbSaa(ftpB

5

twptlp(apbf

ftswFwtsssmcpSkficwtmHwc

6

ptipa(lbe

6 B. Ferré et al. / Annales de

rinoid faunas are relatively diverse in roveacrinids, such as inhe stratotypic area (Jagt, 1999). If such saccocomid horizonsan also be evidenced around the Tethys Ocean, in compari-on with the roveacrinid event around the Cenomanian–Turonianoundary (Gale et al., 1993) and likewise documented for theantonian–Campanian boundary (Gale et al., 1995), this will set andditional correlative horizon towards a better datation refinementnd long-distance correlation along the north-tethyan seawayCros et al., 1991; Dercourt et al., 2000). Additionally, from a micro-acies point of view, semi-quantification of roveacrinid ossicles inhin sections could be a useful tool towards biozonation, in com-arison with the Late Oxfordian–Early Kimmeridgian biozones ofenzaggagh et al. (2015).

. Taphonomy- Paleoecology

A brief taphonomic analysis of the material at hand indicateshat the majority of crinoids is preserved as isolated ossicles;e must therefore bear in mind that this could result from areparation bias (drying/soaking sediments, mechanical washingremors and mesh-size screening, human hand-picking). Neverthe-ess, the observed disarticulation pattern, the fairly good state ofreservation, the low or absent abrasion, and the shape of ossiclespreservation of crenulae on basal articular margins) suggest that,fter death, these crinoid skeletons were not transported far away,robably dismantled in situ at the sediment interface before finalurial. It is similarly preserved as crinoid assemblages described soar from other regions in Poland.

Milsom (1994) postulated that these crinoids were benthicorms, thecae of which were embedded in the sediment and fil-ering passively: the proximal part of their arms lying on theeafloor as a sort of «snowshoe», the more distal portions uprightere building a feeding bowl. Later on, Ferré (in: Dias-Brito and

erré, 2001) argued that roveacrinids, as well as saccocomids,ere benthic forms, their widespread paleogeographic distribu-

ion and tethyan-wide dispersal may reflect an early planktonictage as any echinoderm brood or juvenile, and they sank to theeafloor as benthic bottom-dweller adults with possible activewimming to escape predatory pressure. Based on the functionalorphology of arms and thecae, Milsom (1994) came to the con-

lusion that Applinocrinus was a bottom dweller, feeding from theelagic sinking nutrients from the surface (hemipelagic dredger).chneider (1987, 1989) suggested that roveacrinids were someind of hemipelagic dredgers since their thecae could have beenlled with gas. During bottom-predator raid, the arms of theserinoids were likely fast-contracting, such reflex movement alongith the buoyancy increase provided by gas could have contributed

o escape predatory pressure. In the present state of knowledge, theaterial at hand does not allow to take a stand on their mode of life.owever, the hemipelagic epibenthic bottom-dweller hypothesisith facultative dredge, likewise any current comatulid, does not

ontradict previous data.

. Conclusion

The finding of centrodorsal plates of saccocomid in the Cam-anian deposits from the Kopet-Dagh Range allows us to bridgehe gap of the saccocomid record between the late Santoniansolate ossicle of the Anglo-Paris Basin (Pacy-sur-Andelle: Ferré,ers. dat.), the Lower-Middle Maastrichtian Indian species (Jainnd Mallikarjuna, 1996), and the Late Maastrichtian stratotype

Jagt, 1999), and provides us with an intermediate milestoneinking the southeastern asian occurrences (India: ibid.) and theoreal northern tethyan margin (Anglo-Paris Basin) along a north-rn tethyan seaway. Furthermore, the deposits could represent

tologie 102 (2016) 69–77

a potential onfield marker bed and subsequently a potentialTethyan-wide event-level towards a better long-distance correla-tion. This fossil group, so far turned down by stratigraphers andfield geologists, reveals to be a potential fossil guide to constrainthe Campanian–Maastrichtian boundary until we document moreabundantly its vertical range.

Disclosure of interest

The authors declare that they have no competing interest.

Acknowledgements

The authors wish to express their most sincere thanks to theanonymous reviewers for their valuable advice and highlightedcomments on the preliminary manuscript.

References

Afshar Harb, A., 1969. A brief history of geological exploration and geology of Sarakhsarea and Khangiran gas field. Bulletin of the Iranian Petroleum Institute 37 (2),86–96 (in Persian).

Afshar Harb, A., 1979. The stratigraphy, tectonics and petroleum geology of theKopet-Dagh region, Northern Iran. PhD thesis of the University of London, 316p. (Unpublished).

