5
296 Physica 129B ( 1985 ) 296-300 North-Holland, Amsterdam SIMULATION OF DEEP DEPLETED SOl MOSFETS WITH BACK POTENTIAL CONTROL Francis BALESTRA, Jean BRINI and Pierre GENTIL Laboratoire de Physique des Composants ~ Semiconducteurs, ERA-CNRS 659, ENSERG, 23 rue des Martyrs, 38031 Grenoble Cedex, France We consider SOl MOSFET structures of N and P types for which a control of the back potential of the epi layer is obtained by using a back gate. The action of the interface parameters on the back and front threshold voltages is analysed in the case of a strong coupling between the front and back interface (lightly doped epl layer). This analysis is carried out by a numerical simulation of Poisson's equation throughout the structure. We thus obtain the potential profile and the electron and hole densities, as a function of front ( Vg f ) and back (Vg 2) gate voltages. We a/so deduce the Id(Vg I, Vg 2) characteristics in the case of low drain voltage. Experimental material is given by CMOS/SOS transistors, the sapphire substrate of which has been locally thinned down. Comparison of the experimental l d(vg 2) characteristics with the simulated characteristics allows us to determine directly the fast state density and the fixed charge at the back interface. t. INTRODUCTION We study CMOS/SOS transistors of both N and P types, the channels of which are made ot the same lightly doped N-silicon. The N-channel transistor is a deep depleted one, whereas the P-channel transistor is of enhancement type. The sapphire substrate has been locally thinned down by ultrasonic drilling to about 501zm. A high voltage (2kV) applied on the back side of the transistor (through a metallisation of the sapphire) allows us to control the potential at the back interface of the silicon epi layer. In the case of a lightly doped epi layer, both interfaces are too strongly coupled to be described by a simple analytical model. For this reason, we developed a numerical simulation of Poisson's equation for this type ot structure. Several authors [1-6] have given models of the threshold voltage of these devices, but without analysing precisely the influence of the back interface. Our program allows us to give account of the action of the interface parameters on both transfer characteristics : drain current (I d) versus front gate voltage (Vg 1) and versus back gate voltage (Vg2). 2. PROGRAMMING CONSIDERATIONS The program uses a finite difference method. For the calculation we have chosen a non -linear overrelaxation method, the overrelaxation coefficient being calculated periodically. The input variables are. geometry of transistors, doping or doping profile N d, fixed charge at the two interfaces Qssl (at the front interface) and Oss 2 (at the back interface), surface state density Nst (uniformly distributed) at the back interface (with accepter states between the conduction band and the midgap , and donor states between the valence band and the midgap) , applied gate to source voltages at the two gates, thicknesses ot silicon dioxide, silicon and sapphire ( eSA ) . The program provides: potential, electron and hole densities inside the film tot a given value ot trent and back gate voltages, the I d(Vg) characteristics (trent or back Vg, the other one being fixed) of the two types ot transistor. These curves are plotted for a low drain voltage ( I Vd I =20mY). The insulator thicknesses are, in the case which is analysed, 501Lm for the sapphire and 65nm for 0378-4363/85/$03.30 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

Simulation of deep depleted SOI MOSFET's with back potential control

Embed Size (px)

Citation preview

Page 1: Simulation of deep depleted SOI MOSFET's with back potential control

296 Physica 129B ( 1985 ) 296-300 North-Holland, Amsterdam

SIMULATION OF DEEP DEPLETED SOl MOSFETS WITH BACK POTENTIAL CONTROL

Franc is BALESTRA, Jean BRINI and Pierre GENTIL

Labo ra to i r e de Phys ique des Composan ts ~ S e m i c o n d u c t e u r s , E R A - C N R S 659, ENSERG, 23 rue des Mar t y r s , 3 8 0 3 1 Grenoble Cedex, France

