26
1 Approche cinétique de Approche cinétique de l ’évolution des l ’évolution des systèmes chimiques systèmes chimiques

1 Approche cinétique de l évolution des systèmes chimiques

Embed Size (px)

Citation preview

Page 1: 1 Approche cinétique de l évolution des systèmes chimiques

1

Approche cinétique de Approche cinétique de l ’évolution des systèmes l ’évolution des systèmes

chimiqueschimiques

Page 2: 1 Approche cinétique de l évolution des systèmes chimiques

2

A - A - La transformation d’un système chimique La transformation d’un système chimique est elle toujours rapide ?est elle toujours rapide ?

A-1. Transformations lentes et rapides

– Mise en évidence expérimentale de transformations lentes et rapides

– Mise en évidence expérimentale des facteurs cinétiques

Page 3: 1 Approche cinétique de l évolution des systèmes chimiques

3

A - A - La transformation d’un système chimique La transformation d’un système chimique est elle toujours rapide ?est elle toujours rapide ? A-2. Suivi temporel d’une transformation Tracé des courbes d’évolution de quantité de matière et de

concentration au cours du temps Vitesse de réaction :

• définition de la vitesse volumique : v = (1/V). dx/dt• évolution de la vitesse au cours du temps• temps de demi-réaction t1/2

• choix de la méthode de suivi en fonction de t1/2

Une nouvelle technique d’analyse : la spectrophotométrie• absorbance, relation entre absorbance et concentration

effective d’une espèce colorée• Suivi cinétique par spectrophotométrie

Page 4: 1 Approche cinétique de l évolution des systèmes chimiques

4

A - A - La transformation d’un système chimique La transformation d’un système chimique est elle toujours rapide ?est elle toujours rapide ?

A-3. Quelle interprétation au niveau microscopique ?

Interprétation de la réaction en termes de chocs efficaces

Interprétation de l’influence de la concentration et de la température sur le nombre de chocs efficaces par unité de temps.

Page 5: 1 Approche cinétique de l évolution des systèmes chimiques

5

A – Quoi de neuf ?A – Quoi de neuf ?

Vitesse volumique de réaction : v = (1/V)dx/dt, quantité d’événements réaction par unité de temps et par unité de volume,

Temps de demi-réaction t1/2

– temps caractéristique d’une évolution – critère de comparaison entre deux transformations – choix de la technique de suivi dépendant de l ’ordre de grandeur de t1/2 .

Manométrie, conductimétrie et spectrophotométrie – outils de suivi cinétique– la technique de l’absorptiométrie est explicitée (sans justifier ce qui se

passe au niveau microscopique lors de l ’absorption..)

Interprétation microscopique – approche probabiliste des chocs et chocs efficaces– facteurs cinétiques

Page 6: 1 Approche cinétique de l évolution des systèmes chimiques

6

Ne sont plus présentés dans cette partie A:Ne sont plus présentés dans cette partie A:

vitesse de formation d ’un produit et de disparition d ’un réactif

notion de vitesse moyenne

catalyse (intervient dans le contrôle en partie D)

Page 7: 1 Approche cinétique de l évolution des systèmes chimiques

7

A - 1&2. Transformations lentes et rapides ; A - 1&2. Transformations lentes et rapides ; suivi temporel d’une transformationsuivi temporel d’une transformation

TP ou activités Etude cinétique d’une transformation à l’aide de techniques

déjà pratiquées par l’élève : • suivi par manométrie (doc A1a)• suivi par conductimétrie (doc A1b)• suivi par prélèvements et titrages (doc A1c)

Etude cinétique d’une transformation à l’aide d’une nouvelle technique : l’absorptiométrie

• Introduction à la spectrophotométrie (doc A2), dosage par étalonnage (doc A3 – 1ère partie)

• Suivi cinétique par spectrophotométrie (doc A3– 2ème partie)

Page 8: 1 Approche cinétique de l évolution des systèmes chimiques

8

Suivi par un capteur de pression (doc A1a).Transformation étudiée : Réaction, dans un ballon fermé, d ’un morceau

de magnésium avec de l’acide chlorhydrique en excès.Equation de la réaction associée à la transformation :

Mg(s) + 2 H3O+ Mg2+(aq) + H2(g) + 2 H2O(l)

On suit l ’évolution de la pression dans le ballon (capteur de pression)

On accède à l’avancement x(t) de la réaction (il se forme un produit gazeux)

On détermine l’avancement final de la réaction puis la valeur du temps de demi-réaction t1/2.

