1 Croissance et reproduction bactériennes. Définitions Croissance = accroissement ordonné de tous...

Preview:

Citation preview

1

Croissance et Croissance et reproduction reproduction bactériennesbactériennes

Définitions

Croissance = accroissement ordonné de tous les composants d’un organisme

Reproduction = fabrication d’un nouvel individu

- par union de gamètes (reproduction sexuée)

- par mécanisme asexué

Remarque : pour une bactérie, la croissance est toujours suivie de la reproduction asexuée

Plan

1- Mécanisme et caractéristiques de la croissance et de la reproduction d’une bactérie

2- Etude expérimentale de la croissance d’une population bactérienne

3

4

1- Mécanisme et 1- Mécanisme et caractéristiques de caractéristiques de la croissance et la croissance et reproduction d’une reproduction d’une bactériebactérie

1-1- Mécanismes de la croissance et de la reproduction

1-1-1- Croissance - Réplication du DNA (de l’ADN) ce qui

conduit à la présence temporaire de 2 molécules de DNA dans le cytoplasme

- Synthèse de paroi, de membrane plasmique : allongement de la bactérie

- Synthèse de constituants cytoplasmiques

6

1-1-2- Reproduction asexuée par scissiparité

7

La multiplication (division) bactérienne

La reproduction asexuée la scissiparitéMécanisme :

• L'unique molécule d’ADN circulaire se réplique (se double), de nouvelles molécules de la paroi et de la membrane plasmique sont synthétisées et les constituants cytoplasmiques voient leur stock doublé.

• La bactérie s'allonge et se divise en deux par suite d’une invagination de la membrane plasmique et de la paroi formant un septum avec répartition des constituants dans chacune des bactéries filles.

• Séparation des 2 bactéries filles

Conséquences :• Mode de reproduction qui n'introduit pas de

variabilité génétique chez les bactéries filles qui sont identiques entre elles et identiques à la bactérie initiale

• Celles-ci forment des « clones » : des bactéries génétiquement identiques entre elles et identiques à la bactérie mère

• .

1-2- Paramètres caractéristiques de la croissance d’une bactérie

1-2-1- Temps de génération G

1-2-1-1- Définition 1ère partie : Temps nécessaire pour

qu’une bactérie se reproduise et donne 2 cellules filles.

2ème partie : En admettant que toutes les bactéries d’une population se multiplient de façon synchrone, c’est donc le temps nécessaire au doublement de la population.

11

1-2-1- Temps de génération G

1-2-1-2- Expression Soit t : la durée pendant laquelle la

bactérie se multiplie n fois

G = t / n

12

14

1-2-1- Temps de génération G1-2-1-3- Paramètres influençant la valeur de G

- La nature de la bactérie- Le milieu de culture : pour beaucoup de bactéries un

milieu glucosé permet une croissance optimale car permettant un meilleur apport énergétique : G le plus petit

- La température de culture * pour les bactéries mésophiles c’est aux alentours de 30-37°C que G est le plus petit

* pour les bactéries psychrophiles c’est aux alentours de 20°C que G est le plus petit

* pour les bactéries thermophiles c’est aux alentours de 45°C que G est le plus petit

15

1-2-2- Taux de croissance r

1-2-2-1- Définition 1ère partie : Nombre de générations

par unité de temps.

Remarque : si l’unité de temps choisi est l’heure, r = taux de croissance horaire

16

1-2-2- Taux de croissance r

1-2-2-2- Expression Soit t : la durée pendant laquelle la

bactérie se multiplie n fois

r = n / t

Donc r = 1/G

17

1-2-2- Taux de croissance r1-2-2-3- Paramètres influençant la valeur de r : les

mêmes que ceux influençant G

- La nature de la bactérie- Le milieu de culture : pour beaucoup de bactéries un

milieu glucosé permet une croissance optimale car permettant un meilleur apport énergétique : r le plus grand

- La température de culture * pour les bactéries mésophiles c’est aux alentours de 30-37°C que r est le plus grand

* pour les bactéries psychrophiles c’est aux alentours de 20°C que r est le plus grand

* pour les bactéries thermophiles c’est aux alentours de 45°C que r est le plus grand

18

Taux de croissance : nombre de multiplications par unité de tempsPlus le taux de croissance est élevée, meilleure est la croissance du microorganisme

20

2- Etude 2- Etude expérimentale de la expérimentale de la croissance croissance bactériennebactérienne

2-1- Méthodes d’étude de la croissance

2-1- 1- Dénombrements par comptage des colonies après culture

2-1-1- Dénombrement des microorganismes en milieu gélosé

Technique dans la masse (en profondeur)Technique en surface

23

Voir TP

2-1-1- Dénombrement des microorganismes en milieu géloséPrincipe :

- Des dilutions selon une progression géométrique de raison 1/10 sont réalisées

- Un volume connu de chaque dilution est introduit dans la masse ou en surface d’un milieu gélosé

- Après incubation les colonies sont comptées et, là où elles ne sont pas trop nombreuses, il est possible de considérer que chaque colonie provient d’1 ufc présente dans l’inoculum

- Calcul de la concentration en bactéries dans le produit de départ analysé en tenant compte du volume ensemencé et de la dilution.