Afshar Harb, A., 1994. Geology of Iran: Geology of Kopet-Dagh. Geological survey ofIran, 276 p.

Aghanabati, A., 2004. Geology of Iran. Geological survey of Iran, 568 p.Ahmadi, M., Vahidinia, M., Ashouri, A.R., 2013. Paleoecology of Abtalkh Formation

based on planktonic and benthic foraminifera in Padeha section. Kopet-DaghBasin. Sedimentary Facies 5 (2), 119–134 (in Persian).

Alavi, M., Vaziri, H., Seyed-Emami, K., Lasemi, Y., 1997. The Triassic and associatedrocks of the Aghdarband areas in central and northeastern Iran as remnant ofthe southern Turanian active continental margin. Geological Society of AmericaBulletin 109, 1563–1575.

Barragán-Manzo, R., Díaz-Otero, C., 2004. Análisis de microfacies y datos micropa-leontológicos de la transición Barremiano–Aptiano en la Sierra del Rosario,Durango. México. Revista Mexicana de Ciencias Geológicas 21 (2), 247–259.

Benzaggagh, M., Homberg, C., Schnyder, J., Ben Abdessalem-Mahdaoui, S., 2015.Description et biozonation des sections de crinoïdes saccocomidés du Jurassiquesupérieur (Oxfordien-Tithonien) du domaine téthysien occidental. Annales dePaléontologie 101 (2), 95–117.

Berberian, M., King, G.G.P., 1981. Towards a paleogeography and tectonic evolutionof Iran. Canadian Journal of Earth Sciences 18, 210–265.

Bozorgnia, F., Banafti, S., 1964. Microfacies and microorganisms of Paleozoic throughtertiary sediments of some parts of Iran, 22 p., 158 pls.

Brodacki, M., 2006. Functional anatomy and mode of life of the latest Jurassic crinoidSaccocoma. Acta Palaeontolologica Polonica 51 (2), 261–270.

Brönnimann, P., 1955. Microfossils incertae sedis from the Upper Jurassic and LowerCretaceous of Cuba. Micropaleontology 1 (1), 28–51.

van Buchem, F.S.P., Eschard, R., Desaubliaux, G.M.J., Razin, P., Platel, J.-P., Roger, J.,Homewood, P.W., Boisseau, T., Leduc, J.-P., Labourdette, R., Cantaloube, S., Philip,J.M., Eberli, G.P., 1996. High Resolution Sequence Stratigraphy of the Natih For-mation (Cenomanian/Turonian) in Northern Oman: Distribution of Source Rocksand Reservoir Facies. GeoArabia 1 (1), 65–91.

Burnett, J.A., 1998. Upper Cretaceous. In: Bown, P.R. (Ed.), Calcareous NannofossilBiostratigraphy. Chapman and Hall, Cambridge, pp. 132–199.

Cros, P., Dercourt, J., Günay, Y., Fourcade, É., Bellier, J.-P., Lauer, J.-P., Manivit, H.,Kozlu, H., 1991. La plate-forme arabe en Turquie du sud : une rampe carbon-atée albo-turonienne effondrée au Sénonien. Bulletin des Centres de RechercheExploration Production Elf-Aquitaine, Pau 15 (1), 215–237.

Davoudzadeh, M., Schmidt, K., 1984. Review of the Mesozoic paleogeography andpaleotectonic evolution of Iran. Neues Jahrbuch für Geologie und Paläontologie.Abhandlungen 2 (1), 182–207.

Dercourt, J., Ricou, L.E., Vrielynck, B. (Eds.), 2000. Atlas Tethys Paleoenvironmentalmaps. Ed. CCGM, Paris, 268 p., 24 maps.

Dias-Brito, D., Ferré, B., 2001. Rovearinids [sic] (stemless crinoids) in the Albiancarbonates of the offshore Santos Basin, southeastern Brazil: stratigraphic,palaeobiogeographic and palaeoceanographic significance. Journal of SouthAmerican Earth Sciences 14 (2), 203–218.

Fakouri, G.A., 1996. Microbiostratigraphy of Paleocene sediment in Itamir andTakelkouh area (west of Kopet-Dagh). Shahid Beheshti University (Unpublishedthesis in Persian).

Ferré, B., Berthou, P.-Y., 1993. Roveacrinidal remains from the Cotinguiba forma-tion (Cenomanian-Turonian) of the Sergipe Basin (NE-Brazil). - 13 ◦Congresso

Brasileiro de Paleontologia , 1o Symposio Paleontologico do Cone Sul, SaoLeopoldo, Brazil, Sept. 19-26, 1993, Boletim de Resumos, p. 119.

