Un peu de logique formellejp.spriet.free.fr/docs_TES/logique_Term_ES.pdf · analytiques »...

Preview:

Citation preview

Un peu de logique formelle…

… ou comment comprendre ce que le prof dit pendant ses cours

… et comment vous faire comprendre du prof … !!!

:o)

La logique selon Aristote

• La logique naît avec Aristote (384-322 av. J.C), disciple de Platon.

• C'est le moment de la lutte entre les philosophes et les sophistes. Pour Aristote, la logique a deux finalités.

Il s'agit, en premier lieu, de rendre la sophistique impossible (les sophistes utilisaient des raisonnements parfois corrects mais sans se soucier de la vérité). Certes Platon critique les sophistes sur tel ou tel point mais l'ignorance des lois de la pensée correcte rend impossible une réfutation de fond. En second lieu, la logique vise à fonder la philosophie elle-même. Ainsi, Aristote n'est pas satisfait de certains raisonnements platoniciens. Une philosophie ne peut être rigoureuse que si elle sait comment fonctionne la pensée correcte.

• La logique se présente comme une propédeutique (une science préalable) àtoute pensée se voulant rationnelle. C'est en ce sens qu'Aristote écrit : « Il faut connaître les Analytiques avant d'aborder aucune science » (les «analytiques » désignent les deux livres essentiels de la logique d'Aristote)

• La logique d'Aristote se présente sous la forme de six livres portant globalement, depuis le Moyen-Age, le nom d'Organon, ce qui signifie « outil ».

• La logique se définit (selon la formule kantienne) comme «une science qui expose dans le détail et prouve de manière stricte, uniquement les règles formelles de toute pensée». Le système aristotélicien prend la forme du syllogisme; mais, apparaît au XIX°siècle (avec Frege) une logique dite formelle sur le modèle algébrique.

Platon et Aristote

détail du tableau de Raphaël (1518)

L’école d’Athènes

Les 3 principes d’Aristote

• Le principe de non-contradiction:

"Il est impossible que le même attribut appartienne et n'appartienne pas en temps au même sujet et sous le même rapport"

Aristote, métaphysique, 3, 1005B, 9.

• Le principe du tiers exclu:"Il ne peut y avoir d'intermédiaire entre deux contraires, un sujet possède ou ne possède pas un attribut donné"

Ibid. VII, 1021b23-29

• Le principe d'identité :"Se demander pourquoi une chose est elle-même, c'est enquêter dans le vide parce que l'existence d'une chose doit être claire. Ainsi, le fait qu'une chose est elle-même est la seule réponse et la seule cause dans tous les cas, comme par exemple dans la question `pourquoi un homme est un homme?`..."

Le principe d'identitéIbid. VII, 1041a15-20

Les 3 principes d’Aristote

• Le principe de non-contradiction:

une proposition A ne peut être à la fois vraie et fausse

• Le principe du tiers exclu:

une proposition A est forcément vraie ou fausse

• Le principe d'identité :

La chose A s’explique (ou se vérifie) par elle-même.

Les 3 principes d’Aristote

• Le principe de non-contradiction:une proposition A ne peut être à la fois vraie et fausse

Deux droites dans le plan ne peuvent être sécantes et non sécantes àla fois.

• Le principe du tiers exclu:une proposition A est forcément vraie ou fausseDeux droites dans le plan sont sécantes ou non

• Le principe d'identité :

Une proposition A s’explique par elle-même.Le discours philosophique a besoin de cohérence. Une expression

de ce besoin est le principe d'identité qui énonce que ce qui est est.Dans le champ des mathématiques, certaines « définitions » d’objets ne « s’expliquent » pas autrement que par elles-mêmes, exemple : un point en géométrie, les nombres 1,2,3…

Qu’est-ce qu’une proposition ?

• Une proposition est un énoncé abstrait sur

lequel on ne fait aucune hypothèse àà prioripriori sur la

véracité ou la fausseté.

Par exemple :

« il pleut » est une proposition.

« tout homme est mortel » en est une autre.

« tous les lapins mangent des carottes » une

troisième.

Que fait la logique ?

• La logique est la « science » qui étudie la relation entre propositions. Elle est l’exercice de la raison (= ratio en latin) dont le mot signifie calcul, jugement, pensée. Elle calcule la justesse de leur relation.

On utilise donc les syllogismes, du grec συν λογικον = « sun logicon » = lier ensemble.

L’objectif étant de démontrer la véracité ou la fausseté d’une proposition énoncée.

L’exemple donné le plus souvent : « Tout homme est mortel » et « Socrate est un homme » donc…« Socrate est mortel ».

