10
1 Master1 BGAE Spécialité Géosciences Architecture des Bassins & Géomatique 2008 - Michel Séranne 1 Architecture des Bassins & Géomatique 1- Origine des Bassins Sédimentaires • Déformation lithosphérique: forçages internes • Sédimentation : forçages externes • Importance des Bassins Sédimentaires 2- Cadre géodynamique des Bassins Sédimentaires • Analyse de la subsidence • Bassins liés à la divergence - rifts - marges passives • Bassins liés à la convergence - bassins foreland • Autre types de bassins 3- Évolution post-dépôt des Bassins Sédimentaires • Compaction - Diagenèse • Circulation des fluides • Cas de la matière organique - systèmes pétroliers Master1 BGAE Spécialité Géosciences Architecture des Bassins & Géomatique 2008 - Michel Séranne 2 © NASA 1- Origin of Sedimentary Basins 1.1 Lithospheric deformation: Internal forçings 1.2 Sedimentation: External forçings 1.3 Sedimentary basins & societal issues Master1 BGAE Spécialité Géosciences Architecture des Bassins & Géomatique 2008 - Michel Séranne 3 Distribution of sedimentary basins (sediment accumulation > 1km) => Study of sedimentary basins = analysis of processes responsible for the origin of: 1- the depression (mostly controlled by internal forcings « Earth machine ») 2- the sedimentary-fill (controlled by interaction of internal and external forcing) What is a sedimentary basin ? - it’s a depression filled with sediments Master1 BGAE Spécialité Géosciences Architecture des Bassins & Géomatique 2008 - Michel Séranne 4 => The Earth’s interior is composed of number of compositional and rheological zones. The main compositional zones are the crust (low density rocks + sedim. cover), mantle (olivine) and core (metallic : iron & nickel). atmosphere Lithosphere mantle Outer core Molten outer.C. Solid inner C. Solid crust Rigid Lithosphere mantle Struture and reology of the Earth envelopes Basin forming driving mechanisms are related to processes within the rigid, cooled thermal boundary layer of the Earth known as the Lithosphere. 1.1.Lithospheric deformation: Internal forçings

Architecture des Bassins & Géomatique

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Architecture des Bassins & Géomatique

1

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

1

Architecture des Bassins & Géomatique1- Origine des Bassins Sédimentaires • Déformation lithosphérique: forçages internes • Sédimentation : forçages externes • Importance des Bassins Sédimentaires

2- Cadre géodynamique des Bassins Sédimentaires • Analyse de la subsidence • Bassins liés à la divergence

- rifts- marges passives

• Bassins liés à la convergence- bassins foreland

• Autre types de bassins

3- Évolution post-dépôt des Bassins Sédimentaires • Compaction - Diagenèse • Circulation des fluides • Cas de la matière organique - systèmes pétroliers

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

2© NASA

1- Origin of Sedimentary Basins1.1 Lithospheric deformation: Internal forçings

1.2 Sedimentation: External forçings 1.3 Sedimentary basins & societal issues

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

3

Distribution of sedimentary basins (sediment accumulation > 1km)

=> Study of sedimentary basins = analysis of processes responsible for the origin of: 1- the depression (mostly controlled by internal forcings «  Earth machine ») 2- the sedimentary-fill (controlled by interaction of internal and external forcing)

What is a sedimentary basin ? - it’s a depression filled with sediments

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

4

=> The Earth’s interior iscomposed of number ofcompositional and rheologicalzones.

⇒The main compositional zonesare the crust (low density rocks +sedim. cover), mantle (olivine) andcore (metallic : iron & nickel).

atmosphere

Lithosphere

mantle

Outer core

Molten outer.C. Solid inner C.

Solid crust

Rigid Lithospheremantle

Struture and reology of the Earth envelopes

Basin forming driving mechanisms are related to processes within the rigid,cooled thermal boundary layer of the Earth known as the Lithosphere.

1.1.Lithospheric deformation: Internal forçings

Page 2: Architecture des Bassins & Géomatique

2

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

5

Basics about the Lithosphere• Definitions

Definition of the outer envelopes of the Earth thatinteract to form sedimentary basins

• Sedimentary basins are formed betweensolid and fluid envelopes of the Earth.

• Continental & oceanic crusts arecompositionally different from theunderlying mantle

• The outer mantle and the crust makes thelithosphere (rheological unit)

• The outer mantle has the samecompostion as the underlying convectivemantle (asthenosphere)

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

6Characterization of the different layers of the lithosphere. Deformation of the lithosphere induces

the formation of sedimetary basin.

