of 13 /13
1 Electronic Supplementary Information (ESI) for Structural diversity of zinc(II) coordination polymers with octafluorobiphenyl-4,4’-dicarboxylate based on mononuclear, paddle wheel and cuboidal units Anastasia M. Cheplakova, 1,2 Konstantin A. Kovalenko, 1,2 Denis G. Samsonenko, 1,2 Andrey S. Vinogradov, 3 Victor M. Karpov, 3 Vyacheslav E. Platonov, 3 Vladimir P. Fedin 1,2 1 Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090, Novosibirsk, Russian Federation. 2 Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russian Federation 3 N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Acad. Lavrentiev Av., 630090, Novosibirsk, Russian Federation Identification codes (1) [Zn(eg)3](oFBPDC) (2) [Zn(H2O)(ur)(oFBPDC)] (3) [Zn(CH3OH)(CH3OCH2CH2OH)(oFBPDC)] (4) [Zn2(CH3CN)2(oFBPDC)2]·2C6H6·2CH3CN (5) [Zn2(H2O)2(oFBPDC)2]·4(CH3)2CO (6) [{Zn4(µ3-OCH3)4}(CH3OH)4(oFBPDC)2]∙[{Zn4(µ3-OCH3)4}(H2O)(CH3OH)3(oFBPDC)2]∙13CH3OH H2oFBPDC octafluorobiphenyl-4,4’-dicarboxylic acid eg ethylene glycol ur urotropine, hexamethylenetetramine Corresponding author E-mail: [email protected], [email protected]; Fax: +7 (383) 330 9489; Tel: +7 (383) 330 9490 Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

Structural diversity of zinc(II) coordination polymers with … · 2019. 2. 22. · 1 Electronic Supplementary Information (ESI) for Structural diversity of zinc(II) coordination

  • Author
    others

  • View
    1

  • Download
    0

Embed Size (px)

Text of Structural diversity of zinc(II) coordination polymers with … · 2019. 2. 22. · 1 Electronic...

  • 1

    Electronic Supplementary Information (ESI) for

    Structural diversity of zinc(II) coordination polymers with

    octafluorobiphenyl-4,4’-dicarboxylate based on

    mononuclear, paddle wheel and cuboidal units

    Anastasia M. Cheplakova,1,2 Konstantin A. Kovalenko,1,2 Denis G. Samsonenko,1,2 Andrey S.

    Vinogradov,3 Victor M. Karpov,3 Vyacheslav E. Platonov,3 Vladimir P. Fedin1,2

    1Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090, Novosibirsk, Russian

    Federation.

    2Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russian Federation

    3N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Acad. Lavrentiev Av., 630090,

    Novosibirsk, Russian Federation

    Identification codes

    (1) – [Zn(eg)3](oFBPDC)

    (2) – [Zn(H2O)(ur)(oFBPDC)]

    (3) – [Zn(CH3OH)(CH3OCH2CH2OH)(oFBPDC)]

    (4) – [Zn2(CH3CN)2(oFBPDC)2]·2C6H6·2CH3CN

    (5) – [Zn2(H2O)2(oFBPDC)2]·4(CH3)2CO

    (6) – [{Zn4(µ3-OCH3)4}(CH3OH)4(oFBPDC)2]∙[{Zn4(µ3-OCH3)4}(H2O)(CH3OH)3(oFBPDC)2]∙13CH3OH

    H2oFBPDC – octafluorobiphenyl-4,4’-dicarboxylic acid

    eg – ethylene glycol

    ur – urotropine, hexamethylenetetramine

    Corresponding author

    E-mail: [email protected], [email protected]; Fax: +7 (383) 330 9489; Tel: +7 (383) 330 9490

    Electronic Supplementary Material (ESI) for CrystEngComm.This journal is © The Royal Society of Chemistry 2019

  • 2

    Ligand synthesis

    Scheme S1. The synthesis of H2oFBPDC.

    19F and 1H NMR spectra were recorded on a Bruker AV 300 instrument (282.4 and 300 MHz) using

    (CD3)2CO + CCl4 as a solvent. The chemical shifts of the 1H and 19F NMR spectra were referenced to

    internal solvent resonances (2.05 from TMS) and C6F6 (–162.9 ppm from CCl3F).

    Fig. S1. 1H NMR spectrum of H2oFBPDC.

  • 3

    Fig. S2. 19F NMR spectrum of H2oFBPDC.

  • 4

    Crystal structures and FT-IR spectrum of complexes 1-6

    Fig. S3. The FT-IR spectrum of 1.

    Fig. S4. Packing of the chains in 2. View along the b axis. Hydrogen atoms are omitted for clarity.

    4000 3500 3000 2500 2000 1500 1000 500

    0

    10

    20

    30

    40

    50

    60

    70

    sCOO)

    aCOO)

    C-F)

    C-H)

    O-H)

    tra

    nsm

    itta

    nce

    , %

    wavenumber, cm-1

  • 5

    Fig. S5. Coordination environment of Zn(II) cations in the structure 3 (50% probability ellipsoids). Hydrogen

    atoms are omitted for clarity. The alternative orientation of disordered 2-methoxyethanol and methanol are

    shown with dashed lines.

