59
HFSS ษ䇝 ษ䇝 ษ䇝 ษ䇝ˉ ˉ ˉᾲ䘠 ᾲ䘠 ᾲ䘠 ᾲ䘠 㜒ᱣ 㜒ᱣ 㜒ᱣ 㜒ᱣ [email protected] 儈㓗ᓄ⭘ᐕ〻ᐸ 儈㓗ᓄ⭘ᐕ〻ᐸ 儈㓗ᓄ⭘ᐕ〻ᐸ 儈㓗ᓄ⭘ᐕ〻ᐸ Asys Asys Asys Asysޜਨк⎧ԓ㺘 ޜਨк⎧ԓ㺘 ޜਨк⎧ԓ㺘 ޜਨк⎧ԓ㺘༴

1 HFSS overview - mwedatech.mweda.com/download/hwrf/hfss/1_HFSS_overview.pdfAutomatic Conformal Mesh Generation Adaptive Mesh Generation Internal/External Excitations – Includes

  • Upload
    others

  • View
    22

  • Download
    0

Embed Size (px)

Citation preview

HFSS

[email protected]高sysA高sysA高sysA高sys

� 电FSS电FSS电FSS电FSS

使 命

“为全球客户提供为全球客户提供为全球客户提供为全球客户提供领先的以电领先的以电领先的以电领先的以电磁场为磁场为磁场为磁场为核心技术核心技术核心技术核心技术的电子设计自的电子设计自的电子设计自的电子设计自

动化软件动化软件动化软件动化软件””””

0=⋅∇=⋅∇

∂∂+=×∇

∂∂−=×∇

B

Dt

DJH

t

BE

ρ

AnsoftAnsoftAnsoftAnsoftAnsoftAnsoftAnsoftAnsoft 件的件的件的件的件的件的件的件的 展展展展展展展展 程程程程程程程程

� 最984 最984 最984 最984 务务务务 务务务务 ZoltanZoltanZoltanZoltan CendesCendesCendesCendes

� 最986 最986 最986 最986 务务务务

� 最989 最989 最989 最989 务务务务 HFSSHFSSHFSSHFSS HPHPHPHP AnsoftAnsoftAnsoftAnsoft

� 最996 最996 最996 最996 务务务务 NasdaqNasdaqNasdaqNasdaq

� 2真真最 2真真最 2真真最 2真真最 务务务务 Agilent HFSSAgilent HFSSAgilent HFSSAgilent HFSS

� 2真真2真真2真真2真真8888务务务务 AnsysAnsysAnsysAnsys AnsoftAnsoftAnsoftAnsoft

——

ANSYSANSYS China

ANSYSPera

Ansoft LLC EDA

CFD

公司介 —— 品架构

ANSYS MultiphysicsSolutions

ElectromagneticSimulation

Mechanical Simulation

Computational Fluid Dynamics (CFD)Simulation

Low Frequency

and EM

MaxwellQ3D

Simplorer

High Frequency

HFSSSiwave

DesignerNexxim

Simulation

Implicit

ANSYSMechanical

ANSYSStructuralANSYS

Professional

Explicit

ANSYS AUTODYN

ANSYSLS-Dyna

Dynamics (CFD)

Electronics cooling

ANSYS Icepak

General CFD

ANSYS CFD

(FEM) ?

� FEM software is a design tool for engineers and phy sicists, utilizing rapid computations to solve large problem s insoluble by analytical, closed-form expressions� The “Finite Element Method” involves subdividing a la rge problem into

individually simple constituent units which are each solvable via direct analytical methods, then reassembling the solution for the entire problem space as a matrix of simultaneous equationsproblem space as a matrix of simultaneous equations

� FEM software can solve mechanical (stress, strain, vibration), aerodynamic or fluid flow, thermal, or electromagne tic problems

••

••

////

////

(((( //// ))))

(((( , , , , ))))

(((( ))))

FEMFEMFEMFEM Finite element methodFinite element methodFinite element methodFinite element method

ElementElementElementElement

HFSS HFSS HFSS HFSS ttttetrahedral ”””” , , , , triangular ....