We c o n s i d e r SOl M O S F E T s t r u c t u r e s of N and P types fo r wh ich a c o n t r o l o f the b a c k p o t e n t i a l o f the ep i l a y e r is o b t a i n e d by u s i n g a b a c k g a t e . The a c t i o n o f the i n t e r f a c e p a r a m e t e r s on the b a c k a n d f r o n t t h r e s h o l d v o l t a g e s is a n a l y s e d in the c a s e o f a s t r o n g c o u p l i n g b e t w e e n the f r o n t a n d b a c k i n t e r f a c e ( l igh t ly doped epl l aye r ) . This ana lys is is c a r r i e d out by a n u m e r i c a l s i m u l a t i o n of Po isson 's equa t i on t h r o u g h o u t the s t r u c t u r e . We thus o b t a i n the p o t e n t i a l p r o f i l e a n d the e l e c t r o n a n d h o l e d e n s i t i e s , as a f u n c t i o n of f r o n t ( Vg f ) a n d b a c k (Vg 2) gate voltages. We a/so deduce the Id(Vg I , Vg 2) character ist ics in the case of low drain voltage. E x p e r i m e n t a l m a t e r i a l is g iven by C M O S / S O S t r a n s i s t o r s , the s a p p h i r e s u b s t r a t e of wh ich has been l o c a l l y t h i nned down. C o m p a r i s o n of the e x p e r i m e n t a l l d ( v g 2) c h a r a c t e r i s t i c s with the s i m u l a t e d c h a r a c t e r i s t i c s a l lows us to de te rmine d i rec t ly the fast s tate densi ty and the f ixed charge at the back in te r face .

t . I N T R O D U C T I O N

We s tudy C M O S / S O S t r a n s i s t o r s of bo th N and P

t ypes , the c h a n n e l s o f wh i ch a re m a d e ot the s a m e

l i g h t l y d o p e d N - s i l i c o n . The N - c h a n n e l t r a n s i s t o r

is a d e e p d e p l e t e d o n e , w h e r e a s the P - c h a n n e l

t r a n s i s t o r is o f e n h a n c e m e n t t y p e . The s a p p h i r e

s u b s t r a t e has b e e n l o c a l l y t h i n n e d down by

u l t r a s o n i c d r i l l i n g to a b o u t 501zm. A h i g h v o l t a g e

( 2 k V ) a p p l i e d on the b a c k s i d e of the t r a n s i s t o r

( t h rough a m e t a l l i s a t i o n of the s a p p h i r e ) a l lows us to

c o n t r o l the p o t e n t i a l a t the b a c k i n t e r f a c e o f the

s i l i con epi layer.

In the c a s e o f a l i g h t l y d o p e d e p i l a y e r , bo th

i n t e r f a c e s a re too s t r o n g l y c o u p l e d to be d e s c r i b e d

by a s i m p l e a n a l y t i c a l m o d e l . F o r th i s r e a s o n , we

deve loped a numer i ca l s imu la t i on of Poisson's equat ion

f o r t h i s t ype ot s t r u c t u r e . S e v e r a l a u t h o r s [ 1 - 6 ]

have g iven m o d e l s o f the t h r e s h o l d vo l t age o f t hese

d e v i c e s , b u t w i t h o u t a n a l y s i n g p r e c i s e l y the

i n f l u e n c e of the back i n t e r f a c e . Our p r o g r a m a l lows

us to g i ve a c c o u n t o f the a c t i o n o f the i n t e r f a c e

p a r a m e t e r s on bo th t r a n s f e r c h a r a c t e r i s t i c s : d r a i n

c u r r e n t ( I d ) v e r s u s f r o n t g a t e v o l t a g e (Vg 1) a n d

versus back gate voltage ( V g 2 ) .

2. PROGRAMMING CONSIDERATIONS

The p r o g r a m uses a f in i te d i f f e r e n c e me thod . For

the c a l c u l a t i o n we have c h o s e n a non - l i n e a r

ove r re laxa t ion me thod , the ove r re laxa t ion c o e f f i c i e n t

b e i n g c a l c u l a t e d p e r i o d i c a l l y . The i n p u t v a r i a b l e s

a r e . g e o m e t r y o f t r a n s i s t o r s , d o p i n g o r d o p i n g

p r o f i l e N d, f i xed c h a r g e at the two i n t e r f a c e s Q s s l

( a t the f r o n t i n t e r f a c e ) and Oss 2 ( a t the b a c k

i n t e r f a c e ) , s u r f a c e s t a t e d e n s i t y N s t ( u n i f o r m l y