  • 6

    Fig. S6. The single crystals of 4 of a few millimeters in size.

    Fig. S7. Packing of the layers in 4. View along the b axis. Guest molecules of benzene and acetonitrile and hydrogen

    atoms are omitted for clarity.

    1 mm

  • 7

    Fig. S8. The FT-IR spectrum of complex 4.

    4000 3500 3000 2500 2000 1500 1000 500

    10

    20

    30

    40

    50

    60

    70

    80

    90

    C-F)

    sCOO)

    aCOO)

    CN)

    tra

    nsm

    itta

    nce

    , %

    wavenumber, cm-1

  • 8

    Fig. S9. Coordination environment of Zn(II) cations in the structure 5. Hydrogen atoms are omitted for

    clarity. Hydrogen bonds are shown with dashed lines.

    Fig. S10. Packing of the layers in 5. View along the a axis. Guest molecules of acetone and hydrogen atoms are

    omitted for clarity.

  • 9

    Fig. S11. Packing of the layers in 5. View along the c axis. Guest molecules of acetone and hydrogen atoms are

    omitted for clarity.

    Fig. S12. The FT-IR spectrum of complex [Zn2(H2O)2(oFBPDC)2]∙1.3(CH3)2CO.

    4000 3500 3000 2500 2000 1500 1000 500

    0

    20

    40

    60

    80

    100

    C-F)

    O-H)

    tra

    nsm

    itta

    nce

    , %

    wavenumber, cm-1

    aCOO)

    sCOO)

  • 10

    Fig. S13. The system of hydrogen bonds (shown with dashed lines) in structure 6.

    a)

    b)

    Fig. S14. Representation of the free solvent accessible void volume in crystal structure 6: a) view along c axis; b)

    view along a axis.

  • 11

    Fig. S15. The FT-IR spectrum of complex 6.

    4000 3500 3000 2500 2000 1500 1000 500

    20

    30

    40

    50

    60

    70

    80

    90

    C-F)

    sCOO)

    aCOO)

    C-H)

    O-H)

    tra

    nsm

    itta

    nce

    , %

    wavenumber, cm-1

  • 12

    Thermal analysis

    Fig. S16. TG curve of complex 1.

    Fig. S17. TG (solid) and DTG (dashed) curves of complexes 4 (black) and 5 (red).

    [#] Instrument

    [1] TG 209 F1

    [2] TG 209 F1

    File

    4808.dt3

    c-DTA_4808.dt3_0.mt3

    Date

    2018-08-01

    2018-08-01

    Identity

    SN742

    SN742

    Sample

    [Zn(eg)3](oFBPDC)

    [Zn(eg)3](oFBPDC)

    Mass/mg

    10.300

    10.300

    Segment

    1/1

    1/1

    Range

    20/10.0(K/min)/400

    19/10.0(K/min)/385

    Atmosphere

    He, 30.0ml/min / He, 30.0ml/min

    He, 30.0ml/min / He, 30.0ml/min

    Corr.

    TG:520

    5

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    c-DTA /K

    50 100 150 200 250 300 350Temperature /°C

    40

    50

    60

    70

    80

    90

    100

    TG /%

    0

    50

    100

    150

    200

    250

    Flow /(ml/min)

    -20

    -15

    -10

    -5

    0

    DTG /(%/min)

    Main 2018-08-01 12:16 User: plus

    Residual Mass: 40.13 % (385.2 °C)

    [1]

    [1][1]

    [1]

    [2]

    exo

    40

    50

    60

    70

    80

    90

    100

    50 100 150 200 250 300 350 400

    -10

    -5

    0

    5

    10

    Mass, %

    DT

    G, %

    /min

    Temperature, °C

    4

    5

    88.7%150 °C

    91.4%160 °C

    85.6%

    215 °C

  • 13

    Adsorption properties of coordination polymers 4 and 5

    Fig. S18. The comparison of FT-IR spectra of pristine and activated compounds 4 and 5 as well as

    [Zn2(CH3CONH2)2(oFBPDC)2].

    Fig. S19. Pore size distribution for activated 4 and 5.

    (CN)ν

    a(COO)ν

    s(COO)ν

    (C–F)ν

    (C–H)ν

    (C–H)ν

    (O–H)ν

    [Zn2L2(oFBPDC)2]

    500 1000 1500 2000 2500 3000 3500 4000

    tra

    nsm

    itta

    nce

    , %

    wavenumber, cm−1

    L = CH3CN (4)

    activated 4

    L = H2O (5)

    activated 5

    L = CH3CONH2

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 0.5 1 1.5 2 2.5 3 3.5 4

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    dV

    (d),

    mL

    /nm

    /g

    Half pore width, nm

    4, dV(d)

    4, Pore Volume

    5, dV(d)

    5, Pore Volume

    Cu

    mu

    lative

    Po

    re V

    olu

    me

    , m

    L/g