113

CAHIER Simulation

Embed Size (px)

DESCRIPTION

CAHIER Simulation

Citation preview

Page 1: CAHIER Simulation
Page 2: CAHIER Simulation
Page 3: CAHIER Simulation

5 décembre 2012511174 CAB

Page 4: CAHIER Simulation

La simulation pour la préparation opérationnelle

44

Page 5: CAHIER Simulation

SSOMMAIREOMMAIRE

La simulation pour la préparation opérationnelle

55

• INTRODUCTION ........................................................................................ 7

• PREMIÈRE PARTIE : QU’EST-CE QUE LA SIMULATION ? ........................ 9

HISTORIQUEHISTORIQUE ................................................................................................................ 111. Préparer la guerre sans la faire. ................................................................................ 122. Vers un usage généralisé pour la préparation des forces et l’appui aux opérations. ...........14

LA SIMULATION AUJOURD’HUILA SIMULATION AUJOURD’HUI ............................................................................. 211. La simulation au service de la préparation des forces. ................................................. 212. Les enjeux et perspectives de la simulation. ............................................................... 24

• DEUXIÈME PARTIE : LA SIMULATION DANS L’ARMÉE DE TERRE ......... 27

L’UTILISATION DE LA SIMULATION POUR LA FORMATIONL’UTILISATION DE LA SIMULATION POUR LA FORMATION ....................... 291. De la place de la simulation pour la formation. ........................................................... 292. De la difficulté de quantifier l’apport de la simulation. ................................................. 313. Quelle simulation pour quelle formation ? ................................................................ 33

L’UTILISATION DE LA SIMULATION POUR L’ENTRAÎNEMENT L’UTILISATION DE LA SIMULATION POUR L’ENTRAÎNEMENT ................... 391. De la nécessaire furtivité des simulateurs. ................................................................ 392. De la difficulté de modéliser la doctrine. ................................................................... 413. Quelle simulation pour quel entraînement ? .............................................................. 43

LA SIMULATION VIRTUELLE ................................................LA SIMULATION VIRTUELLE ................................................................... 451. Les principaux systèmes de simulation virtuelle de l’armée de Terre. ............................ 452. De leurs utilisations. ............................................................................................. 463. Des perspectives. ................................................................................................. 47

LA SIMULATION INSTRUMENTLA SIMULATION INSTRUMENTÉÉE ....................................E ........................................................... 491. Les simulateurs de tir de combat et les moyens périphériques. .................................... 492. De leur intégration aux systèmes centraux. ............................................................... 523. Des perspectives. ................................................................................................. 54

Page 6: CAHIER Simulation

La simulation pour la préparation opérationnelle

66

LA SIMULATION CONSTRUCTIVE ....................................LA SIMULATION CONSTRUCTIVE ................................................................. 551. Les principales simulations constructives actuelles. ......................................................... 552. De leurs utilisations. ................................................................................................... 573. Des perspectives. ....................................................................................................... 59

• TROISIÈME PARTIE : PERSPECTIVES ......................................................... 63

LES ENJEUX ET PERSPECTIVES DE L’INTEROPÉRABILITÉ DES SYSTÈMES LES ENJEUX ET PERSPECTIVES DE L’INTEROPÉRABILITÉ DES SYSTÈMES DE SIMULATION ENTRE EUX ET AVEC LES SIOC DE SIMULATION ENTRE EUX ET AVEC LES SIOC ............................................ 651. La préparation des forces infovalorisées. ..................................................................... 652. L’amélioration de l’interconnexion entre simulations. .......................................................673. L’amélioration de l’interopérabilité entre SIOC et simulation. ............................................. 70

LES DLES DÉÉFIS DE LA MODFIS DE LA MODÉÉLISATION LILISATION LIÉÉS AUX PROGRS AUX PROGRÈÈS DE L’INTELLIGENCES DE L’INTELLIGENCEARTIFICIELLE ARTIFICIELLE ................................................................................................. 731. L’intelligence artificielle et la modélisation. ..................................................................... 732. La quête d’un plus grand réalisme. ................................................................................ 753. Des perspectives. ........................................................................................................ 77

JEUX DU COMMERCE ET SIMULATION MILITAIREJEUX DU COMMERCE ET SIMULATION MILITAIRE ......................................... 811. Les jeux du commerce. ............................................................................................... 812. Leurs utilisations actuelles et envisageables à des fins militaires. ...................................... 82

LA PROSPECTIVE ET LA VEILLE TECHNOLOGIQUE : LA PROSPECTIVE ET LA VEILLE TECHNOLOGIQUE : UN INVESTISSEMENT UTILEUN INVESTISSEMENT UTILE .......................................................................... 851. La prospective et la veille technologique. ..................................................................... 852. La capitalisation. ...................................................................................................... 863. Les réalisations, les perspectives. ................................................................................. 87

ANNEXES : ..................................................................................................... 89

• GLOSSAIRE • GLOSSAIRE ............................................................................................................. 91/99

• LES PRINCIPAUX SIMULATEURS UTILIS• LES PRINCIPAUX SIMULATEURS UTILISÉÉS PAR L’ARMS PAR L’ARMÉÉE DE TERRE E DE TERRE .... 101/109

Page 7: CAHIER Simulation

La simulation pour la préparation opérationnelle

77

INTRODUCTIONINTRODUCTION

L’L’instruction et l’entraînement des hommes à cette activité hors norme qu’est la guerre constituent

un enjeu essentiel mais difficile à décliner. L’efficacité de l’action militaire en dépend et en

conséquence, la préparation aux situations guerrières a toujours suscité un effort particulier des

chefs et des états-majors. Si la finalité opérationnelle de l’entraînement est une évidence, comment et avec

quels moyens y parvenir sont des questions récurrentes.

Plusieurs facteurs influent en effet sur la préparation des troupes. Il s’agit notamment de l’évolution du

contexte opérationnel et de ses effets sur la manœuvre, des évolutions technologiques et de l’adaptation de

l’homme à celles-ci et bien sûr des ressources humaines et financières disponibles. L’impact déterminant

produit par ces dernières renforce la nécessité que l’instruction et l’entraînement soient rationalisés et

optimisés. Ces termes s’entendent respectivement comme l’intégration de contraintes techniques,

économiques et humaines dans l’évolution des moyens à consacrer à la préparation opérationnelle et ensuite

comme la volonté de leur procurer les meilleures conditions de fonctionnement.

Ainsi, la simulation s’est logiquement imposée parce qu’elle offre ces capacités de rationalisation et d’optimisation

des outils tout en étant conçue pour s’adapter aux contextes opérationnel et technique. Son utilisation permet

de concilier l’obligation de rendement des activités d’instruction et d’entraînement à celle d’évolution permanente

pour faire face aux nécessités stratégiques ou matérielles.

Par sa contribution à l’amélioration des capacités militaires, la simulation mérite qu’un intérêt particulier lui soit

porté. C’est l’objet de ce document que de fournir au lecteur une connaissance générale de la simulation afin de

lui faciliter à la fois la compréhension de son potentiel d’emploi et la coopération avec les experts du domaine.

Les chapitres de ce cahier lui permettront de profiter d’une description générale de la simulation, puis de

bénéficier d’une présentation de ses différents types et de leur cadre d’emploi et enfin de comprendre les

perspectives offertes par les progrès technologiques.

Avertissement : le thème de la simulation renvoie à de nombreux acronymes qui sont explicités en annexe

soit dans le glossaire soit dans le tableau récapitulatif des outils de simulation.

«C’est en raison de ce caractère propre de la guerre, méconnu dans un enseignement particulièrementscientifique, en présence des lacunes et des hérésies nées de cet enseignement, que se dressait, dansl’armée française en particulier, l’école résumée en un axiome : la guerre ne s’apprend que par laguerre. Je me garderai de discuter la nature de l’expérience que fournit un pareil apprentissage, latrempe particulière que donne au caractère et à l’esprit l’habitude de prendre des décisions enprésence d’un adversaire réel, à plus forte raison dans l’émotion qu’ajoutent toujours ses coups. Malheureusement cette école n’en est pas une : on ne peut ni l’ouvrir ni l’entretenir pour nous instruireles uns les autres.Elle est insuffisante, car elle ne nous préparerait pas aux premières actions, les plus décisivescependant de la prochaine guerre. La campagne serait terminée que notre instruction commencerait,mais au prix de quels résultats ? Malheureux sans doute.»

Maréchal FOCH

Page 8: CAHIER Simulation

88

La simulation pour la préparation opérationnelle

Page 9: CAHIER Simulation

PREMIÈRE PARTIE : PREMIÈRE PARTIE :

QU’EST-CE QUE QU’EST-CE QUE LA SIMULATION ?LA SIMULATION ?

99

La simulation pour la préparation opérationnelle

Page 10: CAHIER Simulation

La simulation pour la préparation opérationnelle

1010

Page 11: CAHIER Simulation

1 Cité par James Der Derian, «War as game», The Brown Journal Of World Affairs, Été-automne 2003, volume X, n°1, p. 37-47.2 Le terme même de «simulation» embrasse les domaines militaires et civils si l’on en croit Daniel Kaemmerer, «From War Games to Video

Games. The Military Use of Simulation and its Impact on Civilian Society», Rhetoric Remixed, 8 février 2011, consultable sur http://wps.ablong-man.com/wps/media/objects/4116/4215151/Student%20Papers/ch%2013%20Kaemmerer.pdf, vu le 7 janvier 2012.

La simulation pour la préparation opérationnelle

1111

HISTORIQUEHISTORIQUE

« L’ennemi est quelque peu différent de celui que nous avions simulé. »

Général William Wallace, commandant du V. Corps d’armée US, 28 mars 20031

QQuels points communs partagent le jeu de go, les plans-reliefs que l’on trouve aux Invalides et la passion

de certains joueurs quand il s’agit de rejouer avec des figurines ou sur une carte n’importe quel

engagement de l’histoire militaire mondiale, des chocs de l’Antiquité aux engagements les plus

contemporains ? À première vue, tous sont liés à la représentation d’un espace, d’un temps et d’une action où

s’affrontent – ou sont susceptibles de le faire – des adversaires autour d’un objectif central : atteindre la victoire.

Qu’elle soit simplifiée à l’extrême sur un damier où les partis en présence sont des boules blanches et noires

comme au jeu de go, qu’il s’agisse de représenter une citadelle ou une forteresse dans son environnement afin

de se mettre en état de défendre les approches comme le souhaitent les plans-reliefs développés sous Louis XIV,

ou que l’on aligne des pions afin de recréer une campagne historique, l’intérêt tient dans la possibilité de simuler,

reproduire ou modéliser un combat à partir de règles plus ou moins abstraites. La recherche du réalisme, de la

jouabilité et son intégration dans un cursus de formation sépare en outre le jeu-loisir du jeu de guerre, le simple

«hobby» de la préparation intellectuelle à ce qui pourrait arriver.

Dans l’histoire de la stratégie, les décideurs politiques et militaires ont toujours cherché à se préparer au conflit

suivant. Souvent, les militaires eux-mêmes ont créé pour eux les instruments et les outils destinés à favoriser une

possible instruction de la guerre à partir de reproductions, de jouets, devenus au fil des siècles de plus en plus

complexes, des premiers Kriegsspiele du baron prussien von Reiswitz (au début du XIXe siècle) aux wargames

développés dans l’entre-deux-guerres par le Naval War College de Newport aux États-Unis. La difficulté principale

tient alors à l’articulation entre modélisation et jouabilité, entre recherche du réalisme et capacité à proposer des

séances stimulantes. Ce dialogue se trouve toujours d’actualité, à l’heure où les simulations se fondent pour

certaines – et surtout sur un plan tactique voire micro-tactique – sur des plateformes duales, sur des technologies

sensiblement équivalentes. Pour mieux dire, et depuis maintenant une cinquantaine d’années, il existe une

véritable porosité entre les besoins exprimés par la communauté militaire et les réalisations commerciales, les

secondes s’inspirant et désormais passant marché avec la première2.

Cela invite à revisiter, dans le temps long, les apports de la simulation, sa transformation vers plus ou moins de

sophistication. Comment recréer un environnement complexe, nourri par l’incertitude et le «brouillard de la

guerre» d’une façon qui soit la plus réelle possible ? Peut-on tout modéliser ? N’y a-t-il pas des types de combat,

des systèmes, des échelons, qui se prêtent plus facilement à la simulation ?

Page 12: CAHIER Simulation

3 Lieutenant-colonel Matthew Caffrey Jr., «Toward a History-based Doctrine for Wargaming», Aerospace Power Journal, automne 2000, p. 33-55.4 On fait aussi de Sun Tzu l’inventeur de ce jeu, cf. Jean-Philippe Liardet, «Les origines du "jeu de guerre"», article disponible sur le site Net4war

(http://www.net4war.com/e-revue/dossiers/wargames/origines01.htm, consulté le 5 janvier 2012).5 Ibidem.6 Alfred W. Crosby, The Measure of Reality: Quantification and Western Society, 1240–1600, Cambridge, Cambridge University Press, 1997.

La simulation pour la préparation opérationnelle

1212

1. Préparer la guerre sans la faire.

1.1. De la Genèse aux échecs.1.1. De la Genèse aux échecs.

DDans un article sur la profondeur historique du jeu de guerre, un officier américain dénonçait le

paradoxe de la simulation en général et du wargame en particulier : un savoir-faire et un outil

irremplaçable mais aussi, parfois, un miroir aux alouettes3. De fait, l’histoire de la simulation est aussi

celle de la facilité à recréer, en temps de paix, les possibilités et les conditions du temps de guerre, notamment

sur le plan des manœuvres et des combats. Tant sur un plan humain que matériel, l’impossibilité d’une telle

mise en œuvre – excepté sur une échelle réduite – a invité à trouver des solutions alternatives. La solution

trouvée, en Asie dès le troisième millénaire avant notre ère (!) se situe avec le développement d’un jeu qui

répond à des besoins caractéristiques : simplicité des règles mais multiplicité des actions possibles. Le jeu

de Wei Hai (encerclement), ancêtre du jeu de go, place sur un damier des pierres de couleur qui, une fois

déplacées, doivent parvenir à l’encerclement et donc à la victoire sur l’adversaire4. En Inde, sans doute au

cours du VIe siècle avant notre ère naît le chaturanga, que le passage par l’Iran transforme en jeu d’échec :

l’intérêt est ici de former les esprits à l’anticipation et à la réaction face à un adversaire, en jouant sur des

capacités sensiblement égales et dans un espace à deux dimensions. Jean-Philippe Liardet montre d’ailleurs

que les pièces centrales répondent à un art de la guerre tel qu’il existe avant l’introduction de la poudre sur

le champ de bataille :

Dès la seconde moitié du XVIIe siècle, des tentatives sont faites pour introduire – sur des échiquiers dépassant

désormais allègrement les mille cases – des éléments représentatifs de la réalité, notamment avec des figurines

de piquiers et de fusiliers6.

«La «reine» s’appelait avant le «général» ou le «commandeur» ou le «premier ministre» et

représentait le chef militaire de l’armée, celui qui contrôle les meilleures forces, ce qui explique la

puissance de cette pièce. Sauf exception, le roi n’est pas un combattant ou un chef militaire exceptionnel,

mais sans sa présence, l’armée se débande. Lors de la bataille, il doit survivre et servir de symbole, de

point de ralliement pour son armée ; s’il est tué ou pris, la bataille est perdue5.»

Page 13: CAHIER Simulation

7 Ce n’est pas un hasard si s’ouvrent au fil des XVIIe et XVIIIe siècles les écoles destinées à fournir les cadres militaires des armées auxeffectifs croissants comme celles formant les officiers des armes savantes - génie et artillerie (cf. Jean Chagniot, Guerre et société àl’époque moderne, Paris, PUF, 2000).

8 Michel Depeyre, Tactiques et stratégie navales de la France et du Royaume-Uni de 1690 à 1815. Paris, Economica/Institut de StratégieComparée, 1998. C’est à ce fameux John Clerk qu’on devrait la tactique visant à couper la ligne des navires ennemis. Sans avoir jamaisnavigué, mais en se fondant sur des entretiens, des lectures diverses et les témoignages des principaux combats navals de son siècle,appuyé par une connaissance fine des outils militaires et des principales règles de la physique des fluides, Clerk met en œuvre unprocessus qui tient à la fois de l’expérimentation et de la modélisation. Son Essay on Naval Tactics (publié en 1790) aurait, dit-on, influencéNelson.

9 Philipp von Hilgers, «Eine Anleitung zur Anleitung. Das taktische Kriegsspiel, 1812-1824», Board Games Studies n°3, 2000, p. 59-77.

10 John P. Young, History and Bibliography of W ar Gaming, Washington, D.C.: Department of the Army, 1957, p. 2-6. Les dates varient mais ilsemble que l’Autriche intègre ce modèle à partir de 1866, suivi de la Grande-Bretagne entre 1872 et 1883, l’Italie en 1873 puis, à partir de1874, la France et la Russie. Le modèle prussien tend cependant à se pervertir au fil des années 1890, avec la mise en avant de l’expériencedes combattants qui se substitue aux tables de résultats et à l’incertitude du dé.

La simulation pour la préparation opérationnelle

1313

1.2. Prise en compte des progrès scientifiques.1.2. Prise en compte des progrès scientifiques.

Ce mouvement accompagne une quête propre à la période qui court de la Renaissance aux Lumières, à savoir

les transformations techniques et les progrès scientifiques liés aux mathématiques et à la géométrie dans la

formation du militaire et l’intégration de l’individu, de sa rationalité et sa place dans un ensemble plus vaste7.

On comprend ainsi que les premières réussites en matière de simulation se concentrent sur des systèmes,

comme la guerre sur mer : en 1781, l’Écossais John Clerk of Eldin – sans avoir jamais navigué – propose de

révolutionner l’art de la guerre navale en se fondant sur des schémas appuyés par des répliques de bateaux.

Mettant en pratique ses connaissances de la physique et de la géométrie (portée des boulets, force et sens

du vent), doublé d’un savoir sur l’état des constructions navales (nervures, dispositions des sabords, etc.), il

conçoit de nouvelles techniques capables d’assurer une puissance de feu maximale8.

1.3. Modéliser les frictions pour dissiper le brouillard de la guerre.1.3. Modéliser les frictions pour dissiper le brouillard de la guerre.

La vraie rupture intervient au début du XIXe siècle, avec l’invention du Kriegsspiel puis ses constantes

améliorations. Le principal intérêt de ce que propose le Prussien von Reiswitz tient à l’intégration, dans une

caisse à sable, de compartiments de terrains particuliers (rivières, collines, espaces habités…) où se déplacent

des unités symbolisés par des figurines. Autour de la table, les joueurs donnent leurs ordres à un arbitre qui

définit les résultats en s’appuyant sur des facteurs de distance et de portée, l’attrition étant calculée par un

jet de dés représentant l’incertitude du champ de bataille9. Avec des évolutions subséquentes, ce système

devient l’un des instruments de la formation tactique des officiers prussiens, porté par des fervents adeptes

comme Helmuth von Moltke. Ce dernier crée un ensemble pédagogique où le coup d’œil du tacticien s’associe

à la connaissance historique inculquée dans les chevauchées d’état-major (ou staff rides). Les victoires sur

l’Autriche (1866) puis sur la France (1870-1871) assurent le succès de cette méthode largement copiée dans

les états-majors européens mais aussi en Russie et aux États-Unis10. L’un des obstacles que soulève le

Kriegsspiel tient cependant à la capacité à simuler de façon réaliste la létalité du champ de bataille. Le major

Livermore, qui introduit ce qu’il nomme «wargame» aux États-Unis en 1883, présente des tableaux de pertes

qui se fondent sur les statistiques de la guerre de Sécession ainsi que sur les batailles de la guerre franco-

prussienne. Mais le chef d’état-major de l’époque, William T. Sherman, refuse les apports potentiels du jeu

en estimant que le moral est insuffisamment pris en compte.

Page 14: CAHIER Simulation

11 Une difficulté à résoudre un problème résultant d’une incompatibilité logique (du grec aporia, difficulté, contradiction, embarras).12 Nous devons cette idée à Hervé Drévillon.13 Type de cuirassé du début du XXème siècle qui tire son nom du navire de guerre britannique éponyme et dont l’impact en matière d’armement

et de propulsion fut si grand que les cuirassés ultérieurs reprirent ses caractéristiques.14 De façon anecdotique, la revue de défense spécialisée Jane’s naît à la fin du XIXème siècle de la nécessité de se documenter sur les capacités

des navires de guerre britanniques et allemands (cf. LTC Caffrey Jr., « Toward a History-based Doctrine for Wargaming », art. cit., p. 38)15 À l’exception des opérations suicide menées par les pilotes japonais, qui intègrent une dimension socioculturelle qui semble alors impossible

à modéliser (cf. M. Caffrey, http://www.strategypage.com/wargames/articles/wargame_articles_2004980.asp, consulté le 19 janvier 2012)citation de Nimitz : «The war with Japan had been reenacted in the game rooms at the Naval War College by so many people and in so manydifferent ways, that nothing that happened during the war was a surprise (…) absolutely nothing except the kamikaze tactics toward the endof the war; we had not visualized these.»

2. Vers un usage généralisé pour la préparation des forces et l’appui auxopérations.

2.1. Une utilisation individuelle puis collective.2.1. Une utilisation individuelle puis collective.

Le vrai problème tient sans doute à la façon de simuler

sinon correctement, du moins de façon crédible, les

pertes et les aléas qui pèsent sur un engagement de

milliers de combattants. Depuis la Renaissance, une

aporie11 se développe entre d’un côté la croissance des

effectifs avec pour corollaire l’essor d’armées

colossales où la place de l’individu est réduite – et où

domine le contrôle des corps et des émotions – et de

l’autre, la place croissante du même individu devenu

citoyen, responsable et éduqué, qui face à la violence

du champ de bataille, peut perdre pied. Pour mieux

dire, l’impossible équation entre le nombre et le moral,

entre l’individuel et le collectif12. Cela expliquerait en

revanche pourquoi la simulation connaît un véritable

engouement dans la marine américaine  ; si l’on

considère le navire de guerre, y compris le

dreadnought13 alors à la pointe du progrès, on peut

(tenter de) le réduire à des constantes de vitesse,

d’autonomie, de portée des armes14… William McCarty

Little impose le wargame comme modèle de réflexion

au sein du Naval Warfare College (1889). Little plaide

la cause d’un jeu où l’intellect est stimulé par le travail

en groupe et par la possibilité de réfléchir à des

tactiques nouvelles et innovantes. C’est à ces jeux que

l’amiral Nimitz rendra hommage, après le deuxième

conflit mondial, lorsqu’il avouera que la guerre dans le

Pacifique avait été planifiée et que tout s’était déroulé

selon les modèles élaborés15. Les idées de cette école

de Newport sont en outre reprises par le corps des

Marines, dans l’entre-deux-guerres, pour définir à la

fois le concept d’assaut amphibie et les capacités à

La simulation pour la préparation opérationnelle

1414

Un contre-exemple ; les exercices SIGMA I-64 et II-64.

EEn 1964, le comité des chefs d’état-major américain(le Joint Chiefs of Staff) se réunit autour d’une

simulation à l’échelon stratégique, SIGMA, destinée àvalider le concept de pression graduée (graduatedpressure) proposée par le secrétaire à la DéfenseMcNamara. Le champ de bataille choisi est le Vietnam.En réponse aux bombardements limités qui doiventprouver la volonté du gouvernement américain detenir ses engagements, l’ennemi – joué par desexperts du Sud-Est asiatique – décide d’infiltrer unnombre croissant de combattants Viêt-Cong dans lapartie sud du Vietnam. En retour, les forces US sedéploient dans le sud. Les conclusions de ce jeu sontque l’engrenage mis en œuvre ne peut conduire qu’àune implication croissante dans le conflit et que leschances d’en sortir avec succès sont minces : le jeu seterminait après cinq années de combats et plus de500 000 soldats engagés.

Les joueurs, venus non seulement des armées maisaussi de la CIA1, de la NSA et du département d’État,refusent d’accepter un modèle dont les résultats vontà l’encontre des attentes des participants. Ainsi, bienque la simulation ait plus ou moins rendu un comptefidèle de ce qui allait se passer dans la réalité, l’aveu-glement et les idées préconçues des uns et des autresfirent qu’il n’y eut AUCUNE conséquence sur les choixpolitiques et sur les actions menées. Plus qu’unplaidoyer en faveur de la simulation, l’exemple deSIGMA montre l’incapacité, dans certaines circon-stances, pour les décideurs politiques, de revoir leursprésupposés avec un œil nouveau.

1 D’après Harold P. Ford, CIA and the Vietnam Policymakers: Three Episodes 1962-1968, US, Center for the Study of Intelligence, 1998, p. 57 et suiv.

Page 15: CAHIER Simulation

16 Exemple cité par Victor Krulak, First to fight. An Inside View of the US Marine Corps, Annapolis, Naval Institute Press, 1991.17 Division Simulation et Recherche Opérationnelle, Introduction à la recherche opérationnelle, Regard historique et applications actuelles, Paris

CDEF, 2010, p. 18-22.18 Cité par Caffrey d’après Thomas B. Allen, War Games, New York, McGraw, 1987.

La simulation pour la préparation opérationnelle

1515

détenir pour y parvenir. Le wargame devient donc, à

l’époque des restrictions budgétaires, le moyen de se

concentrer sur ce qu’il est possible de faire et comment

y parvenir avec des ressources limitées16.