d i s t r i b u t e d ) a t the b a c k i n t e r f a c e ( w i t h a c c e p t e r

s ta tes be tween the c o n d u c t i o n band and the m i d g a p ,

and d o n o r s t a tes be tween the v a l e n c e b a n d and the

m i d g a p ) , a p p l i e d ga te to s o u r c e vo l t ages at the two

g a t e s , t h i c k n e s s e s ot s i l i c o n d i o x i d e , s i l i c o n a n d

sapph i re ( eSA ) .

The p r o g r a m p r o v i d e s : p o t e n t i a l , e l e c t r o n and

h o l e d e n s i t i e s i n s i d e the f i l m t o t a g i ven va lue ot

t r e n t a n d b a c k g a t e v o l t a g e s , the I d ( V g )

c h a r a c t e r i s t i c s ( t r e n t o r b a c k Vg, the o t h e r one

b e i n g f i x e d ) o f the two t ypes ot t r a n s i s t o r . These

c u r v e s a re p l o t t e d f o r a low d r a i n v o l t a g e

( I V d I =20mY) .

The i n s u l a t o r t h i c k n e s s e s a r e , in the c a s e

which is ana lysed , 501Lm for the sapph i r e and 65nm for

0378-4363/85/$03.30 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

Page 2: Simulation of deep depleted SOI MOSFET's with back potential control

F. Balestra et al. / Deep depleted SOI MOSFETS 297

the f ron t gate ox ide, with a O. 61zm s i l i con f i lm . Al l the

c h a r a c t e r i s t i c s a re p l o t t e d f o r the f r o n t and back

g a t e - c h a n n e l work f u n c t i o n s set e q u a l to z e r o . A

t r a n s l a t i o n of the va lue o t the f r o n t g a t e - c h a n n e l

work f u n c t i o n f o r f r o n t t h r e s h o l d vo l t ages mus t be

done a c c o r d i n g to the f ron t gate m a t e r i a l used. The

back g a t e - c h a n n e l work func t ion has no i m p o r t a n c e

b e c a u s e o f i ts low va lue c o m p a r e d to the a p p l i e d

back ga te v o l t a g e . The i n t e g r a t i o n of the e l e c t r o n

a n d ho le d e n s i t i e s to o b t a i n the d r a i n c u r r e n t is

worked out with a cons tan t mob i l i t y . This Is ev ident ly

wrong but a var iable mob i l i t y would not af fect p r ima r i l y

the t h r e s h o l d v o l t a g e wh ich is o u r p a r a m e t e r of

interest in this work.

We have pa r t i cu la r l y s tud ied the in f luence of f ixed

cha rge dens i ty and s u r f a c e state dens i ty at the back

i n t e r f a c e on t h r e s h o l d vo l tages . We have p l o t t e d in

f i g u r e 1 p o t e n t i a l p r o f i l e s f o r s e v e r a l back ga te

vo l t ages with a f i xed f r o n t gate vo l t age , with a non

zero back i n te r f ace state dens i ty . We can c lea r l y see

the change of f ron t su r face po ten t i a l of mo re than one

h u n d r e d m i l l / v o l t s when the back s u r f a c e p o t e n t i a l

varies f rom st rong accumu la t ion into s t rong invers ion.

The low d o p i n g is r e s p o n s i b l e f o r th is s t r o n g

coupl ing between the two interfaces.

SiOz %0

0.6

.., 0.2 - 0

-0.2 Q Q.