24

Numération en milieu solide dans Numération en milieu solide dans la massela masse

2-1-1- Dénombrement des microorganismes en milieu gélosé

Remarque :Si faible concentration en bactéries (20 bactéries dans 100 mL) :

- nécessité de faire le dénombrement en utilisant un grand volume, - possibilité de procéder par filtration.

26

2-1-1- Dénombrement des microorganismes en milieu géloséRemarque :

Si faible concentration en bactéries (20 bactéries dans 100 mL) :

- nécessité de faire le dénombrement en utilisant un grand volume,

- possibilité de procéder par filtration.

27

Principe :- Passage d’un grand volume à travers un filtre dont les pores ont un diamètre inférieur à la taille des bactéries- Toutes les bactéries du volume filtré sont retenues sur le filtre- Dépôt du filtre à la surface d’un milieu gélosé adéquat -Après incubation, comptage des colonies qui, si elles ne sont pas trop nombreuses proviennent chacune d’1 ufc- Calcul de la concentration dans le produit filtré.

Schématisation de la technique de filtration sur Schématisation de la technique de filtration sur membranemembrane

2-1- 2- Dénombrements par comptage visuel des microorganismes au microscope

2-1-2- Comptage direct des microorganismes

2-1-2-1- Principe - Comptage des microorganismes sur des champs

microscopiques - Calcul de la concentration des microorganismes dans

le produit analysé.

30

2-1-2- Comptage direct des microorganismes

2-1-2-2- Les diverses techniques - Comptage des microorganismes sur des champs

microscopiques d’un hématimètre de Malassez, de Thoma ou autre chambre de volume connu (avec possibilité de distinguer cellules vivantes et cellules mortes grâce au bleu de méthylène de Funk ou au bleu Trypan)

- Comptage des microorganismes près coloration d’un frottis réalisé par étalement d’un volume connu dans un cercle de 1 cm2 : technique de Breed appliquée au lait

- Technique du DEFT (Direct epifluorescence filter technic)

31

Escherichia coli en hématimètre de Thoma

32

Cercle de surface de 1 cm2 sur une lame de Breed

33

2-1-2- Comptage direct des microorganismes

Principe du DEFT- Filtration d’un volume de suspension sur une

membrane (1 à 5 mL voire plus)- Coloration des microorganismes retenues sur la

membrane par une molécule fluorescente (orange acridine par exemple colorant les cellules vivantes riches en ARN en rouge orangé et les cellules mortes en vert par fixation sur l’ADN)

- Repérage et comptage des microorganismes colorées par observation microscopique de la membrane avec un microscope à épifluorescence (observation à l’objectif 100 à l’immersion).

34

2-1-2- Comptage direct des microorganismes

Avantages du DEFT- Meilleure sensibilité que les dénombrements en

hématimètre car :- Dénombrement possible sur un plus grand volume - Amélioration de l’observation du fait de la coloration par un

fluorochrome- Observation en épifluorecence.

35

Schématisation de la technique du DEFT

novembre 2006 Cellule procaryote 36

2-1- 3- Dénombrement par comptage automatisé des microorganismes

2-1-3- Comptage automatisé des microorganismes Principe :

– Mise en suspension des microorganismes à dénombrer dans un liquide conducteur de l'électricité (ionique)

– Aspiration du liquide au travers d'un orifice où sont placées deux électrodes entre lesquelles une ddp est appliquée

– Si passage d’ une cellule relativement isolante entre les électrodes :

• diminution de la conductivité, • augmentation de la résistance • une augmentation de la ddp entre les deux électrodes

38

Détection d’une impulsion à partir d'un seuil, impulsion correspondant à une seule cellule en raison de l'étroitesse de l'orifice.

.

2-1-3- Comptage automatisé des microorganismes Inconvénients :

• Méthode numérant les morts et les vivants

• Méthode pas applicable dans certaines conditions puisque des particules inertes présentes seront comptées comme des cellules.

39

2-1- 4- Dénombrement par quantification d’une présence microbienne : turbidimétrie

Dénombrement par quantification d’une présence microbienne : turbidimétrie

Principe :- Prélèvement mis dans une cuve de spectrophotomètre - Mesure du trouble dû à la présence de microorganismes car déviation des rayons lumineux par les microorganismes - Existence d’une relation de proportionnalité entre A est proportionnelle à C.