(s)t50 100 150 200 250 300

x (µmol)

100

200

300

400

500

600

700

Page 9: 1 Approche cinétique de l évolution des systèmes chimiques

9

Suivi par un conductimètre (doc A1b). Hydrolyse d ’un chlorure d ’alkyle

Équation de la réaction associée à la transformation

RCl + 2 H2O ROH + H3O+ + Cl–(aq) On réalise un suivi (de G ou ) à l’aide d’un conductimétre

On accède à l’avancement x(t) de la réaction (il se forme des ions en solution)

On détermine l ’avancement final (xfinal) puis le temps de demi-réaction t1/2

On montre l’influence de certains facteurs (température, concentration des réactifs) sur t1/2 .

(ks)t0.5 1 1.5 2 2.5

x (mmol)

2

4

6

8

10

12

14

16

t1/2

Page 10: 1 Approche cinétique de l évolution des systèmes chimiques

10

Transformation des ions peroxodisulfate et des ions iodure : suivi par prélèvements successifs (doc A1c)

Suivre l'oxydation des ions iodure par les ions peroxodisulfate par prélèvements successifs puis titrage du diiode formé à l'aide d'une solution d'ions thiosulfate

Représenter en fonction du temps l'évolution de la concentration molaire en diiode au cours de la transformation

N.B. La difficulté de cette manipulation est de bien faire le différence entre la transformation étudiée et

l'outil de suivi qui met en jeu la réaction de titrage.

Page 11: 1 Approche cinétique de l évolution des systèmes chimiques

11

Principe du spectrophotomètre Principe du spectrophotomètre (doc A2)(doc A2)

Spectrophotomètre

activité collective de mise en évidence du principe de la spectrophotométrie

Page 12: 1 Approche cinétique de l évolution des systèmes chimiques

12

TPTP Spectrophotométrie Spectrophotométriesituation 1 : dosage par étalonnage (doc A3)situation 1 : dosage par étalonnage (doc A3)

Montrer qu’un spectrophotomètre donne une réponse en absorbance linéaire avec la concentration d’une espèce colorée

L’appliquer éventuellement à la détermination de la concentration d’une solution officinale de "teinture d’iode"

0

0,20,4

0,60,8

1

0 0,001 0,002 0,003 0,004

[I2] (mol.L-1)

A

Page 13: 1 Approche cinétique de l évolution des systèmes chimiques

13

TPTP Spectrophotométrie Spectrophotométrie situation 2 : suivi cinétique d’une situation 2 : suivi cinétique d’une

réaction d’oxydoréduction (doc A3)réaction d’oxydoréduction (doc A3) Suivi temporel de la réaction

d’oxydation des ions iodure par les ions peroxodisulfate .

Le suivi de l ’absorbance (pour 480 nm) permet d ’acceder à la concentration du diiode en solution et à l ’avancement x(t) de la réaction étudiée.

L ’avancement final permet de déterminer t1/2 .

0

0,5

1

1,5

2

0 20 40 60 80

t (min)

A

Page 14: 1 Approche cinétique de l évolution des systèmes chimiques

14

A - 3. Quelle interprétation donner au A - 3. Quelle interprétation donner au niveau microscopique ?niveau microscopique ?

TP ou activité en classe (ou hors classe) ou effectuée en interdisciplinarité avec le

collègue de mathématiques« zoom sur le microscopique : une

modélisation microscopique rendant compte des observations macroscopiques » (doc A4)

Un modèle est proposé, deux traitements sont envisagés, l’un manuel et l’autre utilisant les fonctions statistiques d’un tableur.

Il est possible de faire travailler les élèves sur un logiciel de simulation, activant un modèle analogue.

Page 15: 1 Approche cinétique de l évolution des systèmes chimiques

15

Présentation du modèle

Entités élémentaires : boules de couleur

– bleues B d ’effectif nB

– vertes V d ’effectif nV

– jaunes J d ’effectif nJ

– rouges R d ’effectif nR

– blanches (nS) : le solvant

Réaction élémentaire, B + V J + R

En cas de rencontre entreune entité chimique B et une

entité V, il y a éventuellement

transformation en une entité J et une entité R.