Que fait la logique ?

L’exemple donné le plus souvent : « Tout homme est mortel » et « Socrate est un homme » donc… « Socrate est mortel ».

En termes de logique, on peut dire que si je sais que « B est A » et « C est B » alors je peux conclure que…

Que fait la logique ?

En termes de logique, on peut dire que si je sais que « B est A » et « C est B » alors je peux conclure que… « C est A ».

j’ai ainsi dégagé une règle générale de raisonnement.

Logique = Déduction

Le calcul des propositions constitue la première

étape vers la formalisation des démonstrations (pour étudier la validité d’un raisonnement, on ne regarde pas son contenu, mais la relation entre les propositions -donc la forme du

raisonnement).

Il permet de s’assurer sans risque d’erreur que

des déductions complexes sont valides.

On utilise les « 4 connecteurs logiques »

NON ET OU IMPLIQUE

on notera dans ce qui suit : V pour Vrai et F pour Faux. D’après les

principes d’Aristote, une proposition est soit Vraie soit Fausse.

les « 4 connecteurs logiques »

NON ET OU IMPLIQUE

NON

Si A est une proposition alors NON(A) en est une autre qui est vraie si A est fausse, et fausse si A est vraie.

FV

VF

NON(A)A

NON

Si A : « ma voiture est blanche »

alors NON(A) :

FV

VF

NON(A)A

NON

Si A : « ma voiture est blanche »

alors NON(A) : « ma voiture n’est pas blanche »

FV

VF

NON(A)A

ET

Si A et B sont deux propositions alors A et B en est une autre qui est vraie si A et B sont vraies en même temps, sinon elle est fausse.

FFF

FVF

FFV

VVV

A et BBA

ET

Si A : « j’ai une voiture » et B : « j’ai le permis »Alors A et B : « j’ai une voiture et le permis »A et B est vraie si A et B sont vraies toutes les deux, sinon elle est fausse.

FFF

FVF

FFV

VVV

A et BBA

OU

Si A et B sont deux propositions alors A ou Ben est une autre qui est fausse si A et B sont fausses en même temps, sinon elle est vraie.

FFF

VVF

VFV

VVV

A ou BBA

OU

Si A : « j’ai une voiture » et B : « j’ai le permis »Alors A ou B : « j’ai une voiture ou le permis »A ou B est vraie si l’une au moins des propositions A et B est vraie.

FFF

VVF

VFV

VVV

A ou BBA

OU et « ou bien »

les nuances du françaisA ou B est vraie si l’une au moins des propositions A et B est vraie.Si on veut insister sur le fait que A et B ne peuvent être vraies en même temps, on doit le préciser clairement par un « ou bien ».

Par exemple, au restaurant, si le menu annonce « fromage ou dessert », ne demandez pas les deux… ce serait plus cher !

Par contre si chez vous vos parents vous demandent si vous voulez du sel ou du poivre dans votre portage, vous pouvez sans crainte demander les deux.

FFF

VVF

VFV

VVV

A ou BBA

Implique ⇒Si A et B sont deux propositions alors A ⇒ B en est une autre qui est fausse si A est vraie et B est fausse.On peut rapprocher l’implication du langage courant : « si A alors B »Du point de vue logique,

A ⇒ B est équivalent à NON(A) OU B

VFF

VVF

FFV

VVV

A ⇒ BBA

Implique ⇒Du point de vue logique,

A ⇒ B est équivalent à NON(A) OU Bvérifiez-le en remplissant la table de vérité suivante :

F

V

F

V

B

?

?

?

?

NON(A)

?

?

?

?

NON(A)

OU B

VF

VF

FV

VV

A ⇒ BA

Implique ⇒Du point de vue logique,

A ⇒ B est équivalent à NON(A) OU B

F

V

F

V

B

V

V

F

F

NON(A) NON(A)

OU B

VF

VF

FV

VV

A ⇒ BA

Implique ⇒Du point de vue logique,

A ⇒ B est équivalent à NON(A) OU B

F

V

F

V

B

V

V

F

F

NON(A)

V

V

F

V

NON(A)

OU B

VF

VF

FV

VV

A ⇒ BA

Implique ⇒Il est à noter que si A est fausse alors A ⇒ B est vraie quel que soit B.Ceci est confirmé par le sens commun dans une expression du genre :« si vous êtes le président alors moi je suis un martien »C’est-à-dire : vous dites être le président, je dis que c’est faux; et puisque c’est faux, tout peut arriver…

VFF

VVF

FFV

VVV

A ⇒ BBA

les « 4 connecteurs logiques »

et leurs rapports

NON ET OU IMPLIQUE

Associativité des connecteurs

Associativité des connecteurs

• A ET ( NON(A) ) = ???