MeshingMeshingMeshingMeshing

MatrixMatrixMatrixMatrix is the assembly of simultaneous equations is the assembly of simultaneous equations is the assembly of simultaneous equations is the assembly of simultaneous equations related related related related to the to the to the to the

mesh which permit solution of behavior in a mesh which permit solution of behavior in a mesh which permit solution of behavior in a mesh which permit solution of behavior in a defined defined defined defined solution space.solution space.solution space.solution space.

HFSSHFSSHFSSHFSS

ConvergenceConvergenceConvergenceConvergence

Mesh Mesh Mesh Mesh

Mesh Mesh Mesh Mesh AX=BAX=BAX=BAX=B XXXX

CGCGCGCG

MOM

When is an FEM solver appropriate for Electromagnet ic Problems (Lower Bound)?

λλλλ/100/100/100/1000

Example: Finding Signal Integrity impacts of a Via in the signal path

λλλλ/10/10/10/10

Example: Coax to WG Transformer

λλλλ/100/100/100/1000

Use a Quasi-Static Solver

When the Electrical Length (in wavelengths) requires phase consideration

λ/10 is a guideline; there are exceptionsWhen radiation from the device must be considered

When S-Parameters are the desired output

When lossy dielectric materials have significant effects

Use a FEM Full-Wave Solver

Problem Scaleλλλλ/10/10/10/10(OVERLAP)

� 电FSS电FSS电FSS电FSS

� HFSS

Antenna (天(天(天(天 ))))Waveguide Components(波(波(波(波 元件)元件)元件)元件)

RF Integrated Circuits EMCSignal Integrity (信号完整性)(信号完整性)(信号完整性)(信号完整性)

� HFSS� Antenna

� Planar Antennas - Patches, Dipoles, Horns, Conformal Cell Phone Antennas, Spirals� Waveguide – Circular/Square Horns� Wire – Dipole, Helix� Arrays - Infinite Arrays, Frequency Selective Surfaces (FSS) & Photonic Band Gaps

(PBG)� Radar Cross Section (RCS)

� Microwave � Filters – Cavity Filters, Microstrip, Dielectric� EMC/EMI – Shield Enclosures, Coupling, Near- or Far-Field Radiation� EMC/EMI – Shield Enclosures, Coupling, Near- or Far-Field Radiation� Connectors – Coax, SFP/XFP, Backplane, Transitions� Waveguide – Filters, Resonators, Transitions, Couplers� Silicon/GaAs- Spiral Inductors, Transformers

� Signal Integrity/High-Speed Digital� Package Modeling – BGA, QFP, Flip-Chip� PCB Board Modeling – Power/Ground planes, Mesh Grid Grounds, Backplanes� Connectors – SFP/XFP, VHDM, GBX, NexLev, Coax� Transitions – Differential/Single-ended Vias

�What is HFSS?� HFSS – High Frequency Structure Simulator� Arbitrary 3D Volumetric Full-Wave FEM Field Solver

� Ansoft Desktop� Advanced ACIS based Modeling� True Parametric Technology – Dynamic Editing� Powerful Report Generation� Dynamic Field Visualization� Design Flow Automation

� Optimetrics/Ansoft Designer/AnsoftLinks� Advanced Material Types

� Frequency Dependent Materials� Frequency Dependent Materials� Non-linear Materials� Anisotropic Materials

� Advanced Boundary Conditions� Radiation and Perfectly Matched Layers� Symmetry, Finite Conductivity, Infinite Planes, RLC, and Layered Impedance� Master/Slave – Unit Cells

� Advanced Solver Technology� Automatic Conformal Mesh Generation� Adaptive Mesh Generation� Internal/External Excitations – Includes Loss� ALPS Fast Frequency Sweep� Eigenmode

