56
en´ eralit´ es Eq. des Vibs L Vibs L libres Eq. des Vibs T Vibs T libres Vibs L forc´ ees Vibs T forc´ ees ethodes approch´ ees Syst` emes 2D Vibrations & Ondes Vibrations des syst` emes continus UPMC - Master Sciences de l’ing´ enieur Septembre 2014 UPMC - Master SdI Vibrations & Ondes Vibrations des syst` emes continus sept. 14 1 / 112

Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

  • Upload
    others

  • View
    13

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Generalites Eq. des Vibs L Vibs L libres Eq. des Vibs T Vibs T libres Vibs L forcees Vibs T forcees Methodes approchees Systemes 2D

Vibrations & OndesVibrations des systemes continus

UPMC - Master Sciences de l’ingenieur

Septembre 2014

UPMC - Master SdI Vibrations & Ondes Vibrations des systemes continus sept. 14 1 / 112

Page 2: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Generalites

Vibratio

nsdansles

milieu

xela

stiques

1D

M1(T

C)→

vibrationsdes

structu

resa1dim

ension

:

x

Mϴ(x)

x

v(x)

x

u(x)

F

x

v(x)

F

Vibration

stran

sversesdes

cordes

Vibration

slon

gitudinales

des

pou

tres

Vibration

sdetorsion

des

arbres

Vibration

sdeflexion

des

pou

tres

Pou

rquoi

etudier

cessystem

essim

ples

?

Ilsmodelisen

tsim

plem

entlecom

portem

entdenom

breuses

structu

res

Ilsperm

ettentdecom

prendre

lesstru

ctures

pluscom

plexes

Ilsson

tles

constitu

ants

elementaires

des

structu

resen

elements

finis

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

3/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Generalites

Differen

tstyp

esd’eq

uatio

ndumouvem

ent

Lim

itesdel’etu

de

Geom

etrie:

Pou

trerectilign

es,

Lon

gueurfinie

L

Section

constan

teS�

L

Materiau

:

Hom

ogene,

Lineaire

isotrope

Non

dissip

atif

Deu

xtyp

esd’eq

uatio

ndifferen

tielledumouvem

ent

Vibration

slon

gitudinales

Vibration

sdeTorsion

Vibration

sdes

Cord

es

1mem

eeq

uatio

nd’ordre

2:

l’Equation

ded’Alem

bert

∂2f(x,t)

∂x2

−1c2L

∂2f(x,t)

∂t2

=g(x,t)

Vibration

sdeflexion

Equation

d’ord

re4

∂4f(x,t)

∂x4

−1c2F

∂2f(x,t)

∂t2

=g(x,t)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

4/112

Page 3: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinalesDim

ensio

ns-Para

metres

-Hyp

otheses

Hyp

otheses

Pou

tredroite

:Lon

gueurL(�

e,l),

Section

constan

teS

Materiau

isotrope:ρ,E

,ν,non

dissip

atifDistrib

ution

deforces

f(x,t)

→Petites

pertu

rbation

s(gravite

non

priseen

compte)

Gran

deuretu

diee

:deplacem

entlon

gitudinal

local

u(x,t)

Meth

odes

pou

recrire

etresou

dre

lesequation

sdumou

vement:

Meth

odeloca

leavec

lePrin

cipefon

dam

ental

dela

dynam

ique

(PFD):adaptee

auxstru

ctures

simples.

Meth

odeenergetiq

ueou

variationnelle

:Theorem

edeHam

ilton+

variationsenergetiq

ues

Inclu

eles

condition

sauxlim

itesAdaptee

auxstru

ctures

complexes.

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

5/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinalesEquatio

ndumouvem

ent-Equilib

reLocal(1)

Onecrit

l’equilibre

dynam

iqued’unesection

delon

gueurdx:

Masse

:ρSdx

Deplacem

ent:u(x,t)

Acceleration

:∂2u

∂t2

Force

agau

che:−

F

Force

adroite

:F+

∂F

∂xdx

Force

exterieure

f(x,t)Onadon

c

ρSdx∂2u

∂t2=

−F+F+

∂F

∂xdx+f(x,t)d

x

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

6/112

Page 4: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinalesEquatio

ndumouvem

ent-Equilib

reLocal(2)

ρSdx∂2u

∂t2

=��

��

−F+F+

∂F

∂xdx+f(x,t)d

x

⇔ρS� �dx

∂2u

∂t2

=∂F

∂x� �dx

+f(x,t)� �dx

⇔ρS∂2u

∂t2

=∂F

∂x+f(x,t)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

7/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Equatio

ndumouvem

ent=

Equatio

ndes

ondes

longitu

dinales

ρS∂2u

∂t2=

∂F

∂x+f(x,t)

Tractio

n/Compressio

npure

:

F=

σS=

EεS

=ES∂u

∂x

ρS∂2u

∂t2=

∂∂x(ES∂u

∂x)+

f(x,t)

Com

meE

etScon

stants

ρ∂2u

∂t2=

E∂2u

∂x2+

1Sf(x,t)

Onnote

c2=

Eρ⇔

c= √

Finalem

ent:

∂2u

∂t2 −

c2∂2u

∂x2=

1ρSf(x,t)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

8/112

Page 5: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinalesCelerite

des

ondes

longitu

dinales

[c]=

m/s

c=

celeriteduson

ouvitesse

des

ondes

longitu

dinales.

Ordres

degran

deur:

cacier

= √Eρ

= √2.10

11

8.103

=0.5.10

4=

5000m/s

Autres

valeurs

Materia

uc(m

/s)

Materia

uc(m

/s)

PVCmou

80

Glace

3200

Sab

lesec

10-300

Hetre

3300

Beto

n3100

Aluminium

5035

Plomb

1200

Verre

5300

PVCdur

1700

Acier

5600-5900

Gran

it6200

Perid

otite

17700

Rap

pel

:vitesse

duson

dan

sl’air

:343m/s,

dan

sl’eau

:1480m/s

1.Roch

emagmatiq

ueco

nstitu

antla

majeu

rpartie

dela

croute

terrestreUPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

9/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

detorsion

dansles

arbresEquatio

ndumouvem

ent-Para

metres

x

xdx

L

ϴ(x,t)

Hyp

otheses

Pou

tredroite

:Lon

gueurL(�

e,l),

Section

constan

teS

Materiau

isotrope:ρ,E

,ν,G

(module

detorsion

),non

dissip

atif

→Petites

pertu

rbation

s+

gravitenon

priseen

compte

Gran

deuretu

diee

:deplacem

entangu

lairelocal

θ(x,t)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

10/112

Page 6: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

detorsion

dansles

arbresEquatio

ndumouvem

ent-Equilib

relocal

x

xdx

L

ϴ(x,t)

Onecrit

l’equilibre

dynam

iqued’unesection

d’ep

aisseurdx:

Mom

entd’in

ertie:ρIx d

x

Deplacem

ent:θ(x

,t)

Acceleration

:∂2θ

∂t2

Mom

entagau

che:−

M

Mom

entadroite

:M

+∂M∂xdx

Onadon

c

ρIx d

x∂2θ

∂t2=

−M

+M

+∂M∂xdx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

11/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

detorsion

dansles

arbresEquatio

ndumouvem

ent-Equilib

relocal(2)

ρIx d

x∂2θ

∂t2=�

��

� �−M

+M

+∂M∂xdx

⇔ρIx � �dx

∂2θ

∂t2=

∂M∂x� �dx

⇔ρIx∂2θ

∂t2=

∂M∂x

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

12/112

Page 7: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

detorsion

dansles

arbresEquatio

ndumouvem

ent=

Equatio

ndes

ondes

detorsio

n

ρIx∂2θ

∂t2=

∂M∂x

Torsio

npure

:

M=

GIx∂θ

∂x

ρIx∂2θ

∂t2=

∂∂x(G

Ix∂θ

∂x)

Com

meG

etIx

constan

ts:

ρ∂2θ

∂t2=

G∂2θ

∂x2

Onnote

c2=

Gρ⇔

c= √

Finalem

ent:∂2θ

∂t2 −

c2∂2θ

∂x2=

0

Ordre

degrandeu

r:

cacier

= √Gρ

= √E

2(1

+ν)ρ

= √2.1011

2×(1

+0.3)×

8.103=

2000m/s

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

13/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

transversesdes

cordesEquatio

ndumouvem

ent-Para

metres

Hyp

otheses

surla

corde

Lon

gueurL

Materiau

:ρ(kg/m

)

Non

dissip

atif

Tension

constan

te:T

→Petites

pertu

rbation

s

Gran

deuretu

diee

:deplacem

ent

verticallocal

v(x,t)

Pente

locale

:α=

∂v

∂x

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

14/112

Page 8: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

transversesdes

cordesEquatio

ndumouvem

ent-Equilib

relocal

Bila

ndes

forces

Suivan

tx:

Tcosα(x

+dx)−

Tcosα(x)=

0

(cosα≈

1)⇔

0=

0

Suivan

ty:

Tsin

α(x

+dx)−

Tsin

α(x)=

ρdx∂2v

∂t2

⇔Tα(x

+dx)−

Tα(x)=

ρdx∂2v

∂t2

⇔T∂α

∂xdx=

ρdx∂2v

∂t2

⇔ρ∂2v

∂t2=

T∂2v

∂x2

∂2v

∂t2 −

c2∂2v

∂x2=

0avec

c= √

Pourunecord

een

acier

dediametre

0.5

mm

tenduea10kg:cacier ≈

400m/s

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

15/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Solutio

nlib

res=

Solutio

nsdel’eq

uatio

ndumouvem

entlorsq

uef(x,t)

=0

Aucunedistrib

ution

deforce

perm

anente

(mais

systemehors

d’eq

uilibre)

:

Equation

dumou

vementlibre

:

∂2u

∂t2 −

c2∂2u

∂x2=

0(1)

∃2typ

esdesolu

tions:

propagatives

statio

nnaires

Solu

tionstation

naire→

Hyp

othese

devaria

bles

separees

:

u(x,t)

=φ(t)X

(x)

alors(1)⇔∂2φ

∂t2X

−c2φ

∂2X

∂x2=

0

⇔φ(t)X

(x)−

c2φ

(t)X′′(x

)=

0

⇔φφ(t)

=c2X

′′

X(x)=

cte=

α(2)

Deuxequation

saresou

dre

:

l’unesurt,

l’autre

surx.

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

16/112

Page 9: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Solutio

nsta

tionnaire

gen

erale

enmodes

libres

∂2u

∂t2 −

c2∂2u

∂x2=

0

avecu(x,t)

=φ(t)X

(x)

⇔φφ(t)

=c2X

′′

X(x)=

α

d’ou

uneequation

surle

temps:

φ(t)−

αφ(t)

=0

(3)

etuneequation

dedeform

ation:

X′′(x

)−αc2X(x)=

0(4)

Solu

tionstation

naire

pou

r(3)

→α=

−ω2(<

0)

Lasolu

tions’ecrit

:

φ(t)

=Acos

ωt+Bsin

ωt

Dans(4)

onnote

γ=

ωc

X′′(x

)+

γ2X

(x)=

0

Lasolu

tions’ecrit

:

X(x)=

Ccos

γx+

Dsin

γx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

17/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Form

egen

erale

dela

solutio

nsta

tionnaire

enmodes

libres

∂2u

∂t2 −

c2∂2u

∂x2=

0

Mou

vementvibratoire

longitu

dinal

libre:

u(x,t)

=(A

cosωt+Bsin

ωt)(C

cosγx+Dsin

γx)

Mou

vementharm

oniquedepulsation

ω

Conditio

nsinitia

les(C

.I.)dumou

vement→

(A,B

)

L’am

plitu

dedumou

vementdes

sectionsdependdela

position

dans

lapou

tre,mais

Ilfau

tidentifi

erles

pulsation

sωpossib

les

Conditio

nsauxlim

ites(C

.L.)dusystem

e→ωet

γ.

Les

C.L.determ

inentles

modes

propres(ou

natu

rels)dela

pou

tre

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

18/112

Page 10: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Solutio

nssta

tionnaires

particu

lieres-Conditio

nsauxlim

ites

2cas

simples

decon

dition

sauxlim

itespeuven

tetre

consid

eres:

Bord

libre

:aucuneff

ortal’extrem

ite

F=

0⇔ES∂u

∂x=

0

mou

vementindeterm

ine(u

=?)

Bord

Libre⇔

∂u

∂x=

0,∀t

Enca

stremen

t:

Section

extremebloquee

:u=

0

Effort

indeterm

ine(F

=?)

Enca

stremen

t⇔u=

0,∀t

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

19/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Modes

propres

(ounaturels)

3com

binaison

spossib

lesdes

condition

sauxlim

ites:

Pou

treencastree

-encastree

Pou

treencastree

-libre

Pou

trelibre

-libre

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

20/112

Page 11: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Casdela

poutre

encastree-lib

re(1)

u(x,t)

=(A

cosωt+

Bsin

ωt)(C

cosγx+Dsin

γx)=

φ(t)X

(x)

Encastrem

enten

x=

0

u(0,t)

=0,∀

t⇔X(0)

=0

⇔C

=0

⇔X(x)=

Dsin

γx

Libre

enx=

L

⇔∂u

∂x(L,t)

=0,∀⇔

X′(L

)=

0

⇔cos

γL=

0⇔γL=

(2n+1)

π2

Valeu

rspossib

lesdeγ:

γn=

(2n+1)

π2L

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

21/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Casdela

poutre

encastree-lib

re(2)

Deform

eespossib

les:

Xn (x

)=

sinγn x

Ceson

tles

modes

propres

Xn (x

)=

sin ((2n

+1)

πx

2L )avec

necessairem

ent:

γ=

ωc⇔

ωn=

cγn

⇒Pulsa

tionspropres

ωn:

ωn=

(2n+1)

πc

2L

⇔ωn=

(2n+1)

π2L √Eρ

Freq

uen

cespropres

(Hz)

:

fn=

2n+1

4L √Eρ

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

22/112

Page 12: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Casdela

poutre

encastree-lib

re(3)

Expression

dumodedevib

ratio

nlongitu

dinale

aωn:

un (x

,t)=

(A′ncos

ωn t

+B

′nsin

ωn t)

sin ((2n

+1)

πx

2L )

⇔un (x

,t)=

Uncos(ω

n t+ϕn )

sin ((2n

+1)

πx

2L )Repon

selibre

complete

=Com

bi.lin.des

solution

spossib

les:

u(x,t)

=∞∑n=0

un (x

,t)=

∞∑n=0

Uncos(ω

n t+

ϕn )

sin ((2n

+1)

πx

2L )

Con

dition

sinitiales

(u(x,0),u

(x,0))→

(Un ,ϕ

n )ou

(A′n ,B

′n )

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

23/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Modes

longitu

dinauxdela

poutre

encastree-lib

re

X0 (x

)=

sin (πx

2L )

X1 (x

)=

sin (3π

x

2L )

X2 (x

)=

sin (5π

x

2L )

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

24/112

Page 13: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Resu

ltatpourles

3co

mbinaiso

nsdeC.L.

C.L.

Poutre

L-L

Poutre

E-L

Poutre

E-E

Modes

propres

cosnπxL

sin(2n

+1)

πx

2L

sinnπxL

Pulsatio

nspro

presnπL √

Eρ(2n+1)π

2L √

EρnπL √

facier (L

=1m)

f1=

2500Hz

f0=

1250Hz

f1=

2500Hz

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

25/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Casdela

poutre

encastree

auxdeu

xbouts

X0 (x

)=

sinπxL

X1 (x

)=

sin2π

x

L

X2 (x

)=

sin3π

x

L

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

26/112

Page 14: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Modes

longitu

dinauxdela

poutre

libre-lib

re

X1 (x

)=

cosπxL

X2 (x

)=

cos2π

x

L

X3 (x

)=

cos3π

x

L

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

27/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Sea

nce

5

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

28/112

Page 15: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Orth

ogonalite

des

modes

propres

longitu

dinaux

Onpeutecrire

lasolu

tionlibre

commeunecom

position

des

modes

propres:

u(x,t)

=∞∑n=0

un (x

,t)=

∞∑n=0

φn (t)X

n (x)

L’eq

uation

dumou

vementlibre

estverifi

eepou

rchaquemode

∂2u

n

∂t2

−c2∂2u

n

∂x2

=0⇔

−ω2n X

n −c2X

′′n=

0

Onpeutecrire

pou

rles

modes

net

m:

−ω2n X

n=

c2X

′′n(×

Xm)

et−

ω2mXm=

c2X

′′m(×

Xn )

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

29/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Orth

ogonalite

des

modes

propres

longitu

dinaux(2)

Onadon

c:

−ω2n X

n=

c2X

′′n(×

Xm)

et−

ω2mXm=

c2X

′′m(×

Xn )

Soit

enmultip

liantresp

ectivementpar

Xmet

Xn ,

puisintegran

tsurla

longu

eurdela

barre

:

−ω2n ∫

L

0

Xn X

mdx=

c2 ∫

L

0

X′′nXmdx

−ω2m ∫

L

0

XmXn dx=

c2 ∫

L

0

X′′mXn dx

Enintegran

tpar

partie

etpou

rdes

extremites

encastrees

oulibres

onob

tient:

−ω2n ∫

L

0

Xn X

mdx=�

���

[X′n X

m] L0 −

c2 ∫

L

0

X′n X

′mdx

−ω2m ∫

L

0

XmXn dx=�

���

[X′mXn ] L0 −

c2 ∫

L

0

X′mX

′n dx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

30/112

Page 16: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Orth

ogonalite

des

modes

propres

longitu

dinaux(3)

Onadon

c:

ω2n ∫

L

0

Xn X

mdx=

c2 ∫

L

0

X′n X

′mdx

etω2m ∫

L

0

XmXn dx=

c2 ∫

L

0

X′mX

′n dx

Ensou

strayantles

2equation

s:

(ω2n −

ω2m) ∫

L

0

Xn X

mdx=

0

avecω2n =

ω2m,on

obtien

tles

Rela

tionsd’orth

ogonalite

:

∫L

0

Xn X

mdx=

0et

∫L

0

X′n X

′mdx=

0

Les

modes

propres

etleu

rsderivees

sontorth

ogonaux

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

31/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Para

metres

modaux

Onaaussi

:

−ω2n ∫

L

0

X2ndx=

c2 ∫

L

0

X′′nXn dx

Quidon

nepar

integration

par

parties

avecles

C.L.:

ω2n ∫

L

0

X2ndx=

c2 ∫

L

0

X′2ndx

⇔ω2n=

ES ∫

L0X

′2ndx

ρS ∫

L0X

2ndx

=kn

mn

Onidentifi

ela

masse

modale

mnet

laraideu

rmodale

kn:

mn=

ρS ∫

L

0

X2ndx

etkn=

ES ∫

L

0

X′2ndx

Onpeutnorm

aliserles

modes

detelle

sorteque:

mn=

1alors

kn=

ω2n

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

32/112

Page 17: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Identification

descaracteristiques

modales

longitudinales

Onpeutecrire

lesenergies

modales

pou

ridentifi

erles

masses

etraid

eurs

modales

:Energie

cinetiq

uemodale

:

Tn= ∫

L

0

12ρS(u

n (x,t))

2dx=

12φ2n ρS ∫

L

0

X2n(x)dx=

12m

n φ2n

Onidentifi

ela

masse

modale

:

mn=

ρS ∫

L

0

X2n(x)dx

Energie

poten

tiellemodale

:

Un= ∫

L

0

12ES (

∂un

∂x(x,t) )

2

dx=

12φ2n E

S ∫L

0

X′2n(x)dx=

12kn φ

2n

Onidentifi

ela

raideurmodale

:

kn=

ES ∫

L

0

X′2n(x)dx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

33/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Exp

ressiondansla

base

modale

Equatio

ndumouvem

entlib

re:

u(x,t)−

c2u ′′(x

,t)=

0

avecu(x,t)

= ∑nφn (t)X

n (x)

⇔ ∑n

φn X

n −c2φ

n X′′n=

0

⇔ ∑n

φn ∫

L

0

XmXn dx−

c2φ

n ∫L

0

XmX

′′ndx=

0

Orth

ogonalite

des

modes

:

⇔φn ∫

L

0

X2ndx−

c2φ

n ∫L

0

Xn X

′′ndx=

0

(n=

0,...,∞)

Avec

lesrelation

ssuivan

tessur

lesmodes

propres:

∫L

0

X2ndx=

mn

ρS

∫L

0

Xn X

′′ndx=

−kn

ES

Onob

tient:

mn φ

n+kn φ

n=

0

ou

φn+

ω2n φ

n=

0

(n=

0,...,∞)

Chaquemodepropre

secom

porte

commeunsystem

ea1DDL.

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

34/112

Page 18: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Rep

onse

libre

enfonctio

ndes

conditio

nsinitia

les(1)

Onpeutecrire

unevibration

librequelcon

quecom

meunecom

binaison

lineaire

des

modes

propressou

sla

forme:

u(x,t)

= ∑n

(Ancos

ωn t

+Bnsin

ωn t)X

n (x)

Les

constan

tesAnet

Bnson

tdeterm

inees

avecles

condition

sinitiales

{u(x,0)

=u0 (x

)

u(x,0)

=u0 (x

)

⇔ ⎧⎪⎪⎨⎪⎪⎩u(x,0)

= ∑n

An X

n=

u0 (x

)

u(x,0)

= ∑n

ωn B

n Xn=

u0 (x

)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

35/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinaleslibres

Rep

onse

libre

enfonctio

ndes

conditio

nsinitia

les(2)

Onpeuttirer

avantage

des

proprietesdes

modes

propres:

⎧⎪⎪⎨⎪⎪⎩∑n

An X

n=

u0 (x

)

∑n

ωn B

n Xn=

u0 (x

)⇔ ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑n

An ∫

L

0

XmXn dx= ∫

L

0

Xmu0 (x

)dx

∑n

ωn B

n ∫L

0

XmXn dx= ∫

L

0

Xmu0 (x

)dx

avecl’orth

ogonalite

des

modes

:

⎧⎪⎪⎪⎨⎪⎪⎪⎩An ∫

L

0

X2ndx= ∫

L

0

Xn u

0 (x)dx

ωn B

n ∫L

0

X2ndx= ∫

L

0

Xn u

0 (x)dx

⇔ ⎧⎪⎪⎪⎨⎪⎪⎪⎩An=

ρS

mn ∫

L

0

Xn u

0 (x)dx

Bn=

ρS

ωn m

n ∫L

0

Xn u

0 (x)dx

Les

integrales

peuven

tetre

diffi

cilesaevalu

erpou

rdes

Xncom

pliques

→Evalu

ationnumeriq

uedes

Anet

Bn

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

36/112

Page 19: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

enflexion

Equatio

nlocale

dumouvem

entpourunepoutre

-Para

metres

Poutre

droite

:

Section

constan

teS=

largeur×

hauteu

r=

l×e,

Lon

gueurL(�

e,l),

Mom

entquadratiq

uedesection

I⊥=

le3

12

Materiau

isotrope:ρ,E

,ν,non

dissip

atif

Varia

bles

:

Distrib

ution

deforces

transverses

f(x,t)

Petites

pertu

rbation

s+

gravitenon

priseen

compte

Gran

deuretu

diee

:deplacem

enttran

sverselocal

(flech

e)v(x,t)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

37/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

enflexion

Equatio

nlocale

dumouvem

entdela

poutre

-Hyp

otheses

Hyp

othese

d’Euler-B

ernou

lli:L’in

ertiederotation

des

sectionest

negligee.

Con

sequence

:les

sectionsdroites

restent⊥

ala

ligneneutre.

Rotation

des

sections:θ(x

)=

∂v

∂x

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

38/112

Page 20: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

enflexion

Equatio

nlocale

dumouvem

entdela

poutre

-Equilib

reLocal(1)

Onecrit

l’equilibre

dynam

iqued’unesection

d’ep

aisseurdx:

Masse

:ρSdx

Deplacem

ent(Flech

e):v(x,t)

Acceleration

:∂2v

∂t2

Effort

tranchantagau

che:T

Effort

tranchantadroite

:− (T

+∂T

∂xdx )

Mtflech

issantagau

che:−

M

Mtflech

issantadroite

:M

+∂M∂xdx

Force

exterieure

f(x,t)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

39/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

enflexion

Equatio

nlocale

dumouvem

entdela

poutre

-Equilib

reLocal(2)

Bila

ndes

Resu

ltantes

ρSdx∂2v

∂t2=

T−T

−∂T∂xdx+f(x,t)d

x

⇔ρS∂2v

∂t2=

−∂T∂x

+f(x,t)

Bila

ndes

Momen

ts

0=

−M

+M

+∂M∂xdx−

Tdx

⇔0=

∂M∂x

−T

d’apres

latheorie

des

pou

tres:

M=

EI∂θ

∂x=

EI∂2v

∂x2

d’ou

T=

∂∂x (

EI∂2v

∂x2 )

etEIetan

tcon

stant:

ρS∂2v

∂t2+EI∂4v

∂x4=

f(x,t)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

40/112

Page 21: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

enflexion

Equatio

ndes

ondes

transverses

dansunepoutre

ρS∂2v

∂t2+

EI∂4v

∂x4=

f(x,t)⇔

∂4v

∂x4+

1c2

∂2v

∂t2=

1EIf(x,t)

Onnote

:

c= √

EI

ρS

cn’est

pas

unevitesse

!