A = k . C

novembre 2006 Cellule procaryote 41

Dénombrement par quantification d’une présence microbienne : turbidimétrie

Avantages et inconvénients • Méthode très pratique, mais comptant les

morts.• Nécessité d’au minimum 106 bactéries par

cm3 pour faire la lecture sans que la concentration soit excessive.

• Impossibilité de mesure avec certains milieux ne permettent pas la mesure.

• Possibilité de perturbation de l’absorption par le milieu d'où l'utilisation d'une longueur d'onde où elle est faible (600 nm par ex.).

novembre 2006 42

2-1- 5- Dénombrement par quantification d’une activité microbienne

2-1-5-1- Dénombrement par quantification de l’ ATP : ATP métrieRelation concentration en ATP et concentration en

bactéries• Toute cellule vivante produit et consomme de

l’ATP• Pas de fabrication d’ATP par les bactéries ou

cellules mortes.• Quantité d’ATP par cellule quasi constante dans

une bactérie vivante, donc concentration en ATP proportionnelle à la concentration en cellules

Conséquence Suivi de la variation de la concentration en ATP

permet de suivre la variation de la concentration en bactéries

44

2-1-5-1- Dénombrement par quantification de l’ATP : ATP métrie

Principe du dosage

Possibilité de dosage facilement et rapidement l’ATP par la luciférase :

Luciférine + ATP + O2 oxyluciférine + AMP + P-P + CO2 + h (562 nm)

Conséquence : concentration en ATP est proportionnelle à l'intensité de la lumière émise CATP = k h

45

46

2-1-5-1- Dénombrement par quantification d’ ATP : ATP métrie

Intérêts • . Méthode très rapide : 1 min, • Méthode à seuil de détection très bas.

Applications• Quantification des microorganismes dans les

aliments ou dans des produits environnementaux après lyse des cellules dans un milieu permettant de conserver l'ATP intact

• Contrôle de l’efficacité des opérations de nettoyage désinfection dans le cadre de l’HACCP après lyse des cellules dans un milieu permettant de conserver l'ATP intact

• Suivi de culture microbienne 47

2-1-5-2- Dénombrement par quantification d’un métabolite ionisé : impédancemétriePrincipe• Activité métabolique libère des molécules

ionisées (acides par exemple• Production de molécules ionisées responsable

d’une diminution de la résistance du milieu et donc de l’impédance en courant alternatif.

Conséquence Suivi de la variation d’impédance permet de

suivre la variation de production de métabolites ionisés et donc de suivre la variation de concentration microbienne.

48

2-1-5-2- Dénombrement par quantification d’un métabolite ionisé : impédancemétrie

Conséquence Diminution de l’impédance : reflet de

l’augmentation de la concentration microbienne

49

2-2- Résultats des études de la croissance : courbe de croissance et son interprétation

2-2- 1- La scissiparité : multiplication par 2 et ses conséquences

2-2-1- La multiplication par 2 et ses conséquences

t= t0 N0 = 1

t1= t0 + G N1 =

t2 = t1 + G = t0 + 2G N2 =

t3 = t2 + G = t0 + 3G N3 =

………..

tn = t0 + nG Nn =

2-2-1- La multiplication par 2 et ses conséquences

t= t0 N0 = 1 = 20

t1= t0 + G N1 = 2 = 21

t2 = t1 + G = t0 + 2G N2 = 2. 2 = 22

t3 = t2 + G = t0 + 3G N3 = 2.4 = 23

………..

tn = t0 + nG Nn =2n

2-2-1- La multiplication par 2 et ses conséquences

•t0 N0

•t1 (t0+ G)) N1 = 2 X N0

•t2 (G+ t1) N2 = 2 X 2 X N0 = 22 x N0

•t3 (t0+ G) N3 = 2 X 2 x 2 X N0 = 23 x N0

•et ainsi de suite donc

•N = 2n x N0

La croissance bactérienne

N = 2n x N0

N augmente de façon exponentielle

La croissance est exponentielle

N = 2n x N0

Comme n = r t, alors N = 2rt x N0

56

2-2- 2- Courbes de croissance

2-2-2-1- Courbe N = f(t) = 2rt x N0

N

Courbe exponentielle

Temps

2-2-2-2- Courbe log N = f(t)•N = 2n x N0

•donc

•logN = n x log2 + logN0

•logN = r x log2 x (t-t0) + logN0

•logN = r x log2 x (t-t0) + logN0

•y = a x x + b

• logNN

•Exponentielle

Linéair

e

Temps

2-2-2-3- Les diverses phases de la courbe de croissance •

• 4

• 5

• temps

Phase de latencePhase

d'accélération

Phase exponentielle de croissance

Phase stationnaire

Phase de déclin

Phase de ralentissement

log N Ln N

2-2-2-4- Signification de chaque phasea/ Phase de latence

• Définition :Phase caractérisée par :