2.2.2.2. De la difficulté de suivreDe la difficulté de suivreles évolutions doctrinales.les évolutions doctrinales.

Les deux conflits mondiaux posent cependant de

nouveaux problèmes à la simulation, car la question de

l’environnement stratégique n’a jamais fait l’objet

d’une tentative de modélisation. En effet, l’histoire de

la simulation jusqu’en 1945 se cantonne aux limites de

la tactique, éventuellement aux franges de l’échelle

opérative. De nouvelles disciplines en sortent, comme

la «recherche opérationnelle» qui apporte des

réponses scientifiques à des problèmes militaires et

qui intègre les premiers ordinateurs17. La défense anti-

aérienne de l’Angleterre à l’été 1940, la bataille de

l’Atlantique en 1942-1943, le débarquement de

Normandie en juin 1944, sont en partie des victoires

par l’apport de la simulation mathématique à des

problèmes militaires complexes.

En revanche, la guerre froide bouleverse ces certitudes.

La découverte de nouveaux acteurs politiques sur la

scène internationale recherchant à porter le conflit

dans une dimension asymétrique, la dimension

économique essentielle dans des guerres à l’échelon

industriel, sans même parler de la futilité de tout

engagement dans un potentiel raz-de-marée nucléaire,

tout cela concourt à s’interroger sur la pertinence d’un

modèle qui parviendrait à prendre en compte la palette

des besoins des armées. À ces éléments s’ajoutent

la permanence d’autres critiques faites à la simulation :

la possibilité de donner une vision satisfaisante des

ramifications politiques, économiques et psycho-

logiques, notamment en relation avec des affrontements

face à des adversaires non-étatiques – comprendre en

fait des insurrections18.

La première guerre du Golfe, un laboratoire de la simulation ?

AAu moment où les troupes irakiennes entrent auKoweït, le Pentagone recherche un outil qui

permettrait de comprendre le jeu diplomatico-militaireen action au Moyen-Orient1. On trouve ainsi un jeuintitulé Gulf Strike, en vente dans le commerce, créépar un ancien contractuel de la Défense, MarkHerman2. Ce wargame est rapidement mis en œuvreet joué par des spécialistes de la région et desdécideurs militaires, lesquels jugent qu’en comparantles résultats du jeu avec le fil des événements alors encours, Saddam Hussein pourra occuper l’émirat, maisque son action va entraîner la levée d’une coalitioncontre lui, qui verra in fine la défaite de l’Irak.

Outre les perspectives qu’il ouvre, le jeu va êtredensifié et distribué à la plupart des officiers d’état-major, à charge pour eux de se familiariser avec lesconditions du terrain et l’environnement particulier duGolfe. Toute la phase de planification et une partie durehearsal en attendant le déploiement des troupes dela Coalition se fondent sur le jeu de plateau, et bientôt,sur sa version numérisée. L’atout principal de lasimulation tient à la possibilité d’accélérer le temps etd’avoir une vue à plusieurs semaines ; un tour de jeu –1 à 3 minutes – représente en effet un jour dans laréalité. Le jeu, aménagé pour rendre compte aussi descontingences logistiques et des problèmes d’attrition,sert bientôt, dès la fin d’août 1990, à l’animation desbriefings et à la conception d’une idée de manœuvreoriginale (un large enveloppement du flanc irakien).Enfin, l’apport de la simulation pondère largement lespremières estimations de pertes – de 25 000 à moinsde 2 000.

La première guerre du Golfe, victoire de la simulation,est aussi le début de l’intégration, à tous les échelons,de l’informatique et de ses nouvelles possibilités.

1 D’après James Dunningan, The Complete Wargames handbook,chapitre 9, (1ère édition 1992, épuisé) disponible en ligne surhttp://www.hyw.com/books/wargameshandbook/9-7-iraq.htm(consulté le 21 janvier 2012).

2 Ce dernier est d’ailleurs repris au service de l’administrationBush en l’espace de quelques heures, à charge pour luid’intégrer dans son jeu les modifications et informations dontdispose l’armée américaine et parvenir à une estimation de cequi pourrait se produire.

Page 16: CAHIER Simulation

19 Sharon Brownfield et Vik Gretchen, «Teaching basic skills with Computer Games», Training and Development Journal, (Dec. 1983), p. 53-56.20 L’exemple le plus souvent cité tient aux succès attribués aux utilisateurs du simulateur aérien de Microsoft, Flight Simulator.21 Cela se voit aussi dans la facilité avec laquelle les jeunes recrues manient désormais les outils informatiques parfois complexes mais qui

leur sont familiers (cf. Michael Macedonia, Games, Simulations and the Military Education Dilemma, 2001, p. 157-161, disponible en lignehttp://net.educause.edu/ir/library/pdf/ffpiu018.pdf, consulté le 20 janvier 2012). Certains de ces jeux sont d’ailleurs créés par d’anciensmilitaires, tandis que l’institution paie l’entreprise civile pour modifier le produit.

22 Daniel Kaemmerer, «From War Games to Video Games» art. cit. NB. Des exemples comme ROMULUS et JANUS, développés par l’armée deTerre, proches du besoin et qui donnent entière satisfaction, montrent fort heureusement que ce type d’augmentation des coûts n’est passystématique.

La simulation pour la préparation opérationnelle

1616

2.3. Un retour aux sources paradoxalement permis par les nouvelles2.3. Un retour aux sources paradoxalement permis par les nouvellestechnologies.technologies.

La révolution technologique des années 1970 et 1980, avec l’essor considérable de l’informatique, permet

paradoxalement de relancer l’intérêt pour la simulation, d’abord essentiellement pour des raisons de

formation. Dans un rapport de février 1982, l’armée de terre américaine constatait que 40 % des engagés du

niveau militaire du rang étaient virtuellement analphabètes19. Pour remédier à cela, le département de l’Army

institue un centre où la formation à la lecture et à la compréhension de cartes, de graphiques, aux premiers

soins et même l’instruction sur le maniement des armes de petit calibre passaient par… un jeu vidéo !

L’anecdote traduit la tentation, dans l’euphorie qui accompagne la multiplication du nombre d’ordinateurs et

l’explosion de leurs capacités techniques, de faire toujours plus avec un outil dont on attend peut-être trop.

Car la culture de la simulation s’ancre finalement à deux niveaux. Le niveau de l’instruction initiale qui aide

les marins et les aviateurs à prendre en main leur futur outil de travail20. La séparation avec les produits civils

de loisir devient virtuellement inexistante, à tel point que les militaires achètent parfois sur étagère ces mêmes

jeux pour les introduire dans leur cycle de formation21. Avec les modules d’interaction et de réalisme induits

par la 3D, il devient même possible de former des échelons tactiques à leur action dans des espaces

densément urbanisés ; le corps des Marines est ainsi parmi les premiers à avoir transformé le First Person

Shooter «Doom» en une méthode d’entraînement du niveau du groupe de combat en insistant sur l’appui-

feu mutuel, la discipline de tir, la gestion des ordres et la progression.

La seconde raison tiendrait aux économies pratiquées par l’emploi de la simulation, ceci étant une façon de

revenir sur l’une des raisons anciennes du Kriegsspiel : des manœuvres à une large échelle coûtent cher et ne

permettent pas toute la palette des possibilités offertes par la technologie. Mais encore faut-il revenir sur cet

argument du moindre coût ; certaines études américaines dénoncent l’explosion de budget faramineux pour

des programmes ambitieux. Le Joint Simulation System (JSIMS) développé à partir de 1999 pour un budget

prévisionnel de 250 millions de dollars US, coûterait ainsi le quadruple22 !

La notion de simulation et de modélisation, phénomène ancien, demeure finalement une pierre angulaire de

la formation intellectuelle du militaire pour répondre à une angoisse ontologique : comment être prêt à la

guerre ? L’échelon concerné, du soldat à l’officier général commandant en coalition, dans une variété

d’engagements possibles – de la crise humanitaire au combat de haute intensité – incite à trouver des moyens

pour se forger aux engagements futurs.

Page 17: CAHIER Simulation

La simulation pour la préparation opérationnelle

1717

L’intérêt de cette préparation tient à la volonté de dépasser ce qu’un universitaire américain nomme le

syndrome de la victoire (Victory disease), la tentation de céder à l’arrogance en jugeant qu’une fois la victoire

obtenue, il ne sert à rien de changer ses habitudes et de réfléchir à d’autres façons de se battre. Ce syndrome,

qu’on pourrait rapprocher du discours sur la pertinence ou non de la doctrine de contre-insurrection dans les

conflits à venir, ne doit pas faire oublier que les outils technologiques peuvent aider à approcher une réalité

souvent changeante et toujours exigeante.

La simulation «parfaite», clone de la réalité, n’existe pas. En revanche, l’outil peut servir à apprendre plus

rapidement, à s’entraîner efficacement, à comprendre aussi ses erreurs et éviter ainsi leur réitération en

conditions réelles. L’illusion technologique ne remplace par l’humain, ne serait-ce que parce que la machine

(et l’intelligence artificielle) se nourrit de ce que le programmeur intègre comme fonctions. En définitive, rien

ne remplace l’intelligence de situation, notamment dans des espaces de conflit où la rencontre entre sphères

culturelles invite à accepter d’autres visions du monde.

Page 18: CAHIER Simulation

1811Le baron Von Reiswits, conseiller militaire auprès de la cour prussienne, invente le Kriegsspiel(jeu de guerre en allemand). Il sera utilisé dèsles années 1820 dansla formation des officiers, pour planifier des opérations militaires et se généralisedans les armées européennesdès 1870.

1970Les premières images de synthèse permettent de simuler la réalité dans un monde virtuel.

1980Début des représentations en 3D de surfaceavec ombres reportées.La simulation commenceà être utilisée pour la formationdes militaires.

1985Le premier simulateur de tir de combat(STC DX 175) est livré aux forces.

1993Création du CENTEX à Mailly-le-Camp.Il deviendra le CENTAC trois ans plus tard.

1994Création du CEPC à Mailly-le-Camp.

1995Le Full flight simulator SHERPA, conçu pour la formationet l’entraînementdes équipages de Pumaet Cougar, arrive dans les écoles de l’ALAT. Il est rénovéentre 2009 et 2012.

1870Le Kriegsspiel se généralisedans les armées européennes.Dix ans plus tard, l’utilisation des wargamespar l’armée britannique sera officialisée au Royaume-Uni.

1946Le Massachusetts Institute of Technology monte le projet Whirlwind afin de concevoir un calculateur numérique en temps réel, nécessaireà un simulateur de vol militaire.

1939Début du développement des simulateursinformatiques.Ils connaîtront leur première application en 1943,dans le Projet Manhattan, pour la mise au pointde la bombe nucléaire aux États-Unis.

Frise réalisée avec l’aimable collaboration de Terre Magazine

VIIe –Ve siècles av. JCLe Wei Hai, ou jeu de Go, se développe en Chine, en Corée puis au Japon. Là, il se généralise parmi les samouraïs comme entraînement à la stratégie militaire.

1910La société de Léon Levavasseur construit le tonneau Antoinette, l’un des premiers entraîneurs de vol français. En 1929, Edwin Link met au point le Link Trainer, l’un des premiers "vrais" simulateurs de vol. Il sera très utilisé pendant la Seconde Guerre mondiale etconnaîtra plusieurs évolutions jusque dans les années 1960.

1990Le site de Mailly-le-Camps’oriente vers la simulation.

La France reçoit, avec le codesource, les versions successives de JANUS, une simulation numérique du combat interarmes développée par les États-Unis.

La simulation pour la préparation opérationnelle

1818

Page 19: CAHIER Simulation

1919

1997La mise en service du char Leclercs’accompagne d’un simulateur de tir intégré et de simulateurs d’entraînement.

2002Livraison du systèmede simulation CENTAURE G2, qui donne sa pleine capacité au CENTAC grâce à sa capacité d’exploitation de toutes les informations transmisespar les STC.

2004Création du CENZUBà Sissonne.

2005Déploiement de la plate-forme SCIPIO au CEPC. Il est doté d’une intelligence artificielle lui permettant d’activer des automates d’unités élémentaires respectant la doctrine. Cette plate-forme est le 1er outil national d’entraînement des PC.

2006Le serious game INSTINCT arrive en école d’infanterie ; en 2008, il est livré à une vingtaine de régiments.

2008Le Full mission simulator Tigre est mis en service à l’Ecole franco-allemande Tigre.

2010JANUS Com et SCIPIO sont les premiers outils de simulation à se connecter avec les SIOC.

2011Mise en service, jusqu’en 2015, du système pilote SIMULZUB à Sissonne afin de définir l’instrumentation d’un site urbain.

2019L’instrumentation complète du village de combat de Joffrecourt, avec le système central CERBERE, devrait être opérationnelle au CENZUB.

2020La simulation opérationnelle prendra une nouvelle dimensionavec le programme Scorpion. À terme, le système d’arme lui-même fera office de simulateur en employantnotamment les techniques de réalité augmentée. On parlera également de simulation distribuée avec la mise en réseau globale des outils de simulation.

Synergie du Contact Renforcé par la Polyvalence et l’InfovalorisatiON

2012Le simulateur tactique OPOSIA, 1er outil d’entraînement interarmes virtuelest mis en place au CENTAC.Il sera par la suite déployédans tous les centres d’entraînement, en école et en garnison.

La simulation pour la préparation opérationnelle

Page 20: CAHIER Simulation

La simulation pour la préparation opérationnelle

2020

Page 21: CAHIER Simulation

La simulation pour la préparation opérationnelle

2121

LA SIMULATION AUJOURD’HUILA SIMULATION AUJOURD’HUI

DDéveloppée au sein de l’armée de Terre depuis les années 1980, la simulation occupe désormais une place

essentielle pour la préparation des forces. De l’instruction individuelle et collective jusqu’à l’entraînement

des unités et des postes de commandement, ses atouts principaux sont reconnus : économie des

ressources matérielles et humaines mais également restitution incomparable de l’environnement opérationnel,

optimisation de l’emploi des systèmes d’armes réels et enfin motivation du personnel et intérêt pédagogique.

En outre, la simulation est en constante évolution et le développement des techniques informatiques permet de

répondre à une variété croissante des besoins de l’armée de Terre.

Il est donc utile de présenter les caractéristiques générales de la simulation, son champ d’application ainsi que

ses perspectives d’évolution. Ces dernières sont notamment liées aux besoins des états-majors concernant l’aide

à la décision et l’appui aux opérations le tout dans un cadre interarmées et interalliés intégrant la Numérisation

de l’Espace de Bataille (NEB). L’extension constante du périmètre de la simulation traduit l’importance qui lui est

accordée. Cependant, l’objet de ce cahier est limité à l’emploi de la simulation au service de la préparation des

forces terrestres au sens large, y compris dans ses aspects les plus prospectifs. Il exclut donc les outils technico-

opérationnels et les bancs de tests qui servent aux évaluations conceptuelles ou matérielles liées à la conception

de l’outil de Défense, ainsi que ceux dédiés aux mesures des risques ou des performances.

1. La simulation au service de la préparation des forces.

De l’instruction individuelle jusqu’à l’entraînement des états-majors, si les atouts de la simulation sont donc bien

connus, il ne faut pas omettre que ce type d’outils se distingue aussi par l’exigence pédagogique qui l’accompagne.

Son intérêt concerne alors la mise en situation des entraînés, leur motivation voire leur stress qui en découlent et

les capacités d’analyse après action. Une autre caractéristique singulière de la simulation est de développer les

facultés d’adaptation de l’entraîné.

L’armée de Terre dispose ainsi d’un large panel d’outils de simulation répondant aux différents besoins de

préparation des forces. Le domaine bénéficie de progrès technologiques constants qui élargissent les possibilités

d’instruction, d’entraînement et d’aide à la décision. Ils ne doivent cependant pas faire perdre de vue deux aspects

essentiels : les exercices doivent être confrontés à la réalité du terrain et être absolument conformes aux impératifs

doctrinaux et aux contraintes opérationnelles.

1.1. La simulation en réponse à des besoins d’instruction, d’entraînement et d’aide1.1. La simulation en réponse à des besoins d’instruction, d’entraînement et d’aideà la décision.à la décision.

Le premier intérêt de la simulation est la représentation des effets et de la nature des engagements terrestres.

Afin d’exploiter au mieux cette capacité, la conception et l’emploi des outils se déterminent en fonction de leur

finalité dans des domaines précis (instruction, entraînement, aide à la décision, préparation de l’avenir) et selon

des savoir-faire à acquérir auxquels sont associés des niveaux d’emploi ainsi que des supports techniques. Ainsi,

plusieurs champs d’application se croisent avec plusieurs types de simulation mais l’objectif essentiel est de

répondre à des besoins opérationnels préalablement définis et centrés sur l’homme. La simulation ne demeure

qu’un outil à son service.

Page 22: CAHIER Simulation

La simulation pour la préparation opérationnelle

2222

1.1.1. Des outils de préparation opérationnelle regroupés en trois catégories principales.

Les outils de simulation sont alors regroupés en trois catégories selon l’usage qui en est fait. La simulation

instrumentée est utilisée lorsque l’on veut préserver la manœuvre des unités sur le terrain réel et l’animer avec

un rendu réaliste des actions de combat et des effets des armes. La simulation virtuelle est utilisée lorsque la

vision du terrain, généralement mais pas systématiquement en trois dimensions, ou au moins un rendu réaliste

de celle-ci, est nécessaire pour atteindre les objectifs liés à l’utilisation de l’outil. La simulation constructive est

essentiellement destinée aux états-majors et aux chefs. Afin de permettre leur entraînement, elle anime sur

ordinateur les subordonnés et leur environnement. Dans ce cas, elle n’est pas au contact des entraînés. Ceux-ci

peuvent donc être déployés en configuration opérationnelle sur le terrain et leur animation passe par des

opérateurs qui agissent sur l’outil et restituent la manœuvre simulée.

Le tableau infra récapitule les caractéristiques de chacun de ces types de simulation :

1.1.2. Des outils en réponse au besoin d’aide à la décision et à la prospective.

L’autre atout de la simulation est de permettre une meilleure compréhension de la nature des engagements

tant par leur représentation que grâce à l’interopérabilité des outils de simulation avec les systèmes

d’information opérationnels et de communication (SIOC). Cet avantage, outre l’amélioration de l’efficacité de

la préparation opérationnelle qu’il produit, élargit l’emploi de la simulation à des fins d’aide à la décision et

de conduite des opérations.

L’outil APLET constitue, par exemple, une réponse au besoin d’aide à la décision. Il repose sur la confrontation

des modes d’action amis et ennemis au niveau de la brigade et permet à l’état-major de rectifier un mode d’action

en fonction de l’évolution modélisée du taux d’attrition lors d’une manœuvre accélérée par la simulation.

INSTRUMENTÉE VIRTUELLE CONSTRUCTIVE

utilisateur réel utilisateur réel animateur

système d’arme réel système d’arme dérivé du réel

modélisation des actions, des

forces et de leurs équipements

dans un environnement virtuel

environnement réel environnement virtuel

effet simulé effet simulé

Moyens réels Environnement virtuel Animation sur ordinateur

Page 23: CAHIER Simulation

Confrontation de modes d’action à l’aide de l’outil APLET

23 Centre d’Analyse Technico-Opérationnel de la Défense.24 Etudes Technico-Opérationnelles.

La simulation pour la préparation opérationnelle

2323

A ce champ d’application s’ajoute celui des études prospectives ou doctrinales et de la recherche opérationnelle.

Il s’agit alors d’outils contribuant à mettre en exergue les conséquences à différents niveaux tactiques de

nouvelles technologies, de nouveaux procédés ou de nouveaux concepts sur le commandement opérationnel,

la manœuvre ou le soutien. C’est le CATOD23 de la DGA qui est l’expert simulation dans ce domaine particulier. Il

a comme «cœur de métier» les ETO24 qui visent à modéliser scénarios et solutions.

1.2. 1.2. La simulation en réponse à des besoins qui ne se limitent pas à l’objectif deLa simulation en réponse à des besoins qui ne se limitent pas à l’objectif derentabilité.rentabilité.

La simulation diminue les coûts mais ne les supprime pas. Le coût ne constitue donc pas le seul critère de

développement d’un outil. S’il est indéniable que la simulation soit source d’économies, notamment dans

l’acquisition des savoir-faire techniques comme le tir ou

le pilotage, l’analyse de l’intérêt du recours à la simulation

doit d’abord prendre en compte l’adéquation de la réponse

au besoin d’instruction et d’entraînement des forces

terrestres.

La qualité de l’apprentissage, le drill de procédures,

l’acquisition d’actes élémentaires, le suivi pédagogique,

la capacité d’analyse après action, l’optimisation des

exercices sur le terrain représentent les réelles plus-values

de la simulation. Elle constitue par ailleurs la seule

possibilité de confronter le personnel à des situations Exemple de comparaison entre coûts de fonctionnement

Page 24: CAHIER Simulation

La simulation pour la préparation opérationnelle

2424

variées réunissant à la fois des problèmes tactiques, logistiques, physiques (zone urbaine, désert, etc.) et

techniques (panne, destruction, mise en œuvre, etc.). Outre cette animation unique, elle offre la capacité d’y

intégrer des unités opérationnelles complètes qu’il est difficile voire impossible de réunir dans la réalité compte

tenu des contraintes financières et de disponibilité. Elle permet aussi de s’affranchir des restrictions du temps

de paix (pour l’aménagement du terrain, la manœuvre en zone urbaine ou le tir interarmes, ou la protection

de l’environnement par exemple).

Pour autant, la simulation ne doit ni être considérée comme un simple «jeu de guerre» même si les similitudes

sont nombreuses (camp adverse, terrain, capacités des armes, etc.), ni se substituer aux conditions réelles

d’instruction et d’entraînement. Cet équilibre à trouver entre ces deux types d’exercices conditionne la

définition des outils de simulation qui constituent toujours des compléments à la préparation opérationnelle.

Cependant si la simulation ne reproduira jamais la densité des situations réelles, elle procure une excellente

mise en condition opérationnelle. L’intérêt de ce type d’outil réside surtout dans la motivation (voire le stress)

qu’il suscite chez les entraînés et dans ses formidables capacités pédagogiques. Il s’agit donc davantage de

complémentarité avec les moyens réels que d’une substitution à ces équipements.

2. Les enjeux et perspectives de la simulation.

La simulation s’inscrit dans un environnement aussi bien opérationnel que technique en évolution rapide et

constante. La variété des théâtres d’opération, la mise en service opérationnel de nouveaux systèmes d’armes

ou outils de commandement, les besoins en interconnexion imposent que ses caractéristiques, facilitées par

les avancées technologiques, s’approchent au plus près des besoins. En effet, le potentiel d’innovation

technologique des outils de simulation demeure vaste et l’emprunt au monde civil permet d’exploiter ses

investissements considérables en recherche et développement. C’est notamment le cas de l’intelligence

artificielle qui sert désormais non seulement à reproduire l’être humain mais aussi à le comprendre.

2.1. Une simulation qui se doit d’être conforme à la doctrine.2.1. Une simulation qui se doit d’être conforme à la doctrine.

Néanmoins, le développement des outils de simulation doit être guidé par les objectifs de formation et

d’entraînement sous peine de produire de simples « jeux de guerre» inadaptés voire spécieux en termes

d’acquisition de savoir-faire opérationnels. Ce besoin de réalisme et de conformité à la doctrine conduit à la

recherche constante d’adaptation des outils existants et au maintien d’un personnel ayant une bonne

connaissance de son «cœur de métier» pour les mettre en œuvre et les faire évoluer. Ainsi par exemple, la

nécessaire diversification des terrains d’entraînement proposés virtuellement doit-elle prendre en compte les

zones urbaines voire les zones réelles d’engagement en vue de la préparation ou de la répétition de mission.

Si les modules des outils permettent en général ces évolutions, elles engendrent pour le personnel de mise

en œuvre un long travail réalisé en liaison avec les organismes techniques de la simulation ou bien directement

avec les industriels.

Page 25: CAHIER Simulation

Représentations des terrains Afghanistan et Mailly (source OPOSIA)

La simulation pour la préparation opérationnelle

2525

Les outils de simulation doivent enfin prendre en compte les structures organiques ou de circonstances des

unités ainsi que toutes les actions de combat autorisées par la doctrine.

2.2. Des outils de simulation devant s’intégrer à la numérisation.2.2. Des outils de simulation devant s’intégrer à la numérisation.

L’emploi de la simulation doit aussi permettre de

prendre en compte les moyens d’information et

de communication intégrés dans les systèmes

d’armes. L’objectif est désormais d’entraîner des

forces terrestres numérisées.

Pour accompagner la montée en puissance de la

numérisation, l’interopérabilité des outils de

simulation avec les SIOC est primordiale, un des

enjeux majeurs de la simulation étant de s’intégrer

le plus possible à l’outil de commandement usuel

en opérations. Lors d’un exercice avec simulation,

le personnel entraîné ne doit avoir à maîtriser que

son outil de travail habituel. En outre, seule la simulation permet d’«animer» les SIOC en ce sens que ceux-ci ne

transmettent que des données concrètes. La simulation assure alors une véritable instrumentation des moyens

de commandement, de la même manière qu’un engin blindé est instrumenté par un simulateur de tir de combat.

**

Afin d’illustrer le potentiel de ces différents outils et la variété de leur emploi et de leur intérêt, les divers types de

simulation sont détaillés dans la deuxième partie. Les trois catégories de simulation en usage dans l’armée de

Terre y sont décrites dans leur environnement actuel. Dans la troisième partie, les perspectives qu’elles offrent

font l’objet de développements qui concernent tant l’élargissement de leur emploi (interopérabilité avec les SIOC et

d’autres outils ou collecte de données à des fins d’analyses) que l’exploitation du potentiel technologique

(modélisation, jeux du commerce et veille technologique).

