Mécanique des fluides et hémodynamique Cours du Pr J-L BARAT ED Pr G BAILLET

Preview:

Citation preview

Mécanique des fluides et hémodynamique

• Cours du Pr J-L BARAT

• ED Pr G BAILLET

v2v1 V3

Equation de continuité

• Soit un fluide incompressible dans

un tube ou une artère indéformable

• S1v1 = S2v2

• Si le rayon r2 est la moitié de r1

• V2 est égale à V1 multipliée par

• 1 2 4 8

• N’oublions pas que S2 = π r22

• Le rayon est divisé par 2

• La section est divisée par 4

• Sv est constant

• La vitesse est multipliée par 4

loi de Pascal

Un barrage retient l’eau d’une rivière à une hauteur de 50 m. Calculer la pression qui s’exerce sur le pied de la muraille.

Entre la surface et le fond du bassin

• P2 = P1 + g h = 103 kg m-3

• g = 10 m s-2

• h = 50 m

• P1 = 10 5 Pa = 1 atm

• P2 =105 + 50x10x103

• P2 =6 105

• P2 = 6 atm

Pression sur une surface horizontale d’un fluide au repos

0 10 20 30 40 50

Barrage

• La pression sur le pied du barrage est égale à la pression sur le fond en P2

• Soit 6 atm

0

10

20

30

40

50

EQUATION DE BERNOULLI

P + g z + v2 = charge totale 12

v2v1 V3

Ecoulement horizontal

•P + 1/2 v2 = constante

v2v1 V3

Écoulement horizontal

v2v1 V3

• Le théorème de Bernoulli est établi à condition que :

– Fluide parfait (non visqueux, dépourvu de frottements)

– Incompressible (masse volumique constante)

– S’écoulant en régime laminaire (chaque élément a une vitesse parallèle au sens général)

– Débit constant

14

Section 1

• La pression latérale sur la paroi P est égale à 1 atm :

• à quelle hauteur monte le manomètre à eau?

Pression latérale sur la paroi

1 atm = 105 Pa

P = g z

z = P / g

z = 105 / (103 x10)

Z = 10 m

Savoir changer d’unité

• 1 atmosphère = 1 atm = 105 Pa

• 10 m H2O = 105 Pa

• 1 mm Hg = 133,3 Pa

Nous envisageons maintenant

• Fluide réel ( non parfait) , visqueux et dans lequel siègent des frottements

• Dont le type d’écoulement sera parfois laminaire, parfois turbulent

18

• Schématiquement, écoulement dans un tube selon

2 modalités possibles :

laminaire ou turbulent

19

Force de viscosité

Soient 2 lames parallèles de surface A identique, distantes de x,

1 lame est animée d’une vitesse v1,

• l’autre d’une vitesse v2 = v1+ v

xF

Fv

v + v

• Pour maintenir une vitesse relative constante v entre les deux lames, il faut exercer une force sur la lame supérieure pour vaincre la force de frottement ou encore la force de viscosité

21

F = A v / x

coefficient de viscosité (Pa.s) v/ x gradient de vitesse entre les lames

= taux de cisaillement, en s-1

êta est liée à

l'interaction entre les molécules

Unité : Poiseuille ou Pa . s

remplace la Poise (Poise = 0,1 Pa . s)

22

Liquide visqueux newtonien

ne dépend que de la température

indépendant de v/x

Ex : EAU

23

(V-3) Fluides newtoniens et non newtoniens 

• Fluide newtonien si est constant, à température donnée

• Fluide non newtonien si à température donnée, n’est pas constantEx : le sang dépend, à température donnée,

de v/ x

24

• Le sang n’est pas un fluide newtonien

3 grands facteurs influencent du

sang

– La composition du sang– Le calibre vasculaire– La vitesse d’écoulement

26

augmente quand l ’hématocrite augmente(relation non linéaire)

Hématocrite45%27

v/x

sang

plasma

v/x

capillaires

AO

Taux de cisaillement bas dans les gros troncs, agrégation des GR, rouleaux physiologiques Taux de cisaillement élevé dans capillaires, diminue, déplacement favorable des GR

