1. 2 Étude de lévolution de la structure interne et du champ magnétique des étoiles...

Preview:

Citation preview

1

2

Étude de l’évolution de la structure interne et du champ magnétique

des étoiles pré-séquence principale de masse intermédiaire

Evelyne Alecian

8 septembre 2006Observatoire de Meudon

Thèse effectuée au LESIA – Observatoire de Paris

Sous la direction de Claude Catala et Marie-Jo Goupil

3

Plan

1. Introduction2. Étude spectroscopique du système binaire

RS Cha3. Test des modèles d’évolution stellaire

pendant la phase PMS4. Le champ magnétique des étoiles de Herbig

Ae/Be5. Conclusions et perspectives

4

Introduction

5

Objectif

Comprendre l’évolution du moment

cinétique des étoiles

6

J dépend de la masse

• Les étoiles de faible masse : M < 1.5 M

– J dépend fortement de l’âge

Couplage magnétique entre l’étoile et le disque d’accrétionet Vents stellaires magnétisésModèles de Bouvier et al. (1997) et Soderblom et al. (1993)

Modèle d’évolution et de structure interne PMS et MS Travaux de Maeder, Meynet, Palacios, Talon, Charbonnel Travaux de Iben (1965), Palla & Stahler (1999), d’Antona & Mazzitelli (1994,1997)…

Le moment cinétique (J) le long de l’évolution stellaire

Bouvier et al. (1997)

Bouvier et al. (1997)

7

Les étoiles chimiquement particulières

• Am et Ap/Bp : 5-10% des étoiles A/B : étoiles MS de masse intermédiaire : 1.5 M < M < 15 M

• Rotateurs lents

Abt & Morell (1995)

• Ap/Bp Étoiles magnétiques : 300G à 30kG, champ structuré à grande échelle, globalement dipolaire

8

Pourquoi ces étoiles tournent-elles si lentement ?

• Am : supposé dû à la binarité : forces de marées

• Ap/Bp :– Est-ce dû au champ magnétique ?– D’après Stepien (2000), la seule solution est :

pendant la phase PMS :

• couplage magnétique entre l’étoile et son disque d’accrétion

• vents stellaires magnétisés

9

Objectifs

1. Comprendre l’évolution du moment cinétique total des étoiles

2. Comprendre le transport du moment cinétique à l’intérieur des étoiles

Pour les étoiles PMS de masse intermédiaire

10

Pour atteindre ces objectifs

Modélisation

Comparaison des modèles aux observations

Diagramme HR

Abondances

Sismologie

Contraintes extérieures :– vsini– B

11

Étoiles pré-séquence principale (PMS)

• Contraction quasi-statique• Énergie gravitationnelle• Début : ligne de naissance• Fin : ZAMS

ZAMS

Lignes de naissance

Palla & Stahler 1993

• Faibles masses : M < 1.5 M

phase convective puis radiative

• Masses intermédiaires : 1.5 < M < 15 M

phase convective petite ou inexistante

• Grandes masses : M > 15 M

pas de phase PMS

10-4 M/an

10-5 M/an

12

Les étoiles de Herbig Ae/Be

Supposées progéniteurs des étoiles A/B

• PMS de masse intermédiaire

A/B

13

Problématique : Origine du champ magnétique des étoiles Ap/Bp?

•Hypothèse du champ fossile

Hypothèse favorite

14

Problématiques : conséquences d’une hypothèse du champ fossile

• Étoiles de Herbig Ae/Be magnétiques?

• ~5% étoiles A/B magnétiques ~5% étoiles de Herbig Ae/Be magnétiques?

• Intensité B des Herbig Ae/Be compatible avec l’intensité B des Ap/Bp ?

• Structure B des Herbig Ae/Be = Structure B des Ap/Bp?

15

Problématiques : Origine de la faible rotation des étoiles Ap/Bp magnétiques

• 1ère hypothèse : – freinage rotationnel par l’interaction entre le

disque et le champ magnétique et entre le vent et le champ magnétique

• 2ème hypothèse :– seuls les rotateurs lents peuvent conserver leur

champ magnétique

16

Problématiques : l’évolution

• Comment évolue le champ magnétique ?