�What Information does HFSS Compute?� Matrix Data

� Modal/Terminal/Differential� S-, Y-, and Z-Parameters� VSWR

� Excitations� Complex Propagation Constant (Gamma)� Zo

� Full-Wave Spice� Full-Wave Spice – Broadband Model� Lumped RLC – Low Frequency Model� Partial Fraction - Matlab� Export Formats – HSPICE, PSPICE, Cadence Spectra, and Maxwell SPICE

� Common Display Formats:� Rectangular, Polar� Smith Chart� Data Tables

� Common Output Formats:� Neutral Models Files (NMF) (Optimetrics only)

� Parametric Results� Touchstone, Data Tables, Matlab, Citi� Graphics – Windows Clipboard

�What Information does HFSS Compute? (Continued)� Fields

� Modal/Terminal/Differential� Electric Field� Magnetic Field� Current (Volume/Surface)� Power� Specific Absorption Rate

� Radiation� 2D/3D Far-/Near-Fields� Arrays� RCS� RCS

� Field Calculator� User Defined Field Calculations

� Common Display Formats� Volume� Surface� Vector� 2D Reports – Rectangular, Polar, Radiation Patterns

� Common Output Formats:� Animations – AVI, GIF� Data Tables� Graphics – Windows Clipboard, BMP, GIF, JPG, TIFF, VRML

�HFSS

DesignDesignDesignDesign

Solution TypeSolution TypeSolution TypeSolution Type

1.1. Boundaries1.1. Boundaries1.1. Boundaries1.1. Boundaries

1.2. Excitations1.2. Excitations1.2. Excitations1.2. Excitations

4.1 Mesh 4.1 Mesh 4.1 Mesh 4.1 Mesh

1. Parametric Model1. Parametric Model1. Parametric Model1. Parametric ModelGeometry/Materials

4.1 Mesh 4.1 Mesh 4.1 Mesh 4.1 Mesh

OperationsOperationsOperationsOperations2. Analysis2. Analysis2. Analysis2. AnalysisSolution Setup

Frequency Sweep

3. Results3. Results3. Results3. Results2D Reports

Fields

MeshMeshMeshMesh

RefinementRefinementRefinementRefinementSolveSolveSolveSolve

UpdateUpdateUpdateUpdate

ConvergedConvergedConvergedConverged

AnalyzeAnalyzeAnalyzeAnalyze

FinishedFinishedFinishedFinished

4. Solve Loop4. Solve Loop4. Solve Loop4. Solve Loop

NONONONO

YESYESYESYES

Initial SolutionInitial SolutionInitial SolutionInitial Solution

Ports Only &Ports Only &Ports Only &Ports Only &Frequency SweepFrequency SweepFrequency SweepFrequency Sweep

Initial MeshInitial MeshInitial MeshInitial MeshSeeding andSeeding andSeeding andSeeding and

Lambda RefinementLambda RefinementLambda RefinementLambda Refinement(Single Frequency)(Single Frequency)(Single Frequency)(Single Frequency)

Port SolutionPort SolutionPort SolutionPort Solution(Adaptive)(Adaptive)(Adaptive)(Adaptive)

Full Volumetric SolutionFull Volumetric SolutionFull Volumetric SolutionFull Volumetric Solution(S(S(S(S----Parameters/EParameters/EParameters/EParameters/E----Fields)Fields)Fields)Fields)

Frequency SweepFrequency SweepFrequency SweepFrequency SweepYESYESYESYESAdaptive Mesh LoopAdaptive Mesh LoopAdaptive Mesh LoopAdaptive Mesh Loop

No Adaptive MeshingNo Adaptive MeshingNo Adaptive MeshingNo Adaptive Meshing

Refine Mesh Refine Mesh Refine Mesh Refine Mesh (Gradient of E(Gradient of E(Gradient of E(Gradient of E----Field Field Field Field at Single Frequency)at Single Frequency)at Single Frequency)at Single Frequency)

Full Volumetric SolutionFull Volumetric SolutionFull Volumetric SolutionFull Volumetric Solution(S(S(S(S----Parameters/EParameters/EParameters/EParameters/E----Fields)Fields)Fields)Fields)