-0.6

-1.0 0

5i AL~O3

~~ vg2(v)

O0 -

1 -lsoo ..... i/ ,oo

e ,oo . . . . . ) :2400

01 0.2 O3 0.¢ 0.5 06 X (pro)

3. BACK THRESHOLD VOLTAGE

We have p l o t t e d the I d ( Vg 2) c h a r a c t e r i s t i c s fo r

seve ra l f i xed c h a r g e dens i t i es at the back i n t e r f a c e

and s e v e r a l d o p i n g s o f the s i l i c o n f i l m , the b a c k

i n t e r f ace s ta te dens i ty b e i n g set equa l to zero . The

t h r e s h o l d v o l t a g e s o f N - c h a n n e l and P - c h a n n e l

t r a n s i s t o r s , m e a s u r e d In the l i n e a r zone of I d ( V g )

c h a r a c t e r i s t i c s on a l i n e a r sca le in s t rong i nve rs ion

or s t rong a c c u m u l a t i o n , a re a lmos t i den t i ca l fo r the

d i f f e r e n t f ixed cha rges and d o p i n g s . The s a p p h i r e

is very th i ck and thus the t e r m s wh ich have no t the

s a p p h i r e t h i ckness as a f a c t o r in the e x p r e s s i o n o f

the t h r e s h o l d vo l tage a re n e g l i g i b l e . Thus the f ixed

c h a r g e at the back i n t e r f a c e and the d o p i n g of the

s i l i c o n f i l m have on ly s t r a n s l a t i o n e f f e c t on bo th

threshold voltages.

We show in f igure 2 an example of the dependence

of d r a i n c u r r e n t on back ga te vo l t age wi th a non

ze ro s u r f a c e s ta te d e n s i t y . We n o t i c e a s t r o n g

assymet ry of the ac t i on o f the i n te r f ace states on the

t h r e s h o l d v o l t a g e s o f N - c h a n n e l and P - c h a n n e l

1|-'/

1 0 4 T___

I I I-~

P-CHANNEL

Nst=I 510'ncm"~eV -1 " ~ " "

1 | -~ i i -2~10 -1000 -1200

V | f l V I

N-CHANNEL

.Nsr:o

i

-600

Figure 1

Variation of potential inside sil icon fi lm for various

values of V_ 2 with non zero Nst. Vg1=O ,

Nd=fO2Om-'V°i eSA=5Olzm, Q s s l / q = l o l O c m - 2 ,

O s s 2 / q = l O t 2 c m -2 , N s t = l . 5 1012cm-2eV -1

Figure 2

I d {Vg 2) character is t ics obta ined with non zero

Nst compared to Nst = O. Vgl=O, eSA=5Olzm,

Nd= 1020m-3, C/ss t / q = I 0 1 0 c m - 2 Qss2/q = f 012cm-2

Page 3: Simulation of deep depleted SOI MOSFET's with back potential control

298 f~ Balestra et al. / Deep depicted SO1 MOSI*'ETS

]200

>2400

t

~1600

800

i i

1012 210r2 Nst [[m-2eV -1)

F igu re 3

D i f fe rence in back threshold voltages ot N -channe l

and P-channe l transistors as a funct ion of the hack

i n te r f ace s ta te dens i ty Nst . eSA=1OOlzm.

t r a n s i t o r s . Th is is c o n f i r m e d by the p l o t o f the tsgure

3. We s h o w the d i f f e r e n c e in t h r e s h o l d v o l t a g e s as a

f u n c t i o n o f b a c k i n t e r f a c e s t a t e d e n s i t y . T h i s

d i f f e r e n c e is i n d e p e n d e n t o f t he f i x e d c h a r g e

d e n s i t y a t t he b a c k i n t e r f a c e a n d i n d e p e n d e n t o f

s i l i con d o p i n g .

We thus ob ta in a d i r e c t m e a s u r e of the s ta te dens i t y

a t t he b a c k i n t e r f a c e by t he d i f f e r e n c e o f b a c k

t h r e s h o l d v o l t a g e s f o r b o t h t y p e s o t t r a n s i s t o r . We

have a l s o a m e a n s o f d e t e r m i n i n g the f i x e d c h a r g e

d e n s i t y a t the b a c k i n t e r f a c e by u s i n g the p o s i t i o n o t

t he t h r e s h o l d v o l t a g e s o f N - c h a n n e l a n d P - c h a n n e l

t rans i s to rs c o m p a r e d to zero .