Ferré, B., Berthou, P.Y., 1994. Roveacrinidal remains from the Cotinguiba forma-tion (Cenomanian-Turonian) of the Sergipe Basin (NE-Brazil). Acta GeologicaLeopoldensia XVIII (39/1), 299–313.

Page 9: Saccocomid remains (Crinoidea, Roveacrinida, Saccocomidae ...profdoc.um.ac.ir/articles/a/1055714.pdfSantonian–Maastrichtian Planktonic Foraminifera – of genus Saccocoma Agassiz

Paléon

F

F

F

F

G

G

G

G

G

H

H

H

H

H

H

H

H

H

J

J

K

K

K

K

K

B. Ferré et al. / Annales de

erré, B., Dias-Brito, D., 1999. Microfacies recognition of Roveacrinid families Lom-bardia, Eothrix, Globochaete and other strains. In: Dias-Brito, D., de Castro, J.C.,Rohn, R. (Eds.), Boletim do 5◦ Simposio sobre o Cretaceo do Brasil, pp. 651–659.

erré, B., Fernandez-Gonzalez, M., Dias-Brito, D., 1999. New insight into Microcalam-oides Bonet, 1956 - Revised systematics and subsequent bearings. In: Dias-Brito,D., de Castro, J.C., Rohn, R. (Eds.), Boletim do 5o Simposio sobre o Cretaceo doBrasil, pp. 661–668.

erré, B., Walter, S., Bengtson, P., 2005. Roveacrinids in mid-Cretaceous biostratig-raphy of the Sergipe Basin, northeastern Brazil. Journal of South American EarthSciences 19, 259–272.

oroughi, F., Gardin, S., Lotfali Kani, A., 2014. Tethyan affinity of Campanian calcare-ous nannofossils in Kopet-Dagh basin (North and Northeast of Iran) , Abstractvolume and proceedings of the Third International Symposium of the Interna-tional Geosciences Programme Project (IGCP- 598), pp. 125–130.

ale, A.S., Jenkyns, H.C., Kennedy, W.J., Corfield, R.M., 1993. Chemostratigra-phy versus biostratigraphy: Data from around the Cenomanian-Turonianboundary. Journal of the Geological Society 150 (1), 29–32, http://dx.doi.org/10.1144/gsjgs.150.1.0029.

ale, A.S., Montgomery, P., Kennedy, W.J., Hancock, J.M., Burnett, J.A., McArthur,J.M., 1995. Definition and global correlation of the Santonian-Campanian bound-ary. Terra Nova 7 (6), 611–622, http://dx.doi.org/10.1111/j.1365-3121.1995.tb00710.x.

hourchaei, S., Vahidinia, M., Ashouri, A.R., 2012. Late Maastrichtian benthicforaminiferal response to palaeoenvironmental changes: a case study from theAbTalkh Formation, west of Kopeh-Dagh Basin, Iran. Geopersia 2 (2), 25–42.

hourchaei, S., Ghasemi-Nejad, E., Vahidinia, M., Ashouri, A., 2015. Paleoen-vironmental reconstruction of the Upper Cretaceous succession (AbtalkhFormation) of the Kopeh-Dagh Basin, northeastern Iran based on foraminiferaland palynological analyses. Arabian Journal of Geosciences 8 (4), 2153–2168,http://dx.doi.org/10.1007/s12517-014-1276-3.

olonka, J., 2004. Plate tectonic evolution of the southern margin of Eur-asia in the Mesozoic and Cenozoic. Tectonophysics 38 (1), 235–273,http://dx.doi.org/10.1016/j.tecto.2002.06.004.

adavi, F., 2004. Calcareous nannofossils from the Abtalkh Formation (Campanian-Maastrichtian), Kopet-Dagh range, NE Iran. Journal of Nannoplankton Research26 (1), 63–68.

adavi, F., Karami, Z., 2000. Biostratigraphy of the Abderaz Formation in Taher Abad,Proceedings of the 4th Symposium of the Geological Society of Iran, Tabriz, pp.150–154.

adavi, F., Khodadadi, L., 2002. Calcareous nannoplankton of the Campanian-Maastrichtian of NE Iran. Journal of Nannoplankton Research 24 (2), 109.

adavi, F., Notghi Moghaddam, M., 2002. Calcareous nannofossils from the ChalkyLimestone in the Kopet-Dagh range, NE Iran. Journal of Nannoplankton Research24 (2), 110.