Basics about the Lithosphere• parameters controling lihosphere rheology

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

7

Continent(low density)

Mountainroot

Mantle(high density)

Ocean

Depth ofequal pressure

Basics about the Lithosphere• Principle of isostacy

mountain

The Airy hypothesis:

Blocks of the same density (material), but different thickness, floating about an equilibriumsurface => uneven Moho (roots beneath mountains and rises beneath basins .

Pratt modelblocks of differing density (lighter beneath mountains and denser beneathbasins) => flat Moho.

Not verified

by data

basin

« anti-root »

• Total mass of eachcolumn must be equal.

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

8

weight of a column of lithosphere before basin formation = weight of a column after basin formation

Only if

locally

Compensated !

Basics about the Lithosphere• Principle of isostacy

Page 3: Architecture des Bassins & Géomatique

3

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

9

Earth internal dynamics as driving mechanisms for basin formation

=> The Earth System can be regarded as a thermo-mechanical machinewhich consumes, transforms and releases energy in order to maintain equilibrium conditions.

=> Sedimentary basins rocks are recording devices (and sediments the tapes or CD’s) which record(somewhat discontinuously) the equilibrium quest of the Earth system.

(Courtillot, 2003) (Don Anderson 2004)

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

10

Internal driving forces of the Earth machine

Glob

al H

eat

Flow

Map

The internal heat is continuouslydissipated outwards from the centre ofthe Earth in 3 ways :

• Conduction : Thermal energy transmittedbetween atoms=> Internal solid Earth

• Advection : Movement of hot material tosurface=> Volcanoes and hot spot ;

• Convection : Movement of material in themantle and outer core by densitydifferentiation of the plastic material=> Plate tectonics

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

11

Earth machine: mantle convection

Mantle convection with phase transition

(olivine -> spinel -> peroskivite

Mantle convection no phase transition

Sam Butler, www.usask.ca

subductionplume

avalanche

Uppermantle

Lowermantle

plume

subduction

Mantle one layer Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

12

• Earth internal energy = Energy of accretion at the time of its formation + Energy related to formation ofiron-rich core + Energy from decay of radioactive elements => dissipated at surface = heat flux.

•The heat flux propagated by convection in the plastic upper mantle is converted into mechanical energy(and localized partial melting) at the base of the Lithosphere and dissipated by plate motion anddeformation.

• Lithospheric plates movements (1000’s km laterally , 1000’s m vertically).

America Atlantic OceanW. Europe

Pacific Ocean

Subductionzone

Acretionaryridge

Convectioncells

Asthenosphere

Lithosphere

Relativemovement

Plate tectonics: lithosphere movements

Page 4: Architecture des Bassins & Géomatique

4

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

13Lithospheric surface of the Earth showing plate tectonics (plate boundaries, earthquakes and volcanoes).

Plate tectonics

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

14Distribution of sedimentary basins (sediment accumulation > 1km) Continental passive margins , subductionzones, foreland of present or ancient mountain belts, centre of cratons.

Sedimentary basins and Plate tectonics

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

15

How to create a depression ?

1- Cooling

2- Stretching/ thinning

3- Loading

-> 3 lithospheric processes account for subsidence

1300°C1300°C

20°C

1300°C

20°C

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

16

0 80 180 Ma

Age of the oceanic Lithosphere(oceanic floor)Lithosphere emplaced at mid-oceanic ridges (accretion) andthen moves apart symetrically(seafloor spreading)

5km

2km

Bathymetry of the oceanicLithosphere (oceanic floor)increases away from oceanic ridges

http://jules.unavco.org/Voyager/Docs/EarthScope http://topex.ucsd.edu/WWW_html/mar_topo.html

Cooling: example

Page 5: Architecture des Bassins & Géomatique

5

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

17

age

z

0°C

1300°C

geotherms

Sea level

• Cooling of oceanic lithosphere• Increasing bathymetry of oceanic floor• Increasing thickness of oc. lithosph.

AccretionVery high geotherm

-2km

-5km

Thermal contraction of the Oceanic Lithosphere

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

18

Stretching/Thinning

© Michon, 2000

Marsden et al.'s (1990) interpretation of BIRPS' NSDP84-1 deep seismic line. MARSDEN, G, YIELDING, G, ROBERTS, A &KUSZNIR, N. 1990 Application of the flexural cantilever simple-shear/pure-shear model to the north sea. In: Blundell, D &Gibbs, A (eds). Tectonic Evolution of the North Sea Rifts. Oxford University Press, Oxford.