4. FRONT THRESHOLD VOLTAGE

We have s t u d i e d the f r o n t t h r e s h o l d v o l t a g e s o f

b o t h types o f t r a n s i s t o r u n d e r s a m e c o n d i t i o n s as the

s t u d y p r e v i o u s l y d o n e f o r t he b a c k t h r e s h o l d

v o l t a g e s , p a r t i c u l a r l y to e x a m i n e the i n f l u e n c e o f the

f i x e d c h a r g e s a n d t he s u r f a c e s t a t e s a t t h e b a c k

~" II.6

~ -t.2 !

~000

G s s 2 / q = l O ~ cm-7

. . . . . . . Qss~/q= lOU cm-~

V~N

~ V l p

.'1 i t I i 1 1 i J ¢

| 10 ~ 2.10 ~ Nsl" [cm-2,eV -11

F igure 4

D e p e n d e n c e of the f ron t t h resho ld vo l tages of

N - c h a n n e l and P - c h a n n e l t rans is to rs on the back

i n te r f ace s ta te dens i ty with two d i f f e r e n t back

f ixed cha rges . Vg2=O, Q s s l / q = l O l O c m - 2 ,

Nd=102Om-3

i n t e r f a c e . F i g u r e 4 is the p l o t o t the d e p e n d e n c e o t

bo th f r o n t t h r e s h o l d v o l t a g e s on b a c k i n t e r f a c e s t a te

d e n s i t y o b t a i n e d by s i m u l a t i o n . We have p l o t t e d th is

v a r i a t i o n f o r two d e n s i t i e s o f b a c k f i xed c h a r g e s . We

n o t e t h e d i f f e r e n c e in t he v a r i a t i o n o f t he f r o n t

t h r e s h o l d v o l t a g e s o t t he P - c h a n n e l t r a n s i s t o r f o r

the two b a c k f i x e d c h a r g e s . Th is is the r e s u l t o f the

d i s t r i b u t i o n o t b a c k i n t e r f a c e s t a t e s in a c c e p t o r

s ta tes and dono r s ta tes .

We c a n o b s e r v e t h a t t he b a c k i n t e r f a c e s t a t e

d e n s i t y has no m o r e e f f e c t on the t h r e s h o l d v o l t a g e

when i t is h i g h e r than 101 2 c m - 2 e V - 1. A f t e r th is l i m i t

t he b a c k s u r f a c e p o t e n t i a l no l o n g e r v a r i e s ; i t is

f i xed n e a r the F e r m i p o t e n t i a l . We can say t ha t when

the s t a t e d e n s i t y is h i g h e r than th is va lue a v a r i a t i o n

o f t h e d e n s i t y f r o m t r a n s i s t o r to t r a n s i s t o r has no

e f f e c t on t he t h r e s h o l d v o l t a g e s . Th i s l e a d s p a r a -

d o x i c a l l y to an i n c r e a s e d r e l i a b i l i t y o f t he

Page 4: Simulation of deep depleted SOI MOSFET's with back potential control

[~ Balestra et al. / Deep depleted SO1 MOSFETS 299

t e c h n o l o g y for a h igh value of the back i n t e r f a c e

s ta te dens i t y . This is not the case when it is

lower.

3. EXPERIMENT

The tested c i r cu i t s are P- type and N- type SOS-

MOS t ransis tors previously descr ibed. The thickness

of the sapphire after s l imming is determined by opt ical

measure, with an accuracy of 2 0 t . Back voltages are

varying between -2000V and +2000V. We study these

t r a n s i s t o r s with low d ra in vo l tages

( I V d l = 2 O m V ) (F ig , 5a and 5 b ) . We measure the

t h r e s h o l d vo l tage in the l i nea r zone of the I d ( V g )

curve, in the same way as on the s imulat ion c u r v e s .

-lO-Z

-lg-~

,<

-i= -lO-lO

-lO-'n -2 -1 0 1 2

Vg21KVI

Figure 5a

Experimental characterist ic Id(Vg 2) of P-channel

transistor. Vd=-2OmV. eSA=fOO#m.

10 -o

10 -9

-~ I0-IE

-2 -1 0 1 Vg2 I KV I

Figure 5b

Experimental character ist ic Id (Vg 2) of N-channel

transistor. Vd=2OmV. esA=lOOlzm.