Principe d’entraînement d’un PC numérisé

Page 26: CAHIER Simulation

La simulation pour la préparation opérationnelle

2626

Page 27: CAHIER Simulation

DEUXIÈME PARTIE : DEUXIÈME PARTIE :

LA SIMULATION LA SIMULATION DANSDANS

L’ARMÉE DE TERREL’ARMÉE DE TERRE

La simulation pour la préparation opérationnelle

2727

Page 28: CAHIER Simulation

La simulation pour la préparation opérationnelle

2828

Page 29: CAHIER Simulation

La simulation pour la préparation opérationnelle

2929

L’UTILISATION DE LA SIMULATION L’UTILISATION DE LA SIMULATION POUR LA FORMATIONPOUR LA FORMATION

DDans le cas particulier de la formation, la simulation participe à l’acquisition de savoir-faire puis au

maintien des compétences. Son principal objectif est de plonger son utilisateur en immersion dans

un environnement qui se veut le plus réaliste possible. Elle seule permet par exemple de matérialiser

les effets des armes sans danger pour les utilisateurs. Cependant le simulateur reste un moyen qui doit être

maîtrisé et dont l’emploi doit être guidé par la finalité recherchée. De surcroît chaque type de simulateur est

caractérisé par des capacités spécifiques et offre des services différents. Parmi les différentes simulations, la

simulation virtuelle répond à la nécessité d’immerger l’apprenant dans un environnement dont les aspects

artificiels doivent être masqués tout en lui proposant une accoutumance visuelle ou physique la plus fidèle

possible au milieu dans lequel il devra évoluer au combat.

1. De la place de la simulation pour la formation

1.1. La simulation répond à un besoin spécifique…1.1. La simulation répond à un besoin spécifique…

Un exercice avec simulation implique généralement de nombreux protagonistes de métiers et niveaux

différents. La qualité du résultat dépend notamment du niveau et de la vraisemblance des interactions entre

les utilisateurs ainsi que de la cohérence de l’action collective de ceux-ci. La simulation dédiée à la formation

s’attache quant à elle à une cible pédagogique unique au sein d’une séance correspondant à un niveau

particulier.

Même si la formation collective déroge à cette règle, elle conserve cependant cette notion d’unicité de métier.

Partant de ce postulat on perçoit bien que l’apprenant doit être au centre du système et non pas une

composante parmi d’autres comme dans le cas d’animateurs participant à un entraînement. L’apprenant, cible

principale du système, ne peut pas être tributaire des actions d’autrui ou de paramètres qui viendraient

compromettre le bon déroulement pédagogique d’une séance d’instruction. Il est donc nécessaire que

l’environnement simulé perçu par l’utilisateur soit totalement maîtrisé par l’instructeur afin d’éviter les effets

de bords dus à d’autres actions ou phénomènes qui risqueraient de faire sortir la séance du contexte souhaité.

Celui-ci doit conséquemment être déterministe (ne pas laisser de place aux aléas) et son évolution doit rester

sous le contrôle de l’instructeur. Du fait d’une représentation progressive et adaptable du contexte

d’apprentissage souhaité, la simulation est un outil pédagogique particulièrement adapté à la formation. Elle

offre la possibilité de placer les utilisateurs dans des conditions variées parfois extrêmes à moindre coût et

sans risque.

Page 30: CAHIER Simulation

La simulation pour la préparation opérationnelle

3030

1.2. …mais c’est aussi une brique dans un dispositif global…1.2. …mais c’est aussi une brique dans un dispositif global…

De façon schématique, la formation est un processus évolutif qui démarre de l’acquisition de connaissances

théoriques que l’élève va apprendre à manipuler. Une fois cette gymnastique intellectuelle maîtrisée, l’élève

va se servir des nouvelles notions qu’il a assimilées afin de les mettre en application pour résoudre un

problème posé par un instructeur avec un objectif pédagogique bien précis. Chaque étape de ce processus

nécessite une méthode de travail et des outils appropriés. La simulation fait partie de ces outils qui occupent

un créneau qui leur est propre pour contribuer à la progression de l’apprentissage. Qu’elle soit instrumentée,

et généralement plutôt orientée vers l’acquisition de connaissances pratiques, ou bien constructive ou virtuelle

pour faire appel aux capacités cognitives du stagiaire, la simulation s’intègre dans un cursus pédagogique.

Elle est considérée comme un complément mais ne remplace pas le terrain ou l’utilisation d’un matériel réel

qui reste la finalité et l’aboutissement de la restitution des savoir-faire. Elle constitue un moyen qui simplifie

l’acquisition et l’entretien techniques et tactiques des savoir-faire en dissociant par séquences les phases

d’apprentissage, de perfectionnement, d’entraînement et de contrôle.

1.3. …qui permet d’accroître l’efficience de la formation.1.3. …qui permet d’accroître l’efficience de la formation.

La simulation apporte une réelle plus-value pédagogique grâce aux fonctionnalités spécifiques dédiées à

l’instructeur qui ont été implantées dans le système.

En effet, même si le chef doit in fine commander

ses hommes sur le terrain, les contraintes et

paramètres réels peuvent être contre-productifs

en termes pédagogiques et contrarier les

conditions d’apprentissage. La simulation se

présente alors comme l’outil idéal pour doser

l’injection des contraintes de la réalité au fur et

à mesure de l’aisance du stagiaire.

Elle offre une grande souplesse d’emploi qui

permet d’approfondir à volonté les points sur

lequel l’instructeur veut faire effort. L’instructeur

peut à son gré répéter une ou partie d’une

séance afin d’adapter l’instruction à l’apprenant.

Cette capacité de répétition en boucle et de

repositionnement instantané à un état choisi

du déroulement de l’exercice optimise le temps

imparti pour l’instruction. Cependant si elle est

véritablement souhaitable, tous les simulateurs n’en disposent pas ou alors peuvent imposer des manipulations

peu aisées pour la mettre en œuvre.

Un avantage supplémentaire est inhérent à la simulation : elle élargit l’éventail des séances d’instruction car

elle permet la réalisation de certaines mises en situation du stagiaire qui ne seraient pas concevables avec

du matériel réel comme par exemple certaines pannes d’un aéronef en vol ou l’évolution d’un blindé sur un

théâtre d’opération.

Résultats d’une évaluation au CENTAC canadien lors de 6 semaines d’exerciceréparties successivement en :

- 6 semaines en réel,- 1 jour d’entraînement virtuel puis le reste en réel,- 2 semaines et demi en virtuel puis le reste en réel.

Le coût de chaque entraînement apparaît également.

Page 31: CAHIER Simulation

La simulation pour la préparation opérationnelle

3131

Dans la réalité, l’instructeur est souvent physiquement dissocié des actions de l’élève et nombre de faits lui

sont étrangers. La simulation permet au contraire un contrôle exhaustif de l’élève par l’instructeur qui dispose

des outils conçus à cet effet.

Outils d’analyse fournis par JANUS (centre de Beyrouth).

Les dispositifs d’analyse après action livrés avec les moyens de simulation lui permettent de tout observer,

de bien mettre en évidence les liens de cause à effet, puis d’en restituer les enseignements de manière tangible

pour ainsi permettre à l’élève d’en tirer des conclusions et de s’améliorer. S’ils constituent ainsi un argument

pédagogique majeur, ces outils d’analyse ne sont pas forcément développés de manière homogène, certains

simulateurs présentant à cet égard des fonctionnalités très riches quand d’autres se contentent de moyens

de base.

Enfin, même si ce n’est pas sa vocation originelle, la simulation virtuelle dispose d’un atout important : elle devient

elle-même productrice de supports pédagogiques grâce à son réalisme de représentation. L’enregistrement à des

formats audiovisuels communs de séquences préparées fournit une base de supports didactiques qui sont utilisés

dans les premiers cours théoriques de présentation du savoir-faire à acquérir.

Bien intégrée dans un processus cohérent d’ingénierie de formation, la simulation est donc un précieux levier

amplificateur d’efficacité qu’il est difficile de remplacer.

2. De la difficulté de quantifier l’apport de la simulation

Résumer la simulation à la seule mise en œuvre d’un simulateur est par trop réducteur et cela ne permet pas

de bien appréhender sa véritable plus-value. Dans le cas de la simulation constructive, plutôt dédiée à la

formation tactique, le simulateur ne constitue qu’un composant de la simulation parmi d’autres, l’ensemble

ayant pour but de produire des effets sur les élèves pour les mettre en situation, puis d’évaluer leurs réactions.

Ainsi, ce qui prime dans une simulation est son réalisme et non pas sa conformité à une représentation visuelle

de la réalité. C’est au travers des modèles du simulateur que celui-ci va réagir et donner une réponse qui

paraîtra plausible. Or il est souvent contre-productif d’intégrer dans le traitement d’un simulateur des

Distances moyennes à partir desquelles les unités ont été détectées en thermique Coupe de terrain pour détection optique

Page 32: CAHIER Simulation

La simulation pour la préparation opérationnelle

3232

comportements physiques réels : de par l’essence même de la simulation, ils ne peuvent pas être totalement

conformes à la réalité. C’est donc bien le résultat de l’effet souhaité et sa représentation qui doivent être

considérés. Cet aspect est plus difficile à percevoir quand il s’agit des simulations virtuelle et instrumentée

car elles cherchent à restituer le plus fidèlement les aspects physiques des systèmes qu’elles simulent. Cela

occulte en partie le fait que la modélisation doit primer sur la représentation physique de la réalité. C’est ce

qui rend parfois difficile l’appréhension des qualités réelles ou supposées d’un moyen de simulation.

2.1. Quels critères d’efficacité retenir pour coter une simulation ?2.1. Quels critères d’efficacité retenir pour coter une simulation ?

Pour être efficace, la simulation doit être attractive

même si cet aspect peut sembler secondaire par

rapport à la finalité recherchée dans un cadre

professionnel. Dans le cas de l’instruction, elle

s’adresse effectivement souvent à une population

jeune et habituée à manipuler des instruments

d’une technologie avancée et surtout intuitifs. Une

mauvaise ergonomie qui impose des processus de

mise en œuvre propres au système de simulation

trop différents de ce qui est utilisé au quotidien

(qu’il s’agissent d’outils banalisés ou d’outils

métier) ou trop alambiqués, donc de fait éloignés

de la réalité, peut devenir un réel obstacle à

l’immersion de l’élève.

Elle doit donc s’attacher à être simple, tant sur le plan de l’utilisation que sur celui de la préparation des exercices.

C’est tout particulièrement vrai pour l’instructeur qui doit pouvoir s’affranchir du recours à un opérateur spécialisé.

Ce dernier, du fait de sa méconnaissance du domaine étudié, risquerait en effet de dénaturer régulièrement les

effets recherchés.

Enfin, pour offrir un service dans la durée, un simulateur doit être capable d’évoluer au fil du besoin et des

évolutions technologiques du matériel simulé. Cette capacité à évoluer concerne surtout le concepteur mais doit

être exprimée avant la réalisation, en particulier lorsqu’il est fait appel à une maîtrise d’œuvre non étatique.

2.2. Quelles sont les limites actuelles des simulations ?2.2. Quelles sont les limites actuelles des simulations ?

Chaque simulation possède des limites liées au fait qu’elle n’est qu’une interprétation de la représentation

de la réalité formalisée par son concepteur. Ses travers sont directement perceptibles sur la plupart des

simulateurs virtuels qui ne peuvent retranscrire toutes les contraintes d’ergonomie ou de modélisation,

notamment celles liées au comportement humain. Elle peut malheureusement induire des actes parasites

imposés par le système et minorer les sanctions de la réalité. L’utilisateur peut aussi, par souci du résultat,

rechercher un comportement adapté au simulateur qui l’éloigne de la réalité et amoindrit considérablement

le réalisme de la formation. Parfois dérivée de l’industrie des jeux du commerce, elle doit aussi éviter de tomber

dans la surenchère imposée par l’indispensable attrait commercial de produits de plus en plus performants

technologiquement pour satisfaire une demande spécifique du monde du jeu et non de la formation.

SIEP (système d’instruction et d’entraînement au pilotage du VBCI)

Page 33: CAHIER Simulation

Séance de simulation à l’E.A.A.L.A.T (Ecole d’application de l’aviation légèrede l’armée de Terre) pendant la formation des officiers.

25 Il est précisé dans le chapitre 3 de la troisième partie de ce cahier quelles sont les limites des jeux pour une utilisation non ludique.

La simulation pour la préparation opérationnelle

3333

Force est néanmoins de constater que les limites des technologies mises en œuvre sont régulièrement repoussées

et que les simulations bénéficient d’avancées mues par un marché porteur d’un point de vue financier : plus les

joueurs sont exigeants, plus les éditeurs travaillent pour améliorer le réalisme des jeux, même s’il n’est souvent

qu’apparent25. Par exemple, la suite de logiciels de jeux ArmA (Operation Flashpoint, ArmA, ArmA II, ArmA III)

développée par la firme Bohemia Interactive Studio fait l’objet de soins particuliers en matière de graphisme et

d’effets spéciaux parce que ces aspects sont essentiels pour conquérir des marchés. Toutefois, comme cette firme

édite également une simulation orientée vers les professionnels nommée VBS 2 (virtual battle space), elle peut

capitaliser à moindre frais sur les développements effectués dans le domaine des jeux pour en faire bénéficier

son simulateur orienté métier. L’addition des qualités offertes par le monde du jeu et de celles d’une simulation

orientée métier explique sans doute une partie du succès de VBS 2.

3. Quelle simulation pour quelle formation ?

3.1. Une typologie des simulations pour la formation3.1. Une typologie des simulations pour la formation

La simulation constructive est particulièrement

productive dans le domaine de la planification et

de la conduite des opérations. Elle traduit avec

réalisme la complexité des engagements

terrestres aux échelons ayant à conduire une

réflexion sur la conception de leur manœuvre.

Elle participe à l’acquisition de schémas et à leur

restitution au travers d’une manœuvre conçue

par le stagiaire. Si le support de conception de la

manœuvre est la carte ou le SIOC, alors la

simulation constructive est le support idéal qui

propose le niveau de synthèse adapté.

La simulation virtuelle, plus attachée à une représentation visuelle de la réalité, requiert de la part de

l’apprenant des actes simples qui ne le mettent pas dans une logique de réflexion trop élaborée. Dans le

cas de formation des niveaux équipage et individu qui nécessitent peu d’abstraction et de visualisation

synthétique de la manœuvre, l’interaction entre le terrain et l’acteur est amplifiée. C’est également le cas

pour la formation technique sur un matériel complexe comme le simulateur de panne Leclerc. Le réalisme

de représentation prend alors toute son importance dans l’intégration des paramètres que va devoir intégrer

l’élève.

La simulation virtuelle à vocation technique est utilisée principalement dans une logique d’acquisition

gestuelle d’un système ou de tout ou partie d’un appareil. Employée dans la formation initiale au service

d’un matériel (pilotage, tir, etc.), elle permet l’acquisition par le drill de procédures de mise en œuvre du

matériel. L’élève ou l’équipage sont mis en posture d’intervenir dans un environnement copiant le plus

fidèlement possible le matériel. Ils interagissent et acquièrent des automatismes face à des situations

évolutives.

Page 34: CAHIER Simulation

La simulation pour la préparation opérationnelle

3434

La simulation instrumentée est moins employée pour la formation, toutefois elle peut être utilisée en

complément de simulations techniques ou dans des formes hybrides, à la fois instrumentée et virtuelle

(à ce titre, le cinétir aujourd’hui remplacé par le SITTAL pouvait déjà être considéré comme une simulation

hybride, l’écran fournissant une image virtuelle qui conférait un caractère immersif certain tandis que

l’utilisation de balles en plastique simulait les effets des tirs effectués avec des armes réelles). Dans

certains cas (comme celui du STIVAD), elle fournit des éléments d’analyse irremplaçables par d’autres

moyens.

3.2. Des outils simples et complémentaires adaptés au juste besoin3.2. Des outils simples et complémentaires adaptés au juste besoin

Comme décrit supra, la majorité des simulateurs dédiés à l’instruction

répond principalement à un besoin de formation d’un métier et à un

niveau déterminé. C’est donc bien le premier cercle de

l’environnement direct du stagiaire qui doit être animé. En réduisant

ainsi l’ambition fonctionnelle du simulateur, on peut y répondre par

un outil simple, moins coûteux en opérateurs et aisé de mise en

œuvre. L’environnement de travail d’un stagiaire d’une arme de mêlée

n’étant pas identique à celui d’une arme de soutien ou d’appui, le

large éventail de toutes les formations multiplie d’autant le nombre

d’outils de simulation. Chaque outil a ses points forts et des

caractéristiques spécifiques qui le rendent plus adapté à une action

de formation qu’à une autre. Si l’outil d’apprentissage des savoir-faire élémentaires permet naturellement le

perfectionnement de ce même niveau, l’enseignement des savoir-faire collectifs au sein d’un équipage peut

nécessiter l’emploi d’un autre outil de simulation. Il pourra être lui-même encore différent de celui du niveau

peloton et au-dessus. Cet inconvénient est cependant amoindri si on prend en considération la lourdeur de mise

en œuvre d’un système qui chercherait à être exhaustif à tous ces besoins.

L’utilisation à la marge de certains simulateurs

amène par ailleurs un recouvrement entre

différents emplois qui peut être trompeur. Par

exemple, à partir d’un certain niveau l’animation

par le biais des simulateurs peut s’étendre à

l’environnement nécessaire à l’action de formation

ciblée. Pour autant cette animation basse, haute ou

des appuis n’est réalisée qu’en soutien du but

pédagogique et bien souvent est biaisée pour

répondre aux effets recherchés. Le simulateur est

un simple outil qui représente une fonction sans

pour autant en comporter les modèles. De

l’extérieur, il semble avoir des actions conformes à

la réalité alors qu’il ne fait que rendre tangible ce

qui est décidé par une intelligence humaine. Cela peut conduire des personnes non averties à penser à tort que

le simulateur peut être utilisé également pour la formation du personnel lié à l’environnement.

Simulateurs Leclerc à l’école de cavalerie

Poste de commande du simulation Tigre à l’E.F.A.

Page 35: CAHIER Simulation

Simulation, vol de substitution, vol réel,Simulation, vol de substitution, vol réel,un subtil équilibre à piloter pour la formation et l’entraînementun subtil équilibre à piloter pour la formation et l’entraînement

FFormer et entraîner, de manière optimale et à moindre coût, les équipages d’hélicoptères del’aviation légère de l’armée de Terre (ALAT), tel est l’objectif d’une politique de simulation.Il importe donc d’analyser le continuum que représentent formation et entraînement pourdécrire et faire vivre un système utilisant de manière cohérente des simulateurs etentraîneurs de niveaux différents ainsi que des appareils de générations différentes.

La maîtrise de tels outils passe par une pédagogie adaptée. Le savoir prépare aux savoir-faire qui sontutilisés techniquement et tactiquement dans le cadre d’un savoir être.

Ainsi les moyens de simulation de l’ALAT sont organisés conformément aux politiques de simulation envigueur par niveau pédagogique depuis les outils d’apprentissage des connaissances vers les outils demaîtrise du geste puis vers la synthèse combinée du geste et de la pensée toujours contrôlée par uneconscience des enjeux. Ces moyens s’articulent avec l’emploi d’appareils de substitution complémentairesaux hélicoptères systèmes d’arme dans un équilibre qui doit évoluer pour s’adapter à l’emploiopérationnel.

**

L’apprentissage passe par la connaissance de sa finalité. Pour l’hélicoptère, la technique impose unedénomination physique de toutes les pièces et ensembles de l’aéronef afin de comprendre leursinteractions. C’est par l’enseignement assisté par ordinateur (EAO) que commence la simulation del’ALAT. Des outils simples sont développés pour un apprentissage allant des nomenclatures, desprocédures de démarrage des hélicoptères et de fonctionnement des multiples systèmes embarquésjusqu’aux simulateurs de visite1 avant vol :les logiciels d’EAO et les «Part task trainer2 (PTT)».

Tous ces outils ont pour but de faire prendre en compte un environnement aéronautique général maisaussi particulier à la technologie de chaque aéronef. Ils permettent de se présenter en moins d’un an àla licence de pilote professionnel d’hélicoptère aux normes civiles européennes et d’acquérir trèsrapidement les connaissances théoriques nécessaires au brevet militaire de pilote d’hélicoptère decombat, puis d’évoluer pendant la carrière dans la maîtrise d’outils complexes et très évolutifs.

1 La visite avant vol est une revue strictement formatée pendant laquelle un équipage vérifie en détail son hélicoptère. 2 Entraîneur de tâches isolées.

26 cf. glossaire en annexe pour la définition.

La simulation pour la préparation opérationnelle

3535

Souvent née d’initiatives locales, la simulation «légère» dérivée des jeux du commerce, est venue combler des

besoins non satisfaits. Simulation généralement virtuelle, elle représente une vision artificielle au profit de

l’utilisateur - le First Personnel Shooter - qui peut occuper de nombreux rôles de combat grâce à une quantité

considérable de matériels contenue dans ses bases de données. Elle couvre un spectre très large du simple

combattant au pilote d’aéronef. Elle a l’avantage d’offrir un large panel de cas d’utilisations correspondant à

l’instruction du personnel dans son cœur de métier. Peu coûteuse elle nécessite cependant un investissement

humain pour enrichir ses scénarios et présente le risque d’un moteur26 peu adaptable aux évolutions doctrinales.

L’effet pervers d’un décalage avec la réalité est particulièrement sensible du fait de sa finalité qui reste avant tout

le jeu et induit un décalage dans la modélisation.

Page 36: CAHIER Simulation

IIl faut acquérir une logique des systèmes pour en contrôler les effets. C’est le domaine privilégiéde l’entraîneur de procédure qui va permettre à moindre coût de répéter à l’envi chaque action avecson enchaînement logique nominal et d’acquérir les variantes des procédures d’urgences ou lesdiagnostics les plus pointus pour les simulateurs de maintenance.

Le corps est également le premier outil de positionnement dans l’espace. Toutes les parties du corpsont une connaissance et une mémoire qui ne relèvent pas uniquement du toucher mais qui décrivent saposition et celle de ses segments par rapport à l’accélération subie. Ce «sixième sens», proprioceptif,est extrêmement important dans le pilotage d’un aéronef décrivant des évolutions brusques. Il est aussiessentiel dans la gestuelle et le dosage contrôlé des actions d’un mécanicien hélicoptère.

L’entraîneur de procédure ou de diagnostic est donc également un outil d’apprentissage de la gestuelleet de la logique. Depuis la position et le mode de fonctionnement des connecteurs jusqu’à leur logiqued’interaction, l’entraîneur de pilotage comme l’entraîneur de diagnostic forment à la « boutonnique »et à la logique des systèmes.

Une fois acquises les logiques et les positions, il faut affiner la maîtrise du geste liée aux sensations duvol ou à l’acte de maintenance. Certes le vol réel et l’entretien opérationnel restent les meilleurs modesd’acquisition des expériences mais, à un coût réduit, les sensations peuvent être reproduites par le biaisde vibrations, d’efforts ou d’accélérations corrélées à une imagerie moderne. Les entraîneurs demaintenance1 ou simulateurs de vol2 présentent dorénavant un réalisme suffisant pour permettre des’entraîner à des pannes critiques ou à des effets des feux de l’ennemi. Il est possible de se mettre, ensimulation, dans des conditions inadmissibles en activité réelle au regard du risque encouru. Il est ainsipossible de s’entraîner à des pannes mécaniques multiples dues à un dommage de guerre ou bien desoumettre l’équipage à des niveaux de pannes critiques impossibles à réaliser lors d’un vol réel. Lesconflits armés peuvent nous mettre rapidement dans de telles situations ; il est donc indispensable deles découvrir et de s’y entraîner au simulateur de vol pour ne pas les découvrir en opération.

Une fois la maîtrise du vol obtenue, il reste deux étapes essentielles à acquérir que sont la maîtrisetactique individuelle et collective ainsi que l’intelligence de situation dans un cadre aéronautique. Les outils primaires qui répondent à ce besoin sont des entraîneurs tactiques. Ils ne nécessitent pasune représentativité totale de l’aéronef mais exigent que la charge de travail soit conforme à celle del’appareil servi dans son cadre tactique d’emploi habituel et que les gestes réalisés n’induisent pas dereflexe d’apprentissage négatif dans la gestuelle ou dans la logique des équipages.

Pour l’ALAT, c’est EDITH qui permet actuellement de s’y entraîner. Cet entraîneur met en situation etpermet ainsi d’étudier d’innombrables cas concrets. Il offre donc un très large spectre d’utilisationspotentielles depuis la formation initiale à la tactique de l’aérocombat jusqu’au retour d’expérience auprofit des équipages des forces. Permettant de travailler en équipage, en patrouille ou en sous-groupement aéromobile, il facilite la prise en compte des aspects interarmes ou interarmées de toutesles missions d’aérocombat ou de sauvegarde/protection terrestre menées par l’ALAT.

Pour l’armée de Terre, des centres comme le CENTAC ou le CENZUB jouent également ce rôle. Mêmesi les hélicoptères de l’ALAT sont présents régulièrement dans ces centres, il reste encore à intégrerles actions de ces intervenants dans le combat interarmes et interarmées des niveaux GTIA et SGTIA.C’est pourquoi une étude est en cours sur les capacités d’intégration des intervenants de la3ème dimension dans les centres d’entraînement de l’armée de Terre. Elle débouchera, entre autres, surla conceptualisation de simulateurs de tir de combat pour les hélicoptères de nouvelle génération.