Check ConvergenceCheck ConvergenceCheck ConvergenceCheck Convergence(Delta S)(Delta S)(Delta S)(Delta S)

NoNoNoNo

� Set Solution Type� This section describes how to set the Solution Type. The Solution Type defines the type of results,

how the excitations are defined, and the convergence. The following Solution Types are available:� Driven Modal - calculates the modalthe modal--based Sbased S--parametersparameters. The S-matrix solutions will be

expressed in terms of the incident and reflected powers of waveguide modesthe incident and reflected powers of waveguide modes.� Driven Terminal - calculates the terminalthe terminal--based Sbased S--parameters parameters of multi-conductor

transmission line ports. The S-matrix solutions will be expressed in terms of terminal voltages terminal voltages and currentsand currents.

� Eignemode – calculate the eigenmodes, or resonances, of a structure. The Eigenmodesolver finds the resonant frequencies of the structure and the fields at those resonant frequencies.

� Convergence� Driven Modal – Delta S for modal S-Parameters. This was the only convergence method � Driven Modal – Delta S for modal S-Parameters. This was the only convergence method

available for Driven Solutions in previous versions.� Driven Terminal New – Delta S for the single-ended or differential nodal S-Parameters. � Eigenmode - Delta F

� To set the solution type:� Select the menu item HFSS > Solution Type� Solution Type Window:

� Choose one of the following:� Driven Modal� Driven Terminal� Eigenmode

� Click the OK button

Eigenmode Solution

� Resonances in arbitrary closed 3D structures� No external excitations in model� Lossy possible: Unloaded Q� Loaded Q: Combine with PML or Impedance

电FSS 电FSS 电FSS 电FSS

� Adaptive Refinement has two logical “OR” exit criteria� Number of Passes: The maximum number of times to run

and refine the solution before quitting� Delta-S: The worst-case vector magnitude difference of any

S-parameter, as compared between the current and previous pass results.� More specific S-parameter convergence criteria per

parameter are also available

� Adaptation is performed at a single excitation frequency� Implication: For best accuracy in swept solutions, the

adaptive procedure should be done at a sufficiently small representative wavelength to capture high-end behavior� (More detail about solution frequency selection will be

presented later)

Z. J. Cendes, D. N. Shenton and H. Shahnasser, “Magnetic field computation using Delaunay triangulation and complementary finite element methods”, IEEE Transactions on Magnetics, Vol. MAG-19, pp. 2551-2554, November 1983.

� Starting HFSS� Click the Microsoft Start button, select Programs , and select the Ansoft > HFSS 13> HFSS

13.� Or Double click on the HFSS 13 icon on the Windows Desktop

� Adding a Design� When you first start HFSS a new project will be automatically added to the Project Tree.� To add an HFSS Design to the project, select the menu item Project > Insert HFSS Design

Toolbar:Toolbar:Toolbar:Toolbar: Insert HFSS Design

� Ansoft HFSS

Menu

bar

Project

Manager

with project

tree

3D Modeler

Window

Toolbars

Progress

Window

Property Window

Message

Manager

Status

bar

Coordinate Entry Fields

� Ansoft Desktop – Project Manager� Multiple Designs per Project� Multiple Projects per Desktop� Integrated Optimetrics Setup

� Requires License for Analysis

Project

Design

Project Manager Window

Design Results

Design Setup

Design Automation•Parametric

•Optimization

•Sensitivity

•Statistical

� 3D Modeler – Model Tree� Select menu item 3D Modeler > Group by Material

Material

Object

Object Command History

Grouped by MaterialGrouped by MaterialGrouped by MaterialGrouped by Material Object ViewObject ViewObject ViewObject View

� 3D Modeler – Commands� Parametric Technology

� Dynamic Edits - Change Dimensions� Add Variables

� Project Variables (Global) or Design Variables (Local)� Animate Geometry� Include Units – Default Unit is meters

� Supports mixed Units

� 3D Modeler – Primitives� 2D Draw Objects

� The following 2D Draw objects are available:� Rectangle, Circle, Line, Point, Spline,

Ellipse, Regular Polygon (v8.5 circle)

� 3D Draw Objects� The following 3D Draw objects are available:

� Box, Cylinder, Sphere, Torus, Helix, Bond Wire, Cone, Regular Polyhedron (v8.5 cylinder)

Toolbar:Toolbar:Toolbar:Toolbar: 2D Objects Toolbar:Toolbar:Toolbar:Toolbar: 3D Objects

� Select faulty objects; then 3D Modeler / Model Analysis / Heal� In most cases, objects healed, small features removed and errors fixed.

