15
Walaszek M. 1 , Lenormand E. 1 , Bois P. 1 , Laurent J. 1 , Wanko A. 1 1 Ecole Nationale du Génie de l’Eau et de l’Environnement de Strasbourg (ENGEES) Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (Icube), 2 rue Boussingault, 67000 Strasbourg, France Urban stormwater constructed wetland : Micropollutants removal linked to rain events characteristics and accumulation

, Lenormand E. , BoisP. 1 , Laurent J. , Wanko A. 1wems.dk/wp-content/uploads/2018/01/walaszek.pdf · Walaszek M. 1, Lenormand E. , BoisP. 1, Laurent J. , Wanko A.1 1 Ecole Nationale

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Walaszek M. 1, Lenormand E. 1, Bois P. 1, Laurent J. 1, Wanko A.1 1 Ecole Nationale du Génie de l’Eau et de l’Environnement de Strasbourg (ENGEES)

Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (Icube), 2 rue Boussingault, 67000 Strasbourg, France

Urban stormwater constructed wetland : Micropollutants removal linked to rain events characteristics and

accumulation

Context and objectives

Material and methods

Stormwater quality

[email protected] WETPOL 2017 2

MicroP removal efficiencies

Micropollutants storage

Conclusion

Urban stormwater: a micropollutants source

Atmosphere Heating, oil industry

PCB (0.015 ng/L) Polycyclic Aromatic

Hydrocarbures (PAHs: 0.26 µg/L)

Roadway Traffic, road signs

Metals (Zn: 407 µg/L; Pb: 170 µg/L ; Cu: 97 µg/L)

PAHs (1.65 µg/L)

Green areas Gardening, crop

Pesticides Glyphosate (3.24 µg/L) Diuron (0.21 µg/L)

Buildings (roof, gutter, walls) Atmospheric deposition,

corrosion Metals (Zn: 370-1851

µg/L; Pb: 69 µg/L ; Cu: 153 µg/L)

PAHs (0.7 µg/L)

(References: Bressy, 2011; Göbel, 2006; Lamprea, 2009)

• Stormwater runoff collected by storm sewer system

• Directly discharged in stream

Context and objectives

Material and methods

Stormwater quality

The Ostwaldergraben: a poor quality stream

[email protected] WETPOL 2017 3

Ostwaldergraben: bad status - presence of micropollutants (pesticides, hydrocarbons, metals) Stormwater runoff discharges

The European Water Framework Directive: good status before 2027 Necessity to improve the stream quality

Ostwaldergraben

Watershed

Old tannery

Ill & Ostwaldergraben confluence

MicroP removal efficiencies

Micropollutants storage

Conclusion

Solution:

2011 – Construction of a stormwater treatment system (settling pond + constructed wetland)

Aim: to reduce the micropollution in stormwater before discharging into the stream

Context and objectives

Material and methods

Stormwater quality

[email protected] WETPOL 2017 4

MicroP removal efficiencies

Micropollutants storage

Conclusion

Objectives of the study

Link between rain event characteristics and stormwater micropollution ?

Removal efficiency of the system ?

Fate of micropollutants in the system ?

Context and objectives

Material and methods

Stormwater quality

Experimental site

[email protected] WETPOL 2017 5

MicroP removal efficiencies

Micropollutants storage

Conclusion

Manhole

Runoff

Catchment area

Total area (m²)

27,000

Active area (m²)

9,000

Type Residential

Artificial pond Volume (m3) 28 to 56

Dimensions (m x m)

11 x 9

Constructed wetland

Area (m²)

90

Hydraulic conductivity (m/s)

2.61e-4

Hydraulic load (m3/m²/h)

0.5 to 1

% of active area (m²)

1%

Context and objectives

Material and methods

Stormwater quality

Water quality evaluation

[email protected] WETPOL 2017 6

MicroP removal efficiencies

Micropollutants storage

Conclusion

Parameter Analytical method Sample

7 Metals (Cd, Cr, Co, Cu, Ni, Pb, Zn)

ICP/AES (NF EN ISO 11885)