• Comment évoluent les vitesses de rotation – à la surface de l’étoile et – à l’intérieur de l’étoile ?

17

Mes contributions pour atteindre les objectifs

1. Comprendre l’évolution du moment cinétique global des étoiles de masses intermédiaire

Détecter, mesurer et caractériser le champ magnétique dans les étoiles de Herbig Ae/Be

2. Comprendre le transport de moment cinétique à l’intérieur des étoiles de masse intermédiaire

Modéliser l’évolution et la structure interne des étoiles PMS avec la rotation et le champ magnétique

Tester les modèles actuels des étoiles PMS avant d’inclure la rotation et le champ magnétique

18

Étude spectroscopique du système binaire RS Cha

19

RS Cha : un système idéal

• Système binaire SB2 à éclipse

• Deux composantes PMS

• Tous les paramètres fondamentaux sont connus sauf la métallicité

P S

M/M 1.89 0.01 1.87 0.01

R/R 2.15 0.06 2.36 0.06

Teff (K) 7638 76 7228 72

log(L/L) 1.15 0.06 1.13 0.06

Observations : 174 spectres avec GIRAFFE au SAAO de 12/2002 à 01/2003

20

Mesure de la métallicité : méthode

• Hypothèses : – Pas d’anomalies d’abondance

– Rapports d’abondance : solaires

• Spectre synthétique : ATLAS9 de Kurucz + SYNTH de Piskunov + BINMAG1 de Kochukhov

• Comparaison des spectres observés au spectre synthétique dans chaque région spectrale

21

Mesure de la métallicité : méthode

[Fe/H]=0.15

FeI 4957Å

P S

22

Mesure de la métallicité : méthode

• Hypothèses : – Pas d’anomalies d’abondance

– Rapports d’abondance : solaires

• Spectre synthétique : ATLAS9 de Kurucz + SYNTH de Piskunov + BINMAG1 de Kochukhov

• Comparaison des spectres observés au spectre synthétique dans chaque région spectrale

• Étude de plusieurs régions spectrales• Moyenne sur tous les spectres

23

Mesure de la métallicité : résultats

6 raies : MgII 4481 Å [Fe/H] = 0.17 0.04

CaI 4455 Å [Fe/H] = 0.17 0.05

FeI 4957 Å [Fe/H] = 0.17 0.04

FeI 5227 Å [Fe/H] = 0.17 0.05

FeII 5284 Å [Fe/H] = 0.15 0.04

FeII 5317 Å [Fe/H] = 0.17 0.05

En moyennant

Alecian et al. 2005

[Fe/H] = 0.17 0.01

24

Test des modèles d’évolution pendant la phase PMS

25

Modèle standard

• Hypothèses :– origine commune pour les deux composantes :

même âge, même Y, même métallicité– masse constante– pas de diffusion, ni de rotation, ni de champ

magnétique

• Outil : code d’évolution stellaire CESAM (2K) (Morel 1997), et l’aide d’Yveline Lebreton

26

Modèle standard

• Ingrédients et paramètres physiques– Equation d’état : OPAL– Opacités : OPAL + Alexander & Ferguson (1994)

(T<104 K) = 1.62, pas d’overshooting– [Fe/H]=0.17, Y=0.267, rapports d’abondance

solaires de Grevesse & Noels (1993)– Loi T() : Eddington– Taux des réactions nucléaire : NACRE

27

Stade d’évolution et structure interne des deux étoiles

• Enveloppe radiative• Cycle CNO a commencé :

cœur convectif

• P plus massive que S : stade plus avancé la luminosité décroît

Apparition du cœur radiatif

Disparition de l’enveloppe convective

Apparition du cœur convectif

28

Comparaison aux observations

• Modèle standard ne reproduit pas les observations

• (LP/LS)calc < 1 alors que (LP/LS)obs = 1.1 0.1

Trajets évolutifs

Boites d’erreur en masses et rayons : (M,R)obs (Te,L)mod

Barres d’erreur en luminosité et température (observationnelles)