Mesh before:

184675 tets

Mesh after:

24691 tets

Length=0.1 mm

�� Small number of segments in circles and cylinders omit details if possible

�� Maximum aspect ratio is 1:2500� Use 2D objects instead of thin structures

�� Use symmetry whenever possible� Don’t include too much air or transmission line� Don’t include too much air or transmission line

� Use trace thickness only when needed (when edge coupling is important or metal thickness < δ)

Use thickness

Don’t use thickness

� Avoid making geometry larger than necessary� Use symmetry planes when possible� Sometimes airbox can be made very small--in this

case there is very little reason to wrap airboxaround entire structure

Sizing

Sometimes airbox can be made very small--in this case there is very little reason to wrap airbox around entire

HFSS Modeler: Pre-Process

airbox around entire structure

Sizing

Make port extensions long enough, but not unnecessarily so

HFSS Modeler: Pre-Process

Virtual Objects

� Virtual Objects Are Dummy 2D or 3D Objects that do not change the physics of the model (e.g. an air object inside another air object).

HFSS Modeler: Pre-Process

� They Are Used to Assist in Getting a Higher-Quality Mesh

Virtual Objects And Mesh Aspect Ratio

� Field Simulator May Not be Able to Generate a Useful Finite Element Mesh For Projects Containing Geometric Objects Whose Dimensions Differ by More Than Three Orders of Magnitude

� Monopole on a Groundplane:� f = 5.9 GHz� rmonopole = 1 mil� lmonopole = 500 mil

HFSS Modeler: Pre-Process

� lmonopole = 500 mil� lradbox = 1000 mil

Radiation Surface/MonopoleFacet Aspect Ratio is GreaterThan 1000:1

Inclusion of a Virtual Object Compensates For High Aspect Ratio

Use The Plot/MeshFeature in theFieldsPost Processor

HFSS Modeler: Pre-Process

Inclusion of a Virtual Object Compensates For High Aspect Ratio

HFSS Modeler: Pre-Process

Volume Mesh Comparison With and Without Virtual Object

HFSS Modeler: Pre-Process

Without VirtualObject

With VirtualObject

Mesh is somewhat betterTetrahedrons are like pins

Approximating the Initial Mesh

In HFSS 8.5 and prior the initial mesh was defined only be the geometry.Since version 9 the user has the possibility to influence the initial mesh rearding

•approximation of true curved surfaces ( no need for facetted models )

•Aspect ratio of mesh elements on surfaces

HFSS Modeler: Pre-Process

Select objects or sufcaces

&

Defining Surface Approximation and Aspect Ratio

default: 10 for curved surfaces200 for planar surfaces

Default: 22.5°

Recommended Settings of Surface Approximation: Normal deviation

Conductors with inductive character

( bondwires, vias, .. diameter << lambda ) : 45 ...90 °

Coaxial structures (signal transmission ): 22.5°….30 °

Irises & circular transitions in waveguides : 10… 15 °

Resonators ( depending on accuracy of f_res) : 5° … 15°

� 3D Modeler – Boolean Operations/Transformations� 3D Modeler > Boolean >

� Unite – combine multiple primitives� Unite disjoint objects (Separate Bodies to separate)

� Subtract – remove part of a primitive from another� Intersect – keep only the parts of primitives that overlap� Split – break primitives into multiple parts along a plane (XY, YZ, XZ)

� 3D Modeler > Surfaces > Move Faces – Resize or Reposition an objects face along a normal or vector.