1 Maintenance Training Rigs (pour les équipages TIGRE ou CAIMAN)2 Full Flight Simulator CAIMAN, Full Mission Simulator TIGRE ou SHERPA

La simulation pour la préparation opérationnelle

3636

Page 37: CAHIER Simulation

CCes simulateurs permettent également de mettre l’individu ou l’équipe joueuse dans dessituations où les choix ne relèvent plus uniquement de l’impératif tactique maiségalement de leur environnement humain. Le propre du militaire est de pouvoir êtreamené à donner la mort ou à la recevoir. L’emploi des outils de simulation doit être utilisédans un cadre déontologique et éthique solide. Le simulateur permet d’analyser lescomportements au regard des règles par des cas concrets qui doivent être exploités.

De la même manière, la substitution répond à un besoin de mise en situation opérationnelle etaéronautique à moindre coût. L’expérience aéronautique est un point clé dans la sécurité des volsreconnu comme tel par toutes les armées du monde car gage d’efficacité opérationnelle. La substitutionconsiste à faire voler un équipage dans le même registre d’apprentissage que sur son hélicoptèresystème d’arme mais en lui présentant les éléments juste nécessaires à son entraînement. Par exemple,pour s’entraîner à la navigation de base à la carte sous système d’intensification de lumière (SIL), il estpossible de substituer une Gazelle à un Tigre lorsque vous n’utilisez pas les modes de navigation intégrésà l’appareil.

Si la substitution n’est pas la panacée, car la connaissance et la confiance dans son appareil d’armerestent un impératif pour réussir au combat, elle offre néanmoins des opportunités d’entraînementtangibles pour chaque équipage. Dans l’avenir, un appareil spécifique aux compétences duales pourraitvenir remplir ce rôle en lieu et place des Gazelle.

Quels que soient les progrès de la simulation, le vol sur appareil d’arme restera un impératif pourmatérialiser la confiance que doit avoir l’équipage en son outil de combat mais la simulation et lasubstitution auront permis de limiter l’emploi des hélicoptères au juste besoin.

**

Ainsi si la situation physique du simulateur évite le risque réel, les limites du stress peuvent aussi yêtre recherchées voire approchées. Par les charges d’information, de travail ou de motivation qu’il peutengendrer, le simulateur peut montrer des déviances à corriger, des carences à combler, des points àaméliorer. Il permet d’identifier les marges de progression et peut également servir au retourd’expérience rapide des opérations.

Par leur réalisme accru, les simulateurs permettent donc de mettre en œuvre de plus en plus de modespédagogiques. Il faut cependant se limiter dans leur utilisation à des ratios d’utilisation permettantd’intégrer en permanence la rémanence et la référence du réel dans les exercices simulés.

La complémentarité est donc la règle dans le subtil équilibre entre simulation, substitution et vol réel.En prenant en compte les incontournables limites techniques et organisationnelles, elle doit en effetencore être développée entre le vol de substitution et le vol sur hélicoptère système d’arme. Elle reposeaussi sur une utilisation intelligemment répartie entre les systèmes de simulation «bas coût», quidoivent être mis en place au plus près des unités de combat pour permettre un entraînement régulier,et les simulateurs sophistiqués qui équipent les écoles pour un apprentissage efficient et unestandardisation indispensable des équipages des forces.

Un équilibre judicieux doit être recherché et maintenu en permanence entre ces trois composantes.Pour cela, il importe que des experts opérationnels fassent vivre les politiques de formation, depréparation opérationnelle et de simulation en cohérence.

Depuis quatre ans maintenant, l’ALAT conduit avec pragmatisme cette politique afin d’améliorer sonefficacité en regard des objectifs de formation ou de préparation opérationnelle fixés tout en maintenantdans le cadre de sa mission principale un rythme opérationnel particulièrement élevé.

La simulation pour la préparation opérationnelle

3737

Page 38: CAHIER Simulation

La simulation pour la préparation opérationnelle

3838

Page 39: CAHIER Simulation

La simulation pour la préparation opérationnelle

3939

L’UTILISATION DE LA SIMULATION L’UTILISATION DE LA SIMULATION POUR L’ENTRAÎNEMENTPOUR L’ENTRAÎNEMENT

DDe nombreux simulateurs peuvent être employés indifféremment pour la formation et pour l’entraînement,

même si comme nous l’avons vu plus haut les outils conçus pour l’instruction peuvent parfois être très

spécifiques. Néanmoins, un même moyen utilisé dans des buts aussi différents est nécessairement

employé de manière toute aussi dissemblable. L’atteinte des objectifs d’entraînement impose généralement de

laisser aux entraînés une liberté d’action assez importante, ce qui limite d’autant la mainmise qu’a la direction de

l’exercice sur les conditions de son déroulement et rend prépondérante la qualité des outils d’analyse après action.

Le leitmotiv qui guide l’entraînement de toutes les armées du monde est «train as you fight», c’est-à-dire

«entraînez-vous comme vous combattez». C’est donc bien la conformité aux conditions des engagements qui est

recherchée. Cela implique d’avoir des simulateurs les moins perceptibles possibles pour les entraînés et dont le

comportement soit à la fois validé d’un point de vue doctrinal et crédible d’un point de vue opérationnel.

**

1. De la nécessaire furtivité des simulateurs

Si d’autres activités comme l’instruction peuvent souffrir d’avoir des aides pédagogiques visibles, l’entraînement

nécessite impérativement d’avoir recours à des moyens particulièrement discrets aux yeux des utilisateurs. Cela

peut être soit inhérent au dispositif technique utilisé, soit obtenu en adaptant l’organisation de l’entraînement.

Ce paragraphe correspond à une description théorique des moyens permettant d’y parvenir. En pratique, le degré

de satisfaction du besoin est assez irrégulier selon les simulations en service en raison de nombreux facteurs

(coexistence de produits de générations différentes, performances en rapport avec un état de l’art correspondant

à l’époque de leur réalisation, etc.).

S’entraîner comme on combat n’est pas chose facile, le plus difficile à matérialiser étant les effets des armes sur

les belligérants. La simulation, sous toutes ses formes, est sans doute le support le plus efficace pour accroître le

réalisme de la préparation opérationnelle en modélisant les effets des armes. Elle sert alors à améliorer

l’entraînement par son approche incomparable de la réalité des opérations. Il peut s’agir de pannes sur un aéronef

que les règles de sécurité ne permettent pas de provoquer pendant un vol, d’un tir d’artillerie qui détruit une entité

adverse dans le cadre d’un exercice, d’une action en zone hostile qu’il est impossible de répéter dans la réalité

sans trahir ses intentions ou prendre des risques inconsidérés mais qui nécessite une préparation fidèle à la

situation pour optimiser les chances de succès.

Obtenir un degré de réalisme suffisant pour atteindre les objectifs d’entraînement qui ont été fixés peut parfois

représenter une gageure. Aussi serait-il dommage de gâcher les efforts consentis en ayant des simulations dont

les utilisateurs perçoivent les mécanismes. Un simulateur efficace est un simulateur qui est omniprésent mais

imperceptible, pour la bonne et simple raison que c’est par essence un système qui n’est pas utilisé lors des

actions de combat et n’a donc pas sa place auprès des entraînés.

Pour obtenir des simulateurs discrets, il est possible d’agir sur leurs interfaces, leur ergonomie ou sur l’organisation

des exercices.

Page 40: CAHIER Simulation

27 Ces points seront explicités dans les rubriques relatives à la modélisation et à l’interopérabilité dans la troisième partie.

La simulation pour la préparation opérationnelle

4040

Les interfaces des outils de simulation peuvent les rendre relativement transparents pourvu qu’elles

correspondent à celles de leurs moyens réels et que les arbitrages fournis par la simulation soient plausibles.

Ces interfaces peuvent être graphiques et dans ce cas il est particulièrement pertinent d’émuler les interfaces des

outils métiers comme les SIOC si le moteur de simulation renferme une intelligence artificielle adaptée27.

L’utilisateur n’a pas alors l’impression de manipuler un simulateur puisqu’il a une interface connue et réaliste et

si le rendu du simulateur est vraisemblable, la simulation sera imperceptible. Un autre avantage notable réside

dans le temps d’apprentissage qui est alors quasiment nul puisque l’outil métier est réputé maîtrisé d’emblée.

Il peut aussi être question d’une interface technique permettant les échanges avec d’autres systèmes réels et

moyennant la même condition sur l’adéquation de la modélisation, l’échange avec les SIOC est encore à privilégier.

Il s’agit respectivement dans ces deux exemples de SIOC simulés et de SIOC stimulés.

A défaut, l’utilisation de conventions d’ergonomie déjà assimilées par les utilisateurs de la simulation peut

représenter un palliatif efficace. En effet, si les actions dans la simulation ont des effets similaires dans un SIOC

ou dans un autre système connu par ailleurs comme par exemple un système d’exploitation, le simulateur

renforcera son caractère intuitif et les

contraintes seront moins apparentes. De

façon analogue, si aucun dispositif

simulant les tirs ne peut être adapté sur

une arme réelle pour interagir avec le

simulateur, lui donner un mode de

fonctionnement équivalent avec une arme

factice est hautement souhaitable. Cela

peut permettre à l’entraîné comme aux

entraîneurs de se focaliser sur l’atteinte

des objectifs d’entraînement plutôt que sur

des procédures sans intérêt. Il faut

cependant garder à l’esprit qu’il ne s’agit là

que d’un pis-aller et non d’une solution

optimale. Seul un rendu vraiment réaliste

permet de se focaliser sur les objectifs à

atteindre sans être distrait, même inconsciemment.

Enfin, quand ni les interfaces ni le caractère intuitif d’un simulateur ne lui permettent la furtivité qu’il devrait avoir,

il reste un ultime levier : l’organisation de l’exercice. Il est en effet dans certains cas possible d’isoler l’entraîné

principal de la simulation en disposant d’une ressource humaine parfois non négligeable en effectif. Un entraîné

de second niveau sert alors de tampon entre le système et l’entraîné principal. C’est essentiellement vrai dans le

cas de simulations constructives.

Néanmoins rien n’interdit d’imaginer à l’avenir la création de passerelles entre des systèmes de nature différente

qui reproduiraient des sensations tactiles et optiques encore difficiles à restituer de nos jours (restitution du

contact physique avec des objets virtuels, visualisation améliorée en trois dimensions, etc.).

Evaluation opérationnelle du Battle Group PICARDIE au CENTAC :Fantassins FELIN postés

Page 41: CAHIER Simulation

28 par analogie avec la philosophie, ensembles structurés des termes et concepts représentant le sens d’un champ d’informations.

La simulation pour la préparation opérationnelle

4141

L’état de l’art évolue en permanence et il devrait bientôt offrir de nouvelles perspectives par le biais de la réalité

et de la virtualité augmentées, dont l’un des effets est d’atténuer la distinction entre les simulations virtuelle

et instrumentée, en particulier en ce qui concerne la simulation embarquée.

2. De la difficulté de modéliser la doctrine

En partant du postulat de départ que les simulateurs peuvent techniquement être ergonomiques, réalistes et

conformes aux interfaces auxquelles les utilisateurs sont accoutumés, il reste un point essentiel et non des

moindres à résoudre : les situations qu’ils génèrent doivent être plausibles en toutes circonstances. Il faut

donc que leur représentation corresponde à la réalité des engagements, c’est-à-dire à la doctrine d’emploi

des forces amies et au retour d’expérience permettant d’estimer avec précision le comportement des

adversaires potentiels ou réels.

Cela peut sembler simple à expliciter, toutefois l’art reste difficile et conduit souvent les entraînés ou les

animateurs à mettre en doute la pertinence des outils à tort. Modéliser une doctrine n’est pas forcément

faisable de manière exhaustive et repose sur des présuppositions techniques encore mal maîtrisées. Mais

surtout, l’appréciation de la qualité de ce que restituent ces modèles peut être assez subjective et doit

nécessairement faire appel à des expertises métiers variées pour être validée. Elles seront fournies dans le

cadre d’un accompagnement opérationnel permanent pour intégrer les évolutions doctrinales, et surtout

conférer une crédibilité aux modèles utilisés.

Tout d’abord, pour modéliser une doctrine d’emploi des forces, il faut qu’elle soit structurée. C’est le cas dans

l’armée de Terre mais rarement parmi les nombreux protagonistes civils ou non conventionnels. C’est pourquoi

différents types d’ennemis ou d’adversaires susceptibles d’être rencontrés lors de nos engagements ont été

décrits dans des documents doctrinaux. Leurs modes d’action peuvent se prêter à une analyse et à une

modélisation mais restent susceptibles d’évolutions en fonction des retours d’expérience.

Pour représenter fidèlement une doctrine, il faut disposer d’outils permettant une formalisation aisément

interprétable par un système d’information sans ambiguïté possible. Comme cela sera précisé ultérieurement

(rubriques à dominante prospective sur l’interopérabilité et sur la modélisation dans la troisième partie), des

expériences sont en cours, par exemple dans le cadre des réflexions relatives au langage de communication

entre SIOC et simulations via la norme CBML (coalition battle management language). Un modèle de données

a été créé, une sémantique a été définie et l’ensemble devrait permettre de déboucher sur des ontologies28.

Ce langage donnera notamment la possibilité d’expliciter l’idée de manœuvre d’un chef tactique, de donner

des missions à des entités, de transmettre des comptes-rendus, en s’appuyant sur cinq questions

généralement bien connues des chefs militaires : Qui ? Quoi ? Quand ? Où ? Pourquoi ? Si cela peut paraître

trivial, la recherche progresse beaucoup et avec régularité dans le domaine de la modélisation. Des

démonstrateurs ont été mis au point mais l’état de l’art n’est pas encore suffisamment mature pour une

exploitation universelle, même si des résultats concrets ont d’ores et déjà été obtenus.

Page 42: CAHIER Simulation

La simulation pour la préparation opérationnelle

4242

De surcroît, tout ne peut pas être modélisé avec une qualité et une fidélité à toute épreuve. L’Auftragstaktik

(mode d’action privilégiant la prise d’initiative jusqu’aux plus petits échelons tactiques) et des notions assez

similaires, comme celle de l’effet majeur bien connu des militaires français (intimement lié à la question

Pourquoi ?), induisent des relations entre l’esprit et la lettre d’une mission qu’il est assez malaisé de formaliser

car en général seule la lettre est clairement et complètement définie de manière intangible dans la doctrine.

Comme cela sera décrit ultérieurement, l’intelligence artificielle progresse. Il existe aujourd’hui des moyens

d’adapter les comportements d’entités synthétiques par l’apprentissage sans toutefois approcher la perfection

pour des raisons pratiques. Si derrière les victoires d’Alexandre on retrouve toujours Aristote, alors comment

faire pour qu’Aristote soit aussi derrière des agents de simulation représentant Alexandre sans commettre

d’approximation ? Au delà de la doctrine, comment modéliser la culture que l’on retrouve toujours chez un

chef lorsqu’il combat ?

De manière pragmatique, il faut savoir jusqu’où ne pas aller tant que l’état de l’art ne permettra pas une

démarche totalement efficiente. Si l’on admet que modéliser une doctrine est faisable de manière exhaustive,

il convient cependant de mettre en rapport le coût qu’il faut consentir pour cela et le gain obtenu, estimé à

l’aune des objectifs d’entraînement communément fixés aux militaires et aux états-majors qui s’aguerrissent

à l’aide de la simulation. Il est fort probable qu’une démarche rationnelle conduira à se fixer des limites dans

une logique de stricte suffisance quant à la qualité du réalisme conféré par le simulateur. De la même façon,

les coûts induits peuvent conduire à limiter le réalisme de modèles visuels en préférant un figuratif crédible

mais imparfait à un figuratif parfait mais trop onéreux. Un équilibre devra alors être trouvé entre les moyens

à consentir et l’acceptation du produit fini par les utilisateurs.

En l’absence de moyens plus adaptés pour caractériser complètement une doctrine de manière scientifique,

le recours à l’expertise des hommes qui ont été imprégnés de philosophie aristotélicienne reste un bon moyen

d’appréhender les modes d’action d’Alexandre. C’est pourquoi la conception des simulateurs dédiés à

l’entraînement passe systématiquement par une phase d’accompagnement opérationnel qui permet, en

partant de la doctrine et de ce que l’on sait en modéliser, d’affiner le rendu final de manière empirique.

L’essentiel est bien que la perception de l’entraîné principal (et non des animateurs) corresponde à ce qu’il

percevrait sur le terrain face à un ennemi qui manœuvre vraiment. Cette partie est souvent coûteuse en

ressources humaines. Elle consiste à réunir des experts métiers aux compétences parfois rares, à leur

demander de faire partager leurs connaissances sur le sujet étudié, à traduire leurs enseignements dans un

langage compréhensible par des informaticiens souvent moins au fait des problématiques tactiques, à

contrôler avec les experts que le résultat du travail des informaticiens est conforme à leurs attentes, puis à

mettre en cohérence l’ensemble des modèles, ce qui amène souvent à des approximations supplémentaires.

L’expert métier sera toujours, in fine, indispensable pour valider les modèles, quelle que soit la qualité des

avancées permettant une formalisation automatisée des données doctrinales, faute de quoi le rendu serait

peut-être conforme aux textes mais sans doute pas à la réalité.

Les recherches évoquées ici peuvent de prime abord sembler réservées aux simulations constructives ou

virtuelles. Toutefois il n’en est rien. Comme indiqué précédemment les frontières entre ces différents types

de simulation tendent à devenir de plus en plus poreuses au fur et à mesure que la technique permet de mieux

mélanger fiction et réalité. Toutes les simulations devront donc à terme bénéficier des progrès obtenus. Pour

autant, la classification actuelle (instrumentée - constructive - virtuelle) reste suffisante pour illustrer de manière

simple l’adéquation entre une famille de simulations et un type d’entraînement donné.

Page 43: CAHIER Simulation

La simulation pour la préparation opérationnelle

3. Quelle simulation pour quel entraînement ?

Les différents types de simulations qu’il est possible sous certaines conditions d’interconnecter lors d’exercices

dits LVC (Live Virtual Constructive, c’est-à-dire Instrumentée Virtuelle Constructive), ont des domaines d’application

relativement différents mais qui peuvent se recouvrir à la marge. Les exercices d’entraînement ont actuellement

majoritairement lieu dans les centres du CCPF (Commandement des Centres de Préparation des Forces) dont les

moyens de simulation sont adaptés aux spécificités de chacun.

Schématiquement, il est raisonnable d’estimer que :

l’emploi de la simulation instrumentée permet d’entraîner les combattants en unité constituée jusqu’au

niveau du GTIA, même si sa cible préférentielle sera celui du SGTIA ;

l’emploi de la simulation virtuelle est optimal jusqu’au niveau du détachement interarmes en général, et à

celui du SGTIA pour certains objectifs d’entraînement ;

l’emploi de la simulation constructive est idéal pour faire travailler les postes de commandement, de celui

du SGTIA à celui d’une composante terrestre de théâtre ;

l’intégration mutuelle de ces moyens (virtuels et constructifs) est souhaitable pour représenter les voisins,

les moyens de renseignement (recopie du flux vidéo d’un drone) ou les armes à effet de zone.

C’est ainsi que le CENTAC et le CENZUB utilisent des systèmes de

simulation instrumentée pour les exercices sur le terrain qui sont du

niveau du SGTIA voire du GTIA (si l’on considère qu’entraîner

plusieurs SGTIA avec l’aide d’une animation fournie par un PC de GTIA

revient à entraîner un GTIA). Au préalable, les équipes de

commandement des SGTIA évalués dans ces centres ont effectué des

exercices sur des systèmes de simulation hybrides constructifs

et virtuels comme OPOSIA (simulateur à la fois constructif et virtuel

en service au CENTAC). Cela

permet d’utiliser une simulation à

relativement bas coût de posses-

sion pour échauffer l’encadrement

du SGTIA en amont de son

exercice tactique sur le terrain. Il

se familiarise avec les procédures

spécifiques aux entités qui

constituent le sous-groupement

(souvent réunies uniquement pour

la circonstance) et améliore ses

aptitudes au dialogue interarmes. Les acquis permis grâce à la simulation

diminuent les risques de dysfonctionnements et l’encadrement est ainsi

opérationnel dès le début la phase d’entraînement sur le terrain avec

moyens réels qui est bien plus onéreuse.

Exercice de simulation pour les équipagesde VAB par le 51ème RT de Besançon lors

de la 1ère manœuvre de préparationopérationnelle logistique au CEB

de Mourmelon

Binôme du 35ème RI équipé du système STCAL(Simulateur de Tir de Combat à l’arme légère) au CENTAC (Centre d’Entraînement au Combat)

4343

Page 44: CAHIER Simulation

La simulation pour la préparation opérationnelle

4444

Les états-majors qui s’entraînent au CEPC

avec le système constructif SCIPIO béné-

ficient quant à eux d’un système cohérent

où l’entraîné principal est totalement isolé

de la simulation grâce à un entraîné

secondaire qui joue le rôle de tampon et

réduit les éventuelles erreurs tactiques des

animateurs ou l’impact des défaillances

techniques.

Les moyens29 d’interconnexion de simu-

lations commencent à enrichir les

possibilités d’entraînement et devraient se

développer largement à l’avenir. Ainsi, il est

théoriquement envisageable d’ajouter des

forces simulées par un système constructif comme SCIPIO ou JANUS dans la situation tactique reproduite sur les

SIOC d’unités qui s’entraînent au CENTAC avec le système CENTAURE. Quelques difficultés subsistent cependant,

comme leur représentation dans les moyens de vision réels des joueurs et les interactions avec les forces. Ces

problématiques, liées à la réalité augmentée, ouvrent de nouvelles perspectives au monde de la simulation,

nonobstant un nombre de défis techniques à relever important. En effet, il est aisé de représenter une cible virtuelle

dans des viseurs utilisant des moyens de visualisation électroniques. C’est un peu moins vrai lorsqu’il s’agit de

répartir sur le terrain une unité issue d’une simulation agrégée comme SCIPIO, car il faut désagréger au préalable

les entités puis leur affecter un emplacement tenant compte des impératifs tactiques. Mais surtout, l’engin virtuel

ne disposant pas de capteurs sensibles aux rayons lasers ou à des dispositifs similaires, toutes les simulations

instrumentées ne pourront pas agir dessus, ce qui pourrait ôter une bonne part du réalisme apporté par la

simulation. Ces gageures techniques pourront sans doute trouver des solutions à terme, néanmoins il est possible

de s’interroger sur le prix qu’il faudra consentir pour y parvenir.

**

La simulation n’est pas une finalité mais bien un moyen pour atteindre des objectifs d’entraînement, ce sont bien

eux qui devront déterminer le ou les types de simulation à utiliser, et conséquemment guider l’expression des

besoins futurs. Tous les types de simulations sont utilisés pour la préparation des forces, mais chacun a des

qualités et des contraintes qui doivent être évaluées à l’aune des objectifs d’entraînement et du niveau entraîné.

Le coût consenti correspondant surtout à concevoir du logiciel, il sera d’autant plus acceptable que l’armée de

Terre pourra en utiliser très largement le produit final.

A la croisée entre simulation constructive et virtuelle : SYSIMEV (déployé au CENTAC et remplacé par OPOSIA)

29 Ils sont présentés dans le paragraphe sur l’intéropérabilité en troisième partie.

Page 45: CAHIER Simulation

La simulation pour la préparation opérationnelle

4545

LA SIMULATION VIRTUELLELA SIMULATION VIRTUELLE

LLa simulation virtuelle est très certainement la mieux connue des simulations. Une forte proportion des

militaires de l’armée de Terre l’a utilisée un jour ou l’autre, que ce soit en formation initiale ou pour

s’entraîner. Avec le développement des espaces d’instruction collective dont une bonne partie reposera

sur des outils de simulation virtuelle, elle sera davantage diffusée en intégrant les garnisons et prendra une

place plus importante dans la formation et l’entraînement.

1. Les principaux systèmes de simulation virtuelle de l’armée de Terre

Ce qui suit permet de présenter succinctement les simulations virtuelles employées actuellement. Cette liste n’est

pas exhaustive et elle est complétée en annexe par un descriptif sommaire de l’ensemble des simulations en

service.

1.1. Les simulateurs spécifiques à l’ALAT1.1. Les simulateurs spécifiques à l’ALAT

Les simulateurs de vol et de combat de l’ALAT sont pour la plupart d’entre eux des simulateurs virtuels. Ils

ont un caractère immersif indispensable aux équipages et qu’il serait difficile de restituer par d’autres moyens,

si ce n’est par le vol réel. L’ALAT a été pionnière dans le domaine de la simulation à bien des égards, ce qui lui

a permis d’avoir une trame complète d’outils. Les raisons du temps d’avance de l’ALAT sont multiples : les

simulateurs de vol existent dans le civil (où des équivalences permettent d’utiliser la plupart des simulateurs

pour former intégralement des pilotes sur de nouveaux aéronefs sans une seule heure de vol réel), il est difficile

de réaliser certaines actions sans danger pour les appareils et les équipages, mais aussi et surtout le bénéfice

attendu est directement quantifiable eu égard au coût de l’heure de vol.

Ces systèmes peuvent être génériques, comme EDITH qui a des interfaces réalistes et suffisantes mais non

entièrement conformes à celles d’un cockpit donné, ou bien spécifiques à une machine comme les entraîneurs

développés pour chaque machine ou bien leurs FMS (full mission simulators).