Raw and filtered

16 PAHs GC/MS after hexane extraction (NF EN ISO 17993)

Raw

Context and objectives

Material and methods

Stormwater quality

Soils quality and storage evaluation

[email protected] WETPOL 2017 7

MicroP removal efficiencies

Micropollutants storage

Conclusion

Pond sediments: 1 sampling point

CW soil:

• 2 sampling areas (highly/poorly fed in water)

• 3 random sampling points in each area

• 3 depth (organic deposit/sand close to the organic deposit/ deep sand) at each sampling point

• Composite sample by mixing together layers from the same depth and the same area

Context and objectives

Material and methods

Stormwater quality

Rainfall characteristics of 13 sampling sessions

[email protected] WETPOL 2017 8

MicroP removal efficiencies

Micropollutants storage

Conclusion

Event Date Dry period (day)

Duration (hour)

Maximum intensity for

15min (mm/h)

Depth (mm) Return period

1 10/4/2015 10.1 4.5 4 6.2 3 to 6 months

2 12/9/2015 7.7 3.3 4.8 5 3 to 6 months

3 2/23/2016 2.9 5.3 2.4 8 3 to 6 months

4 3/25/2016 1.6 10.3 1.6 2.8 1.5 to 3 months

5 4/26/2016 1.4 4.8 0.8 2.4 1.5 to 3 months

6 5/23/2016 3.8 21.8 2.4 11 1.5 to 3 months

7 10/21/2016 2.5 0.3 0.8 0.2 2 weeks to 1 month

8 2/28/2017 0.2 0.5 3.2 1 1.5 to 3 months

9 3/21/2017 3.1 17.0 1.6 11 6 months to 1.5 year 10 4/26/2017 6.4 10.8 0.8 4.6 1.5 to 3 months

11 5/4/2017 2.6 6.5 3.2 3.8 1.5 to 3 months

12 5/13/2017 1.6 4.3 20.8 13.2 1.5 year to 2 years 13 6/3/2017 2.6 19 5.6 16.4 3 to 6 months

Group #1 : low rainfall depth (N=8) Group #2 : high rainfall durations + rainfall depth (N=3) Group #3 : large dry periods (N=2) Group #4 : high maximum intensity (N=1)

Context and objectives

Material and methods

Stormwater quality

Stormwater quality

[email protected] WETPOL 2017 9

MicroP removal efficiencies

Micropollutants storage

Conclusion

Detection frequency > 50%

High concentrations of metals

Zn >> Cu > Pb > Cr 12 PAHs

Fractions repartition: • Zn particulate • Cu, Pb, Cr dissolved

(n=13) LOQ (µg/L) Stormwater

(µg/L)

ND

Chromium-D 0.5 7 1 Chromium-P 0.5 0-5 [1.84] 13

Cobalt-D 0.2 <LOQ 0

Cobalt-P 0.2 0.22 1 Copper-D 0.5 <LOQ 0

Copper-P 0.5 4.11-9.7 [6.44] 13 Lead-D 0.5 6 1 Lead-P 0.5 1.95-4.15 [3.11] 13

Zinc-D 5 70-300 [146.5] 13

Zinc-P 5 20-281 [90.1] 13

Acenaphtene 0.01 0.01 1 Benzo(a)pyrene 0.01 0.0533 1 Fluorene 0.01 0.01-0.02 [0.013] 13

Phenanthrene 0.01 0.01-0.06 [0.028] 12

Anthracene 0.01 <LOQ 0

Fluoranthene 0.01 0.01-0.17 [0.036] 9

Pyrene 0.01 0.01-0.12 [0.033] 7

Benzo(a)anthracene 0.01 0.06 1 Chrysene 0.01 0.05 1 Benzo(b)fluoranthene 0.01 0.01-0.06 [0.035] 7

Benzo(k)fluoranthene 0.01 0.03 1 Naphtalene 0.01 0.01-0.06 [0.02] 7

Context and objectives

Material and methods

Stormwater quality

Link between hydrology and stormwater quality

[email protected] WETPOL 2017 10

MicroP removal efficiencies

Micropollutants storage

Conclusion

ACP Variables

• rainfall duration (tp) • depth (h) • dry period (dts) • dissolved metals

particulate metals • PHAs

Individuals • rainfalls 1 to 13

• Particulate Cu, dissolved Zn, benzo(a)anthracene positively influenced by

rainfall duration (tp) and depth (h)