[c]=

m3

s2

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

41/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Vibratio

nslib

resd’unepoutre

lorsquef(x,t)

=0

∂4v

∂x4+

1c2

∂2v

∂t2=

0(1)

Solu

tionstation

naire

:

v(x,t)

=φ(t)X

(x)

(1)⇔c2φ

X′′′′+

φX

=0

⇔c2X

′′′′

X(x)=

−φφ(t)

=−ω2

(2)

Equatio

nen

temps

(2)⇔φ(t)

+ω2φ

(t)=

0(3)

Equatio

nsurla

defo

rmatio

n

(2)⇔X

′′′′(x)−

γ4X

(x)=

0(4)

avec

γ4=

ω2

c2

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

42/112

Page 22: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Exp

ressiongen

erale

des

vibratio

nslib

resd’unepoutre

(1)

v(x,t)

=φ(t)X

(x)

Surle

temps:φ(t)

+ω2φ

(t)=

0⇔φ(t)

=Acos

ωt+Bsin

ωt

Surl’esp

ace:X

′′′′(x)−

γ4X

(x)=

0⇔X(x)=

X0 e

rt

Equatio

ncaracteristiq

ue:r4−

γ4=

0⇔r2=

±γ2

4racin

espossib

les:r=

−γ,

+γ,

−iγ,

+iγ

Lasolutio

ngenerale

estC.L.des

solutio

nspossib

les

X(x)=

Ceγx+

De −

γx+

Geiγ

x+

He −

iγx

⇔X(x)=

C1cos

γx+C2sin

γx+C3cosh

γx+C4sin

hγx

Onpeutaussi

ecrire:

⇔X(x)=

D1 (co

sγx+

cosh

γx)+

D2 (co

sγx−

cosh

γx)

+D

3 (sinγx+

sinhγx)+

D4 (sin

γx−

sinhγx)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

43/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Exp

ressiongen

erale

des

vibratio

nslib

resd’unepoutre

(2)

v(x,t)

=φ(t)X

(x)

Dependance

temporelle

:

φ(t)

=Acos

ωt+Bsin

ωt

Dependance

spatiale

X(x)=

C1cos

γx+C2sin

γx+

C3cosh

γx+C4sin

hγx

Com

mentidentifi

erles

constan

tesincon

nues?

Con

dition

sauxlim

ites→(C

1 ,C2 ,C

3 ,C4 )

et(X

n ,ωn )

Con

dition

sinitiales→

(A,B

)Finalem

entle

mou

vementlibre

peuts’ecrire

commeunecom

binaison

lineaire

des

modes

propres.((D

e)composition

modale).

v(x,t)

= ∑n

Xn (A

ncos

ωn t

+Bnsin

ωn t)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

44/112

Page 23: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Orth

ogonalite

des

modes

propres

Xn:Modepropre

d’ord

ren

γ4n:Valeu

rpropre

associee

γ4n= (

ωn

c )2

Ona∀n,

X′′′′n

−γ4n X

n=

0(5)

(5)⇔ {X

′′′′n

=γ4n X

n

X′′′′m

=γ4mXm

⇔ {∫L0XmX

′′′′n

dx=

γ4n ∫

L0XmXn dx

∫L0Xn X

′′′′m

dx=

γ4m ∫

L0Xn X

mdx

Dou

ble

integration

par

parties

+CL:

⇔ {�

���

[XmX

′′′n] L0 −

��

� �[X

′mX

′′n] L0+ ∫

L0X

′′mX

′′ndx=

γ4n ∫

L0X

mX

n dx

����

[Xn X

′′′m] L0 −

��

� �[X

′n X′′m] L0+ ∫

L0X

′′nX

′′mdx=

γ4m ∫

L0X

n Xmdx

⇔(γ

4n −γ4m) ∫

L

0

Xn X

mdx=

0

D’ou

3relation

sd’orth

ogonalite

des

modes

quandm

=n:

∫L

0

Xn X

mdx=

0

∫L

0

X′′nX

′′mdx=

0

∫L

0

Xn X

′′′′m

dx=

0

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

45/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Conditio

nsauxlim

itespourunepoutre

(1)

Pou

rdeterm

iner

lescon

stantes

dela

fonction

deform

edumodepropre,

onpeutcon

siderer

3cas

simples

avecchacu

n2param

etrescon

nus:

Bord

libre

:Effort

tranchantnulau

bord

T=

0⇔EI∂3v

∂x3=

0

Mom

entdeflexion

nulau

bord

M=

0⇔EI∂2v

∂x2=

0

Deplacem

ents

indeterm

ines

v=?et

∂v

∂x=?

Bord

Libre⇔

∂2v

∂x2=

0et

∂3v

∂x3=

0,∀

t

Appuisim

ple

:Flech

enulle

aubord

v=

0

Mom

entdeflexion

nulau

bord

M=

0⇔EI∂2v

∂x2=

0

Indeterm

ines

:θet

T∂v

∂x=?et

∂3v

∂x3=?

Appuisim

ple⇔

v=

0et

∂2v

∂x2=

0,∀

t

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

46/112

Page 24: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Conditio

nsauxlim

itespourunepoutre

(2)

Enca

stremen

t:

Flech

enulle

aubord

v=

0

Rotation

nulle

aubord

θ=

0⇔∂v

∂x=

0

Efforts

indeterm

ines

T=?et

M=?

Enca

stremen

t⇔v=

0et

∂v

∂x=

0,∀

t

Reca

pitu

latif

C.L.

Bord

Libre

Appuisim

ple

Encastrem

ent

v→X

?0

0

θ→X

′?

?0

M→

X′′

00

?

T→

X′′′

0?

?

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

47/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Differen

tesco

mbinaiso

nspossib

lesdes

conditio

nsauxlim

itespourunepoutre

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

48/112

Page 25: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

simplem

entappuyee

(1)

Deplacem

entX(x)

etmom

entflech

issantX”(x)

nulsen

x=

0et

x=

L

X(x)=

D1 (co

sγx+

cosh

γx)+

D2 (co

sγx−

cosh

γx)

+D

3 (sinγx+

sinhγx)+

D4 (sin

γx−

sinhγx)

X′′(x

)=

γ2(D

1 (−cosγx+

cosh

γx)+

D2 (−

cosγx−

cosh

γx)

+D

3 (−sin

γx+

sinhγx)+

D4 (−

sinγx−

sinhγx))

X(0)=

0⇒D

1=

0

X′′(0

)=

0⇒D

2=

0

X(L)=

0et

X′′(L

)=

0

⇒D

3=

D4et

sinγL=

0

d’oules

valeurs

possib

lesdeγet

des

modes

etpulsatio

nspro

pres:

γn=

nπL

⇔Xn (x

)=

sinnπx

Lωn=

γ2n c⇔

ωn= (

nπL )

2 √EI

ρS

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

49/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

simplem

entappuyee

(2)

Xn (x

)=

sinnπx

Lωn= (

nπL )

2 √EI

ρS

X1 (x

)=

sinπxL

X2 (x

)=

sin2π

x

L

X3 (x

)=

sin3π

x

L

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

50/112

Page 26: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

libre-lib

re(1)

X′′(0)

=0⇒

D2=

0et

X′′′(0)

=0⇒

D4=

0

⇒X

=D

1 (cosγx+cosh

γx)+

D3 (sin

γx+sin

hγx)

X′′(L

)=

0et

X′′′(L

)=

0don

nentle

systeme

(S) {

D1 (−

cosγL+cosh

γL)+

D3 (−

sinγL+sin

hγL)=

0D

1 (sinγL+sin

hγL)+

D3 (−

cosγL+cosh

γL)=

0

Ledeterm

inantdoit

etrenul.Cequidon

nel’eq

uation

:

det(S

)=

0⇔cos

γLcosh

γL=

1

Les

racines

decette

equation

sonttrou

veesnumeriq

uem

ent(ou

graphiquem

ent)

:

γ1 L

γ2 L

γ3 L

γ4 L

γ5 L

4.73

7.85

11

14.13

17.28

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

51/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

libre-lib

re(2)

cosγLcosh

γL=

1→

γ0 L,γ

1 L,γ

2 L,γ

3 L,γ

4 L,γ

5 L,....

Les

frequences

propresson

tob

tenues

encalcu

lant:

ωn=

cγ2n ⇔

fn=

ωn

2π=

12π (γn LL )

2 √EI

ρS

Ensubstitu

antles

racines

successivem

entdansle

systemepreced

ent,

onob

tientles

rapports (

D1

D3 )

nquideterm

inentla

formedes

modes

propres.

→Pas

d’expression

generale

exactedes

modes

propres

→solu

tionnumeriq

ue(cf

codeMatlab

)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

52/112

Page 27: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

libre-lib

re(3)

X1 (x

)

X2 (x

)

X3 (x

)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

53/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

bi-en

castree

(1)

X(0)

=0⇒

D1=

0et

X′(0)

=0⇒

D3=

0

⇒X

=D

2 (cosγx−

coshγx)+

D4 (sin

γx−

sinhγx)

X(L)=

0et

X′(L

)=

0:

(S) {

D2 (cos

γL−

coshγL)+

D4 (sin

γL−

sinhγL)

D2 (−

sinγL−

sinhγL)+

D4 (cos

γL−

coshγL)

det(S

)=

0⇔cos

γLcosh

γL=

1

Onadon

cles

mem

esracin

eset

mem

esfreq

uences

propres.