1.2. Les simulateurs tactiques1.2. Les simulateurs tactiques

Les principaux simulateurs virtuels tactiques

utilisés actuellement dans l’armée de Terre sont

INSTINCT pour le combat débarqué, OPERATION

FRENCH POINT (tiré du jeu du commerce

OPERATION FLASHPOINT) pour le combat

embarqué, OPOSIA qui permet de faire travailler

les équipes de commandement en amont des

rotations au CENTAC ainsi que VBS 2 qui est

utilisé ponctuellement.

Ces simulateurs sont utilisés pour le travail des

petits échelons tactiques ce qui leur offre laLogiciel INSTINCT (Instruction de l’Infanterie au Commandement à la Tactique)

Page 46: CAHIER Simulation

La simulation pour la préparation opérationnelle

4646

possibilité notamment de travailler les procédures avant les exercices préparatoires tactiques et les exercices de

conduite sur le terrain. Ils peuvent aussi être utilisés pour travailler la tactique proprement dite, toutefois

uniquement pour les niveaux compagnie et section. En effet, les interfaces ne sont pas suffisamment réalistes

pour un travail tactique à bas niveau qui ne peut jamais se dispenser du déploiement sur le terrain.

1.3. Les simulateurs liés aux systèmes d’armes1.3. Les simulateurs liés aux systèmes d’armes

Ces systèmes sont très nombreux et il est peu pertinent de les citer de manière exhaustive. Le coût d’utilisation

des véhicules et des munitions est tel qu’il est quasiment impensable aujourd’hui de développer un nouveau

système d’arme sans mettre au point une simulation virtuelle qui lui soit associée. En outre, certains véhicules

connaissent des restrictions de circulation en raison de leur gabarit, ce qui impose de disposer d’autres moyens

pour maintenir les savoir-faire à un niveau convenable.

En s’intéressant aux plus récents, il est possible de nommer les simulateurs de pilotage et de tir du VBCI (le STES,

simulateur de tir d’équipage et de section, et le SIEP, simulateur d’instruction et d’entraînement au pilotage) ou

le SEE-SEP LECLERC (système d’entraînement d’équipage/de peloton).

Ces systèmes virtuels servent surtout à former au pilotage des engins et au tir, que ce soit de manière individuelle

ou collective. La conduite du tir au feu est ardue pour un chef et des simulateurs de tir sous tourelle collectif

permettent de s’y préparer de manière efficace. Les outils d’analyse après action offrent en outre des possibilités

pour relever d’incomparables enseignements lors d’une action collective, et ensuite pour les mettre en évidence

de manière visuelle et démonstrative pour tous.

2. De leurs utilisations

Le caractère immersif de la simulation virtuelle rend ce genre d’outil particulièrement adapté pour le travail

des petits échelons où les actions sont souvent le fruit de réflexes individuels et collectifs acquis grâce au drill.

Ces réflexes ne peuvent en effet être entretenus sans répétitions liées à des stimuli qui sont bien souvent visuels.

2.1. La formation2.1. La formation

Comme indiqué supra, la simulation virtuelle sert

surtout pour l’instruction individuelle dans les

domaines du tir et du pilotage. Elle permet de

matérialiser la situation tactique, de restituer

visuellement les effets des armes et de répéter à l’envi

des actions jusqu’à l’acquisition du savoir-faire étudié.

En matière d’instruction collective, elle permet de

travailler les déplacements en véhicules et le tir afin

d’effectuer au quartier et sans le matériel réel les

exercices préparatoires tactiques avec efficacité en

s’appropriant correctement les procédures. Pilote ALAT s’entraînant dans un simulateur Tigre à l’EFA

Page 47: CAHIER Simulation

La simulation pour la préparation opérationnelle

4747

2.2. L’entraînement2.2. L’entraînement

La simulation virtuelle est aussi employée pour l’entraînement des petits échelons tactiques en amont des

exercices de conduite. Elle leur offre la possibilité de visualiser la situation comme ils le feraient sur le terrain,

car au niveau section le commandement s’effectue en grande partie à vue du terrain.

Au niveau compagnie, la simulation virtuelle est complémentaire de la simulation constructive. En effet, le

capitaine qui commande une unité numérisée travaille autant sur ses moyens cartographiques numériques

qu’à vue du terrain. C’est la raison pour laquelle des simulations hybrides comme OPOSIA ont été développées.

2.3. La préparation de mission2.3. La préparation de mission

Cet aspect est actuellement en cours d’expansion car les moyens techniques liés aux simulations virtuelles

sont aujourd’hui suffisamment performants pour préparer une mission.

La simulation virtuelle peut par exemple permettre de se rendre virtuellement sur la zone des opérations où

l’unité sera déployée ultérieurement, de se familiariser avec la géographie, le baptême terrain, et

éventuellement de répéter à l’envi une action qui sera réalisée ensuite en identifiant les objectifs.

Ce type d’utilisation demeure cependant soumis à un préalable de taille : la disponibilité des données

d’environnement en particulier de celles relatives au terrain. Car une simulation ne peut se satisfaire d’une

simple carte papier pour le restituer. Il faut avoir numérisé sous forme vectorielle différentes données

(planimétrie, nivellement, etc.) et modélisé le terrain pour pouvoir les utiliser ensuite. Différents dispositifs

automatisés ont été mis au point à cette fin même s’il est possible d’effectuer la numérisation à la main. Cette

dernière opération est cependant longue et souvent fastidieuse.

L’intelligence artificielle et les techniques d’imagerie progressent et peuvent être d’un précieux recours dans

ce domaine. Toutefois la génération complète d’images 3D sans défaut sur une grande zone en peu de temps

avec peu d’interventions manuelles n’est pas envisageable à court terme. Il existe quelques systèmes de ce

type qui permettent par exemple à partir d’une ou plusieurs passes d’avion de générer assez rapidement des

images utilisables par une simulation. Elles seront néanmoins surtout exploitables au profit d’exercices pour

aéronefs tant que la technique ne permettra pas de les analyser rapidement et de générer des données avec

un niveau de détail suffisant.

3. Des perspectives

3.1. La réalité augmentée3.1. La réalité augmentée

L’état de l’art permet d’ores et déjà de réaliser des

démonstrateurs permettant de superposer sur des

dispositifs optiques des images générées par un

moteur de simulation virtuelle. Cela peut par exemple

permettre d’introduire face à un peloton de chars des

ennemis virtuels dans les épiscopes des équipages

et de simuler les effets des armes des deux parties.

Une utilisation plus vaste nécessite toutefois de réunirExemple de réalité agmentée (source internet)

Page 48: CAHIER Simulation

La simulation pour la préparation opérationnelle

4848

certaines conditions, comme indiqué supra dans le chapitre relatif à la simulation pour l’entraînement. La

simulation n’est pas le seul utilisateur de ces capacités nouvelles dont elle peut opportunément exploiter les

possibilités offertes (incrustation de la situation tactique de référence dans les optiques, par exemple).

3.2. La virtualité augmentée3.2. La virtualité augmentée

Là aussi, l’état de l’art progresse vite et même si les technologies ne sont pas encore suffisamment matures pour

dépasser le stade des études prospectives, l’échéance d’un recours opérationnel à la virtualité augmentée peut

être proche.

A titre d’exemple, des systèmes virtuels permettent à des fantassins de se situer grâce à des moyens optiques

dans un univers totalement synthétique où des capteurs situés sur leurs corps et sur leurs armes servent à les

localiser dans l’espace ainsi qu’à percevoir leurs actions. Ainsi, les effets des armes peuvent être simulés après

déduction des actions des uns et des autres, même s’ils sont éloignés et si dans la pratique leurs positions

respectives sont peu en rapport avec celles représentées dans la simulation.

Cela suppose cependant l’utilisation de sens comme le toucher qu’il est assez difficile de stimuler sans moyens

réels, et surtout l’indispensable instrumentation du terrain limite encore les possibilités offertes. Ce sera cependant

un domaine à suivre dans les prochaines années car cela pourra déboucher sur des méthodes nouvelles de

préparation opérationnelle, notamment en préparation de projection.

3.3. Un rapprochement de plus en plus flagrant avec la simulation3.3. Un rapprochement de plus en plus flagrant avec la simulationinstrumentéeinstrumentée

L’avenir de la simulation virtuelle s’imbrique donc de plus en plus avec celui de la simulation instrumentée. La

généralisation envisageable à moyen terme d’outils de simulation embarqués dans des plates-formes grâce à la

vétronique ou directement dans les moyens optroniques des combattants va nécessairement atténuer les

frontières entre ces différents types de simulation.

Elèves sous-officiers de l’ENSOA à l’entraînement sur simulateur SITTAL

Page 49: CAHIER Simulation

30 Qui cependant prend en considération leurs caractéristiques réelles : balistique, etc.

La simulation pour la préparation opérationnelle

4949

LA SIMULATION INSTRUMENTÉELA SIMULATION INSTRUMENTÉE

«Une arme est seulement aussi bonne que le soldat qui la porte»

Général Heinz Guderian.

LLa simulation instrumentée ou live simulation intervient quand les hommes, les matériels et l’environnement

en exercice sont réels. Seuls les effets des armes sont simulés, principalement aujourd’hui par le biais de

la technologie laser30. En ce sens, la mise en œuvre de la simulation instrumentée doit être la plus

transparente possible. Elle doit amener l’utilisateur à se concentrer uniquement sur la réalisation de sa mission

et sur l’utilisation de son arme ou de son système d’armes. La simulation instrumentée est donc bien une

simulation de terrain.

Celle-ci comprend, d’une part, les simulateurs de tir de combat (STC), mis en œuvre individuellement ou

collectivement et d’autre part, les systèmes centraux au sein desquels les simulateurs de tir de combat sont

déployés collectivement. Ces systèmes existent aujourd’hui au CENTAC et au CENZUB.

1. Les simulateurs de tir de combat et les moyens périphériques

Liés aux systèmes d’armes, les simulateurs de tir de combat permettent de reproduire par l’utilisation de

lasers «eye safe» de classe 1 sans danger pour les utilisateurs, les tirs directs et leurs effets tout en exigeant des

servants l’exécution de la séquence de tir réelle. Ils sanctionnent les tirs simulés en restituant les destructions

par des effets lumineux ou sonores et en tenant compte de la vulnérabilité de la cible, c’est-à-dire de son gabarit

et de son niveau de protection balistique. Ainsi un STC dispose, d’une part d’une fonction feu, traduite aujourd’hui

par l’émission d’un signal laser codé et d’autre part d’une fonction cible simulée par la réception du signal laser

codé. Les STC sont déployés et utilisés dans le cadre d’un système central, tel que CENTAURE déployé au CENTAC

ou SYMULZUB puis le centre d’entraînement en zone bâtie et de restitution des engagements (CERBERE) au

CENZUB. Couplés à ces systèmes centraux, ils transmettent en temps réel toutes les informations nécessaires à

l’animation et au pilotage des actions tactiques ainsi qu’à l’analyse pédagogique après l’action (3A).

Les STC sont présentés infra en distinguant ceux relevant du combat embarqué puis du combat débarqué,

avant d’aborder les moyens périphériques.

1.1. Les STC du combat embarqué1.1. Les STC du combat embarqué

1.1.1. Le STC XL (LECLERC)

Le simulateur se présente sous la forme d’équipements

à monter sur le char et à connecter à la conduite de tir.

Fortement intégré au char, ce STC fut pris en compte dès

la conception du LECLERC. Lancé en 1999, c’est le premier

STC couplé à un réseau numérique porteur.

STC XL

Page 50: CAHIER Simulation

CMT

La simulation pour la préparation opérationnelle

5050

La version S2 du char livrée aux forces en 2008, a pris en compte le besoin d’intégrer les LECLERC et leurs STC

dans le système CENTAURE, tout en les rendant interopérables avec les autres STC. A l’avenir, une version dite S3

prendra en compte le tir à courte portée et les nouvelles munitions dont l’obus à effet canalisé, répondant ainsi

au besoin d’engagement des blindés en zone urbaine.

1.1.2. Le STC B2M (blindé moyen et mitrailleuse)

Destiné à remplacer le DX 175 équipant les AMX

30 B2, les AMX 10 RCR et les ERC 90, il sera en

outre mis en œuvre sur les véhicules utilisant une

conduite de tir : AMX 10 P et VBCI. Ce simulateur

équipera aussi les VAB, VBL et GBC 180 Torpédo

dotés d’armes de calibre 12,7 mais également les

armes de calibre 12,7 employées à terre

(mitrailleuse 12,7 et fusil 12,7).

Prenant en compte la vulnérabilité du porteur sur

lequel il est intégré, il discrimine les dégâts

virtuels infligés par le STC adverse en fonction de

la nature de l’agression, de la zone touchée et de

la protection intrinsèque du véhicule. Autrement

dit, celui-ci dispose d’un «potentiel de vie» qui décroit au fur et à mesure qu’il est touché par un tir adverse.

A l’avenir ce type de STC évoluera vers une version adaptée au VAB TOP ainsi qu’au calibre 7,62.

1.1.3. La CMT (cible multi-porteur terrestre)La cible multi-porteur terrestre (CMT) assure la fonction cible des véhicules non dotés de systèmes d’armes.

Elle est destinée à équiper les véhicules ne disposant pas de fonction feu ou possédant un armement d’un calibre

inférieur à 12,7 mm. Les CMT vont subir d’importantes opérations de rétrofit pour devenir à terme des CMT

polyvalentes. L’objectif est d’adapter le parc actuel pour lui donner une capacité générique, notamment pour

instrumenter les véhicules des alliés ainsi qu’une fonction de sensibilisation aux EEI (engins explosifs improvisés)

simulés.

La CMT est en service depuis 2006.

STC B2M

Page 51: CAHIER Simulation

La simulation pour la préparation opérationnelle

5151

1.2. Les STC du combat débarqué1.2. Les STC du combat débarqué

1.2.1. Le STC AL NG (armes légères nouvelle génération)

Ce simulateur est utilisé par les unités pour leur permettre de

s’entraîner au tir de jour et de nuit au cours d’exercices tactiques

et de parcours de tir avec des cibles adaptées. Tout en offrant

une grande précision des tirs, il prend en compte le niveau de

protection des combattants et offre la possibilité de simuler leur

prise à partie et les blessures. Il existe une version dite

«standard» et une version spécifique FELIN.

1.2.2. Les STC anticharsLa principale caractéristique des STC antichars, à la différence des autres STC où

le simulateur est monté sur le porteur (pour les véhicules) ou sur l’arme (pour l’ALI),

est qu’ils se substituent à l’arme ou au système d’arme. Concrètement,

l’électronique de simulation et le dispositif laser sont intégrés en lieu et place de

la munition. Afin d’obtenir un réalisme maximal, la masse du STC, ses dimensions

et son architecture générale sont rigoureusement identiques à celles du système

d’arme réel.

Pour le STC ERYX et le STC du MILAN, il s’agit alors d’une munition et d’un poste

de tir factices. Les dispositifs d’effets sonores (départ missile ou roquette) et d’effet

visuel (occultation partielle simulant la fumée de départ de coup et trajectoire du

missile pour l’ERYX et le MILAN) sont intégralement restitués par le poste de tir factice.

S’agissant de l’AT4CS, l’opérateur prend sa visée conforme exactement comme dans la réalité, mais seul l’effet

sonore est restitué. Pour ces trois simulateurs la trajectoire des munitions et leur durée de vol sont simulés ainsi

que la destruction du poste de tir (fonction cible) à l’exception de l’AT4CS.

1.3. Les moyens périphériques1.3. Les moyens périphériques

1.3.1. Les FAI (fusils d’arbitres interarmes) et les PAI (pistolets d’arbitres interarmes)Les FAI et PAI sont des équipements de simulation instrumentée, qui, au sein des centres d’entraînement, ont

pour mission de pallier les carences ou limites de la simulation en donnant des outils aux instructeurs ou

observateurs arbitres conseillers (OAC) présents sur le terrain avec les entraînés. En garnison, ils permettent aux

maîtres de tir et de simulation de réactiver les

systèmes de simulation en vue d’un nouvel

exercice. Ces moyens périphériques ou outils

d’arbitrage ont plusieurs finalités : la destruction,

la réactivation d’un STC virtuellement détruit

dans l’exercice, le recomplètement en munitions

et les tests de bon fonctionnement.

Ces outils, aux fonctionnalités similaires sont

disponibles sous deux formes  : fusils ou

pistolets (FAI ou PAI).

STC ANTI-CHARS

FAI/PAI

STC AL NG

Page 52: CAHIER Simulation

La simulation pour la préparation opérationnelle

5252

1.3.1. IDEX (système d’initialisation, de dépouillement et d’exploitation des STC)En service depuis 2009, IDEX est un outil d’initialisation, de

dépouillement et d’exploitation des simulateurs de tir de combat pour

les STC des armes antichars et des armes légères d’infanterie. IDEX

peut être utilisé de jour comme de nuit aussi bien dans le cadre

d’entraînements tactiques aux tirs de combat que d’entraînements

techniques aux tirs. Les principaux matériels utilisés avec IDEX font

appel à des techniques lasers (STC propre à chaque système d’armes

à tir direct) et à l’enregistrement des informations sur le tir et les effets

du tir. Dans ce cadre, IDEX restitue les informations enregistrées

pendant un exercice technique ou tactique en temps réel ou différé

selon le cas. Il offre ainsi une analyse détaillée des tirs et des résultats.

Interopérables et déployés dans le cadre des systèmes centraux, type CENTAURE ou SYMULZUB, les STC prennent

une nouvelle dimension par le couplage au système de localisation du porteur et par leur capacité à faire remonter

les informations de tir et de l’état opérationnel du porteur vers un sous-système central. La finalité est bien

d’accroître le réalisme des actions et de permettre une analyse pédagogique plus complète afin d’optimiser

l’entraînement de nos forces.

2. De leur intégration aux systèmes centraux

Les systèmes centraux ont pour vocation de fédérer les STC déployés à l’occasion d’exercices au sein des centres

d’entraînement. A partir des moyens de simulation instrumentée déployés sur le terrain, un système central assure

le suivi et la mise à jour de la situation tactique réelle, génère les effets des armes à effet de zone, calcule les

attritions et enfin, alimente en données factuelles les 3A. Les consoles des systèmes centraux, qui ne sont pas

des simulateurs, permettent de connaître en permanence et en temps réel, la position sur le terrain des joueurs

équipés, leur comportement au tir, ainsi que leur état opérationnel simulé (apte, endommagé ou détruit pour un

véhicule et apte, blessé ou mort pour un homme).

2.1. CENTAURE2.1. CENTAURELe système CENTAURE permet d’une part de

simuler sur le terrain les tirs des armes et leurs

effets à l’aide des STC, d’autre part de suivre en

temps réel puis d’analyser à partir d’un CO le

déroulement des combats. Il équipe le CENTAC

dont la finalité est l’entraînement des sous-

groupements interarmes, à dominante infanterie

ou blindée, avec leurs appuis artillerie et génie,

au cours d’exercices sur le terrain de 96 heures.

Il constitue un moyen pédagogique majeur mis à

la disposition des forces pour permettre à ces

dernières de s’entraîner dans les conditions les

plus représentatives de la réalité. Créé en 1993

IDEX

CENTAURECENTAURE

Page 53: CAHIER Simulation

La simulation pour la préparation opérationnelle

5353

sur le camp de Mailly, le centre expérimental d’entraînement au combat (CENTEX) a permis de démontrer la

faisabilité technique et opérationnelle et de lancer les études de définition du système technique CENTAURE qui

équipe le centre définitif.

Depuis la création du CENTEX puis du CENTAC en 1996, les différentes versions de CENTAURE ont progressivement

permis l’engagement simultané de 3 SGTIA face à 2 SGTIA adverses, regroupant au total, plus de mille hommes,

250 véhicules et plus de 1200 STC.

Les nouveaux STC ont progressivement été intégrés ainsi que le système ATLAS et les effets des mines avec

le système interactif mines chars (SIM-C).

Enfin, depuis décembre 2011, la version G2V3, permet de suivre et d’intégrer des unités équipées de STC B2M,

de STC AL NG standard et FELIN, de prendre en compte le système IDEX revalorisé, et de suivre à terme, les

unités numérisées. CENTAURE assure également un suivi et un enregistrement des réseaux de communication.

Il donne à la direction d’exercice la possibilité de suivre les échanges opérationnels en phonie ou en

transmission de données, et aux analystes de les exploiter à des fins pédagogiques. Il est notamment possible

de suivre à la fois la situation perçue par les joueurs et la situation réelle. G2V3 sera sans doute la dernière

évolution de CENTAURE G2, dont les technologies et la conception sont maintenant vieillissantes et

difficilement compatibles avec l’évolution du contexte d’entraînement à l’horizon 2020.

2.2. SYMULZUB2.2. SYMULZUB

Afin de répondre au besoin de préparation opérationnelle aux actions en zones

urbaines des SGTIA, l’armée de Terre s’est dotée d’un centre d’entraînement qui a

ouvert en septembre 2006. L’objectif, est de pouvoir réaliser comme au CENTAC,

un ensemble regroupant un système central et les STC et moyens de simulation associés, spécifiquement

dédiés au combat en zone urbaine. La capacité d’instrumentation doit atteindre progressivement trois SGTIA

à l’entraînement. La prise en compte des nouvelles technologies et la nécessité de préciser le besoin

opérationnel par la capitalisation d’un retour d’expérience ont conduit à réaliser une étape intermédiaire avec

la mise en service d’un système pilote baptisé SYMULZUB. Le but de ce système pilote est de déterminer les

besoins d’instrumentation définitive du site à compter de 2017, date prévisionnelle d’ouverture de la première

tranche du village de combat instrumenté.

SYMULZUB comprend deux volets : une composante terrain et un CO de circonstance.

La composante terrain est un

ensemble de moyens dédiés à la

conduite et à l’analyse d’exercices

d’un niveau DIA (détachement

interarmes). Il permet à une

section renforcée de mener des

exercices face à une force adverse

en présence d’instructeurs en

mesure de recueillir les éléments

nécessaires à une analyse après

Page 54: CAHIER Simulation

La simulation pour la préparation opérationnelle

5454

action. Concrètement, les bâtiments sont équipés de capteurs permettant de suivre l’évolution des

combattants à l’intérieur comme à l’extérieur afin de déclencher des évènements ou d’arbitrer. Ainsi, le

système pilote va permettre de déterminer le niveau de réalisme nécessaire. SYMULZUB

prévoit l’expérimentation d’instrumentation de cinq sites particuliers du village de combat de Jeoffrecourt.

Chaque site est représentatif d’une partie caractéristique de zone urbaine (centre historique, barres

d’immeubles, etc.).

La maquette de centre des opérations doit permettre de définir les moyens nécessaires au suivi et à

l’exploitation pédagogique de la manœuvre du niveau SGTIA. Toutes les spécificités du combat en zone

urbaine seront ainsi prises en compte au juste besoin.

À partir de 2015, le système pilote aura terminé sa mission de recueil d’information sur les cinq sites prévus

et c’est à cette date que le marché du CENZUB futur sera notifié. L’achèvement de la première tranche

d’instrumentation est prévu pour fin 2017.

Le village de combat de Jeoffrecourt sera instrumenté avec un système central pour fin 2019.

Les centres d’entraînement et leurs systèmes centraux évolueront sans nul doute vers une nouvelle

architecture définie par les besoins futurs identifiés dans le cadre du programme SCORPION, opération majeure

d’armement constituant le vecteur principal de la transformation des forces terrestres pour les deux décennies

à venir.

3. Des perspectives

L’étape 2 du programme SCORPION envisage une opération constituante dédiée à la simulation. Au sein de

cette opération, les systèmes centraux et les STC s’intégreront dans le cadre d’une subdivision appelée pôle

réel (PR) qui complète les pôles tir et mise en œuvre (PTMO) et commandement et contrôle (C2). Ainsi la

simulation instrumentée et la simulation virtuelle vont progressivement se rejoindre dans un même système

d’entraînement comme cela a été mentionné dans la partie relative à la simulation virtuelle. La réalisation du

CENZUB offre l’opportunité, par le biais d’un cœur logiciel commun, d’avoir un système similaire au futur

CENTAURE G3. Les spécificités de chaque centre, liées au combat en zone ouverte et en zone urbaine seront

greffées sur ce cœur logiciel commun. Un troisième type de système central émergera : il s’agit du projet CTC

(combat training center) ou système central mobile qui aura vocation à être déployé dans un premier temps

à Mourmelon ainsi qu’à Canjuers. Ce CTC pourrait également être déployé en terrain libre, en métropole ou

outre-mer.

Enfin les STC pourront évoluer également vers de nouvelles

technologies qui aboutiront à la réalisation de STC numériques.

Ces derniers cohabiteront, au moins dans un premier temps, avec

les STC utilisant la technologie laser et seront plus spécifiquement

dédiés aux armes à effet de zone, aux missiles en général, ainsi

qu’aux armes utilisant le TAVD (tir au-delà de la vue directe).

Page 55: CAHIER Simulation

La simulation pour la préparation opérationnelle

5555

LA SIMULATION CONSTRUCTIVELA SIMULATION CONSTRUCTIVE

DDe façon simplifiée, il est possible de définir une simulation constructive comme une simulation dans

laquelle des systèmes virtuels sont mis en œuvre par des unités modélisées qui reçoivent leurs ordres

d’opérateurs réels. Ceux-ci donnent des instructions au système de simulation qui arbitre la résolution

des interactions et retourne une nouvelle situation en prenant en compte les modèles de la simulation. Cela

implique un degré d’automatisation plus ou moins important, dont la fidélité à la doctrine et le degré de

réalisme dépendront directement de la qualité de la modélisation effectuée. Ce type de simulation est avant

tout dédié à l’entraînement des états-majors.