Unité de temps : durée d ’un tirage

Transformation chimique = succession de réactions élémentaires se produisant entre entités à l’échelle microscopique

Page 16: 1 Approche cinétique de l évolution des systèmes chimiques

16

Que doit traduire ce modèle ?

La réaction élémentaire ne se produit que– si les entités élémentaires se rencontrent – si elles sont convenablement orientées et si elles possèdent

suffisamment d’énergie.

Différentes situations sont envisagées :        réaction directe ;        réaction directe et inverse, équilibre dynamique

(reprise en partie B)

Dans chaque cas, on étudie l’influence des quantités initiales et de la température

Page 17: 1 Approche cinétique de l évolution des systèmes chimiques

17

Règle du « jeu » lors d ’un traitement manuelRègle du « jeu » lors d ’un traitement manuel1. Le tirage (1) 1. Le tirage (1) B + V B + V J + RJ + R

Cas n°(1)

Les boules tirées sont 1 bleue et 1 verte

On fixe arbitrairement la probabilité d’une rencontre efficace, matérialisée par le résultat d’un lancé de dé.

Lancé de dé favorable :Le choc est efficace ; les deux boules, bleue et verte, tirées sont retirées du « jeu » et remplacées dans le « pot » par 1 boule rouge et 1 boule jaune.

Lancé de dé non favorable :Le choc n’est pas efficace ; il n’y a pas de réaction, les deux boules (B et V) tirées sont remises dans le « pot ».

Page 18: 1 Approche cinétique de l évolution des systèmes chimiques

18

Règle du « jeu » lors d ’un traitement manuelRègle du « jeu » lors d ’un traitement manuel1. Le tirage (2)1. Le tirage (2) B + V B + V J + RJ + R

Cas n°(2)

Les boules tirées sont 1 rouge et 1 jaune

Il n’y a pas de réaction.

Remettre les boules tirées dans le pot.

Autres cas : si les boules tirées sont identiques [(rouge + rouge), etc.] ou non réactives entre elles [(rouge + verte), (rouge + bleue), (jaune + bleue) ou (verte + jaune)], il n’y a pas de réaction et les boules sont remises directement dans le pot.

Page 19: 1 Approche cinétique de l évolution des systèmes chimiques

19

Règle du « jeu » lors d ’un traitement manuelRègle du « jeu » lors d ’un traitement manuel 2. Suivi des tirages ; mise en évidence de l ’influence 2. Suivi des tirages ; mise en évidence de l ’influence des facteurs température et concentration .des facteurs température et concentration .

Noter les effectifs de chaque entité après chaque tirage et tracer la courbe représentative de l’évolution des effectifs (nombre de boules) en fonction du nombre de tirages qui représente le temps

Cette représentation peut être faite manuellement sur papier millimétré ou à l’aide d’un tableur.

Recommencer un tirage en mettant en évidence– l ’influence de T : Contrainte différente lors de l ’étape du lancé des

dés (illustrant la probabilité d ’efficacité de choc)

– l ’influence de la concentration : par l ’introduction de boules matérialisant le solvant

Page 20: 1 Approche cinétique de l évolution des systèmes chimiques

20

Traitement manuelTraitement manuel3. Résultats ; mise en évidence de l ’influence de 3. Résultats ; mise en évidence de l ’influence de la température la température B + V B + V J + RJ + R

Cas n°1 : exemple type – Deux chocs efficaces sur trois

(PE1 2/3)– Le temps de demi-réaction trouvé

est de l’ordre de 50 unités de temps. 