Mais

lesform

esdes

modes

sontdifferen

tes:γn L→ (

D2

D4 )

n

Freq

uences

propresωn=

cγ2n ⇔

fn=

ωn

2π=

12π (

γn LL )

2 √EI

ρS

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

54/112

Page 28: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

bi-en

castree

(2)

X1 (x

)

X2 (x

)

X3 (x

)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

55/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

encastree-lib

re(1)

X(0)

=0⇒

D1=

0et

X′(0)

=0⇒

D3=

0

⇒X

=D

2 (cosγx−

coshγx)+

D4 (sin

γx−

sinhγx)

X′′(L

)=

0et

X′′′(L

)=

0⇔

cosγLcosh

γL=

−1

Racin

eset

modes

propres

γ1 L

γ2 L

γ3 L

γ4 L

γ5 L

γ6 L

1.88

4.69

7.86

11

14.14

17.28

→ (D2

D4 )

n

Freq

uences

propres

ωn=

cγ2n ⇔

fn=

ωn

2π=

12π (γn LL )

2 √EI

ρS

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

56/112

Page 29: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

encastree-lib

re(2)

Reso

lutio

ngraphiquedecos

xcosh

x=

±1

01

23

45

67

89

1011

1213

1415

−10

−8

−6

−4

−2 0 2 4 6 8 10

x

cos(x)* cosh(x)1−

1

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

57/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

encastree-lib

re(3)

X1 (x

)

X2 (x

)

X3 (x

)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

58/112

Page 30: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

encastree-a

ppuyee

(1)

X(0)

=0⇒

D1=

0et

X′(0)

=0⇒

D3=

0

⇒X

=D

2 (cosγx−

coshγx)+

D4 (sin

γx−

sinhγx)

X(L)=

0et

X′′(L

)=

0⇔

tanγL=

tanhγL

Racin

eset

modes

propres

γ1 L

γ2 L

γ3 L

γ4 L

γ5 L

3.93

7.07

10.21

13.35

16.49

→ (D2

D4 )

n

Freq

uences

propres

ωn=

cγ2n ⇔

fn=

ωn

2π=

12π (γn LL )

2 √EI

ρS

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

59/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

encastree-a

ppuyee

(2)

01

23

45

67

89

1011

1213

1415

−10

−8

−6

−4

−2 0 2 4 6 8 10

x

tan(x)tanh(x)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

60/112

Page 31: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Modes

propres

dela

poutre

encastree-a

ppuyee

(3)

X1 (x

)

X2 (x

)

X3 (x

)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

61/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Com

paraisondes

frequencespropres

Let

T

12

34

50

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Ordre des m

odes

Fréquence (Hz)

Modes longitudinaux (A

cier : L = 1m

)

LLEL

EE

12

34

50 20 40 60 80

100

120

140

160

180

200

220

Ordre des m

odes

Fréquence (Hz)

Modes transversaux (A

cier : L = 1m

, e = 3m

m)

AA

EA

EL

LL

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

62/112

Page 32: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Identification

descaracteristiques

modales

enflexion

Onpeutecrire

lesenergies

associees

achaquemodedevibration

(ouenergies

modales)

enrep

onse

libreou

forceepou

rretrou

verles

masses

etraid

eurs

modales

:

Energie

cinetiq

ue:

Tn= ∫

L

0

12ρS(v

n (x,t))

2dx=

12φ2n ∫

L

0

ρSX

2n(x)dx=

12m

n φ2n

onidentifi

ela

masse

modale

:m

n= ∫

L0ρSX

2n(x)dx

Energie

poten

tielle:

Un= ∫

L

0

12EI (

∂2v

n

∂x2(x,t) )

2

dx=

12φ2n ∫

L

0

EIX

′′2n(x)dx=

12kn φ

2n

onidentifi

ela

raideurmodale

:kn= ∫

L0EIX

′′2n(x)dx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

63/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Rep

onse

libre

d’unepoutre

aunedeform

atio

net/

ouim

pulsio

ninitia

le

Oncon

sidere

lasolu

tionecrite

par

decom

position

modale

:

v(x,t)

= ∑n

(Ancos

ωn t

+Bnsin

ωn t)X

n (x)

Anet

Bnadeterm

iner

avecles

condition

sinitiales

don

nees

:

⎧⎪⎪⎨⎪⎪⎩v(x,0)

= ∑n

An X

n=

v0 (x

)

v(x,0)

= ∑n

ωn B

n Xn=

v0 (x

)⇔ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

An=

ρS

mn ∫

L

0

Xn v

0 (x)dx

Bn=

ρS

ωn m

n ∫L

0

Xn v

0 (x)dx

Integrales

diffi

cilesaevalu

erpou

rdes

Xncom

pliques

→Evalu

ationnumeriq

uedes

Anet

Bn

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

64/112

Page 33: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Exp

ressiondansla

base

modale

Les

modes

propresverifi

entles

relationssuivan

tes:

∫L

0

X2ndx=

αn

∫L

0

Xn X

′′′′n

dx=

γ4n α

n

∫L

0

X′′2ndx=

γ4n α

n

αncon

stante

arbitraire,

determ

inee

par

norm

alisation.

Equatio

ndumouvem

entlib

re:

ρSv(x,t)

+EIv ′′′′(x

,t)=

0

avecv(x,t)

= ∑nφn (t)X

n (x)

⇔ ∑n

ρSφn X

n+

EIφ

n X′′′′n

=0

⇔ ∑n (

ρSφn ∫

L0XmXn dx

+EIφ

n ∫L0XmX

′′′′n

dx )

=0

⇔ρSφn ∫

L

0

X2ndx

︸ ︷︷︸α

n

+EIφ

n ∫L

0

Xn X

′′′′n

dx

︸︷︷

︸γ4nα

n

=0

(n=

0,...∞)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

65/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

libresen

flexion

Para

metres

modaux

L’eq

uation

dumou

vementdevelop

pee

enbase

modale

don

ne:

ρSv(x,t)

+EIv ′′′′(x

,t)=

0⇔ρSφn α

n+

EIφ

n αn γ

4n=

0

⇔m

n φn+

kn φ

n=

0(n

=0,...,∞

)

avecla

masse

modale

:

mn=

ρS ∫

L

0

X2ndx

=ρSαn

etla

raideu

rmodale

:

kn=

EI ∫

L

0

X′′2ndx

etaussi

kn=

EI ∫

L

0

X′′′′n

Xn dx

ChaquemodeXnse

comporte

comme

unsystem

ea1d

dl:

φn+ω2n φ

n=

0

avecla

pulsa

tionpropre

ω2n=

EI ∫

L0X

′′2ndx

ρS ∫

L0X

2ndx

=kn

mn

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

66/112

Page 34: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Rapp

elsur

lesmodes

propreslongitudinaux

Rela

tionsd’orth

ogonalite

&Para

metres

modaux

Orth

ogonalite∀

m=

n∀m

=n

∫L

0

Xn X

m=

0

∫L

0

X′n X

′m=

0

Para

metre

modaux

Masse

modale

:

mn=

ρS ∫

L

0

X2n(x)dx

Raid

eurmodale

:

kn=

ES ∫

L

0

X′2n(x)dx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

67/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinalesforcees

Rep

onse

auneexcita

tionperm

anen

telongitu

dinale

(1)

∂2u

∂t2 −

c2∂2u

∂x2=

1ρSf(x,t)

=g(x,t)

Onsuppose

larep

onse

combinaison

lineaire

des

modes

propres:

u(x,t)

= ∑n

φn (t)X

n (x)

oules

φn (t)

sontles

contrib

ution

sincon

nues

des

modes.