La lithosphère étirée s’amincit - failles dans la croûte supérieure, - remontée manteau sous la zone amincie

Copyright © 2008 Virtual Seismic Atlas

Sand-boxAnalog

modeling

Reflexion seismic - North Sea rift

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

19

Sedimentary load of the Congo deep-se-fan ( > 5km thick)=> Deflexion by flexure of the oceanic lithosphere (subsidence)

Modifié d ’après Uchupi, 1992

Loading of the lithosphere => flexure

Congo drainage area

Atlan

tic

accr

etiona

ry r

idge

Niger fan

Congo fan

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

20Different types of basins according to plate tectonic setting: spatial and temporal evolution from one type to another

Page 6: Architecture des Bassins & Géomatique

6

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

21

1.2. Sedimentation: External forcings

• Tidal sediments =Sediment deposition controled by the tides(cyclic phenomenon).

• Tides results from combined attractionof the Moon and the Sun on the oceans (&on the crust).

• Sedimentation records variations ofparameters external to the Earth

Burdigalian (Digne foreland Basins)

Baie du Mont Saint Michel Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

22

• Periodic changes in the Earth’s orbital parameters affect the amount of radiationfrom the Sun.• The energy dissipated by the Sun varies with time => variation in radiation received bythe Earth.

=> The total amount of solar radiation received on the Earth’s surface governs long-term (100’s of millions of years) or on short-term (10-1000’s years) temperature of the atmosphere and hydrosphere. Through complex feedbackloops, this has direct and indirect consequences on Climate and associatedexogenic transfer processes.

=> Climate forcing affect the way the sedimentary basins are filled

EnergyEnergy

External forcings

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

23

Sun’s energySun’s energy

1m2 ->342W/m2

1.41 m2 ->242W/m245°

90°

tilt

NO tilt• No seasonal variation of insolation• Increased yearly average temperature

• High latitudes receives less energythan inter-tropical areas• Insolation seasonal variation

Insolation : sun’s energy

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

24

Milankovitch cycles

T= tilt or obliquity

E = eccentricity

P = precession

• Orbital parameters of the Earth have been acting over the whole history of the planet(albeit changes in periodicity and amplitude).• Milankovitch cycles have been recorded in sediments with different intensity throughtime.• During Quaternary Milankovitch cycles are particularly well expressed (Glaciations stages)

Page 7: Architecture des Bassins & Géomatique

7

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

25

Sediment accumulate in basins if:1- there is a gravity-driven flux of sediment (erosion/ transport/ deposition)

=> base level 2- there is space available to trap the sediment

=> accommodation space

Sediment are generated if:• Deformation of the topographic surface of the lithosphere induced by internal forcing(mountain-building, volcanism, thermal uplift…).⇒ Erosion of the topography, mobilization of detritals, transport, deposition.⇒ All processes governed by gravity.⇒ Processes strongly dependent on external forcing (climate…).

• Biological activity contributes to sediment flux.⇒ in-situ carbonate production in favourable environments (« carbonate factory » in ocean,lakes) -> climate-dependent⇒ reworked carbonates behaving as detritals⇒ plants residues (coal)

• (Bio-) Chemical activity = weathering, alteration, evaporation, precipitation.

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

26

Base-level

1

Base level (Wheeler, 1964) :• is an abstract, non physical, surface ;• is above the earth surface where deposition occurs, below where erosion occurs, and upon where there is anequilibrium (e.g., bypass) ;• represents the surface where sediment flux would be constant (i.e., a balance would exist between sedimentsupply and removal) ;• is a potentiometric surface (i.e., the surface along which the energy of sediment flux is minimized) ;• is a dynamic surface (i.e., it vibrates with respect to the physical surface in time and space) ;• exists in a system where space, energy and mass are conserved.

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

27

Available space => Accommodation

Eustacy

IntraplatedeformationBasin

subsidence

accommodation

2

Accommodation : it is the rate (measured in m/Ma) at which space is being made availablefor sediments to be trapped in the basin. It is the result of the vertical movements of thebasement (subsidence + lithoshere deformation) and of eustacy (World ocean level).Sediment flux may or may not fill the availlable space. This is determined by the balance ofsediment rate and accommodation.

Sed. Rate < Accomm => underfilled basin, water depth increases (starved basin, condensation surface)

Sed Rate = Accomm => basin remains at the same water-depth => persistance of sedimentary facies through time

Sed. Rate > Accomm => basin being filled, water-depth decreases, coarsening and shallowing up sequences. M

aste

r1 B

GAE

Spéc

ialit

é G

éosc

ienc

es A

rchite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

28

« Eustacy » vs « Relative sea-level change »EustacyEustacy = variation of the global World Ocean (all seas & oceans being connected)this is due to changes in the shapes of the ocean floor ( variable rates of sea-floor spreading, mantle-convection induced uplift,…) or of the volume of water in the World Ocean (growth or decay of polar ice-caps, soil moisture, water thermal expansion…).