1.86

1.90

29

Ingrédients et paramètres physiques modifiés sans résultat satisfaisant

• Paramètre de mélange • Overshooting

• Loi T()• Équation d’état

• Combustion de 2H, 7Li, 7Be

• Perte de masse

Aucun effet sur les boîtes

30

Paramètres agissant sur le transfert de luminosité inefficaces

Paramètres agissant sur les tracés

• Opacité globale• Y et [Fe/H]

31

Inversion du rapport des luminosités

Théorie reproduit les observations en modifiant les rapports d’abondance solaires de Grevesse & Noels (1993)

Alecian et al. 2006, accepté

1.86

1.90

Théorie reproduit les observations avec les rapports d’abondance solaires d’Asplund et al. (2004)

• Diminution du C et N Démarrage du cycle CNO

retardé Diminution de LP retardée

(LP/LS) > 1

• Y=0.272 Les boîtes sont sur les

croix

Alecian et al., en prep.

32

Pour aller plus loin

• Métallicité de RS Cha en utilisant les rapports abondances solaires d’Asplund et al. (2004) ?

• Contraindre d’avantage la physique incluse dans les modèles actuels : – Utiliser le rapport des températures– Utiliser la sismologie

• Prochaine étape : inclure la rotation et le champ magnétique.

33

Le champ magnétique des étoiles de Herbig Ae/Be

34

Comment détecte-t-on le champ magnétique dans les étoiles?

• Grâce à la polarisation de la lumière et

• Grâce à l’effet Zeeman

35

La polarisation de la lumière

1

2

( )1 1 1 1

( )2 2 2 2

( )i t

i t

E e A e eE t

E e A e e

Description classique de la lumière:

Le champ électrique :

1e

2e

E

ke

1E

2E

36

La polarisation de la lumière

1

2

( )1 1 1 1

( )2 2 2 2

( )i t

i t

E e A e eE t

E e A e e

Description classique de la lumière:

Le champ électrique :

Polarisation linéaire

2 1 0 ou

1e

E 2e

37

La polarisation de la lumière

1

2

( )1 1 1 1

( )2 2 2 2

( )i t

i t

E e A e eE t

E e A e e

Description classique de la lumière:

Le champ électrique :

Polarisation circulaire

2 1 / 2 3 / 2ou

1 2A Aet 1e

2e

E

38

La polarisation de la lumière

1

2

( )1 1 1 1

( )2 2 2 2

( )i t

i t

E e A e eE t

E e A e e

Description classique de la lumière:

Les quatre paramètres de Stokes :* * 2 21 1 2 2 1 2

* * 2 21 1 2 2 1 2

* *1 2 2 1 1 2 1 2

* *1 2 2 1 1 2 1 2

2 cos( )

2 sin( )

I E E E E A A

Q E E E E A A

U E E E E A A

V E E E E A A

Intensité

Polarisation linéaire

Polarisation circulaire

*( ) ( )ij i jI E t E t

Le tenseur de polarisation :Le champ électrique :

39

Effet Zeeman

En champ faible : au premier ordre : B Dg

0

0

0

I I

Q

U

20 l

dIV = -Cgλ B

dλBl : Champ magnétique longitudinal intégré sur la surface de l’étoile

40

Historique des recherches de champ magnétique dans les étoiles de Herbig

• AB Aur : Catala et al. (1993), Catala et al. (1999) Aucune détection

• HD 100546 : Donati et al. (1997) Aucune détection

• HD 104237 : Donati et al. (1997) Première détection directe

• HD 139614 : Hubrig et al. (2004) Détection non confirmée

41

Le spectropolarimètre ESPaDOnS

• Instrument nouvelle génération au CFHT ouvert à la communauté depuis le 1er semestre 2005

• Spectre optique (370 – 1050 nm) en une seule pose• 3 modes :

– Mode Spectropolarimètre : R = 68000– Mode Spectroscopique « objet + sky » : R = 68000– Mode Spectroscopique « object only » : R = 81000