adavi, F., Notghi Moghaddam, M., 2011. Calcareous nannofossils from chalky lime-stone of upper Abderaz Formation and lower part of Abtalkh Formation in theKopet-Dogh range NE Iran. Arabian Journal of Geosciences 4 (7–8), 1041–1049,http://dx.doi.org/10.1007/s12517-009-0106-5.

adavi, F., Sanati, F., 2000. Biostratigraphical studies of the Abderaz Formation atthe type section. Isfahan University Research Bulletin 13, 197–229.

adavi, F., Shokri, M.H., 2000. Biostratigraphy of the Sarchashmeh Formation in thetype section in the Kopet-Dagh range , Proceedings of the 18th Symposium onGeoscience, Tehran, pp. 127–131.

ess, H., 2002. Remains of Saccocomids (Crinoidea: Echinodermata) from the UpperJurassic of southern Germany. Stuttgarter Beiträge zur Naturkunde B329, 1–55.

ess, H., Messing, C.G., 2011. Treatise on Invertebrate Paleontology, Part T, Echin-odermata 2 Revised, Crinoidea 3. University of Kansas Press, Lawrence, Kansas,xxix+261 p.

agt, J.W.M., 1999. Late Cretaceous–Early Paleogene echinoderms and the K/T bound-ary in the southeast Netherlands and northeast Belgium. Part 2: Crinoids. ScriptaGeologica 116, 1–57.

ain, S.P., Mallikarjuna, U.B., 1996. Applinocrinus ramaraoi, a new species of Micro-crinoid from the Ariyalur Group (Late Cretaceous) of South India. MemoirGeological Society of India 37, 189–192.

alantari, A., 1969. Foraminifera from the middle-Jurassic-Cretaceous of Kopet-Dagh region (NE Iran). Tehran NIOC. Geol. Laboratories Publication 3, 1–298(Unpublished Ph.D. thesis, London University).

alantari, A., 1987. Biofacies Relationship of the Kopet-Dagh Region. National IranianOil Company: Exploration, Production Group, Tehran, 1 Sheet.

ietzmann, D.A., Palma, R.M., 2009. Microcrinoideos saccocómidos en el Titho-niano de la Cuenca Neuquina. ¿Una presencia inesperada fuera de laregión del Tethys? Ameghiniana (Asociación Paleontológica Argentina) 46 (4),695–700.

ristan-Tollmann, E., 1991. Echinoderms from the Middle Triassic Sina Formation

(Aghdarband Group) in NE Iran. Abhandlungen Geologischen Bundesanstalt 38,175–194.

roh, A., Lukeneder, A., 2009. Crinoids from the Late Jurassic of the Nutzhof section(Lower Austria, Gresten Klippenbelt). Annalen des Naturhistorisches MuseumWien 110A, 383–399.

tologie 102 (2016) 69–77 77

Lima, F.H.O., 2002. Estratigrafia integrada do Maastrichtiano (Formac ão Gramame)da Bacia de Pernambuco-Paraíba–NE do Brasil: Caracterizac ão faciológica eevoluc ão paleoambiental. Tese de Doutorado (não publicada). Universidade Fed-eral do Rio Grande do Sul, Porto Alegre, Brazil, 2 vol., 478 p.

Lima, F.H.O., Koutsoukos, E.A.M., 2006. Towards an Integrated Stratigraphy ofthe Gramame Formation (Maastrichtian), CIPASA Quarry, Pernambuco-ParaíbaBasin, NE Brazil. Anuário do Instituto de Geociências–UFRJ 29 (1), 81–94.

Lombard, A., 1937. Microfossiles d’attribution incertaine du Jurassique supérieuralpin. Eclogae Geologicae Helvetiae 30, 320–331.

Lombard, A., 1945. Attribution de microfossiles du Jurassique supérieur alpin à desChlorophycées. Eclogae Geologicae Helvetiae 38, 163–173.

Manni, R., Nicosia, U., 1984. Saccocoma vernioryi n. sp., a new saccocomid from theUpper Jurassic of the Central Italy. Geologica Romana 23, 91–97.

Manni, R., Nicosia, U., Szabo, I., 1992. Late Jurassic crinoids from the Eperkéh-egy (Bakony Mts, Hungary). Fragmenta Mineralogica et Palaeontologica 15,115–137.

Milsom, C.V., 1994. Saccocoma: A benthic crinoid from the Jurassic Solnhofen Lime-stone. Germany. Palaeontology 37, 121–129.

Mitchell, S.F., 2009. The Cretaceous crinoid Uintacrinus socialis from Jamaica and itssignificance for global correlation. Geological Magazine 146 (06), 937.