� Edit > Arrange >� Move – Translates the structure along a vector� Rotate – Rotates the shape around a coordinate axis by an angle

Toolbar:Toolbar:Toolbar:Toolbar: Boolean

� Rotate – Rotates the shape around a coordinate axis by an angle� Mirror – Mirrors the shape around a specified plane� Offset – Performs a uniform scale in x, y, and z.

� Edit > Duplicate >� Along Lines – Create multiple copies of an object along a vector� Around Axis – Create multiple copies of an object rotated by a fixed angle around the x, y, or z

axis� Mirror - Mirrors the shape around a specified plane and creates a duplicate

� Edit > Scale – Allows non-uniform scaling in the x, y, or z direction

Toolbar:Toolbar:Toolbar:Toolbar: Arrange

Toolbar:Toolbar:Toolbar:Toolbar: Duplicate

� 3D Modeler - Selection� Selection Types

� Object (Default)� Face� Edge� Vertex

� Selection Modes

� All Objects� All Visible Object� By Name

� Highlight Selection Dynamically – By default, moving the mouse pointer over an object will dynamically highlight the object for selection. To select the object simply click the left mouse button.

� Multiple Object Selection – Hold the CTRL key down to graphically select multiple objects� Multiple Object Selection – Hold the CTRL key down to graphically select multiple objects� Next Behind – To select an object located behind another object, select the front object, press the b

key to get the next behind. Note: The mouse pointer must be located such that the next behind object is under the mouse pointer.

� To Disable: Select the menu item Tools > Options > 3D Modeler Options� From the Display Tab , uncheck Highlight selection dynamically

Dynamically Highlighted

(Only frame of object)

Selected

� 3D Modeler – Moving Around

Step 1: Start Point Step 2: Hold X key and select vertex pointStep 1: Start Point Step 2: Hold X key and select vertex point

Step 3: CTRL+Enter Keys set a local reference Step 4: Hold Z key and set height

Edge Center Snap

Toolbar:Toolbar:Toolbar:Toolbar: Snap Mode

� 3D Modeler – Coordinate System� Can be Parameterized� Working Coordinate System

� Currently selected CS. This can be a local or global CS

� Global CS� The default fixed coordinate system

� Relative CS� User defined local coordinate system.

� Offset� Rotated� Both

� Face CS (setting available to automatically switch to face coordinate system in the 3D Modeler Options)

Toolbar:Toolbar:Toolbar:Toolbar: Coordinate System

Step 1: Select Face Step 2: Select Origin

Step 3: Set X-Axis New Working CS

Cone created with Face CS

Change Box Size and Cone is

automatically positioned with

the top face of the box

� Menu Structure tatol:10� Draw – Primitives� 3D Modeler – Settings and Boolean Operations

� Edit – Arrange, Duplicate

� HFSS – Boundaries, Excitations, Mesh Operations, Analysis Setup, Results

� Measure � 3D Modeler > Measure >

� Position – Points and Distance� Length – Edge Length� Area – Surface Area� Volume – Object Volume

Position PointsPosition PointsPosition PointsPosition Points

� Support in China, P.R� Support E-mail: [email protected]

� Ansoft Beijing Office

� Tel:(010)82861715/16

� Fax:(010)82861613

� Ding Haiqaing, [email protected]

� Liu Ying, [email protected]

� Ansoft Shanghai Office

� Tel:(021)62886350/51

� Fax:(021)62181142

� Ansoft Chengdu Office

� Tel:(028)86200675

� Fax:(028)86200677

HFSSHFSS

UI

Mesher

V9

V10 • Auto-Healing• Model Resolution

••2003.052003.05

••2005.082005.08

SolverV11• Basis Functions• Iterative Matrix Solver• Port Solver

••2007.062007.06

V12

••2009.032009.03

V13

••2010.102010.10

�Optimetrics

�Multi-processing

�DSO

�DDM

HFSS-IE

HFSS

�HFSS-IE

�HFSS-Transient

�Maxwell 3D for HFSS:

�AnsoftLinks 点点点点点点点点A然展A然展A然展A然展A然展A然展A然展A然展特然A特然A特然A特然A特然A特然A特然A特然A

�Full Wave Spice Sp限避釐 Sp限避釐 Sp限避釐 Sp限避釐 Sp限避釐 Sp限避釐 Sp限避釐 Sp限避釐

HFSSHFSS

EMCEMCEMCEMCEMCEMCEMCEMC

� Total model volume is 18000 λ3!� No other commercially available softwarecan solve this problem.