1. Les principales simulations constructives actuelles.

La plupart des simulations constructives dont dispose l’armée de Terre servent à entraîner les postes de

commandement en évitant de déployer plus de forces que nécessaire dès lors que le caractère immersif

conféré par les simulations virtuelles n’est plus indispensable ou réalisable. C’est pourquoi elles sont

principalement utilisées pour l’entraînement des niveaux division à compagnie. Celui du niveau 1 dépasse le

cadre strict de l’armée de Terre mais s’appuie notamment sur la simulation constructive nativement

interarmées JTLS alliée à une gestion des scenarii à base de MEL MIL (master events list, main incidents list).

Au niveau du SGTIA l’emploi des simulations virtuelles et instrumentées est le plus pertinent, cependant des

simulations hybrides, à la fois constructives et virtuelles, ont été développées mais avec des objectifs

d’entraînement différents.

Les simulations virtuelles et instrumentées ont précédé l’apparition des simulations constructives qui ont dû

attendre que le développement de la puissance de calcul offre des solutions abordables. Les premières

simulations constructives mises en service datent du milieu des années 1980. Elles ont été développées par

les Etats-Unis et ont été installées en France entre 1992 et 1993.

1.1. BBS1.1. BBS

La simulation BBS (brigade/battalion battlefield simulation) est une simulation développée par les Etats-Unis

et destinée à l’entraînement des postes de commandement des niveaux 3 et 4. Elle a été utilisée dès 1992 par

des unités françaises puis en 1996 au centre d’entraînement des postes de commandement de Mailly-le-Camp.

Cette simulation permettait de générer des situations plus réalistes que celles offertes par les exercices en

carré vert. Elle procurait notamment une interactivité accrue avec un ennemi qui manœuvrait et un volume de

comptes-rendus plus en rapport avec la réalité. La qualité du rendu de BBS était intimement liée à celle des

opérateurs qui faisaient l’interface entre les entraînés et les machines en raison de son automatisation assez

rudimentaire. En outre, ses modèles étaient fondés sur de stricts rapports de force arbitrés dans des actions

de coercition. Pour toutes ces raisons son remplacement a été envisagé dès la fin des années 1990.

**

Page 56: CAHIER Simulation

31 La connexion aux SIOC sera présentée dans la troisième partie.

La simulation pour la préparation opérationnelle

5656

1.2. SCIPIO1.2. SCIPIO

SCIPIO (Simulation de Combat Interarmes pour la Préparation

Interactive des Opérations) a remplacé BBS au CEPC en 2006. La

différence majeure entre ces deux systèmes réside dans une

automatisation assez poussée de SCIPIO vouée à diminuer le

nombre d’opérateurs nécessaires à la part de l’animation des

exercices imposée par la simulation. Ainsi, la main d’œuvre libérée

peut être utilisée à d’autres fins, en particulier pour restituer ce

que la simulation ne sait pas encore faire.

SCIPIO est destiné à l’entraînement des postes de commandement des niveaux 2 et 3, ainsi que dans une

moindre mesure à ceux de la logistique.

Ce système dispose d’automates de SGTIA et de pions un peu moins automatisés de pelotons ou de sections.

Ces automates intègrent des données réalistes et restituent des comportements cohérents avec la doctrine

d’emploi des forces.

Initialement centrée sur la coercition de

force, sa version 2012 prend en compte les

actions de sécurisation et d’assistance

indispensables pour l’entraînement aux

opérations de stabilisation y compris en

zone urbaine. Sa connexion aux SIOC31

sera à l’avenir renforcée pour permettre

indifféremment de donner directement

des ordres aux automates depuis les SIOC

ou de faire parvenir aux SIOC les données

réelles mais générées par la simulation.

1.3. JANUS1.3. JANUS

Véritable «bête de somme» de l’armée de Terre, la simulation JANUS a comme BBS été héritée des Etats-Unis

et développée ensuite en France. Mise en place dès 1993 dans certaines écoles, elle permet de travailler à

tous les niveaux de celui de l’unité élémentaire (voire de la section d’appuis spécialisés) à celui de la division,

à condition de disposer de suffisamment de personnel pour armer les cellules d’animation. Sa souplesse et

les très bons niveaux de détail qu’elle restitue sont en effet obtenus au prix d’un coût humain non négligeable.

C’est d’être lié à une automatisation réduite au strict nécessaire qui cependant fait la force de JANUS, car les

modèles décisionnels n’étant pas trop complexes, ils peuvent être adaptés rapidement. Pour autant, les

données sur lesquelles JANUS s’appuie ont été validées et confèrent au simulateur un réalisme et une

légitimité éprouvés. Ainsi, l’armée de Terre qui continue à développer ce produit peut-elle l’ajuster au besoin

des utilisateurs avec une forte réactivité. La représentation de la zone urbaine et les liens avec les systèmes

Poste d’animation SCIPIO version 2012 - zone urbaine

Page 57: CAHIER Simulation

La simulation pour la préparation opérationnelle

5757

d’information y ont été améliorés récemment, ce qui

lui confère une bonne adaptation aux évolutions

opérationnelles. En pratique, JANUS est néanmoins

essentiellement utilisé pour la formation des cadres

(cours des futurs commandants d’unité, Ecole d’état-

major) et l’entraînement des PC régimentaires (y

compris pour les contrôles opérationnels de type

ANTARES). Comme SCIPIO, JANUS est connecté à

différents SIOC : SIR, SIT et ATLAS.

1.4. ROMULUS1.4. ROMULUS

Ce simulateur développé au centre de production des simulations de Saumur permet l’apprentissage aux

procédures de combat des niveaux peloton, SGTIA et GTIA, ainsi que l’apprentissage aux procédures

logistiques du TC2. Il est connecté aux SIOC des niveaux entraînés (SIT et SIR).

L’ennemi peut être dirigé dans un exercice à simple action ou autonome dans un exercice à double action.

Ce simulateur permet le travail avec un système de simulation de poste radiophonique (S3RI).

Son moteur est commun avec la simulation NERMERTES utilisée pour la formation et l’instruction collective

des petits échelons logistiques.

2. De leurs utilisations

Outre l’utilisation classique au profit de la préparation des forces, les simulations constructives peuvent aussi

être utilisées pour la préparation de l’avenir et l’appui aux opérations (études doctrinales, expérimentations,

évaluation de concepts, confrontation de modes d’action, répétition de mission). Cela suppose au préalable de

disposer de modèles dont la validité soit avérée et des outils d’analyse statistique permettant d’en tirer des

conclusions et de les mettre en forme.

2.1. Préparation des forces2.1. Préparation des forces

Le principal emploi des simulations constructives dans l’armée de Terre est bien lié à la préparation des forces

au sens large, qu’il s’agisse de l’instruction individuelle ou collective ou de l’entraînement.

2.1.1. Formation individuelleL’emploi de la simulation constructive pour la formation est pour des raisons évidentes réservé aux cadres qui

auront à prendre ou à préparer des décisions au sein d’un poste de commandement dont le niveau s’étend du

niveau 5 au niveau 1. Les qualités recherchées pour ces systèmes ont déjà été évoquées supra. Depuis l’arrivée

de JANUS à l’Ecole d’infanterie en 1993, ce système a été largement utilisé pour former les futurs chefs de section

et commandants de compagnie à la prise de décision avec comme avantage majeur la capacité à représenter à

moindres frais un environnement difficilement reproductible par ailleurs (comme par exemple le niveau

régimentaire). Il a par la suite été utilisé à l’Ecole d’état-major et à l’Ecole supérieure de guerre pour former les

officiers d’état-major à l’emploi des GTIA, des brigades et des divisions.

Ecran d’une station JANUS

Page 58: CAHIER Simulation

Copie d’écran du logiciel SWORD (société MASA)

La simulation pour la préparation opérationnelle

5858

D’autres outils peuvent aussi servir à la formation. L’EVTA « simulation téléchargeable » réalisée en 2008 et 2009

a consisté à mettre le logiciel SCALPED, fondé sur le moteur de SCIPIO, en téléchargement sur Internet. L’objectif

était de permettre aux organismes de formation d’évaluer le potentiel de ce type d’outil et la pertinence de ce

mode de diffusion pour la formation. Si le besoin est avéré, divers problèmes se posent, comme la problématique

du contrôle du travail effectué de manière autonome par les élèves ou bien la prise en compte de l’ingénierie de

formation dans ce genre d’outil. Néanmoins, le potentiel est réel, que ce soit pour permettre à des stagiaires de

vérifier la pertinence de certains de leurs choix lors du raisonnement tactique ou à des formateurs pour illustrer

des modes d’action.

2.1.2. Instruction collectiveL’acquisition des savoir-faire d’un poste de commandement de niveau 4 ou supérieur peut aussi s’appuyer sur la

simulation constructive. Les exercices conduits sont essentiellement des exercices dits d’auto-entraînement,

comme les PONEY-EXPRESS menés avec SCIPIO au CEPC au profit des PC des BIA. La nature des actions qui y

sont jouées peut varier en fonction de différents paramètres, comme par exemple le contrat opérationnel reçu par

la grande unité qui s’instruit. Le logiciel SWORD, fondé également sur le moteur de SCIPIO, a été utilisé de manière

expérimentale pour offrir à un PC de brigade la capacité d’entraîner son PC avec des tâches à mener relativement

légères pour préparer et conduire l’animation de séance d’instruction collective ou d’auto-entraînement en

garnison.

2.1.3. EntraînementLes exercices voués au contrôle et à l’entraînement des forces constituent historiquement et en volume la majeure

partie de l’utilisation des simulations constructives. Il s’agit essentiellement pour l’armée de Terre des exercices

GUIBERT (niveau 2), AURIGE (niveau 3) conduits avec SCIPIO ainsi que des ANTARES (niveau 4) effectués avec

JANUS. Ces exercices sont conduits dans des centres spécialisés (SCIPIO) ou des organismes de formation (JANUS).

Ils mêlent généralement simulation et gestion manuelle des incidents de type carré vert (MEL MIL). Celle-ci est

complémentaire : la MEL MIL intervient là où les modèles de la simulation ne sont pas pertinents. Un couplage

entre les outils de MEL MIL et ceux de simulation est possible. Dans ce cas, le gestionnaire d’évènement déclenche

des incidents suivant une planification ou bien à la volée et la simulation représente les actions en question.

Page 59: CAHIER Simulation

La simulation pour la préparation opérationnelle

5959

2.2. Appuis aux opérations2.2. Appuis aux opérations

Il est possible d’utiliser des moyens de simulation comme moyens d’aide à la décision dans un cadre

opérationnel s’ils intègrent une modélisation doctrinale valide. Ainsi, différents outils expérimentaux comme

APLET permettent d’illustrer et d’exploiter des confrontations de modes d’action lors de l’élaboration d’une

décision opérationnelle. Ce type d’outil peut aussi servir à effectuer des répétitions de mission, telle une

caisse à sable sophistiquée qui permet de s’assurer que les subordonnés ont bien compris leur mission

(backbriefs et mission rehearsals) ou de matérialiser les mesures de coordination à envisager. Il est à noter

que ces outils peuvent aider à visualiser les actions ou à déceler d’éventuels défauts mais qu’ils ne peuvent

ni ne doivent décider à la place des chefs. Il faut naturellement aussi garder à l’esprit le fait que l’ennemi peut

ne pas réagir comme les agents modélisés dans la simulation. Celle-ci ne donne qu’une indication sujette à

une doctrine adverse générique. Dans ce contexte, les outils de simulation servent à mieux anticiper ce qui

pourrait se produire et en aucun cas à prédire ce qui va arriver.

2.3. Préparation de l’avenir.2.3. Préparation de l’avenir.

L’emploi de la simulation constructive est aussi pertinent pour dimensionner l’outil de Défense, travailler sur

de nouveaux concepts doctrinaux ou tester les capacités potentielles de nouveaux types de systèmes d’armes.

Ces derniers peuvent être modélisés à moindre frais avant même d’obtenir un démonstrateur et d’organiser

une évaluation tactique. Ainsi, l’élaboration des documents doctrinaux relatifs à la contre-rébellion et certaines

études sur le combat en zone urbaine se sont appuyés sur les simulations SWORD et JANUS. Ces deux outils

ont par ailleurs été acquis par la Direction générale de l’armement pour mener des études prospectives. Sous

le nom de Data Farming, cette utilisation est également développée dans des pays alliés afin d’étudier des

choix doctrinaux et des choix d’équipement cohérents entre eux. Dans le cadre du RETEX, elle peut également

aider à répondre à la question «et si ?».

3. Des perspectives

Les simulations évoquées plus haut ont vocation à être remplacées à moyen terme. De manière à garantir

intrinsèquement l’interopérabilité entre eux, les systèmes devraient bénéficier des fonctionnalités offertes

par un noyau commun qui permettra de partager à la fois l’utilisation des données d’environnement et le

recours à des services conjoints à toutes les simulations. Sans dévoiler le détail des expressions de besoin

en cours, de grandes tendances qui dépassent la seule armée de Terre française se dégagent. Elles sont

ébauchées infra car elles font l’objet de développements plus explicites dans la suite de ce document dans

les paragraphes relatifs à l’interopérabilité et aux défis de la modélisation.

3.1. L’interconnexion des simulateurs3.1. L’interconnexion des simulateurs

S’il est souhaitable d’avoir un cœur commun pour l’ensemble des simulations susceptibles de partager des

données ou des services, il n’en reste pas moins vrai que chaque simulation correspond à un type

d’entraînement spécifique et qu’il est illusoire d’envisager d’avoir un simulateur unique. C’est pourquoi des

travaux sur l’interopérabilité des simulateurs sont en cours. L’interconnexion des simulateurs peut permettre

d’en varier les emplois comme l’entraînement entre différentes composantes (par exemple la Marine qui utilise

la simulation constructive ORQUE et l’armée de Terre qui utilise SCIPIO lors des exercices amphibies de type

Page 60: CAHIER Simulation

La simulation pour la préparation opérationnelle

6060

POSEÏDON), l’entraînement multi-niveaux, le vignettage qui consiste à utiliser une simulation plus spécialisée

ou de granularité plus fine pour zoomer temporairement sur une partie d’un exercice et en renvoyer les effets

dans la simulation principale etc. Les possibilités sont multiples mais les besoins en la matière sont parfois

difficiles à exprimer par les utilisateurs notamment en raison d’une méconnaissance de l’état de l’art.

3.2. Un renforcement des liens avec les SIOC3.2. Un renforcement des liens avec les SIOC

Connecter les SIOC aux simulations ou émuler leur messagerie sera inévitable sous peine de rendre l’entraînement

des forces numérisées fastidieux et peu réaliste. Cela représente un véritable défi qui sera explicité dans le chapitre

relatif à l’interopérabilité.

L’état de l’art permet déjà des avancées intéressantes, comme les connexions de JANUS et SCIPIO à SIR et ATLAS

l’ont montré. Cependant, l’évolution permanente des SIOC concernés rend difficile la gestion des mises à jour de

la simulation. Par ailleurs, un facteur de complexité important réside dans le fait que les automates de SCIPIO

sont commandés directement depuis les SIOC et qu’ils rendent compte à ces systèmes sans intervention manuelle.

C’est pourquoi des modèles pivots fondés sur des standards et comprenant un lexique et une grammaire comme

CBML sont hautement souhaitables. Une telle connexion peut cependant avoir des effets pervers. Par exemple,

toute erreur est immédiatement visible au niveau de l’entraîné de premier niveau si le SIOC utilisé par les deux

niveaux entraînés est identique. Cela supprime de facto le tampon que l’entraîné de deuxième niveau représente

entre la cible principale de l’exercice et la simulation. Cela implique donc que la simulation doit être

particulièrement performante et exempte de tout défaut.

Du point de vue du strict besoin, pour reproduire a minima l’environnement numérisé il faut fournir sur les outils

de travail habituels les données qui y figurent au combat, et ce de manière automatisée. Par exemple dans le cas

d’un exercice AURIGE, il faut que l’animation basse, à savoir les commandants d’unité élémentaire, aient

directement sur leur SIR les positions des sections et comptes-rendus qu’ils reçoivent habituellement sur le terrain.

Cela leur permet de mettre en pratique les savoir-faire acquis dans le cadre de la numérisation de manière plus

réaliste, sans effectuer d’actions autres que celles qui sont faites en opérations.

3.3. Une automatisation plus poussée3.3. Une automatisation plus poussée

La simulation SCIPIO est un bon exemple de ce que pourront devenir les simulations constructives dans

quelques années.

Les automates de niveau SGTIA reçoivent

des ordres tactiques d’un opérateur,

conduisent un raisonnement tactique de

leur niveau suivant un modèle décisionnel

relativement complexe mais dont les

résultats en matière de doctrine ont été

validés, puis donnent sans intervention de

l’animation des ordres à des pions,

automates un peu moins complexes du

niveau section ou peloton. Cela suppose

la mise en œuvre de techniques

d’intelligence artificielle qui sont déjà très

élaborées.

Page 61: CAHIER Simulation

La simulation pour la préparation opérationnelle

6161

En complément, doter ces automates d’une réelle capacité d’apprentissage peut présenter des avantages

certains. En effet, en utilisant une simulation constructive avec des automates qui peuvent tirer des

conclusions d’un retour d’expérience et faire évoluer leurs modes d’action, il n’est pas illusoire d’imaginer

qu’il sera possible d’élaborer de manière semi-automatisée des modes d’action novateurs que des motifs

culturels auraient écartés. Il sera aussi possible en appui de la planification, de confronter un mode d’action

ami à des actions ennemies évolutives. Si les automates apprennent, ils peuvent trouver d’eux-mêmes des

failles qui n’ont pas été imaginées. Ainsi, en combinant l’action de la simulation avec celle dans la durée de

red teams, l’étude de l’évolution d’un adversaire, par exemple en phase de stabilisation ou en début de

normalisation, est envisageable. Les travaux conduits dans ce domaine présentent l’intérêt majeur d’aider à

mieux réfléchir l’articulation entre effet majeur (mesure du succès), culture (mode de pensée) et mode d’action

(emploi des moyens dans l’espace et dans le temps) avec une dynamique inscrite dans la durée.

Enfin, une dernière piste étudiée est celle de l’automatisation multi-niveaux. Dans une phase de stabilisation,

toutes les actions ne nécessitent pas d’être représentées avec le même niveau de détail pour que le rendu de

la simulation soit réaliste. En effet, ce type de thème peut conduire à ce que certaines unités - et donc les

animateurs - soient réduites à l’inaction quand d’autres doivent suivre un rythme très dense dans une zone

plus animée. Pour préserver le principe de l’économie de la ressource humaine en exercice, des automates

d’automates pourraient réduire les inconvénients de telles situations tactiques. La faisabilité de ce procédé

a été démontrée en se fondant sur SWORD. Elle permet de concevoir, au cours d’un exercice de type AURIGE

ou GUIBERT, deux GTIA dont l’un en soutien et l’autre en contrôle de zone dans une zone calme commandés

par un unique opérateur, un GTIA en contrôle de zone dans une zone plus dense ou plus animée commandé

par deux opérateurs contrôlant chacun deux SGTIA, et un GTIA animé par une vingtaine d’opérateurs qui

combat en zone urbanisée avec un rendu de simulation beaucoup plus précis. Cette automatisation multi-

niveaux représenterait une alternative viable au vignettage mentionné plus haut. Elle permettrait aussi

d’utiliser un même système, avec une doctrine validée une seule fois, pour les ANTARES, les AURIGE, les

GUIBERT, les exercices logistiques tout en optimisant le volume de main d’œuvre à consacrer à l’animation.

**

Même si en première approche la simulation constructive peut paraître moins «spectaculaire» que les

simulations virtuelles, les enjeux qui y sont liés auront sans doute une importance stratégique à l’avenir.

L’automatisation et l’interopérabilité afférentes sont déjà bien développées et la France dispose depuis 2006

avec SCIPIO d’une simulation fondée sur des automates évolués et aujourd’hui presque sans équivalent au

monde.

Page 62: CAHIER Simulation

La simulation pour la préparation opérationnelle

6262

Page 63: CAHIER Simulation

TROISIÈME PARTIE : TROISIÈME PARTIE :

PERSPECTIVESPERSPECTIVES

La simulation pour la préparation opérationnelle

6363

Page 64: CAHIER Simulation

La simulation pour la préparation opérationnelle

6464

Page 65: CAHIER Simulation

32 Définie comme l’exploitation optimale des ressources informationnelles autorisée par les nouvelles technologies de l’information et de lacommunication, l’infovalorisation doit permettre aux forces terrestres d’améliorer leur efficacité opérationnelle dans le cadre desengagements interarmées futurs.L’infovalorisation se caractérise par la mise en réseau d’un maximum d’acteurs (niveaux de commandement et d’exécution) et lanumérisation des informations.

La simulation pour la préparation opérationnelle

6565

LES ENJEUX ET PERSPECTIVES LES ENJEUX ET PERSPECTIVES DE L’INTEROPÉRABILITÉ DES SYSTÈMES DEDE L’INTEROPÉRABILITÉ DES SYSTÈMES DESIMULATION ENTRE EUX ET AVEC LES SIOCSIMULATION ENTRE EUX ET AVEC LES SIOC

IIl a été décrit comment depuis un peu plus de deux décennies, la préparation opérationnelle mais

également l’appui aux opérations et la préparation de l’avenir s’appuient sur des outils de simulation afin

de réduire les coûts et les risques et d’accroître la performance des hommes ou des unités en vue d’agir

plus efficacement au sein de structures complexes. Les contraintes pesant sur les forces les conduisent

cependant à rationaliser de plus en plus leurs activités opérationnelles. L’enjeu consiste à créer les conditions

d’un emploi optimisé de la simulation afin de rendre les activités opérationnelles toujours plus efficaces et

moins coûteuses. Cela se traduit par :

la mise en place d’un ensemble d’outils de simulation décentralisés pour la préparation des forces

infovalorisées32 en national et en international ;

l’amélioration de l’interconnexion et de l’interopérabilité entre simulations et systèmes d’information.

1. La préparation des forces infovalorisées

Les opérations en réseau se fondent sur une maîtrise accrue de l’information pour prendre la bonne décision, au

bon niveau, au bon moment. Elles visent à mettre à disposition des forces la totalité des informations qui leur

sont nécessaires et une perception commune de la situation opérationnelle (COP, Common Operational Picture).

Ainsi, les SIOC sont conçus pour manipuler des masses d’informations qu’il faut trier, fusionner, enrichir et diffuser

dans des délais contraints car elles conditionnent la conception et la conduite des opérations. Toutes les fonctions

opérationnelles (renseignement, logistique, commandement, environnement, etc.) et tous les niveaux de

commandement sont concernés.

L’échange d’informations pour une exploitation automatisée nécessite de formaliser la connaissance. Celle-

ci est représentée au travers des modèles de données et à l’aide de dictionnaires pour constituer ensuite des

messages formatés et libellés afin d’identifier l’information selon le besoin d’en connaître. Les SIOC ne sont

pas tous interopérables au même degré. Selon leur niveau d’interopérabilité, l’information reçue sera traitée

avec plus ou moins d’automatisme. En effet, les données structurées pourront être dégradées voire perdues

lors du passage d’un modèle de données à un autre.

Page 66: CAHIER Simulation

Degré d’interopérabilité

Définition

1 Échange de données non structurées Exemple : phonie, messagerie libre

2 Échange de données structuréesExemple : document Word, messagerie formatée

3 Partage de données sans interruptionExemple : message structuré respectant un modèle pivot d’échange

4 Partage d’information sans interruption Exemple : chaque système partage le même modèle de données

33 Cf. à ce sujet les chapitres 2.2 sur la simulation pour l’entraînement et 3.2 sur l’intelligence artificielle.

La simulation pour la préparation opérationnelle

6666

Le tableau ci-dessous récapitule les degrés d’interopérabilité applicables entre différents systèmes.

A ce jour, la chaîne de commandement numérisée, SIT – SIR – SICF permet l’exploitation de l’information selon

le degré 3 d’interopérabilité.

Pour la préparation des forces numérisées et quel que soit le niveau, la simulation doit stimuler et animer les

SIOC avec de l’information cohérente à partir de données issues de scénarios d’exercice. En retour, les SIOC

doivent produire de l’information vers la simulation afin d’agir sur les forces infovalorisées simulées. Pour

cela, trois solutions sont envisageables :

- 1. Absence d’interopérabilité entre SIOC et simulation : la cellule d’animation de l’exercice est chargée de

jouer le rôle de passerelle entre le SIOC de l’animation et la simulation. Pour cela un opérateur recopie sur

le SIOC de l’animation les informations fournies par la simulation (degré 0 d’interopérabilité). Il retranscrit

également sur le poste de simulation les ordres provenant de la cellule réponse. Cette solution permet

d’entraîner des forces numérisées avec des simulations exclues de la fédération des SIOC. Le nombre

important d’opérateurs requis est un inconvénient majeur qui rend cette solution coûteuse.

- 2. a) Interopérabilité SIOC – Simulation : la simulation dispose des interfaces ad-hoc permettant l’échange

d’informations automatisé avec les SIOC. La cellule réponse émet ordres et requêtes à l’attention du modèle

de subordonné numérisé joué par la simulation. En retour, la simulation génère des comptes-rendus (SITREP,

LOGREP, etc.) vers le SIOC de la cellule réponse. Cette solution permet de réaliser des économies en

réduisant le nombre d’opérateurs. Toutefois, le métier et l’expérience opérationnels des opérateurs doivent

être remplacés par des automates éventuellement débrayables modélisant la doctrine et la tactique, avec

tout ce que cela implique en matière de validation33.