42

ESPaDOnS : les observables

• En mode spectropolarimétrique, on mesure l’intensité I et un des trois autres paramètres de Stokes :– Q : polarisation linéaire– U : polarisation linéaire sur un axe à 45° par

rapport à Q– V : polarisation circulaire (droite ou gauche )

• Effet Zeeman : V est plus intense que Q et U

43

Méthode LSD « Least Square Deconvolution »

=

*

Spectre

Masque

Profil I

Donati et al. (1997)

44

Méthode LSD pour V

B non détectéB0

Spectre

Profil V

Masque

=

*

45

Découverte de champs magnétiques dans des étoiles de Herbig

• Etoiles de champ : – Sept. 2004 : HD 200775

(Alecian et al. 2006, en prep.)

– Fev. 2005 : HD 72106 (Wade et al. 2005)

– Fev. 2005 : V380 Ori (Wade et al. 2005)

– Mai 2005 : HD 190073 (Catala et al. 2006, soumis)

51 observées, 4 magnétiques

~8% magnétiques

vsini = 28.2 km/svsini = 40 km/svsini = 9.8 km/svsini 8.6 km/s

âge ~ 0.9 Manâge ~ 10 Manâge ~ 1.5 Manâge ~ 1 Man

46

Comment caractériser leur champ magnétique ?

1. Modéliser les variations de Bl en fonction du temps

2. Modéliser les variations des profils V au cours du temps

l

IV B

47

r

i

(Stift 1975)

Axe magnétique

z

x

y

O

observateur

P

Modèle du rotateur oblique : Schéma

• Calcul de bl(r,) en chaque point P de la surface

• Calcul de v(,r,) en chaque point de la surface

• Intégration sur la surface de l’étoile :

Bl et V()

48

Modèle du rotateur oblique : Exemple

49

Variations du champ longitudinal de HD 200775

mai-août 2005 8-15 juin 2006

P = 4.470.15 j

P = 4.370.01 j

50

Caractérisation du champ magnétique de HD 200775

P = 4,3 j = 90° Bp = 400 G i = 17°

Alecian et al. 2006, en prep.2 = 1.1

51

Caractérisation du champ magnétique de V380 Ori

P = 9,8 j = 85° Bp = 1400 G i = 47°

2 = 1.03 Alecian et al. 2006, en prep.

52

• 3 hypothèses différentes :

1. Etoile vue pole-on

2. = 0

3. Période très longue

Catala et al. 2006, soumis

Caractérisation du champ magnétique de HD 190073

53

Conclusion sur le deuxième objectif

• ~8% des étoiles de Herbig sont magnétiques• Structure de B globalement dipolaire ressemblant aux

structures du B des Ap/Bp• Les intensités de B ont le même ordre de grandeur que les

intensités du B des Ap/Bp 3 arguments forts en faveur de l’hypothèse du champ fossile

• Tous les rotateurs lents observés sont magnétiques, le champ magnétique n’est observé que dans les rotateurs lents.

• Vrot très faible : les étoiles ont déjà fortement ralenti. Il existe un mécanisme de freinage qui agit très tôt dans la phase

PMS

surtout

NGC 6611 - W601

9 août 2006 vsini ~ 200 km/s

54

1- Évolution du transport interne du moment cinétique :– Étude de RS Cha : totalement contraint– Les modèles actuels reproduisent les observations

On veut contraindre d’avantage ces modèles Études sismologiques avec COROT : profils de rotation (r)

– Inclure la rotation et le champ magnétique dans les modèles stellaires

Conclusions et Perspectives

55

Conclusions et Perspectives

2- Évolution globale du moment cinétique :– Observations supplémentaires d’étoiles de champ

Compléter notre catalogue Améliorer nos statistiques

– Observer des amas jeunes Faire une étude statistique approfondie Étudier l’évolution du moment angulaire total et du champ

magnétique en fonction du temps Étudier l’évolution du moment angulaire total et du champ

magnétique en fonction de l’environnement

56

Merci de votre attention