• A OU ( NON(A) ) = ???

• A ET ( B OU C ) = ???

• A OU ( B ET C ) = ???

Associativité des connecteurs

• A ET ( NON(A) ) = impossible

• A OU ( NON(A) ) = ???

• A ET ( B OU C ) = ???

• A OU ( B ET C ) = ???

Associativité des connecteurs

• A ET ( NON(A) ) = impossible

• A OU ( NON(A) ) = toujours vrai

• A ET ( B OU C ) = ???

• A OU ( B ET C ) = ???

Associativité des connecteurs

• A ET ( NON(A) ) = impossible

• A OU ( NON(A) ) = toujours vrai

• A ET ( B OU C ) = (A ET B) OU (A ET C )

• A OU ( B ET C ) = ???

Associativité des connecteurs

• A ET ( NON(A) ) = impossible

• A OU ( NON(A) ) = toujours vrai

• A ET ( B OU C ) = (A ET B) OU (A ET C )

• A OU ( B ET C ) = (A OU B) ET (A OU C )

Négation des connecteurs

Négation des connecteurs

• NON( NON(A) ) = ???

• NON( A ET B ) = ???

• NON( A OU B ) = ???

• NON( A ⇒ B ) = ???

Négation des connecteurs

• NON( NON(A) ) = A

• NON( A ET B ) =

• NON( A OU B ) =

• NON( A ⇒ B ) =

Négation des connecteurs

• NON( NON(A) ) = A

• NON( A ET B ) = NON(A) OU NON(B)

• NON( A OU B ) =

• NON( A ⇒ B ) =

Négation des connecteurs

• NON( NON(A) ) = A

• NON( A ET B ) = NON(A) OU NON(B)

• NON( A OU B ) = NON(A) ET NON(B)

• NON( A ⇒ B ) =

Négation des connecteurs

• NON( NON(A) ) = A

• NON( A ET B ) = NON(A) OU NON(B)

• NON( A OU B ) = NON(A) ET NON(B)

• NON( A ⇒ B ) = A ET NON(B) (surprenant ?)

Négation des connecteurs

• Exemple 1:

« il pleut ET je suis mouillé »

a pour négation :

Négation des connecteurs

• Exemple 1: solution

« il pleut ET je suis mouillé »

a pour négation :

« il ne pleut pas OU je ne suis pas mouillé »

Négation des connecteurs

• Exemple 2:

« s’il pleut alors (⇒) je suis mouillé »

a pour négation :

Négation des connecteurs

• Exemple 2 : solution

« s’il pleut alors (⇒) je suis mouillé »

a pour négation :

« il pleut ET je ne suis pas mouillé »

en effet…

Négation des connecteurs

« s’il pleut alors (⇒) je suis mouillé »

A ⇒ B est équivalent à NON(A) OU B

et la négation de NON(A) OU B estNON(NON(A) OU B ) = A ET NON(B)

donc…« il pleut ET je ne suis pas mouillé »

Négation des connecteurs

• Exemple :

« s’il pleut alors (⇒) je vais au cinéma »

a pour négation :

« il pleut ET je ne vais pas au cinéma »

Les quantificateurs logiques

Les quantificateurs logiques

• Une propriété peut être universelle ou particulière :

• Universelle si elle est vraie (ou fausse) pour tous :

« tous les élèves de Terminale font de la philosophie »« aucun lapin ne porte de lunettes »

• Particulière si elle est vraie (ou fausse) dans au moins un cas :

« il existe un élève de la classe qui est une fille »

« il existe un élève de la classe qui n’est pas une fille »

Les quantificateurs logiques

Une propriété peut être positive ou négative

• Positive :

« il existe un réel x tel que x² = 3 »

• Négative :

« il existe un réel x tel que x² ≠ 3 »

Les quantificateurs logiques

Il existe donc quatre « types » de propriétés :

Particulière négative

O

Particulière positive

I

Universelle négative

E

Universelle positive

A

Quatre règles fondamentales des

syllogismes

Quatre règles fondamentales des

syllogismes

• De deux propositions négatives, on ne peut rien conclure.

Si aucun garçon n’a de lunettes et aucune personne n’ayant de lunettes n’est blond alors…

Quatre règles fondamentales des

syllogismes

• De deux propositions négatives, on ne peut rien conclure.

Si aucun garçon n’a de lunettes et aucune personne n’ayant de lunettes n’est blond alors…RIEN

Quatre règles fondamentales des

syllogismes

De deux propositions positives on ne peut donner de conclusion négative.