Cas n°2 : influence de la température T ’<T– Un choc efficace sur trois (P ’E1 =

1/3 < PE1)– Le temps de demi-réaction est de

l’ordre de 80 unités de temps Confronter avec les courbes

expérimentales et conclure sur la validité du modèle

t in itia l : 2 0 ro ug es + 2 0 v er te s

-5

0

5

1 0

1 5

2 0

2 5

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

N o m b re d e b o u le sro u g e s

V e rte s

2) Cas n°2 : seuil réactionnel = 4 (température + basse que dans le cas 1) 20 rouges + 20 vertest1/2 = 75 unités

-5

0

5

10

15

20

25

0 50 100 150 200 250

Nombre de boulesrouges

Vertes

Etat initial : 20 boules bleues et 20 boules vertes

Page 21: 1 Approche cinétique de l évolution des systèmes chimiques

21

ConclusionConclusion

On peut, grâce à ce modèle, faire émerger que si la transformation est lente (faible vitesse de réaction) c’est en raison de la rareté des chocs efficaces et non de la lenteur de l’événement-réaction au niveau microscopique qui, si les conditions stériques et énergétiques sont réunies, est très rapide

Ces tirages sont longs et répétitifs : on est tenté de

faire appel à un tableur ...

Page 22: 1 Approche cinétique de l évolution des systèmes chimiques

22

Deuxième approche : modélisation mettant Deuxième approche : modélisation mettant en jeu une analyse combinatoire et un en jeu une analyse combinatoire et un tirage aléatoire à l’aide d’un tableurtirage aléatoire à l’aide d’un tableur

Cette approche utilise des contenus du programme de mathématiques de la classe de Terminale S.

Extraits du programme de mathématiques

• II.3. Probabilité et statistique• Lois de probabilités

Introduction des combinaisons, notées, pouvant être désigné par la locution « p parmi n »

• Conditionnement et indépendance Statistique et modélisation Cas de la répétition d’expériences identiques et indépendantes ;

application aux expériences vues en 2nde et 1ère S (dés, pièces, urnes, etc.)

Page 23: 1 Approche cinétique de l évolution des systèmes chimiques

23

Application possible à Application possible à différents casdifférents cas

• 1. Influence de la concentration : la valeur des probabilités de rencontre PC1 et PC2 dépendent du nombre total d’entités présentes dans le « pot »

• 2. Influence de la température : représentée par les choix possibles des probabilités d’efficacité de la réaction entre les espèces, PE1 et PE2

• Aléa() Excel

Page 24: 1 Approche cinétique de l évolution des systèmes chimiques

24

B + V B + V J + RJ + RIllustration du graphe obtenu pour 200 tiragesIllustration du graphe obtenu pour 200 tirages

aléa 3 PE1 = 0,5 PE2 = 0

-5

0

5

10

15

20

25

0 50 100 150 200

bleues

rouges

Le temps de demi-réaction est de l’ordre de 75 unités.

Aléa cas 3

Page 25: 1 Approche cinétique de l évolution des systèmes chimiques

25

Autres exemples Autres exemples B + V B + V J + RJ + R

1) Mise en évidence de l ’influence de la concentration sur t1/2 par introduction de boules blanches (solvant)

2) Effectifs plus importants et plus grand nombre de tirages :

meilleure modélisation du passage microscopique-macroscopique (caractère aléatoire est lissé par la loi des grands nombres)

meilleure correspondance à l'observable macroscopique..

aléa 2b : PE1 = 1 PE2 = 0Etat initial : 20 vertes + 20 bleues + 40 blanches

-5

0

5

10

15

20

25

0 50 100 150 200 250 300

bleues

rouges

Etat initial : 100 vertes + 100 bleues

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

bleues

rouges

Page 26: 1 Approche cinétique de l évolution des systèmes chimiques

26

Approche de l’équilibre : la réaction dans le sens 2 Approche de l’équilibre : la réaction dans le sens 2 est possible c’est à dire Pest possible c’est à dire PE2E2 0 0

activité préliminaire à la partie B du programmeactivité préliminaire à la partie B du programme

B + V B + V J + RJ + R J + R J + R B + V B + V 1) A l ’aide d ’un

tirage manuel

2) A l ’aide du tableur Remarque

– PE2 < PE1 ,

– état initial : nB = nV

– équilibre dynamique :

– nB (moyen)<nR(moyen)

aléa-équilibre

état initial 20 bleues + 20 vertessens direct : tout choc réactif PE1 = 1

sens inverse: PE2 = 2/3

-5

0

5

10

15

20

25

0 50 100 150 200 250

PE1 = 0,5 PE2 = 0,25

0

5

10

15

20

0 50 100 150 200 250

bleues

rouges