Nicosia, U., Parisi, G., 1979. Saccocoma tenella (Goldfuss)–Distribuzione stratigraficae geografica. Bollettino della Societa Paleontologica Italiana 18 (2), 320–326.

Nyazi, M., Vahidinia, M., Ashouri, A.R., 2013. Microbiostratigraphy and Paleoecologyof the Abtalkh Formation based on foraminifera at Qareh-Sou section (Southwestof Kalat-e-Naderi, NE Iran). Sedimentary Facies 6 (1), 95–114 (in Persian).

Peck, R.E., 1943. Lower Cretaceous crinoids from Texas. Journal of Paleontology 17(5), 451–475.

Peck, R.E., 1948. A Triassic crinoid from Mexico. Journal of Paleontology 22 (1), 81–84.Peck, R.E., 1955. Cretaceous Microcrinoids from England. Journal of Paleontology 29

(6), 1019–1029.Peck, R.E., 1973. Applinocrinus, a New Genus of Cretaceous Microcrinoids and Its

Distribution in North America. Journal of Paleontology 47 (1), 94–100.Perch-Nielsen, K., 1985. Mesozoic calcareous nannofossils. In: Bolli, H.M., Saunders,

J.B., Perch-Nielsen, K. (Eds.), Plankton stratigraphy. Cambridge University Press,Cambridge, pp. 329–426.

Rasmussen, H.W., 1961. A Monograph on the Cretaceous Crinoidea. BiologiskeSkrifter udgivet af Det Kongelige Danske Videnskabernes Selskab 12 (1),1–428.

Rasmussen, H.W., 1971. Cretaceous Crinoidea (Comatulida and Roveacrinida)from England and France. Bulletin of the Geological Society of Denmark 20,285–294.

Rasmussen, H.W., 1975. Neue Crinoiden aus der Oberkreide bei Hannover. Berichteder Naturhistorischen Gesellschaft, Hannover 119, 279–283.

Rasmussen, H.W., 1978. Articulata. In: Moore, R.C., Teichert, C. (Eds.), Treatise onInvertebrate Paleontology, Part. T, Echinodermata 2, vol. 3. The Geological Soci-ety of America and University of Kansas Press, Boulder and Lawrence, pp.813–928.

Ruttner, A.W., 1993. Southern borderland of Triassic Laurasia in northeast Iran.Geologische Rundschau 82, 110–120.

Salamon, M., Aghababaloub, B., Gorzelak, P., Niedzwiedzki, R., 2012. Intriguingcrinoid remains from the Rhaetian of Iran and their possible implications forthe mid-Carnian crinoid extinction event. Geobios 45 (5), 479–484.

Schneider, H.L., 1987. Zur Kelchmorphologie und Systematik der RoveacrininaePECK, 1943 (Crinoidea, Oberkreide). Neues Jahrbuch für Geologie und Paläon-tologie, Abhandlungen 175 (2), 181–206.

Schneider, H.L., 1989. Zur Morphologie und Ontogenese von Roveacrinus geinitzin. sp. (Crinoidea, Oberkreide). Neues Jahrbuch für Geologie und Paläontologie.Abhandlungen 178 (2), 167–181.

Sissingh, W., 1977. Biostratigraphy of Cretaceous nannoplankton. Geologie en Mijn-bouw 56, 37–65.

Stocklin, J., 1968. Structural history and tectonics of Iran: a review. Bulletin of Amer-ican Association of Petroleum Geologists 52, 58–129.

Vahidinia, M., 2007. The biostratigraphy of deposits in Kopet-Dagh Basin duringSenonian to Maastrichtian. PhD thesis of the Shahid Beheshti University (Unpub-lished, in Persian).

Verniory, R., 1954. Eothrix alpina Lombard, Algue ou Crinoïde ? Archives des SciencesGenève 7, 327.

Verniory, R., 1955. Extension géographique et stratigraphique du genre SaccocomaAgassiz dans le Dauphiné méridional et en Provence. Archives des SciencesGenève 8, 225–226.

Verniory, R., 1956. La création du genre Lombardia Brönnimann est-elle justifiée ?Archives des Sciences Genève 9, 86.

Verniory, R., 1960. Présence (et variétés) de Saccocoma tenella Goldfuss à Talloires(Haute-Savoie). Archives des Sciences Genève 13, 250–257.

Verniory, R., 1961. Présence de Saccocoma quenstedti Doreck (in coll.) dans lesgorges de la Méouge (Sisteron Provence). Archives des Sciences Genève 14,315–320.

Verniory, R., 1962. Une nouvelle forme de Saccocoma (Montbrand, Hautes-Alpes,France). Archives des Sciences Genève 15, 391–397.