----------- Liquide newtonien

28

Effet Fahreus-Lindquist

diamètre

10 m

Si diamètre > 10 m et < 1-2 mm (cas de la microcirculation dans artérioles et veinules),

diminue avec le diamètre = effet Fahreus-Lindquist (1931)

Effet d’autant plus important que le vaisseau est petit, car le manchon plasmatique (3 μm) occupe une fraction d’autant plus grande que le vaisseau est petit

1mm29

Écrémage plasmatique

• Le sang dérivé prélevé au voisinage de la périphérie du vaisseau est donc moins riche en GR donc hématocrite diminué

Ex: Microcirculation rénale

Artérioles à coussinet

• Orifice d’entrée de la collatérale près de l’axe de l’artère le sang dérivé est prélevé au voisinage du centre donc plus riche en GR :

Hématocrite conservé ou augmenté

30

V-4 Ecoulement laminaire

• Quand le débit est faible, toutes les particules ont une vitesse parallèle au sens général de l’écoulement. Les lames liquides glissent les unes sur les autres : le régime est

LAMINAIRE

31

• Considérons un tube de section constante et différentes lames de fluide à l’intérieur du tube

32

La lame directement au contact de la paroi a une vitesse nulle car soumise à un frottement maximal

La lame directement voisine a une vitesse très faible

Et de proche en proche la vitesse des lames augmente et atteint une valeur maximale au centre du tube

2r Vmax

LOI DE POISEUILLE Remarques

Si P/ est constant (résistances en parallèle, cas fréquent dans le système cardiovasculaire) :

– Plus la viscosité est élevée et plus le débit est faible

– Le débit est proportionnel à la puissance 4 du rayon : une faible variation de rayon va entraîner de fortes variations de débit

33

Q =

8 r4

l

P

l

Q πr4

8 P = l [ ]

Remarques

• Analogie électrique

– exprime que la perte de charge est proportionnelle au débit, soit l’équivalent de la loi d’ohm :

– R H = [ ] est la résistance hydraulique 34

ΔV = R I

__

hydrodynamique

R1

R2

R3

R1

R2

R3

(V-5) Ecoulement turbulent

• S’oppose au laminaire comme l’ordre au désordre– Absence de parallélisme des vitesses de chaque lame– Effet du frottement plus important– Perte d’énergie plus importante– Le profil des vitesses n’est plus parabolique– La loi de Poiseuille n’est plus applicable

= La perte de charge n’est plus proportionnelle au débit

– Le régime turbulent est bruyant

36

Nombre de Reynolds

Les conditions déterminant l’un ou l’autre des régimes dépendent de la vitesse moyenne d'écoulement v, du rayon r , de la viscosité et de la masse volumiqueRègle empirique :Nombre de Reynolds (1883)

Re = 2 v r

Re renseigne sur stabilité d’un écoulement

Re est un nombre sans dimension37

Re < 2400 : toujours laminaire (faible v, faible Q)

Re > 10 000 : toujours turbulent (forte v, fort Q)

Entre 2400 et 10 000 : instable

Pour 2400 , se définit la vitesse critique en dessous de laquelle le régime est toujours laminaire

Pour 10 000, se définit la vitesse au dessus de laquelle le régime est toujours turbulent

38

V-6 Applications physiologiques

• Ecoulement dans l'aorte

au repos v moyenne : 25 à 30 cm.s-1

r #1 cm

103 kg/m3 vc = 24 cm.s-1

2 x 10-3 Pa.s Régime laminaire

(auscultation silencieuse des vaisseaux)

à l ’effort, Q donc v augmentent,

Turbulences

(Souffle audible : le régime turbulent est bruyant)

Equation de continuité

• Le fluide est incompressible

• Le tube peut être déformable

• Le débit est constant

• Q = S v avec S section et v volume

• Q = ½ ρ v2 avec ρ masse volumique et v vitesse

Manomètre à mercure. Mesure de la pression artérielle

• Le terme ρgh avec h hauteur des niveaux de mercure correspond:

• À la pression dans l’artère• À la somme: pression dans l’artère+ pression

atmosphérique• à la différence : pression dans l’artère – pression

atmosphérique• à la pression dans l’artère divisée par la pression

atmosphérique• à la pression atmosphérique divisée par la pression dans

de l’artère

43

Artère

Le Le manomètremanomètre

P = P2 = P3 = Patm + gh

2 3

1

h

• Liquide utilisé : Mercure Hg

• PA maximale ou systolique = 130 mm Hg

• PA minimale ou diastolique = 80 mm Hg

• PA moyenne au cours du cycle cardiaque

= 100 mm Hg

44

Mesure de la pression artérielle

• Les pressions sont beaucoup plus faibles

La hauteur observée avec un manomètre à mercure est beaucoup trop faible mesure trop peu précise

g h= P – P atm

En diminuant h sera plus grand : on remplace le mercure par de l’eau est 13 fois plus faible, donc h est 13 fois plus grand)

h veineux = 10 cm d’eau45

Mesure de la pression veineuse

Loi de Poiseuille• Elle s’applique à un fluide parfait

• Elle suppose que l’écoulement est laminaire

• Elle suppose que la masse volumique reste constante

• Elle suppose que la charge du fluide reste constante

• Elle suppose que la pression hydrostatique reste constante

• On considère du sang s’écoulant dans une artère de section circulaire constante et de rayon r. sa vitesse d’écoulement est la vitesse critique égale à 25 cm s-1

Quelles sont les réponses exactes?

• Le débit reste constant. Si le rayon est divisé par 2, le régime d‘écoulement est toujours turbulent

• Le débit reste constant. Si le rayon est divisé par trois, le régime d’écoulement peut être turbulent

• Si la vitesse est multipliée par trois le régime peut être soit laminaire soit turbulent

• Si la vitesse est divisée par 2, un souffle peut parfois être entendu

Résistances du système vasculaire

• Pour un écoulement laminaire dans les éléments suivants : gros troncs artériels (1) artères moyennes (2), artérioles (3) capillaires (4) veinules et veines (5) en série classer par ordre décroissant les valeurs en pourcentage des résistances hydrauliques de ces éléments

• 1-2-3-4-5 2-1-3-4-5

• 3-2-1-4-5 3-4-2-1-5 3-4-2-5-1

Elément vasculaire R (% ) du total

Aorte, gros troncs Artères moyennes

Artérioles Capillaires

Veinules et veines

10 15 40 30 5

En admettant que l’écoulement laminaire et que leséléments sont disposés en série donc D

50

Taux de cisaillement et viscosité du sang

• Un liquide non newtonien présente une viscosité dépendante du taux de cisaillement

• La viscosité du sang est plus faible dans les capillaires que dans l’aorte

• Le profil des vitesses du sang n’est plus parabolique dans les capillaires

• Un liquide newtonien a un profil de vitesse plat (même vitesse en tout point d’un liquide)

• L’expression du taux de cisaillement est Δx/Δv

• Le taux de cisaillement s’écrit

• Δx/Δv

• ???

LOI DE LAPLACE

• ou relation pression-tension

• exprime la relation d’équilibre qui existe entre la pression à l’intérieur du vaisseau et la tension superficielle de la paroi : 2 forces antagonistes

• Pour un vaisseau cylindrique T = P x r ( r rayon du vaisseau), à condition que le rayon soit très petit devant sa longueur

53

• Crosse aortique

T plancher > T plafond

Histologie : fibres élastiques plus nombreuses au plancher

Conséquence en pathologie : dilatation du plafond uniquement et rupture

54

• Crosse aortique

T plancher > T plafond

Histologie : fibres élastiques plus nombreuses au plancher

Conséquence en pathologie : dilatation du plafond uniquement et rupture

55

Aorte

Le pouls• Sachant que la distance entre le ventricule

gauche et l’artère radiale au poignet est de 1 m, que la vitesse moyenne d’écoulement est de 20 cm s-1, que la vitesse de propagation de l’onde de pression dans le sang est 4 m s-1 quel est temps de propagation du pouls entre le VG et le poignet (en s)

• 50 5 0,5 0,25 0,025

Le Pouls

• Onde de pression qui se propage dans le sang

• Ne pas confondre vitesse de propagation (sujet jeune 4 m/s et sujet âgé 12 m/s) et vitesse d’écoulement du sang (0,3 m/s dans l’aorte)

• Origine : – choc entre masse de sang éjectée lors de la systole et sang aortique – Propagation d’une onde de pression

57

• FIN

Recommended