Onsubstitu

ela

composition

modale

dansl’eq

uation

dumou

vement:

∑n

φn X

n −c2 ∑

n

φn X

′′n=

g(x,t)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

68/112

Page 35: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinalesforcees

Rep

onse

auneexcita

tionperm

anen

telongitu

dinale

(2)

∑n

φn X

n −c2 ∑

n

φn X

′′n=

g(x,t)

Onmultip

liepar

Xmet

onintegre

de0aL:

∑n

φn ∫

L

0

XmXn dx−

c2 ∑

n

φn ∫

L

0

XmX

′′ndx= ∫

L

0

Xmg(x,t)d

x

Integration

par

parties

etC.L

pou

rle

secondterm

e:

∑n

φn ∫

L

0

XmXn dx+

c2 ∑

n

φn ∫

L

0

X′mX

′n dx= ∫

L

0

Xmg(x,t)d

x

avecl’orth

ogonalite

des

modes

:

φn ∫

L

0

X2ndx+

c2φ

n ∫L

0

X′2ndx= ∫

L

0

Xn g

(x,t)d

x

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

69/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinalesforcees

Rep

onse

auneexcita

tionperm

anen

telongitu

dinale

(3)

Com

position

modale

intro

duite

dansl’eq

uation

dumou

vementforce

:

φn ∫

L

0

X2ndx+

c2φ

n ∫L

0

X′2ndx= ∫

L

0

Xn g

(x,t)d

x

Onidentifi

eles

param

etresmodaux:

⇔φnm

n

ρS

+φnkn

ρS

=1ρS ∫

L

0

Xn f(x,t)d

x

⇔m

n φn+kn φ

n= ∫

L

0

Xn f(x,t)d

x

D’ou

l’equation

dela

repon

seforcee

pou

rchaquemode:

⇔φn+ω2n φ

n=

1mn ∫

L

0

Xn f(x,t)d

x

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

70/112

Page 36: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

longitudinalesforcees

Rep

onse

auneexcita

tionharm

oniquelongitu

dinale

(1)

Onadon

cl’eq

uation

dela

repon

seforcee

pou

rchaquemode:

φn+

ω2n φ

n=

1mn ∫

L

0

Xn f(x,t)d

x

L’excitation

harm

oniquerep

arties’ecrit

:

f(x,t)

=F(x)cos

Ωt

Larep

onse

harm

oniques’ecrit

:

φ(t)

=Φcos

Ωt

etφ(t)

=−Ω

2Φcos

Ωt

Etl’eq

uation

differen

tielledevien

t:

Φ(ω

2n −Ω

2)=

1mn ∫

L

0

Xn F

(x)dx

D’ou

l’amplitu

dedela

repon

seen

fonction

dela

frequence

d’excitation

:

Φ(Ω

)=

1mn

1

ω2n −

Ω2 ∫

L

0

Xn F

(x)dx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

71/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Cas

particulierde

l’excitationpar

vibrationdu

support

Poutre

E-L

-Excita

tionquelco

nque

Lesupport

estan

imed’undeplacem

entvariab

leus (t)

Deplacem

enttotal

des

sectionsdela

poutre

:u(x,t)

+us (t)

Equatio

ndu

mouvem

ent:

∂2(u

+us )

∂t2

−c2∂2(u

+us )

∂x2

=0

⇔(u

+us )−

c2u ′′

=0⇔

u−c2u ′′

=−us

Onutilise

lesmodes

propres

dela

poutre

encastree

libre:

u(x,t)

= ∑n

φn (t)X

n (x)

etX

n=

sin(2n+

1)π

2L

x

Pouridentifi

erles

φn (t),

onreso

utpourtoutus (t)

:

φn+

ω2n φ

n=

−us ρS

mn

∫L

0

sin(2n+

1)πx

2Ldx⇔

φn+

ω2n φ

n=

−2Lus ρS

(2n+

1)π

mn

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

72/112

Page 37: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Cas

particulierde

l’excitationpar

vibrationdu

support

Poutre

E-L

-Vibratio

nharm

oniquedusupport

(1)

Pou

runmou

vementdusupport

onapou

rchaquemode:

φn+ω2n φ

n=

−2L

us ρS

(2n+1)π

mn

Sile

mou

vementdusupport

estharm

oniqueon

a:

us (t)

=U0cos

Ωt

etus (t)

=−Ω

2U0cos

Ωt

Larep

onse

estharm

oniquedemem

efreq

uence

φn (t)

ncos

Ωt

etφn (t)

=−Ω

2Φncos

Ωt

d’ou(ω

2n −Ω

2)Φn=

2LU0 Ω

2ρS

(2n+1)π

mn ⇔

Φn (Ω

)=

2LU0 ρS

(2n+1)π

mn

Ω2

ω2n −

Ω2

avec

mn=

ρS ∫

L

0

X2ndx=

ρS ∫

L

0 (sin

(2n+1)π

x

2L

)2

dx=

ρSL

2

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

73/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Excitation

parvibration

longitudinaledu

support

Poutre

E-L

-Vibratio

nharm

oniquedusupport

(2)

Larep

onse

dechaquemodeau

mou

vementharm

oniquedusupport

est:

φn (t)

n (Ω)cos

Ωt=

4U0

(2n+1)π

Ω2

ω2n −

Ω2cos

Ωt

Lemou

vementtotal

dela

pou

treen

vibrationlon

gitudinale

est:

u(x,t)

= ∑n

φn (t)X

n (x)⇔

u(x,t)

=4U

0

π ∑n

1

2n+1

Ω2

ω2n −

Ω2sin (

(2n+1)π

x

2L

)cos

Ωt

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

74/112

Page 38: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Excitation

parvibration

longitudinaledu

support

Poutre

E-L

-Vibratio

nharm

oniquedusupport

(3)

u(x,t)

=4U

0

π ∑n

1

2n+1

Ω2

ω2n −

Ω2sin (

(2n+1)π

x

2L

)cos

Ωt

02500

50007500

1000012500

15000−

50

−40

−30

−20

−10 0 10 20 30 40 50

Frequence (H

z)

Amplitude (dB)

Mvt harm

onique du support − R

éponse en fréquence − A

cier − L =

1m

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

75/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Rapp

elssur

lesmodes

propresen

flexion

Orth

ogonalite

&Para

metres

modaux

Orth

ogonalite

∫L

0

Xn X

mdx=

0

∫L

0

X′′nX

′′mdx=

0

∫L

0

Xn X

′′′′m

dx=

0

Para

metres

modaux

Masse

modale

:

mn=

ρS ∫

L

0

X2ndx

Raid

eurmodale

:

kn=

EI ∫

L

0

X′′2ndx

etaussi

kn=

EI ∫

L

0

X′′′′n

Xn dx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

76/112

Page 39: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibration

forceesen

flexion

Rep

onse

perm

anen

teauneexcita

tionquelco

nque

Equation

dumou

vement:

∂4v

∂x4+

1c2

∂2v

∂t2=

1EIf(x,t)

avecv(x,t)

= ∑n

φn (t)X

n (x)

⇔ ∑n

X′′′′n

φn+

1c2Xn φ

n=

1EIf(x,t)

Orth

ogonalite

des

modes

propres:

⇔ ∑n

φn ∫

L

0

XmX

′′′′n

dx+

1c2φn ∫

L

0

XmXn dx=

1EI ∫

L

0

Xmf(x,t)d

x

⇔m

n

c2ρSφn +

kn

EIφn=

1EI ∫

L

0

Xn f(x,t)d

x⇔φn+ω2n φ

n=

1mn ∫

L

0

Xn f(x,t)d

x

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

77/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibration

forceesen

flexion

Rep

onse

auneexcita

tionharm

oniqueponctu

elle(1)

Cas

general

:distrib

ution

quelcon

que:f(x,t)

=F(x)cos

Ωt

φn+

ω2n φ

n= ∫

L0Xn F

(x)dx

mn

cosΩt⇔

φn (t)

= ∫L0Xn F

(x)dx

mn (ω

2n −Ω

2)cos

Ωt

Force

harm

oniquepon

ctuelle

appliquee

enx0:

f(x,t)

=F0 δ(x−

x0 )cosΩt

Lacon

tribution

dela

forceal’excitation

dechaquemodes’ecrit

:∫

L

0

Xn (x

)f(x)dx= ∫

L

0

Xn (x

)F0 δ(x−

x0 )d

x=

F0 X

n (x0 )

Finalem

ent:

v(x,t)

= ∑n

Xn (x

)φn (t)

=F0 ∑

n

Xn (x

0 )Xn (x

)

mn (ω

2n −Ω

2)cos

Ωt

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

78/112

Page 40: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibration

forceesen

flexion

Rep

onse

auneexcita

tionharm

oniqueponctu

elle(2)

Force

harm

oniquepon

ctuelle

appliquee

enx0:

f(x,t)

=F0 δ(x−

x0 )cos

Ωt

v(x,t)

=F0 ∑

n

Xn (x

0 )Xn (x

)

mn (ω

2n −Ω

2)cos

Ωt

Lacon

tribution

dumodeXnau

mou

vementforce

dependdesa

valeurau

poin

td’ap

plication

dela

force:Xn (x

0 )Par

conseq

uent:

F0aunnoeud:Xn (x

0 )=

0→con

tribution

nulle

F0aunven

tre:Xn (x

0 )=

max→

contrib

ution

max

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

79/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibration

forceesen

flexion

Rep

onse

auneexcita

tionharm

oniqueponctu

elle(3)

Casdela

poutre

appuyee

Xn=

sinnπx

Lm

n=

ρS ∫

L

0 (sin

nπx

L )2dx=

ρSL

2ωn= (

nπL )

2 √EI

ρS

v(x,t)