Page 67: CAHIER Simulation

Organisation possible pour l’entraînement d’un PC de brigade (SIOC – Simulation)

34 Il suffît d’imaginer l’accroissement du nombre de tests de validation pour les valeurs de la table des probabilités Ph/Pk (Probability of Heat /Probability of Kill) qui caractérisent chaque entité.

35 Appendice au Schéma Directeur Interarmées de la Simulation Opérationnelle, N° D-11-001971 /DEF/EMA/CPI/DR du 08 mars 2011.

La simulation pour la préparation opérationnelle

6767

- 2. b) Interopérabilité SIOC – Simulation et optimisation des ressources : la fiabilité et la confiance accrues

dans les modèles de simulation permettent de soustraire la cellule réponse chargée de masquer aux joueurs

les imperfections de la simulation. Cette solution requiert des automates de haut niveau réalistes et

autonomes. Toutefois, pour fonctionner, ces automates requièrent des compléments d’information (par

exemple : les règles d’engagement, la formation à adopter, la conduite à tenir en fin de mission).

Les solutions 2a) et 2b) nécessitent un

degré d’interopérabilité de niveau 3 ou

4 entre les SIOC et la simulation. Pour

cela, les automates traduisent une

représentation de la formalisation des

connaissances qui doit être compatible

avec celle des SIOC sans quoi l’échange

d’information n’est pas envisageable.

2. L’amélioration de l’interconnexion entre simulations

La nécessité de connecter les systèmes de simulation entre eux est ancienne. Elle est née du constat que les

simulations ne sont valides qu’au sein d’un périmètre d’emploi bien défini. Dès lors, pour élargir leur champ

d’application, la solution retenue a été de rendre plusieurs systèmes interopérables, plutôt que de tenter de

compléter exhaustivement un système unique. En effet, l’intégration de nouveaux modèles au sein d’un système

de simulation existant peut se révéler coûteux. Par exemple, la combinatoire des confrontations possibles

augmente d’une telle manière qu’il devient difficile de mener correctement des tests de qualification et de

validation34.

La première norme d’interopérabilité DIS (Distributed Interoperability Simulation) est apparue à la fin des

années 80. Elle a été depuis supplantée par le standard HLA (High Level Architecture) qui est aujourd’hui la seule

norme de référence admise pour l’acquisition de nouvelles simulations35. HLA s’est développée sur le thème de

la réutilisation des modèles et non de l’interopérabilité des simulations. Il s’agit d’interconnecter entre eux des

modèles, ces derniers étant hébergés par des simulations. La transition opérée par le monde de la simulation est

Organisation possible pour l’auto-entraînement d’un PC de brigade (SIOC – Simulation)

Page 68: CAHIER Simulation

La simulation pour la préparation opérationnelle

6868

comparable à celle entreprise par les SIOC. En effet, la norme DIS s’appuie sur un ensemble de messages

formatés comparables aux messages ADat-P3 (Automatic Data Processing Publication number 3). Le concept

HLA est quant à lui similaire au MIP (Multinational Interoperability Program). Il repose sur la notion de

publication et d’abonnement à des informations catégorisées par type que les modèles consomment ou

produisent. Pour le monde des SIOC, ces informations sont représentées sous la forme d’un modèle de

données appelé JC3IEDM (Joint Consultation Command Control Communication Exchange Data Model). Pour

la simulation, chaque fédération définit son modèle pivot baptisé FOM (Federation Object Model). Ce modèle

permet aux simulations d’interagir en échangeant des données intelligibles par tous les systèmes. HLA utilise

un système de publication et de souscription : en se connectant au sein d’une fédération, une simulation

annonce les données qu’elle publiera ainsi que celles qui l’intéressent parmi les éléments publiés par les

autres fédérés. Un ensemble de consignes techniques est défini par la fédération pour permettre ces échanges

qui sont ensuite effectués via la RTI (runtime infrastructure). La RTI diffuse les données de chaque fédéré

auprès des autres fédérés qui se sont déclarés intéressés par celles-ci. HLA permet aux simulations d’atteindre

le degré 4 d’interopérabilité.

Sur le plan opérationnel le besoin conditionne la solution. L’interconnexion de simulations se justifie dans les

cas suivants :

- Entraînement interarmées : Il s’agit de mettre en commun les simulations dédiées aux forces navales,

terrestres et aériennes pour l’entraînement du niveau interarmées. Chaque simulation de composante

modélise avec fidélité son domaine. La réunion de ces simulations au sein d’une fédération interarmées

assure la flexibilité requise selon les objectifs recherchés lors des exercices. Elle est toutefois

insuffisante en général pour représenter les fonctions qui sont nativement interarmées et ne sont donc

pas totalement couvertes par les simulations des composantes. Dans ce cas, la fédération de

simulations doit être assortie d’un gestionnaire d’évènements de type MEL MIL.

Exemple d’échange au sein d’une fédération HLA

Page 69: CAHIER Simulation

La simulation pour la préparation opérationnelle

6969

- Entraînement interarmes : L’entraînement

interarmes peut être réalisé en utilisant

conjointement plusieurs simulations

spécialisées dans des domaines métiers

spécifiques et différents. La distribution

ainsi obtenue permet d’avoir une vision

globale et cohérente de la situation tout

en préservant le niveau de détail et les

outils auxquels sont habitués les

entraînés. Par exemple, l’interconnexion

des moyens de simulation virtuelle

déployés pour l’entraînement tactique des

pelotons et sections sur char Leclerc (SEP,

Simulateur d’entraînement du peloton),

VBCI (STES, Simulateur de tir, d’équipage et de section) et hélicoptères (EDITH) offrent des capacités

nouvelles pour l’entraînement simultané des SGTIA. Chaque entraîné évolue dans son environnement

qui restitue par ailleurs fidèlement les interfaces avec celui de l’extérieur.

- Entraînement hétérogène : La

combinaison des diverses formes de

simulation, de type constructive,

virtuelle ou instrumentée enrichit

le réalisme des exercices d’entraî-

nement. L’expérimentation franco-

britannique SAFIR a ainsi démontré

en juin 2011 le bénéfice d’une

fédération hétérogène composée

d’une simulation constructive

(SCIPIO) et virtuelle (drone). La

simulation du drone produit des

films et photos qui sont ensuite

exploités par le renseignement au

sein de l’état-major animé par SCIPIO. D’autre part, l’interconnexion entre la simulation instrumentée

et constructive est une réalité au CENTAC. Les effets des AEZ (Armes à Effets de Zone) sont simulés

depuis le segment central CENTAURE qui restitue les dommages auprès des unités sur le terrain.

Sur le plan technique, des progrès restent à réaliser. En effet, les possibilités du standard HLA ne sont pas

pleinement exploitées. Ce standard n’est utilisé aujourd’hui que pour interconnecter des simulations et non

pas les modèles entre eux comme cela était initialement prévu. Ainsi, les automates SCIPIO ne permettent

pas de piloter des unités de la simulation JANUS ou OPOSIA. D’autre part, il n’est pas non plus possible pour

les automates de formuler des demandes d’appui opérationnel à d’autres automates hébergés sur des

simulations distantes. L’effort dans les années à venir doit donc porter sur l’interconnexion des automates

pour valoriser les simulations. La normalisation des échanges entre automates est pour cela nécessaire.

Instrumentée

ConstructifVirtuel

SIOC

Page 70: CAHIER Simulation

La simulation pour la préparation opérationnelle

7070

3. L’amélioration de l’interopérabilité entre SIOC et simulation

La nature des flux en entrée ou en sortie d’un SIOC est différente de celle des flux d’une simulation. Un SIOC reçoit

et émet des ordres et des comptes-rendus au travers de sa messagerie. Une simulation traite des ordres saisis au

travers d’une interface homme-machine, les exécute et génère en sortie des situations simulées. Les premières

expériences à l’initiative de la simulation au début des années 2000 (Programmes d’Etudes Amont ESTHER et

ALLIANCE) ont consisté à émettre depuis la simulation des comptes-rendus au format des SIOC. Pour cela, il a été

nécessaire de développer des interfaces ad hoc pour chaque simulation. Elles collectent l’information produite

par les modèles (position des unités simulées, état logistique…) afin d’élaborer des comptes-rendus formatés

(messages SITREP, PTSITU, INTSUM, LOGREP). Cette solution facile à réaliser présente l’inconvénient d’être

fortement dépendante des SIOC. Elle nécessite d’être maintenue régulièrement pour rester compatible avec les

évolutions de format et de protocole dont peuvent faire l’objet les SIOC. De surcroît, elle nécessite de compléter

les données nécessaires aux SIOC et non-présentes dans la simulation.

Les progrès réalisés ces dernières années afin de rendre les simulations plus autonomes ou plus intelligentes par

la réalisation d’automates permettent d’envisager l’exploitation automatique des ordres émis par les SIOC. La

faisabilité a été démontrée lors de récentes expérimentations mais les nombreux champs de texte libre dans les

messages d’ordre sont un frein pour une utilisation plus intensive.

Enfin, enrôler une simulation au sein d’une fédération de SIOC pose la question de l’initialisation des données de

départ ou données quasi-permanentes (DQP). Les DQP correspondent à l’ordre de bataille de théâtre, la situation

initiale, les données logistiques ainsi que les paramètres du réseau permettant de joindre chaque entité numérisée.

Les DQP doivent être partagées avec les simulations et si besoin être enrichies pour satisfaire les exigences

d’initialisation des simulations.

La solution pour améliorer l’interopérabilité entre SIOC et simulation concerne dès lors l’élaboration destandards facilitant :

l’initialisation des données quasi-permanentes ;

l’exploitation par des unités simulées des

ordres émis depuis les SIOC ;

la génération de comptes-rendus ainsi que

de requêtes (demande d’appui) vers les

SIOC pour la conduite des opérations.

Les difficultés pour aboutir à la définition de

standards d’interopérabilité SIOC-Simulation

sont nombreuses :

Les communautés SIOC et simulation sont

cloisonnées. Il n’existe pas ou très peu

d’experts à la double compétence

reconnue. Les connaissances restent très

théoriques.

Les SIOC disposent de leur propre

représentation de l’environnement sous la

forme d’un modèle de données : JC3IEDM. Echanges SIOC-Simulation

Page 71: CAHIER Simulation

La simulation pour la préparation opérationnelle

7171

Les simulations ne disposent pas d’une telle représentation standardisée de l’environnement. Les écarts

sémantiques sont donc importants.

Les spécifications d’interface des SIOC évoluent. La définition d’un standard d’interopérabilité SIOC-

Simulation devra donc chercher à minimiser l’impact relatif aux évolutions de la norme d’échange entre les

SIOC, voire à s’y soustraire.

La rédaction des ordres obéit à des canevas desquels les informations utiles peuvent être extraites.

Toutefois, les champs de texte libre sont nombreux pour permettre une interprétation des ordres. La

standardisation devra proposer des mécanismes pour lever cette contrainte.

Actuellement, deux normes sont en cours d’élaboration pour satisfaire les exigences d’interopérabilité SIOC-

Simulation : MSDL (Military Scenario Definition Language) pour l’initialisation des DQP et CBML (Coalition

Battle Management Language) pour les échanges d’informations. Ces standards sont préparés par la SISO

(Simulation Interoperability Standard Organization) et font l’objet d’évaluations par le groupe OTAN MSG-085

«C2-Simulation Interoperation» présidé par la France.

Le MSDL se présente sous la forme d’un schéma XML (eXtensible Mark-up Language) permettant de véhiculer

les données d’initialisation propres à la simulation. Quels que soient la nature de la simulation et son niveau

d’agrégation ou d’automatisation, MSDL offre une réponse très satisfaisante. MSDL n’ayant pas été conçu

pour l’initialisation des SIOC, les travaux en cours portent sur l’enrichissement du schéma et l’identification

des liens de correspondance avec le JC3IEDM pour lesquels de nombreux points de convergence existent. A

l’issue, le degré 3 d’interopérabilité sera atteint.

Le CBML propose un schéma XML d’ordres et de rapports permettant de véhiculer tout type d’ordre, de requête

et de compte-rendu opérationnels. Il est construit à partir du modèle de données JC3IEDM pour la définition

d’expressions devant remplacer les champs de texte libre des messages opérationnels. C’est un langage avec

des règles (syntaxe) et un vocabulaire. Des expérimentations ont démontré le bon fonctionnement des

principes mis en avant par le CBML. Plus particulièrement, une connexion CBML entre SICF et les simulations

APLET et SCIPIO a permis de valider l’exécution des ordres CBML par ces simulations et l’interprétation des

comptes-rendus par le SICF. Il reste désormais à enrichir ce standard pour qu’il puisse fournir le même niveau

de service au profit des SIOC marine et air. Ces travaux permettront d’atteindre le degré 3 d’interopérabilité.

**

Les normes ont pour vocation de faciliter l’interopérabilité ou de promouvoir des bonnes pratiques. Elles ne

sont pas garantes du bon fonctionnement des systèmes. Leur emploi est nécessaire mais pas suffisant. Si à

terme, les SIOC et les simulations devront se conformer aux normes CBML et MSDL pour l’amélioration de

l’interopérabilité SIOC-Simulation, il faudra également élaborer des spécifications d’interface suffisamment

explicites pour que les simulations et les SIOC fonctionnent au diapason. En effet, les automates requièrent

des données différentes et indispensables. La norme assure le transport de ces données mais ne les impose

pas. Les spécifications d’interface seront donc le prochain jalon à franchir une fois les normes CBML et MSDL

adoptées.

Page 72: CAHIER Simulation

Echanges normalisés entre SIOC et simulation

La simulation pour la préparation opérationnelle

7272

La norme HLA favorise l’interopérabilité entre les modèles et par extension entre les simulations. Elle peut

être utilisée par les automates de simulation pour dialoguer entre eux. Toutefois, l’automate n’étant qu’une

formalisation de la doctrine et de la tactique, la norme CBML semble mieux adaptée pour remplir ce rôle car

plus proche du langage opérationnel.

L’application des normes impose également de définir des méthodes de certification garantissant le respect

des standards par les systèmes ayant vocation à être interopérables. Pour cela, des suites de certification

sont à prévoir autant pour HLA que MSDL ou CBML.

Lorsque les chantiers engagés aboutiront, la préparation des forces sera grandement améliorée.

L’orchestration des différentes normes entre elles est la clef de voûte de cet édifice.

Page 73: CAHIER Simulation

La simulation pour la préparation opérationnelle

7373

LES DÉFIS DE LA MODÉLISATION LIÉS LES DÉFIS DE LA MODÉLISATION LIÉS AUX PROGRÈS AUX PROGRÈS

DE L’INTELLIGENCE ARTIFICIELLEDE L’INTELLIGENCE ARTIFICIELLE

LLa simulation informatique est née d’un foisonnement d’idées et de chercheurs venus de toutes disciplines.

Parmi ces dernières, l’intelligence artificielle (IA) est celle qui est la plus difficile à appréhender dans sa

globalité tant elle mêle informatique, mathématiques, psychologie, logique et parfois même philosophie

et croyances. L’IA s’est développée en de nombreuses sous-branches ayant chacune leur champ d’application

privilégié : les jeux, la robotique, la langue, la simulation technico-opérationnelle.

Toutefois, si la description est ardue, l’objectif de l’IA est clair. Il s’agit soit de créer des machines qui pensent

«aussi bien que les humains» ou, tout du moins, sont, comme le disait Turing, impossibles à distinguer pour un

observateur de la réalité, soit qui permettent de comprendre la manière dont l’être humain réagit et appréhende

une situation complexe.

Il n’est pas question ici de donner une description exhaustive des techniques d’intelligence artificielle ni de la

manière dont elles sont appliquées à la simulation. Toutefois le domaine a aujourd’hui atteint une maturité certaine

et l’on commence à entrevoir la manière dont ces techniques seront au cœur des progrès de la simulation dans

les prochaines années. Il s’agit donc ici de fournir une vision prospective à moyen et long terme permettant de

comprendre comment les différents progrès des technologies dont celles d’intelligence artificielle vont

considérablement influencer le domaine de la simulation, et en particulier au profit de la préparation opérationnelle

des forces terrestres.

1. L’intelligence artificielle et la modélisation

1.1. De l’utilité de l’intelligence artificielle en simulation1.1. De l’utilité de l’intelligence artificielle en simulation

Une simulation s’appuie en premier lieu sur une modélisation qui peut être celle d’un processus, d’un système,

d’un environnement ou d’une entité. Dans le monde de la simulation, comme dans celui du jeu, une problématique

a longtemps occupé les équipes de développements : celle de reproduire le comportement d’entités humaines

de manière à «peupler» des mondes virtuels en vue d’en restituer toute la complexité.

Le recours à la simulation se justifie en effet dès lors que la représentation de la réalité est trop complexe ou dès

lors que l’on souhaite immerger des individus dans un environnement réaliste et crédible pour pouvoir les

entraîner, les évaluer, les préparer. La représentation de la composante humaine prend alors toute son importance.

En effet, quel pourrait être l’intérêt d’une représentation d’un environnement urbain sans la modélisation de la

population qui l’habite ? Comment préparer des opérations de projection dans un environnement potentiellement

hostile sans imaginer ou tenter de reproduire le comportement de l’adversaire ? Comment imaginer de nouveaux

centres d’entraînement sans une automatisation a minima de l’animation permettant d’en réduire les coûts de

fonctionnement et les délais de mise en œuvre ? Et comment évoluer vers la nécessaire interaction avec les SIOC

qui requièrent une automatisation de la gestion des messages échangés avec les entités de la simulation ?

Page 74: CAHIER Simulation

La simulation pour la préparation opérationnelle

7474

Jusqu’à la fin des années 1990, la rareté de la ressource de calcul disponible provoquait une limitation naturelle

des ambitions : une représentation minimale du comportement humain suffisait à satisfaire les utilisateurs.

L’accent était davantage mis sur le rendu graphique ou la restitution de l’environnement physique et sonore.

Au fur et à mesure que les cartes graphiques sont apparues, un certain «délestage» du processeur est devenu

possible, laissant ainsi du temps de calcul disponible pour tout ce qui ne concernait pas le graphisme.

Ainsi, le jeu vidéo, et en particulier les jeux en réseau ont fortement influencé le progrès des techniques

d’intelligence artificielle. L’évolution vers des univers toujours plus réalistes et leur peuplement par des

personnages aux comportements crédibles en particulier dans le domaine des jeux massivement multi-joueurs,

ont ainsi vu naître des techniques d’intelligence artificielle permettant de reproduire des comportements qui

n’étaient pas prévus explicitement lors de la conception de la simulation.

Cette représentation du comportement mêle toutefois des aspects différents en termes de modélisation et de

validation.

1.2. Un concept fondateur : la notion d’agent1.2. Un concept fondateur : la notion d’agent

Lorsque l’on parle d’intelligence artificielle en simulation, on emploie souvent le terme d’agent ou de simulation

multi-agents. Il est donc indispensable de revenir sur cette définition.

Dans la conception classique, un agent est une entité capable d’agir sur elle-même et sur son environnement.

Elle dispose d’une représentation de ce dernier, peut communiquer avec d’autres entités et possède un

comportement résultant de la conséquence de ses observations, de son évolution dans l’environnement, de ses

connaissances et de ses interactions avec d’autres agents. Pour prendre un exemple simple, lorsque l’on considère

un personnage non joueur au sein d’un jeu vidéo, ce dernier présente toutes ces caractéristiques : il communique

avec d’autres personnages et avec le joueur, il dispose d’une représentation de l’environnement qui lui permet

d’interagir avec ce dernier, d’évoluer de la manière adéquate et la plus réaliste possible compte tenu des objectifs

du jeu.

Pour ce faire, l’intelligence artificielle repose sur une agrégation de techniques permettant l’animation des entités

(éléments improprement décrits sous le nom d’IA de bas niveau) et la reproduction du comportement et de la

décision humaine que l’on désigne par le terme IA de haut niveau.

L’IA dite de «bas niveau» concerne tout ce qui est lié à l’évolution des entités sur le terrain : évitement des

collisions, cherche-chemin (permettant de planifier la trajectoire d’une entité en fonction des éléments de

l’environnement : bâtiment, nature du terrain, type de route, etc.). Les algorithmes utilisés sont connus depuis

fort longtemps. Tous ces éléments visent à permettre une animation aussi fluide et réactive que possible des

entités dans l’environnement. A ce niveau, on peut également associer la problématique de l’animation des

personnages qui n’est pas triviale dans la mesure où la fluidité des mouvements et des postures dépend à la fois

du terrain et du contexte dans lesquels se déplacent les entités.

Au-delà de l’interaction et de l’animation des entités dans l’environnement synthétique considéré, une autre

problématique, bien plus complexe, demeure. Il s’agit de restituer la décision et l’adaptation du ou des individus

modélisés : c’est-à-dire leur «raisonnement». C’est ce que l’on appelle intelligence artificielle de haut niveau dans

la mesure où elle s’appuie sur les mécanismes élémentaires et fondateurs décrits précédemment.

Cette problématique de la prise de décision a été longtemps traitée par des systèmes appelés automates à états

finis. Ils permettent, à partir de règles simples voire parfois simplistes, de «scripter» le comportement d’entités,

d’agents ou de personnages au sein d’une simulation. Le principe de cette technique consiste en effet à construire

Page 75: CAHIER Simulation

La simulation pour la préparation opérationnelle

7575

un automate caractérisé par un nombre fini d’états et à spécifier des règles de transition (souvent probabilistes)

entre ces états. L’avantage réside en une relative simplicité de mise en œuvre au détriment du réalisme.

En effet le nombre d’états étant fini, le comportement de l’entité demeure, par définition, limité. Tout accroissement

du nombre de règles se heurte à un problème d’explosion combinatoire qui rend ce type de modèle très complexe

à mettre en œuvre dans le cadre de problématiques réelles.

Il est d’ailleurs instructif de comparer la manière dont le système nerveux central fonctionne dans un cerveau

humain et les simplifications opérées dès lors que l’on a recours à des modèles tels que les automates à états

finis. Le fonctionnement des entités de traitement de l’information au sein du cerveau n’a rien à voir avec

l’architecture d’une machine à états finis.

Au delà de ce constat, c’est la complexité même des opérations actuelles qui a favorisé l’émergence de

nouvelles techniques de simulation comportementale directement inspirées d’un domaine que l’on a appelé

« vie artificielle ». En effet dès 1990, le concept américain de «three blocks war» a rapidement fait atteindre

les limites des techniques classiques d’intelligence artificielle de par l’impossibilité d’identifier les différents

comportements caractérisant l’évolution des entités de la simulation. Il est donc devenu nécessaire de faire

appel à d’autres technologies capables de restituer toute la complexité de ce type d’opération. C’est ce qui a

provoqué l’essor des différentes technologies de modélisation comportementale s’appuyant sur un mélange

entre des techniques classiques fondées sur des systèmes à base de règles, et une approche dite

«connexionniste» dont l’exemple le plus connu est constitué par les réseaux neuronaux utilisés depuis plus

de quarante ans.

Cette alliance entre les différents champs jusqu’alors distincts de l’intelligence artificielle a permis l’essor de

nouveaux systèmes permettant par exemple de modéliser le comportement d’un individu ou d’une foule par

un système multi-agents. Cette évolution a été favorisée et accompagnée par une convergence technologique

permettant de dépasser les ambitions initiales du domaine.

2. La quête d’un plus grand réalisme

2.1. Convergence technologique au service de la modélisation2.1. Convergence technologique au service de la modélisation

Ce développement considérable des techniques d’intelligence artificielle a été rendu possible par l’évolution

des technologies de calcul dont le coût devient négligeable puisque pour quelques centaines d’euros, il est

possible d’acquérir une machine dont la puissance est comparable à celle d’un super ordinateur d’il y a

quelques années. En effet, ces techniques sont souvent très adaptées à une exécution dans un environnement

de calcul haute performance.

Cependant une des grandes frustrations des utilisateurs d’un système dans lequel des entités humaines sont

animées par une intelligence artificielle réside dans la manière d’interagir avec celui-ci. La généralisation et

les progrès considérables apparus dans les techniques de traitement de l’information permettent aujourd’hui

une interaction bien plus naturelle. Citons en particulier les progrès considérables des technologies de

reconnaissance vocale qui sont particulièrement efficaces dès lors qu’elles sont utilisées dans un cadre

formalisé. On peut ainsi considérer que d’ici quelques années, il deviendra possible de dialoguer directement

avec les subordonnés simulés dans le cadre par exemple d’une simulation constructive pour l’entraînement

d’un état-major. C’est d’ores et déjà le cas avec le système VSIM développé pour la simulation américaine

OneSAF. Ce système permet le contrôle de la simulation à l’aide de la voix par reconnaissance de mots clés

correspondant au vocabulaire opérationnel.

Page 76: CAHIER Simulation

La simulation pour la préparation opérationnelle

7676

D’autres techniques d’interfaces permettent de

renforcer le réalisme des systèmes d’intelligence

artificielle. Ainsi, les progrès dans la restitution de la

visualisation 3D des mouvements et notamment des

mouvements du visage d’une entité synthétique

permettent une immersion maximale de l’utilisateur et

facilitent le renforcement de la perception de naturel de

l’entité simulée. On peut par exemple citer les

techniques de «morphing» du visage et de restitution

des expressions faciales. Ce ne sont pas à proprement

parler des techniques d’intelligence artificielle mais

elles permettent d’en accroître considérablement le

réalisme.