Tous les garçons de Terminale ont des lunettes, or il existe un garçon dans la classe de TES donc …

S’il existe un garçon de Terminale qui a des lunettes et s’il existe un garçon dans la classe de TES alors …

Quatre règles fondamentales des

syllogismes

De deux propositions positives on ne peut donner de conclusion négative.

Tous les garçons de Terminale ont des lunettes, or il existe un garçon dans la classe de TES donc … il existe un garçon àlunettes en TES.

S’il existe un garçon de Terminale qui a des lunettes et s’il existe un garçon dans la classe de TES alors … il existe peut être un garçon de TES qui a des lunettes.

Quatre règles fondamentales des

syllogismes

La conclusion suit toujours la plus faible des parties :

• la conclusion est négative si l’une des deux parties est négative.

• la conclusion est particulière si l’une des deux est particulièreSi tous les élèves de TL mesurent plus de 1m80, et s’il existe une fille en TL alors…Si aucun des élèves de TL ne mesure moins de 1m70, et s’il existe une fille en TL alors…

Quatre règles fondamentales des

syllogismes

La conclusion suit toujours la plus faible des parties :

• la conclusion est négative si l’une des deux parties est négative.

• la conclusion est particulière si l’une des deux est particulièreSi tous les élèves de TL mesurent plus de 1m80, et s’il existe une fille en TL alors il existe une fille de plus de 1m80 en TLSi aucun les élèves de TL ne mesure moins de 1m70, et s’il existe une fille en TL alors il n’existe pas de fille de moins de 1m70 en TL

Quatre règles fondamentales des

syllogismes

• Il ne suit rien de deux propositions particulières

S’il existe un élève de TS qui mesure plus de 2m00, et s’il existe une fille en TS alors …

Quatre règles fondamentales des

syllogismes

• Il ne suit rien de deux propositions particulières

S’il existe un élève de TS qui mesure plus de 2m00, et s’il existe une fille en TS alors …

On ne peut rien conclure.

Oppositions entre syllogismes

Les relations d’opposition des

syllogismes en logique

Particulière négative

O

Particulière positive

I

Universelle négative

E

Universelle positive

A

Contraire

Subcontraire

subalterne contradictoires subalterne

Particulière négative

O

Particulière positive

I

Universelle négative

E

Universelle positive

A

Classer ces quatre propositions :

« Tous les trains arrivent à l’heure »

« un train n’arrive pas à l’heure »

« l’homme est un animal rationnel »

« il existe un homme qui n’a pas de (capacité de) Raison

contradictoire

Particulière négative

O

Particulière positive

I

Universelle négative

E

Universelle positive

A

contradictoires

Ne sont jamais vraies ensemble, ni fausses ensemble.

Si l’une est vraie, l’autre est fausse.

« Tous les trains arrivent à l’heure » et « un train n’arrive pas à l’heure »

« l’homme est un animal rationnel » et « il existe un homme qui n’a pas de (capacité de) Raison

Contraire

Particulière négative

O

Particulière positive

I

Universelle négative

E

Universelle positive

A

Ne sont jamais vraies ensemble.

Si l’une est vraie, l’autre est fausse

Contraire

« Tous les trains arrivent à l’heure » et « aucun train n’arrive à l’heure »

Subcontraire

Particulière négative

O

Particulière positive

I

Universelle négative

E

Universelle positive

A

Ne sont jamais fausses ensemble mais peuvent être vraies ensemble.

Si l’une est fausse, l’autre est vraie.

Subcontraire

« Edouard est élève en TES » et « Edouard n’est pas élève en TL »

subalterne

Particulière négative

O

Particulière positive

I

Universelle négative

E

Universelle positive

A

Si l’universelle est vraie, alors la particulière est vraie. Mais pas l’inverse.

Si la particulière est fausse, l’universelle est fausse aussi.

En mathématiques (et philo aussi), on parle d’exemples et de contre-exemples.

subalterne subalterne

« Tous les trains arrivent à l’heure » et « un train arrive à l’heure ».

Mais je ne peux pas dire à partir d’un train qui arrive à l’heure que tous sont ponctuels!

On a donc le tableau suivant :

Les relations d’opposition des

syllogismes en logique

Particulière négative

O

Particulière positive

I

Universelle négative

E

Universelle positive

A

Contraire

Subcontraire

subalterne contradictoires subalterne

Les quantificateurs logiques en

mathématiques

• Universelle si elle est vraie pour tous : ∀

« ∀ x réel, x² ≥ 0 »

• Particulière si elle est vraie dans au moins un cas : ∃

« ∃ x réel tel que x² = 3 »

La négation des quantificateurs

logiques

Quelle est la négation de

« tous les lapins mangent des carottes »

???