// //

专注于微波、射频、天线设计人才的培养 易迪拓培训 网址:http://www.edatop.com

射 频 和 天 线 设 计 培 训 课 程 推 荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立,致力并专注于微

波、射频、天线设计研发人才的培养;我们于 2006 年整合合并微波 EDA 网(www.mweda.com),现

已发展成为国内最大的微波射频和天线设计人才培养基地,成功推出多套微波射频以及天线设计经典

培训课程和 ADS、HFSS 等专业软件使用培训课程,广受客户好评;并先后与人民邮电出版社、电子

工业出版社合作出版了多本专业图书,帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、

研通高频、埃威航电、国人通信等多家国内知名公司,以及台湾工业技术研究院、永业科技、全一电

子等多家台湾地区企业。

易迪拓培训课程列表:http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电

路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材;旨在

引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和

研发设计能力。通过套装的学习,能够让学员完全达到和胜任一个合格

的射频工程师的要求…

课程网址:http://www.edatop.com/peixun/rfe/110.html

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程,共包含 10 门 ADS

学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系

统设计领域资深专家讲解,并多结合设计实例,由浅入深、详细而又

全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设

计方面的内容。能让您在最短的时间内学会使用 ADS,迅速提升个人技

术能力,把 ADS 真正应用到实际研发工作中去,成为 ADS 设计专家...

课程网址: http://www.edatop.com/peixun/ads/13.html

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程,是迄今国内最全面、最

专业的HFSS培训教程套装,可以帮助您从零开始,全面深入学习HFSS

的各项功能和在多个方面的工程应用。购买套装,更可超值赠送 3 个月

免费学习答疑,随时解答您学习过程中遇到的棘手问题,让您的 HFSS

学习更加轻松顺畅…

课程网址:http://www.edatop.com/peixun/hfss/11.html

`

专注于微波、射频、天线设计人才的培养 易迪拓培训 网址:http://www.edatop.com

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出,是最全面、系统、

专业的 CST 微波工作室培训课程套装,所有课程都由经验丰富的专家授

课,视频教学,可以帮助您从零开始,全面系统地学习 CST 微波工作的

各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装,

还可超值赠送 3 个月免费学习答疑…

课程网址:http://www.edatop.com/peixun/cst/24.html

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书,课程从基础讲起,内容由浅入深,

理论介绍和实际操作讲解相结合,全面系统的讲解了 HFSS 天线设计的

全过程。是国内最全面、最专业的 HFSS 天线设计课程,可以帮助您快

速学习掌握如何使用 HFSS 设计天线,让天线设计不再难…

课程网址:http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程,培训将 13.56MHz 线圈天线设计原理和仿

真设计实践相结合,全面系统地讲解了 13.56MHz线圈天线的工作原理、

设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体

操作,同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过

该套课程的学习,可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹

配电路的原理、设计和调试…

详情浏览:http://www.edatop.com/peixun/antenna/116.html

我们的课程优势:

※ 成立于 2004 年,10 多年丰富的行业经验,

※ 一直致力并专注于微波射频和天线设计工程师的培养,更了解该行业对人才的要求

※ 经验丰富的一线资深工程师讲授,结合实际工程案例,直观、实用、易学

联系我们:

※ 易迪拓培训官网:http://www.edatop.com

※ 微波 EDA 网:http://www.mweda.com

※ 官方淘宝店:http://shop36920890.taobao.com

专注于微波、射频、天线设计人才的培养

官方网址:http://www.edatop.com 易迪拓培训 淘宝网店:http://shop36920890.taobao.com