=2F0

ρSL

∞∑n=1

sinnπx0

Lsin

nπx

L

ω2n −

Ω2

cosΩt

F0en

L/2

v(x,t)

=2F0

ρSL

∞∑n=1

sinnπ2sin

nπx

L

ω2n −

Ω2

cosΩt

=2F0

ρSL

∞∑p=0

(−1)psin

(2p+1)π

xL

ω22p+1 −

Ω2

cosΩt

v(x,t)

=2F0

ρSL (

sinπxL

ω21 −

Ω2 −

sin3πx

L

ω23 −

Ω2+

sin5πx

L

ω25 −

Ω2 −

sin7πx

L

ω27 −

Ω2... )

cosΩt

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

80/112

Page 41: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibration

forceesen

flexion

Rep

onse

auneexcita

tionharm

oniqueponctu

elle(4)

Casdela

poutre

appuyee

v(x,t)

=2F

0

ρSL

∞∑n=1

sinnπx0

Lsin

nπx

L

ω2n −

Ω2

cosΩt

010

2030

4050

60−

80

−70

−60

−50

−40

−30

−20

−10 0 10 20 30

Frequence (H

z)

Amplitude (dB)

Acier 5m

m −

Poutre A

ppuyée Flexion −

Réponse en fréquence à une force ponctuelle

Xo qcq

Xo =

L/2

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

81/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

desappro

cheesGen

eralitesP

ourdes

systemes

contin

usdeform

eeven

tuellem

entcom

plexe.

Approxim

ationdes

frequences

propres?

Approxim

ationdela

formedes

modes

propres?

Hyp

otheses

raisonnables

pou

rla

deform

ationdusystem

e:Les

deplacem

ents

verifientles

condition

sauxlim

itesgeom

etriques.

Oncalcu

leles

energies

cinetiq

ues

etpoten

tielles

Equation

sdeLagran

ge→Equation

sdumou

vement

uneseu

lefon

ctiondeform

e:Meth

odedeRayleig

h

Plusieu

rsfon

ctionsdeform

e:Meth

odedeRitz

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

82/112

Page 42: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

desappro

cheesExp

ressionsgen

erales

des

energ

iescin

etiqueet

poten

tielle

Pou

rles

vibrationslon

gitudinales

:

T=

12 ∫L

0

ρS (

∂u(x,t)

∂t

)2

dx

U=

12 ∫L

0

ES (

∂u(x,t)

∂x

)2

dx

Pou

rles

vibrationsdeflexion

:

T=

12 ∫L

0

ρS (

∂v(x,t)

∂t

)2

dx

U=

12 ∫L

0

EI (

∂2v(x,t)

∂x2

)2

dx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

83/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

dede

Rayleigh

Exem

ple

:poutre

encastree

libre

enflexio

n(1)

Approxim

atio

ndela

defo

rmee

enflexio

n:

v(x,t)

= [3 (

xL )2− (

xL )3 ]

φ(t)

→φ(t)?

C.L.geo

metriq

ues

:v(0,t)

=0

∂v(0,t)/∂

x=

0

Energ

ies:

T=

12φ2(t) ∫

L

0

ρS [

3 (xL )

2− (xL )

3 ]2

dx

U=

12φ2(t) ∫

L

0

EI [

6L2 −

6xL3 ]

2

dx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

84/112

Page 43: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

dede

Rayleigh

Exem

ple

:poutre

encastree

libre

enflexio

n(2)

v(x,t)

= [3 (xL )

2− (xL )

3 ]φ(t)

Energ

ies:

T=

0.471ρSLφ2(t)

U=

6EI

L3φ2(t)

Eq.deLagrange

→Equatio

ndumvt

:

ddt

∂T∂φ

+∂U∂φ

=0

⇔0.943

ρSLφ+12

EI

L3φ=

0

Approxim

atio

ndela

Pulsa

tionpropre

ωRayleig

h= √

12EI

0.943ρSL4=

3.567

L2 √

EI

ρS

Onrap

pelle

lava

leurvra

ie:

ωexa

cte=

(γ1 L)2

L2 √

EI

ρS

=3.534

L2 √

EI

ρS

Erreu

rrela

tiveΔωω<

2%.

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

85/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

dede

Rayleigh-R

itzPrin

cipe

Pou

rob

tenirdes

approxim

ationsdes

premieres

frequences

propres:

Com

biner

plusieu

rsfon

ctionsdeform

erealistes

Ces

fonction

sdoiven

tverifi

erles

CLgeom

etriques

Leurcon

tribution

relativeφn (t)

estadeterm

iner

Processu

s

Calcu

lerles

energies

Deriver

lesequation

sdeLagran

ge

Identifi

erles

matrices

d’in

ertieet

deraid

eur

Diagon

aliser→Freq

uences

propresappro

chees

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

86/112

Page 44: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

dede

Rayleigh-R

itzExem

ple

:vib

ratio

nslongitu

dinales

d’unepoutre

E-L

(1)

Hyp

othese

dedefo

rmee

=com

binaison

de4fon

ctionsrealistes.

u(x,t)

=xLφ1 (t)

+ (xL )

2

φ2 (t)

+ (xL )

3

φ3 (t)

+ (xL )

4

φ4 (t)

φn (t)?

Rem

arques

:

Les

fonction

sverifi

entles

condition

sauxlim

itesgeom

etriques

Elles

neson

tpas

orthogon

ales

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

87/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

dede

Rayleigh-R

itzExem

ple

:vib

ratio

nslongitu

dinales

d’unepoutre

E-L

(2)

Approxim

atio

ndela

defo

rmee

:

u(x,t)

=xLφ1 (t)

+ (xL )

2

φ2 (t)

+ (xL )

3

φ3 (t)

+ (xL )

4

φ4 (t)

Energ

ies:

T=

12 ∫L

0

ρS (

∂u(x,t)

∂t

)2

dx

=12ρS ∫

L

0 (φ1 (t)

xL+φ2 (t) (

xL )2

+φ3 (t) (

xL )3

+φ4 (t) (

xL )4 )

2

dx

U=

12 ∫L

0

ES (

∂u(x,t)

∂x

)2

dx

=12ρS ∫

L

0 (φ1 (t)

1L+

φ2 (t)

2xL2+φ3 (t)

3x2

L3

+φ4 (t)

4x3

L4 )

2

dx

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

88/112

Page 45: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

dede

Rayleigh-R

itzExem

ple

:vib

ratio

nslongitu

dinales

d’unepoutre

E-L

(3)

Matrices

d’in

ertieet

deraideu

r:

M=

ρSL ⎛⎜⎜⎝

1/31/4

1/5

1/61/4

1/51/6

1/71/5

1/6

1/7

1/81/6

1/71/8

1/9 ⎞⎟⎟⎠K

=ESL ⎛⎜⎜⎝

11

11

14/3

3/28/5

13/2

9/52

18/5

216/7 ⎞⎟⎟⎠

Equatio

nmatricielle

dumouvem

ent:

ρSL ⎛⎜⎜⎝

1/3

1/4

1/5

1/6

1/4

1/5

1/6

1/7

1/5

1/6

1/7

1/8

1/6

1/7

1/8

1/9 ⎞⎟⎟⎠ ⎛⎜⎜⎝

φ1

φ2

φ3

φ4 ⎞⎟⎟⎠

+ESL ⎛⎜⎜⎝

11

11

14/3

3/2

8/5

13/2

9/5

21

8/5

216/7 ⎞⎟⎟⎠ ⎛⎜⎜⎝

φ1

φ2

φ3

φ4 ⎞⎟⎟⎠

=0

→Mise

enœuvre

des

techniques

pou

rsystem

esdiscrets

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

89/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

dede

Rayleigh-R

itzExem

ple

:vib

ratio

nslongitu

dinales

d’unepoutre

E-L

(3)

Diagonalisa

tion→

Freq

uen

ceset

vecteurs

propres

approch

es

ω1Ritz=

1.571

L √Eρ

X1Ritz=

xL+0.028 (

xL )2−

0.5 (xL )

3

+0.11 (

xL )4

acom

parer

ala

solutio

nexa

cte:

ω1vra

i=

π2L √Eρ

=1.571

L √Eρ

(Δω1

ω1

=0 )

X1vra

i=

sinπx

2L

etω2Ritz=

4.724

L √Eρ

X2Ritz=

xL+0.69 (

xL )2−

2.56 (xL )

3

+2.06 (

xL )4

acom

parer

ala

solutio

nexa

cte:

ω2vra

i=

3π2L √

Eρ=

4.712

L √Eρ

(Δω2

ω2

=0.25% )

X2vra

i=

sin3πx

2L

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

90/112

Page 46: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Metho

dede

Rayleigh-R

itzExem

ple

:vib

ratio

nslongitu

dinales

d’unepoutre

E-L

(3)