La négation des quantificateurs

logiques

Quelle est la négation de

« tous les lapins mangent des carottes »

« Il existe au moins un lapin qui ne mange pas de carottes »

La négation des quantificateurs

logiques

• NON( ∀ ) = ∃

NON( ∀ x réel, x² ≥ 0 ) = ∃ x réel tel que x² < 0.

• NON( ∃ ) = ∀

NON( ∃ x réel tel que x² = 3 ) = ∀ x réel, x² ≠ 3.

Fausses idées… idées fausses

• Le contraire de « tous » n’est pas « aucun » mais « il existe au moins un qui fait le contraire »

• Le contraire de « A ⇒ B » est « A et NON(B) »

• Le contraire de « A et B » est « NON(A) ou ΝΟΝ(B) »

• Le contraire de « A ou B » est « NON(A) et ΝΟΝ(B) »

Prolongements…

…vers la logique « moderne »

Aristote a-t-il raison ?

C’est-à-dire :les 3 principes d’Aristote sont-ils « fondés »

POUR LES MATHéMATIQUES ?

• Le principe de non-contradiction:une proposition A ne peut être à la fois vraie et fausse

C’est le pari fait par les mathématiques, on dit que la théorie est « non contradictoire»

• Le principe du tiers exclu:une proposition A est forcément vraie ou fausse

Ce n’est pas vrai en mathématiques, on dit que certaines propriétés sont « indécidables »

• Le principe d'identité :

Une proposition A existe par elle-même.Ce ne sont plus des maths, c’est de la philo…

Aristote a-t-il tord ?

C’est-à-dire : qu’est-ce que l’indécidabilité ?

• Le principe du tiers exclu:une proposition A est forcément vraie ou fausse

Ce n’est pas vrai en mathématiques, on dit que certaines propriétés sont « indécidables »

Un énoncé mathématique est dit indécidable dans un système axiomatique s'il est impossible de le déduire, ou de déduire sa négation, à partir des axiomes. En termes plus concrets, cela veut dire qu'on demande au système de fournir une conclusion sans lui avoir fourni suffisamment d'hypothèses. Ainsi, l'âge du capitaine d'un bateau est indécidable en fonction du tonnage et de la vitesse du navire.

Aristote a-t-il tord ?qu’est-ce que l’indécidabilité ?

• Le principe du tiers exclu:une proposition A est forcément vraie ou fausse

Ce n’est pas vrai en mathématiques, on dit que certaines propriétés sont « indécidables »

Un mathématicien célèbre Kurt Gödel a prouvé que dans un système axiomatique, il y avait des énoncés vrais que l’on ne pouvait pas démontrer.Il a montré aussi que certaines propriétédemeureraient indécidables dans n’importe quel système axiomatique.

Il mit fin alors au rêve « positiviste » des savants du début du 20ème siècle.

La logique c’est utile ?

Pour vous montrer l’importance de la logique en philosophie et en mathématiques, où on manie des concepts parfois subtiles, voici

quelques exemples d’erreurs à ne pas commettre…

Question 1

• La négation de

« tous les élèves sont des garçons »

est :

• « Toutes sont des filles »

• « Il y a des filles »

• « Il n’y a qu’un seule fille »

• « Il y a au moins une fille »

Réponse-Question 1

• La négation de

« tous les élèves sont des garçons »

est :

• « Toutes sont des filles »

• « Il y a des filles »

• « Il n’y a qu’un seule fille »

• « Il y a au moins une fille »

Question 2

• La négation de « s’il pleut alors je vais au cinéma »est :

• « s’il ne pleut pas alors je vais au cinéma »

• « s’il ne pleut pas alors je ne vais pas au cinéma »

• « je ne vais pas au cinéma »

• « Il ne pleut pas »

• Rien de tout cela

Réponse-Question 2

• « s’il ne pleut pas alors je vais au cinéma »

• « s’il ne pleut pas alors je ne vais pas au cinéma »

• « je ne vais pas au cinéma »

• « Il ne pleut pas »

• Rien de tout cela

• La négation de « s’il pleut alors je vais au cinéma »est :

Question 2

• Je repose la question :

La négation de « s’il pleut alors je vais au cinéma »

est :

Réponse-Question 2

« Il pleut et je ne vais pas au cinéma »

• La négation de « s’il pleut alors je vais au cinéma »est :

Recommended