Haq Eustatic Curve

Relative Relative sea-level sea-level changechange = variation of water depth in one basin. It’s the combination of eustacy, and localconstraints: subsidence/uplift and sediment flux.

Several Eustatic Curveshave been compiled andprogressively improved(Haq, Miller, Kominz,…) .They can be appliedeverywhere.

Relative sea-level

Eustacy

Bst vertical mvt

sediment fluxRelative sea-level change in abasin can be approached byanalysis of the stratalarchitecture combined withsedimentary facies.

Page 8: Architecture des Bassins & Géomatique

8

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

29

Periodic changes in forcings => cycles• Periodic (or not) changes in the controlling processes => record cycles

• Signals of differenttime/space scale => record ofstacked (nested) cycles

- several nested sequences inthe stratigraphic record

• Combination of stacking of severalsignals => complex stratigraphicrecord

- Basin analysis aims at decipheringthese signals- sedimentary basinfill containsthese signals => Archives

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

30

Stratal geometry

Canterbury Basin, New Zealandaggradation

progradation

Condensedsection

Aggradation:Sed. Rate ≤ Accomm

Progradation :Sed Rate ≥ Accomm

2 mains patterns: several possible causes f(subsidence, sediment flux, sea-level)

bathymetryDivergent: Differentialsubsidence

Down-lap

Onlap

Sed. Rate > Accomm Sed. Rate < Accomm

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

31

Fluvial & deltaSlope shales Reworked

clastics

sequence boundary

MaximumFloodingSurface

Modifié d’après Bartek et al, 1991

0 +50 +100-500

20

30

10

Oligocene

Miocene

Pliocene

EustacySedimentation pattern of Neogene passive margins

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

32Valanginian, S. France

Orbitalparametersof the Earth

variable sunenergy

received

outerenvelopes

temperaturessedimentationclimate Stratigraphic

record

Page 9: Architecture des Bassins & Géomatique

9

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

33

Sedimentology : lithofacies

Lithofacies is the set of physical features of a sedimentary rock.Lithofacies provides info on depositional conditions.

Lithofacies =

Lithology

Texture

structure Geometry of thesedimentary body

Mode of association ofconstitutive elements

Mineralogy, granulo,morphometry

Hydrodynamics biochemicals,biological indicators

Mode of transport & deposition

Source, transport, duration,environment,bathymetry

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

34

synthesis

Sedimentary basins result from the complex interaction of internal andexternal forcings_ “Reading” the sedimentary record allows to decipherthe controlling factors and their temporal evolution.

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

35Fossil energy

Argiles imperméables

1.3.Sedimentary basins & societal issues

Geothermy

Iron ore

sequestration

Natural resources

Stones

Salt

Gas storage

Aquifers

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

36

Distribution of sedimentarybasins (sediment accumulation >1km)

World distribution of population,mostly in sedimentary basins(favourable to agriculture, economicactivity and easy communication)

World population (1994)

Cropland (Jon Foley & al)

World distribution of cropland : Landuse for agriculture is prevalent insedimentary basins (West Americanforeland basin, Mississippi valley,Indian Foreland basins, continentalmargins of Asia and Australia, intracratonic basins of Europe andCanada,…). Note that this map partlymirrors the population distribution

Sedimentary basins

Page 10: Architecture des Bassins & Géomatique

10

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

37

erosion & weathering

eosion &weathering

Dissolved metallic ions

Sediments Sediment deposition & ions precipitation

© P

.J.C

ombe

s

Natural Reactor = ore formation

oressubsidence

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

38

Organic mater(anoxiclake)

Biosphere(Carbon)

Biosphere

soilsol

Maturation f(temperature, pressure, time):Organic matter -> kerogene -> Oil -> gas!

burial

oil

migration

© M

. Sé

rann

e

Natural Reactor = hydrocarbons generation

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

39

Consommation ressources naturelles /an / personne

Ressources minérales

eauÉnergie fossile

La vaste majorité des ressources naturelles provient des bassins sédimentaires

Mas

ter1

BGA

E Sp

écia

lité

Géo

scie

nces

Arc

hite

ctur

e de

s Ba

ssins

& Géo

mat

ique

200

8 -

Mic

hel S

éran

ne

40