Compara

isondes

modes

vrais

etdeleu

rapproxim

atio

n

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

91/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

deflexion

desplaques

Cara

cteristiques

dela

plaque

Form

equelcon

que

Dim

ension

caracteristiquea

Epaisseu

rh�

a

Materiau

hom

ogeneet

isotrope:

ρ,E

Les

norm

alesau

plan

median

restentperp

endicu

lairesau

plan

median

deform

e.(B

ernou

illi)

Gran

deuraidentifi

er:

w(x,y

,t)//z

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

92/112

Page 47: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

deflexion

desplaques

Equatio

nlocale

dumouvem

entlib

re

Form

egen

erale

D∇2∇

2w+

ρh∂2w

∂t2=

0

Encoord

onnees

cartesiennes

:

ρh∂2w

∂t2+

D (∂4w

∂x4+2

∂4w

∂x2∂

y2+

∂4w

∂y4 )

=0

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

93/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

deflexion

desplaques

Solutio

ndel’eq

uatio

ndumouvem

entlib

re

ρh∂2w

∂t2+D (

∂4w

∂x4+2

∂4w

∂x2∂

y2+

∂4w

∂y4 )

=0

Solutio

navaria

bles

separees

w(x,y

,t)=

φ(t)X

(x)Y

(y)

Don

ne:

φ(t)

+ω2φ

(t)=

0⇔φ(t)

=Acos

ωt+Bsin

ωt

et

−ω2ρhXY

+D (

∂4X

∂x4Y

+X∂4Y

∂y4+2∂2X

∂x2

∂2Y

∂y2 )

=0

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

94/112

Page 48: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

deflexion

desplaques

Solutio

ndel’eq

uatio

ndumouvem

entlib

re

−ω2ρhXY

+D (

∂4X

∂x4Y

+X∂4Y

∂y4+2∂2X

∂x2

∂2Y

∂y2 )

=0

Don

nedes

solution

sdela

forme:

X(x)=

ax e

αx+bx e −

αx

Y(y)=

ay e

βx+by e −

βx+

cy e

γy+dy e −

γy

avecles

relations:

α2+β2=

−(α

2+γ2)

=ω √

ρhD

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

95/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

deflexion

desplaques

Conditio

nsauxbord

s(1)

Norm

aleau

bord

:n=

(nx ,n

y ),

Tangen

teau

bord

s=

(−ny ,n

x )

Deplacem

ent:w

Rotation

(gradien

t): (

∂w

∂nx ,

∂w

∂ny )

Mom

entFlech

issant:

M=

D [(∂2w

∂x2+

ν∂2w

∂y2 )

n2x+ (

∂2w

∂y2+

ν∂2w

∂x2 )

n2y+

2(1−

ν)

∂2w

∂x∂y2nx n

y ]

Effort

tranchant

T=

∂M∂n

+D

∂∂s [

2(1

+ν) (

∂2w

∂x2−

∂2w

∂y2 )

nx n

y+

2(1−

ν)∂2w

∂x∂y(n

2x −n2y) ]

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

96/112

Page 49: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Conditions

auxbords

(2)

C.L.

Bord

Libre

Appuisim

ple

Encastrem

ent

w?

00

∂w

∂n

??

0

M0

0?

T0

??

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

97/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

deflexion

desplaques

Deform

atio

nset

contra

intes

Deform

ationsdansle

petit

element(dx,dy,dz):

εx=

−z∂2w

∂x2

εy=

−z∂2w

∂y2

εxy

=−2z

∂2w

∂x∂y

Con

traintes

resultan

tes:

σx=

E

1−ν2(ε

x+

νεy )

=Ez

1−ν2 (

∂2w

∂x2+ν∂2w

∂y2 )

σy=

E

1−ν2(ε

y+

νεx )

=Ez

1−ν2 (

∂2w

∂y2+

ν∂2w

∂x2 )

σxy

=Gεxy

=−

Ez

1+

ν

∂2w

∂x∂y

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

98/112

Page 50: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

deflexion

desplaques

Energ

ies

Energie

dedeform

ationdupetit

element(dx,dy,dz):

dU

=12(ε

x σx+εy σ

y+εxy σ

xy )dxdydz

Energie

dedeform

ationdela

plaq

ue:

U=

12D ∫

a

0 ∫b

0 [(∂2w

∂x2 )

2

+ (∂2w

∂y2 )

2

+2ν∂2w

∂x2

∂2w

∂x2

+2(1−

ν) (

∂2w

∂x∂y )

2 ]dxd

y

ouD

=Eh3

12(1−

ν2)

:Rigid

itedeflexion

dela

plaq

ue

Energie

cinetiq

uedela

plaq

ue:

T=

12ρh ∫

a

0 ∫b

0

w2dxdy

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

99/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

deflexion

desplaques

Casdela

plaquerecta

ngulaire

appuyee

auxbord

s(1)

Seule

configu

rationpou

rlaq

uelle∃

unesolu

tionanalytiq

ue

Avec

lescon

dition

sauxlim

ites,on

obtien

t:

Xm(x)=

sinmπx

Lx

Yn (y

)=

sinnπy

Ly

ωmn=

π2 (

m2

L2x+

n2

L2y ) √

Dρh

Finalem

ent

w(x,y

,t)=

∞∑m=1

∞∑n=1

Amncos(ω

mn t

+φmn )

sinmπx

Lx

sinnπy

Ly

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

100/112

Page 51: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Vibrations

deflexion

desplaques

Casdela

plaquerecta

ngulaire

appuyee

auxbord

s(2)

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

101/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Exem

plede

mise

enœuvre

deselem

entsfinis

Etudedes

vibratio

nsd’ungroupemotopropulseu

r

Diverses

configu

rations

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

102/112

Page 52: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Exem

plede

mise

enœuvre

deselem

entsfinis

Etudedes

vibratio

nsd’ungroupemotopropulseu

r

Diverses

configu

rations

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

103/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Exem

plede

mise

enœuvre

deselem

entsfinis

Etudedes

vibratio

nsd’ungroupemotopropulseu

r

Com

paraison

des

modes

EF/M

esure

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

104/112

Page 53: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Exem

plede

mise

enœuvre

deselem

entsfinis

Etudedela

restauratio

nd’uncla

vecinduXVII

eme

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

105/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Exem

plede

mise

enœuvre

deselem

entsfinis

Etudedela

restauratio

nd’uncla

vecinduXVII

eme

Spectre

acoustiq

uedela

table

d’harm

onie

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

106/112

Page 54: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Exem

plede

mise

enœuvre

deselem

entsfinis

Etudedela

restauratio

nd’uncla

vecinduXVII

eme

Com

paraison

des

modes

EF/M

esure

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

107/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Exem

plede

mise

enœuvre

deselem

entsfinis

Etudedela

restauratio

nd’uncla

vecinduXVII

eme

Com

paraison

des

modes

EF/M

esure

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

108/112

Page 55: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Analyse

modale

experimentale

Etudedes

vibratio

nsd’unetable

d’harm

onie

devio

lon

Presen

tationdes

mesu

res

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

109/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Analyse

modale

experimentale

Etudedes

vibratio

nsd’unetable

d’harm

onie

devio

lon

Identifi

cationdes

param

etresdynam

iques

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

110/112

Page 56: Vibrations & Ondes - Accueil · Vibrations&Ondes Vibrationsdessyst` emescontinus sept. 14 11/112 G´ en´ eralit´ es Eq. desVibsL VibsLlibres Eq. desVibsT VibsTlibres VibsLforc´

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Analyse

modale

experimentale

Etudedes

vibratio

nsd’unetable

d’harm

onie

devio

lon

Com

paraison

Analyse

modale

/EF

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

111/112

Gen

eralites

Eq.des

VibsL

VibsLlib

resEq.des

VibsT

VibsT

libres

VibsLforcees

VibsT

forceesMeth

odes

approch

eesSystem

es2D

Cequ’il

fautretenir

dessystem

escontinus

Etab

liret

connaitre

lesequation

sdes

ondes

Let

T

Etab

liret

connaitre

leursolu

tiongen

erale(Separation

des

variables)

Interpreter

etEcrire

lescon

dition

sauxlim

ites

Endeduire

lesfreq

uences

etmodes

propres

Con

naitre

lesrelation

sd’orth

ogonalite

des

modes

Exprim

erla

solution

libreen

fonction

des

modes

propres

Determ

iner

lasolu

tionlibre

enfon

ctiondes

CI

Exprim

erla

solution

forceeen

fonction

des

modes

propres

Interpreter

toutcela

physiq

uem

ent

Con

naitre

lesmeth

odes

deRayleigh

etRayleigh

-Ritz

UPMC

-Master

SdI

Vibratio

ns&

Ondes

Vibratio

nsdes

systemes

contin

us

sept.

14

112/112