• Particulate Zn, acenaphtene

negatively influenced by rainfall duration and depth

• 3 PAHs

negatively influenced by dry periods (dts)

Context and objectives

Material and methods

Stormwater quality

Removal efficiencies (RE)

[email protected] WETPOL 2017 11

MicroP removal efficiencies

Micropollutants storage

Conclusion

Min-Max [Mean] Pond RE (%) Filter RE (%) Treatment system RE (%)

Chromium-D - 96 96

Chromium-P 0-54 [27] 0-76 [38] 0-54 [27] Cobalt-D - - - Cobalt-P -77 21 -41 Copper-D - - - Copper-P 19-56 [6] 49-91 [70] 47-96 [70] Lead-D 0 96 96

Lead-P -74-10 [-38] 86-95 [91] 87-94 [90] Zinc-D -20-67 [37] 94-98 [97] 96-99 [98] Zinc-P -200-57 [-6] 75-99 [93] 88-99 [93] Acenaphtene 50 - 50

Benzo(a)pyrene 91 - 91 Fluorene 0-50 [38] 50-75 [56] 50-75 [56] Phenanthrene -100-75 [2] 50-92 [74] 50-92 [68] Anthracene - 90 - Fluoranthene -100-76 [8] 50-88 [71] 50-88 [71] Pyrene 0-75 [11] 67-75 [74] 75-92 [77]

Benzo(a)anthracene 92 - 92

Chrysene 90 - 90

Benzo(b)fluoranthene 0-92 [46] 50 50-92 [71]

RE≥70% 40<RE<70% RE≤40%

• Major part of dissolved and particulate µpollution catched by the filter

• RE (Particulate Pb and Zn) <0 in the pond

Pond RE Suspended solids = -100%

[SS], [Zn] and [Pb] correlated

Resuspension of SS and combined metals by incoming flow

Context and objectives

Material and methods

Stormwater quality

Metals contents along the system

[email protected] WETPOL 2017 12

MicroP removal efficiencies

Micropollutants storage

Conclusion

L1=organic deposit

L2 = Intermediate sand

L3 = Deep sand

Z

Pond

Highly water fed area

Poorly water fed area

Pond Highly water fed area

Poorly water fed area

Ni and Co detected Zn >> Pb > Cu > Cr > Ni > Co [Pond] >> [highly fed area] > [poorly fed area]

(except for Cr, Ni and Co)

• Ni and Co detected • Zn >> Pb > Cu > Cr > Ni > Co • [2017]>>[2016] metals accumulation • [Pond] >> [highly fed area] > [poorly fed area] (except for

Cr, Ni and Co) • All concentrations decrease with CW depth

Context and objectives

Material and methods

Stormwater quality

Metals contents along the system

[email protected] WETPOL 2017 13

MicroP removal efficiencies

Micropollutants storage

Conclusion

[Pond] >> [CW] No significant difference between highly and poorly fed area

(Highly water fed area)

(Poorly water fed area)

L1=organic deposit

Z

Context and objectives

Material and methods

Stormwater quality

Conclusion

[email protected] WETPOL 2017 14

MicroP removal efficiencies

Micropollutants storage

Conclusion

Conclusion

• Link between rain event characteristics and stormwater micropollution ?

Stormwaters characterized by high metal loads Zn >> Cu > Pb > Cr [µpollutants] influenced by rainfall duration,

rainfall depth and dry period • Removal efficiency of the system ? RE>70% for all µpollutants, except 3 PAHs

(RE<70%) , Cr and Co (RE<40%) Filter catches most part of µpollution (rain

event scale) • Fate of micropollutants in the system ? [Pond] >> [CW] for metals and PAHs Opposite of removal efficiencies results Mobility of µpollutants in CW ? (Physico-chemical changes in the CW during extended dry periods)

Perspectives

• Study of the CW sorption capacities for metals Saturation of the CW substrate after 6 years of functionning ?

Thank you for your attention !

[email protected] WETPOL 2017 15