The d i f f e rence of the back th resho ld vol tages of

N - c h a n n e l and P - c h a n n e l t r ans i s t o r s , which is of

2100 Vo l ts , leads ( f i g u r e 3) to a dens i t y of back

in te r face states at the s i l i c o n - s a p p h i r e in te r face of

about 1 . 5 l O Z 2 c m - 2 e V - Z W e t h u s h a v e a d / r e c t

measure of the back in ter face state density by s imple

d i f f e r e n c e in t h r e s h o l d vo l tages . I t is the gap

between the t h r e s h o l d vo l tages which give us the

value of the state densi ty , and we have a measure of

the back f ixed charge dens i ty by us ing the pos i t i on

of the t h r e s h o l d vo l tages of N - c h a n n e l and P -

c h a n n e l t r a n s i s t o r s c o m p a r e d to zero. This las t

measu re is less a c c u r a t e than that of the s ta te

dens i t y . M o r e o v e r th is value is d e p e n d e n t on the

chosen d i s t r i b u t i o n of the back i n t e r f a c e s ta tes ,

whereas the value of the s ta te dens i t y is

i n d e p e n d e n t o f i ts d i s t r i b u t i o n in a c c e p t o r s ta tes

and donor s ta tes . Never the less we can say that the

back f ixed cha rge is low, c e r t a i n l y l ower than

1011cm-2 ,

The value of the d i f f e r e n c e in t h r e s h o l d

vo l tages is d e p e n d e n t of the s a p p h i r e t h i c k n e s s ,

and we thus have an inde te rmina t ion of about 20% of

the value of the back in te r face state densi ty l ike that

of the s a p p h i r e th i ckness ( f i g . 3 ) . Neve r t he less ,

the f r on t t h r e s h o l d vo l tages are in a zone of Nst

s u f f i c i e n t l y s t r ong to be i n d e p e n d e n t of such a

var ia t ion of the dens i ty ( f i g . 4 ) . In th is zone of Nst

the f ront th resho ld vol tages are pa r t i cu la r l y s tab le ,

and a l m o s t i n d e p e n d e n t of a va r ia t i on of the back

interface state density or of the back fixed charge.

6. CONCLUSION

Our p rog ram al lows us to de te rmine d i rec t l y the

i n f l u e n c e of the i n t e r f a c e p a r a m e t e r s on the

e lec t r i ca l cha rac te r i s t i cs of a mu l t l l ayer s t ruc tu re .

For CMOS/SOS t rans is tors a high densi ty of states at

the back in te r face is ob ta ined. We can observe that

we are in a zone of Nat where the f ron t t h r e s h o l d

vo l tages are p a r t i c u l a r l y s t a b l e . This leads to an

increased re l iab i l i ty of the deep depleted CMOS/SOS

t e c h n o l o g y .

T h l s p r o g r a m is eas i l y a p p l i c a b l e to any SO/

Page 5: Simulation of deep depleted SOI MOSFET's with back potential control

300 t,. Balestra et al. i Deep depleted SO1 MOSI,'ETS

s t r u c t u r e l ike S IMOX, where the back gate is

constituted by the si l icon substrate.

ACKNOWLEDGEMENTS

The authors would l ike to thank M. MONTIER and

Y. "GRIS of EFCIS for t he i r e n c o u r a g e m e n t and tor

s u p p l y i n g the SOS MOSFET's used in our m e a -

surements.

REFEREN C ES

I , M. R. Splinter, IEEE Trans. Electr.

Dev. ED-25, 996 (1978)

2. D. Kranzer, K. Schlgtter and D.

Takacs, IEEE Trans. Electron. Dev.

ED-25, 890 (1978)

3.

4.

5.

6.

V. Kowshik and D .J . Dumin, IEEE

Trans. Electron. Dev. ED-28, 993

(1981)

N. Sasaki and R. Togei, Solid St.

Electron. 22, 41 7 (1979)

E. R. Worley, Solid St. Electron. 23,

1107 (1980)

H . - K . Lira and J . G . Fossum, IEEE

Trans. Electron. Dev. ED-30, 1244

(1983)