- absence de multiplications durant cette phase : r = 0 multiplication / h- adaptation du microorganisme au milieu :• Synthèse d’enzymes inductibles pour

métaboliser de nouveaux constituants• Restauration d’enzymes altérées

62

2-2-2-4- Signification de chaque phasea/ Phase de latence

• Caractéristique : Durée variable de cette phase

63

Durée dépendant :- De la composition du milieu- De l’âge des microorganismes- De l’inoculum- de la nature du microorganisme

Plus le nouveau milieu est différent de l’ancien :

- plus il faudra de temps pour synthétiser de nouvelles enzymes,

- plus la durée de la phase de latence est longue

Des microorganismes en phase de déclin mettront plus de temps pour restaurer leurs enzymes altérées

Plus l’inoculum est important, plus la phase de latence a une durée réduite

2-2-2-4- Signification de chaque phasea/ Phase de latence

• Remarque :– Microorganismes prélevés en phase

exponentielle dans un milieu X– Microorganismes réensemencés en milieu

X

64

Pas de phase de latence (durée nulle)

2-2-2-4- Signification de chaque phaseb/ Phase d’accélération

Définition :Phase durant laquelle

– le nombre de bactéries adaptées et qui commencent à se multiplier devient de plus en plus grand

– le rythme de multiplications est de plus en plus grand

65

2-2-2-4- Signification de chaque phasec/ Phase exponentielle

Définition :Phase de multiplication optimale au cours

de laquelle le nombre de bactéries augmente de façon exponentielle par rapport au temps (lnN ou log N augmente de façon linéaire dans le temps) et donc pendant laquelle :

- r est constant et maximum - et donc G constant et minimum.

66

2-2-2-4- Signification de chaque phasec/ Phase exponentielle

• Caractéristique : Phase de multiplication optimale durant laquelle la valeur de r est constante et maximale

67

Valeur de r qui dépend :- Du microorganisme (§1)- Des conditions d’environnement

* des facteurs physiques (température, O2, Disponibilité en eau, pH…..)

* de la disponibilité en nutriments

2-2-2-4- Signification de chaque phased/ Phase de ralentissement

• Définition : Phase pendant laquelle r diminue progressivement jusqu’à devenir nul

68

Causes de son existence :- Appauvrissement du milieu en certaines substances nutritives ou en certains gaz- Accumulation de certains déchets plus ou moins toxiques

2-2-2-4- Signification de chaque phasee/ Phase stationnaire

• Définition : Phase pendant laquelle r est nul et N reste constant car il ya équilibre entre :– Le nombre de bactéries disparaissant par lyse – Le nombre de bactéries apparaissant par

multiplication lente

69

Causes de son existence :Dégénérescence d’une partie des microorganismes compensée par l’apparition de nouveaux microorganismes qui utilisent pour se multiplier les molécules libérées par la lyse des autres microorganismes

2-2-2-4- Signification de chaque phasee/ Phase stationnaire

• Causes de la lyse de certains microorganismes :– Epuisement total d’une substance nutritive

indispensable appelée substance limitante – Accumulation trop grande de déchets toxiques

dans le milieu– Evolution défavorable de l’environnement

physique (ex : abaissement du pH).

70

2-2-2-4- Signification de chaque phasef/ Phase de déclin

Définition :Phase pendant laquelle r est négatif car

les microorganismes ne se multiplient plus et beaucoup d’entre eux meurent et sont lysés.

71

2-2-2-5- Détermination des paramètres de la croissance :Le temps de latence

tL

Temps de latence = tL

Temps

log N

Détermination des paramètres de la croissance :Le temps de latence

tL

Temps de latence = tL

Temps

Log N

Détermination des paramètres de la croissance :Le temps de génération G

• •

logN2

•logN1

Lorsque la population double, N2 = 2 x N1

logN2 = log2 + logN1

logN2 = 0,3 + logN1

+ 0,3

G Temps

Log N

Détermination des paramètres de la croissance :Le temps de génération G

• •

•lnN2

•lnN1

Lorsque la population double, N2 = 2 x N1

lnN2 = ln2 + lnN1

lnN2 = 0,7 + lnN1+ 0,7

G

Ln N

Temps

Détermination des paramètres de la croissance :Le taux de croissance horaire r

logN2

• logN1

• temps

logN =r x log2 x (t-t0) + logN0

donc pente = a = r x log2

pentedonc r = -------------

log2

logN2 - logN1

avec pente = -----------------t2 – t1

+ 0,3

Temps

log N

Recommended