2.2.2.2. Interaction avec le terrain dans le cadre d’une simulation virtuelle en 3DInteraction avec le terrain dans le cadre d’une simulation virtuelle en 3D

On se focalise souvent sur le réalisme de la modélisation du comportement en oubliant que ce dernier dépend de

l’accès aux données et en particulier aux données d’infrastructure. En effet, la disponibilité de ces dernières ainsi

que la complexité de leur traitement posent un certain nombre de problèmes.

Dans le cadre d’une préparation avant projection, la construction de la base de données liée aux infrastructures

est en effet trop complexe pour être réalisable en temps réel. Il ne s’agit donc pas là d’un problème lié à l’IA stricto

sensu, mais d’une impossibilité pour cette dernière de fonctionner correctement.

Si l’on prend l’exemple d’une unité de reconnaissance, face à une menace l’IA de haut niveau peut décider d’une

rupture de contact en vue de rechercher une position de repli. L’identification de cette position ainsi que la

définition de l’itinéraire pour l’atteindre sont subordonnées à l’accès aux données terrain ainsi qu’à leur traitement

de manière conforme à la doctrine d’emploi et adaptée au terrain d’opérations. Dans ce cas, le nombre de

paramètres devant être pris en compte pour coordonner dans l’espace une telle unité et ses appuis est aujourd’hui

un verrou technique certain. L’IA de bas niveau devra considérablement progresser pour résoudre ce problème.

Cela pose également la problématique du couplage entre plusieurs niveaux de représentation. Si l’on sait qu’il

est illusoire aujourd’hui de vouloir modéliser par une seule technologie le comportement du fantassin élémentaire

jusqu’au bataillon, d’autres approches plus réalistes existent. Il s’agit alors de disposer d’une simulation « à grain

fin » permettant de simuler les mécanismes élémentaires liés au terrain que l’on couplera dynamiquement avec

une simulation de plus haut niveau mettant en œuvre les mécanismes décisionnels des chaînes de

commandement.

A titre d’exemple, de tels agents sont aujourd’hui au cœur du système SCIPIO. Un état-major peut ainsi s’entraîner

au moyen d’une simulation dans laquelle toutes les unités de l’armée de Terre sont représentées avec leur doctrine

propre et gérées automatiquement en deçà du niveau compagnie.

2.3. Un cas particulier : la modélisation de la foule2.3. Un cas particulier : la modélisation de la foule

L’évolution du contexte opérationnel et en particulier de celui de la phase de stabilisation impose d’intégrer

la modélisation de la foule. C’est l’un des champs les plus complexes de la recherche en intelligence artificielle

pour la simulation.

Page 77: CAHIER Simulation

36 Comme le font des logiciels bien connus en animation tel que MASSIVE permettant l’animation d’une collection d’entités avec un comportementbasique commun et des variantes d’animation.

La simulation pour la préparation opérationnelle

7777

Il existe très peu de technologies disponibles permettant de modéliser et simuler les comportements individuels

et collectifs dans des opérations de contrôle des foules ou simplement d’évolution dans un environnement urbain

densément peuplé. Il ne s’agit pas uniquement de restituer visuellement l’impression d’une foule36 mais de

représenter ce que l’on appelle une foule primaire (foule élémentaire mais dotée de multiples comportements

primaires) présentant éventuellement de multiples comportements complexes (foule complexe), voire une foule

dite «intelligente» contenant des entités à comportement élaboré (par exemple, une population hostile en guérilla

urbaine).

Parmi les technologies existantes, on peut

citer le système MAICE Station développé

par le SwRI (Southwest Research Institute)

américain et permettant de simuler et

analyser des comportements individuels

et collectifs, tout en offrant un contrôle

individuel des paramètres comporte-

mentaux. Pour ce faire, le terrain doit être

«annoté», c’est-à-dire qu’il est nécessaire

d’identifier explicitement les zones du

terrain exerçant une action sur les

comportements de la foule (c’est la notion

de «zone sémantique»).

Cependant toutes ces approches se heurtent à l’écueil de devoir modéliser des comportements individuels ou

collectifs sans pouvoir facilement exercer une influence déterministe sur les modèles. Cela mène à l’impossibilité

actuelle de définir et contrôler les différentes phases d’évolution du comportement d’une foule comme la

structuration en groupes sociaux, comportementaux, culturels et émotionnels (avec chacun ses propres spécificités

et ses propres buts). Quels que soient l’objectif partagé ou l’emprise culturelle ou émotionnelle, tous les membres

de la foule ne se comportent pas de la même manière. Ces différents écueils représentent des points durs dans

la modélisation et la simulation en temps réel du comportement de la foule dans son ensemble et rendent en

particulier difficile le nécessaire paramétrage des modèles.

3. Des perspectives

3.1. Un défi : les facteurs culturels et sociopolitiques3.1. Un défi : les facteurs culturels et sociopolitiques

Cet exemple de la modélisation d’une foule illustre une difficulté majeure : celle consistant à prendre en compte

les interactions culturelles, sociales, politiques voire religieuses afin de définir au mieux le comportement attendu

en simulation. Il existe très peu de travaux concluants sur cette problématique.

Or, cet aspect est particulièrement déterminant pour la validité de la simulation résultante : le comportement

d’un individu est dépendant de facteurs culturels liés à son origine, à ses pratiques religieuses et aux

législations du pays considéré. Deux exemples illustrent parfaitement cette problématique.

Exemple de représentation d’une foule complexe

Page 78: CAHIER Simulation

37 La prise en compte de la zone de confort des occupants des véhicules blindés américains a par exemple directement influé sur les spécificationsdu véhicule blindé Humvee et ainsi sur sa taille.

La simulation pour la préparation opérationnelle

7878

Ainsi, le comportement d’une foule participant à une manifestation diffère considérablement dès lors qu’il s’agit

d’un pays comme la France où l’encerclement d’une foule manifestante est considéré, compte tenu de la liberté

d’expression, comme anticonstitutionnel, mais aussi contre-productif d’un point de vue pratique. A l’opposé, si

les forces de sécurité d’un pays tiers ont comme premier objectif d’exercer un contrôle strict sur l’identité des

manifestants, elles procèdent au confinement de la foule générant ainsi des comportements de groupes pouvant

être très violents.

Un autre exemple encore plus illustratif repose sur la notion de «zone de confort». La zone de confort correspond

à l’espace autour d’un individu dans lequel celui-ci considère qu’il est inopportun de s’immiscer. Elle est restreinte

dans les pays méditerranéens à une zone de 30 cm environ autour d’un individu. Culturellement, deux personnes

peuvent être très proches l’une de l’autre pour se parler sans qu’aucune de celles-ci ne ressente le moindre

malaise. À l’opposé, dans les pays anglo-saxons et en particulier aux États-Unis, chaque individu a besoin d’un

espace considérable autour de lui de plus d’un mètre voire 1m 50 pour se sentir à l’aise. L’influence de ce paramètre

culturel est en fait considérable37 et aurait mérité d’être prise en compte par la simulation avant le déploiement

des forces américaines en Irak.

Il existe très peu de systèmes intégrant ces paramètres culturels, sociaux, religieux et politiques. L’effort en termes

de recherche et développement devra donc porter sur l’incorporation de ces paramètres aux modèles d’intelligence

artificielle utilisés dans le cadre des simulations futures si l’on souhaite que ces dernières aient une pertinence

opérationnelle. Il est alors indispensable d’associer des ethnologues, des psychologues et des sociologues à la

définition de ces différents modèles.

3.2. Evolution vers l’interaction avec les systèmes opérationnels3.2. Evolution vers l’interaction avec les systèmes opérationnels

Enfin, un dernier défi considérable pour la généralisation des techniques d’intelligence artificielle est constitué

par la nécessaire interaction de la simulation avec les SIOC. L’intérêt est alors à la fois de stimuler les SIOC (pour

leur utilisation et la familiarisation avec des situations opérationnelles) et de permettre une préparation

opérationnelle conforme aux procédures de commandement, voire en la réalisant à distance.

Pour ce faire, comme indiqué dans la rubrique traitant de l’entraînement, les systèmes de simulation doivent être

de plus en plus «transparents» vis-à-vis des utilisateurs et donc utiliser dès que c’est possible les outils

opérationnels, dont les SIOC. Or cela nécessite d’intégrer de l’IA afin de disposer d’agents autonomes capable de

comprendre les ordres opérationnels et d’émettre des comptes-rendus pertinents.

Cela ouvre également la voie à l’intégration de la simulation en appui aux opérations afin de disposer d’outils de

préparation de la manœuvre future directement intégrés aux systèmes opérationnels. Il sera alors nécessaire

d’intégrer cette composante de recherche et développement comme partie intégrante des futurs programmes de

développement des SIOC.

Ainsi l’enjeu dépasse le seul domaine de la recherche en intelligence artificielle : il conditionne l’intégration et

l’adoption de la simulation dans un emploi opérationnel au profit des forces.

De nombreux aspects de la recherche en IA ont été passés sous silence. Or cette dernière peut également être

utilisée à des fins d’analyse, par exemple pour observer et analyser les utilisateurs d’une simulation.

Page 79: CAHIER Simulation

La simulation pour la préparation opérationnelle

7979

Un tel emploi se justifie par exemple pour observer des séquences de comportements pour permettre à terme

d’une part d’associer ceux-ci avec des situations caractéristiques et les retrouver, le cas échéant, lors

d’opérations réelles, et d’autre part, de réaliser un apprentissage du comportement des entités automatisées

afin d’en affiner le modèle.

Dans tous les cas, le problème de la validation se pose néanmoins. Déjà prégnant dans tous les aspects de la

simulation, il devient critique dès lors que l’on s’attache à analyser et valider le comportement humain. En

premier lieu, le réalisme des comportements peut être validé par l’observation en faisant appel à des experts

tout en se contentant d’un environnement représentatif de la réalité limité à un objectif de préparation

opérationnelle. L’IA permet de reproduire ainsi certains effets observés, voire d’avoir un caractère prédictif

par l’identification de certaines situations.

La validation devient en revanche impossible dès lors que l’on cherche à utiliser la simulation du comportement

avec un but explicatif. Toutefois, l’utilisation de l’IA peut tenter d’identifier des séquences de situation, donnant

ainsi des éléments d’analyse utilisables dans un cadre de préparation des forces. l’intelligence artificielle est

alors utilisable comme un outil de reproduction des situations ou comme un outil d’analyse. Dans les deux

cas, elle est indissociable du progrès des outils de simulation.

* ** *

**

Napoléon Bonaparte disait : « J’ai fait mes plans avec les rêves de mes soldats endormis». Quel que soit le

degré de technologie, on ne doit pas perdre de vue que l’initiative appartient au chef dans sa capacité à

s’adapter, arbitrer, décider, imaginer.

L’intelligence artificielle porte bien son nom  : elle lui fournit seulement un moyen artificiel mais

extraordinairement puissant de se préparer et d’imaginer tous les possibles. Elle lui permet de commander à

des automates pour être prêt à commander à des hommes confrontés au brouillard de la guerre.

Page 80: CAHIER Simulation

La simulation pour la préparation opérationnelle

8080

Page 81: CAHIER Simulation

La simulation pour la préparation opérationnelle

8181

JEUX DU COMMERCE JEUX DU COMMERCE

ET SIMULATION MILITAIREET SIMULATION MILITAIRE

LLes interactions entre jeux vidéo du commerce et simulations militaires ont pris de l’importance avec le

développement de l’informatique personnelle et l’avènement de la 3D. Ainsi, dès les années 1990, certains

jeux ont permis de satisfaire des besoins militaires, notamment en matière d’instruction individuelle ou

collective.

Mais la réponse apportée est souvent partielle. Le présent chapitre a ainsi pour objectif de décrire les avantages

et les limites des jeux afin de permettre de guider la réflexion dans les choix de produits à adapter ou à utiliser en

l’état pour la préparation opérationnelle.

1. Les jeux du commerce

Il est d’usage de classer les jeux du commerce selon les 4 catégories suivantes :

jeux de simulation,

jeux de stratégie en temps réel (RTS pour Real Time Strategy),

jeux d’action en vue subjective (FPS pour First Personne Shooter),

jeux en ligne ou multi-joueurs.

Les jeux de simulation permettent de représenter le fonctionnement d’une machine ou d’un système.

L’augmentation de la puissance des PC, l’introduction des cartes graphiques 3D ou la prise en compte de

manettes avec retour de force permettent de rapprocher ces jeux des simulateurs professionnels.

A titre d’exemple on peut citer les jeux de :

pilotage d’engin comme «Flight Simulator» pour les aéronefs,

simulation sportive comme «Rugby 2012»,

simulation de vie comme «Les Sims».

Les jeux de stratégie en temps réel mettent le joueur en situation de diriger un camp avec comme objectif de

conquérir un territoire en faisant des choix stratégiques (gestion des ressources, des alliances). A titre d’exemple

on peut citer «Civilisation»,

Les jeux de tir subjectifs permettent au joueur de plonger en temps réel dans un univers 3D qu’il voit à travers les

yeux du personnage qu’il contrôle dans le jeu. Les produits commerciaux sont très nombreux. A titre d’exemple,

on peut citer les premiers du genre : «Doom» et «Duke Nukem».

Les jeux multi-joueurs en réseau permettent à plusieurs joueurs de participer à une même partie à partir de

plusieurs ordinateurs en réseau. Cette catégorie est transverse aux trois précédentes dans la mesure où presque

tous les jeux possèdent un mode multi-joueurs. Cette catégorie a pris son essor avec la mise à disposition du

public de débits réseau importants. Il existe également des jeux exclusivement en ligne. Ils bénéficient d’un

univers persistant, c’est-à-dire que cet univers évolue même lorsque le joueur est déconnecté.

Page 82: CAHIER Simulation

Exemple de représentation graphique

La simulation pour la préparation opérationnelle

8282

A ces catégories, il convient d’ajouter les «serious games» ou «jeux sérieux», à mi-chemin entre jeux et outils

d’apprentissage puisqu’ils ont pour objectif d’informer ou d’instruire par le jeu. «America’s Army» est considéré

comme le précurseur dans le domaine militaire.

2. Leurs utilisations actuelles et envisageables à des fins militaires 

2.1. Adaptation au besoin militaire.2.1. Adaptation au besoin militaire.

L’armée de Terre utilise des jeux issus du commerce dans les organismes de formation :

L’Ecole de l’infanterie utilise le logiciel INSTINCT (INSTruction de l’Infanterie au Commandement et à la

Tactique), créé à partir du jeu Ghost Recon modifié pour en faire une version française. Il sert à

l’entraînement des groupes et sections de combat.

L’Ecole de cavalerie utilise le logiciel FRENCH POINT, créé à partir du jeu Operation Flashpoint, pour

l’apprentissage des savoir-faire tactiques individuels et collectifs.

Pour adapter ces jeux à leurs besoins, les deux écoles ont créé de nouveaux terrains, de nouvelles armes et modifié

l’apparence des matériels, des textures et des uniformes.

S’ils répondent aux besoins, les jeux peuvent être utilisés sans modification ou adaptés par le développement

d’un «Mod» de jeu, c’est-à-dire une modification dans les limites imposées par l’éditeur du jeu. Ces modifications

peuvent être le fait d’un industriel ou d’une communauté.

Enfin, certains éditeurs proposent des versions militarisées de leur jeu. Ainsi Bohemia Interactive qui commercialise

le jeu Arma, propose également sa version militarisée à des fins d’instruction et d’entraînement : VBS 2.

2.2. Jeu et domaine militaire : différences et apports possibles.2.2. Jeu et domaine militaire : différences et apports possibles.

2.2.1. Avantages et limites du jeu pour le domaine militaire.Le jeu vidéo apporte des avantages non négligeables :

La disponibilité immédiate pour un coût d’achat relativement modique. Comme il est destiné au grand public,

le coût d’achat d’une licence est sans commune mesure avec celui des systèmes issus du monde industriel.

Le réalisme de sa représentation. Le progrès

matériel aidant, les jeux proposent des

représentations graphiques d’un saisissant

réalisme, si bien qu’il est parfois difficile de

distinguer une photographie réelle d’une

capture d’écran. L’intérêt est de permettre une

immersion immédiate du joueur dans un univers

où il trouve le niveau de détails du terrain dont il

a besoin dans la réalité (camouflage, diversité

permettant une désignation d’objectif, etc.).

Page 83: CAHIER Simulation

La simulation pour la préparation opérationnelle

8383

L’ergonomie et la facilité de prise en main. Tous les jeux obéissent à une même logique de commande des

entités simulées. D’apparence simple, cette logique issue d’études d’ergonomie poussées, se retrouve

rapidement d’un jeu à l’autre.

Le jeu possède toutefois des limites qui peuvent se révéler très contraignantes.

La modélisation. Obéissant aux règles du monde commercial, le jeu est destiné avant tout à la distraction.

On peut ainsi considérer que son réalisme est inversement proportionnel au divertissement qu’il procure.

C’est pour cela que dans un FPS par exemple, les armes, même légères, ont un effet dévastateur, alors

qu’a contrario, l’avatar du joueur peut recevoir un grand nombre de coups avant d’être mis hors jeu. En

outre, le niveau de difficulté est sévèrement contrôlé de manière à ce qu’un joueur passe suffisamment de

temps pour «en avoir pour son argent» sans toutefois se trouver confronté à une difficulté insurmontable.

L’objectif est de le conserver auprès de son éditeur de jeu pour lui faire renouveler sa collection.

Le terrain. Lors du choix d’un jeu à des fins militaires, il convient de s’assurer de l’adaptation au but

recherché de la taille du terrain et de ses détails. En effet, les terrains sont souvent limités sans permettre

de débordements et l’évolution de certains éléments est souvent élémentaire (par exemple les dommages

d’un bâtiment sont les mêmes, quelle que soit l’arme utilisée). Le modèle de terrain est de surcroît rarement

compatible avec les systèmes d’information et la géo localisation.

Les possibilités de modification. Certains jeux possèdent des éditeurs permettant de créer des terrains ou

modifier des tenues et des armes. Ils ne permettent toutefois pas toujours d’agir sur les modèles physiques

et décisionnels autant qu’une utilisation militaire le nécessiterait. Il pourra par exemple être possible de

doter le fantassin d’une arme ayant l’apparence d’un lance grenade, mais qui sera inopérant si les modèles

de balistique et de destruction de cette arme ne sont pas prévus.

L’absence d’assurance quant à la pérennité. Soumis à une rude concurrence, le monde commercial du jeu

est très volatil, aucune garantie de pérennité ne peut être donnée.

La différence de tenue de charge. Tous les jeux ne sont pas conçus pour être massivement multi-joueurs et

leur utilisation des ressources matérielles peut ne pas être suffisamment optimisée. Il peut alors en résulter

une inadéquation entre les contraintes liées à un entraînement militaire où des pics d’intensité peuvent

être de grande amplitude et un logiciel qui ne saura pas gérer correctement cette charge impromptue.

2.2.2. Cas particulier des versions militarisées de jeux du commerce.

Ce type de jeu peut lever certaines des limites citées supra en procurant des possibilités d’adaptation, par exemple

par l’acquisition d’interface de programmation. Il convient toutefois d’observer le modèle économique de l’éditeur.

Ces jeux sont souvent utilisés par d’autres industriels pour illustrer l’utilisation de leur propre produit. Dans ce

cas, il s’agit d’un projet type «gagnant – gagnant» entre deux industriels.

Mais pour l’acteur étatique, le modèle est différent. La modicité du prix de la licence initiale est souvent atténuée

par des coûts ultérieurs liés aux évolutions : interfaces de programmation, ajouts de bases de données terrain ou

système d’armes, etc. L’éditeur cherche d’abord à créer un besoin par un accès rapide et peu onéreux aux

premières fonctionnalités avant de s’assurer de la fidélité du client étatique qui, au passage, lui assurera une

certaine publicité grâce à des mentions telles que : «utilisé par l’armée de Terre».

Page 84: CAHIER Simulation

La simulation pour la préparation opérationnelle

8484

Enfin, les éditeurs de jeux utilisent souvent des interfaces physiques ou logiques qui leur sont propres. Si leur

intérêt est souvent de réutiliser des composants éprouvés dont ils ont l’apanage, il peut être antagoniste avec

celui de l’Etat qui cherchera davantage à capitaliser sur les données produites en ayant des interfaces

standardisées et parfaitement maîtrisées.

**

Le monde du jeu, avec son modèle économique en perpétuel changement peut donc offrir des opportunités

intéressantes pour l’acquisition de produits à des fins de préparation opérationnelle. L’aspect dual des

technologies mises en œuvre pour le grand public lui permet souvent de tirer vers le haut le monde de la

simulation militaire à bien des égards. Toutefois, le recours à cette solution doit être considéré avec prudence

en regard du besoin immédiat et de son évolution. L’essentiel réside dans une définition claire du besoin y

compris en matière de pérennité d’ouverture du système et de moyens pédagogiques associés. Elle facilite

l’arbitrage technique, juridique et financier entre les solutions proposées.

Page 85: CAHIER Simulation

La simulation pour la préparation opérationnelle

8585

LA PROSPECTIVE ET LA VEILLE LA PROSPECTIVE ET LA VEILLE TECHNOLOGIQUE : TECHNOLOGIQUE :

UN INVESTISSEMENT UTILEUN INVESTISSEMENT UTILE

LLa prospective et la veille technologique consistent en recherches qui visent à l’amélioration des

systèmes ou à l’innovation. Ces activités, pour être rentables, doivent impérativement être assorties

du souci de capitalisation des connaissances et enseignements.

1. La prospective et la veille technologique

En matière de simulation, il s’agit de faire le lien entre les visions technologiques et les besoins - souvent non

encore exprimés - des forces pour l’entraînement, la préparation des missions ou l’aide à la décision.

La démarche

La première difficulté de la prospective réside dans le choix de la démarche à adopter : faut-il explorer l’éventail

des possibilités à partir de la granularité la plus fine et remonter vers le système entier, ou au contraire avoir une

approche globale avant de ne détailler que certaines parties du système de simulation ? Faut-il d’abord décrire ce

que l’on veut puis entamer les recherches, ou observer tous azimuts, quasiment «le nez au vent», sans préjuger

de l’utilité des résultats, et faire un tri a posteriori ?

Aucune des solutions ne convient parfaitement, un peu de chacune est nécessaire. Le choix le plus logique est

celui du travail d’équipe, regroupant différents profils qui doivent se compléter : méthodique ou intuitif, adepte

de l’approche fonctionnelle ou passionné de nouveauté technologique. La veille technologique est alors l’affaire

de tous et les actions sont soumises à une coordination qui doit elle-même répondre à deux objectifs

contradictoires : être efficace, car le temps est compté, tout en laissant une certaine liberté à l’exploration.

Toutes les occasions d’enrichir les connaissances doivent être mises à profit. En premier lieu, il faut exploiter les

sources ouvertes que sont les revues spécialisées dans la simulation, la doctrine, le développement et

l’architecture informatique, ainsi que les lettres électroniques ou les forums. Viennent ensuite, les contacts directs

avec les industriels, soit au cours d’évènements organisés par leurs services commerciaux ou lors de rendez-vous

personnalisés.

Enfin la participation à des rencontres de portée internationale est primordiale. Deux fois par an, les membres de

la communauté de la simulation se retrouvent dans le cadre de la SISO (simulation interoperability and

standardization organisation) pour mettre en commun les avancées des chantiers en cours. Utilisateurs,

industriels, chercheurs, représentants d’agences publiques ou militaires font avancer les chantiers de

l’interopérabilité des simulations entre elles, du dialogue entre simulations et systèmes d’information, de la

réutilisation des modèles. La participation d’une délégation de l’armée de Terre au salon IITSEC (interservice

industry training simulation and education conference) est primordiale. Cet événement représente pour la

simulation ce qu’est le salon du Bourget pour le monde de l’aviation.

Page 86: CAHIER Simulation

38 Le site WIKIPEDIA, sur internet, en est l’exemple le plus emblématique.

La simulation pour la préparation opérationnelle

8686

Outre l’impressionnant hall d’exposition où tous les industriels qui veulent tenir leur rang dans le monde de

la simulation exhibent leurs réalisations, de nombreux exposés sont faits dans les salles attenantes sur des

sujets variés.

Il peut y être question de nouvelles architectures et de cycle de développement, d’intelligence artificielle, ou

bien de l’évaluation de l’efficacité de l’entraînement d’un groupe de combat de l’USMC avec simulation.

En quelques jours, les participants rapportent une abondante moisson de renseignements qu’il faut exploiter.

En effet, il ne s’agit pas seulement de savoir quels sont les produits du dernier cri qui équiperont nos salles

d’entraînement, mais plutôt de traduire ces observations en enseignements. Devant un écran plat ultra-haute

définition, un simulateur d’évacuation de blindé endommagé par un EEI, ou à l’écoute de l’exposé des derniers

progrès de l’architecture de haut niveau, il faut se poser chaque fois la même question : «et alors ?». La

compréhension du phénomène observé n’est rien, si elle n’est assortie d’un avis de spécialiste.

Celui-ci devra se prononcer sur des sujets divers : quelles conséquences pour ceux qui s’entraînent, ceux qui

conçoivent et développent des systèmes de simulation où ceux qui les mettent en œuvre ? Quels enseignements

aussi pour ceux qui préparent les exercices, les conduisent, ou mènent l’analyse après action ? Quelle place

donner à un exercice conduit sur simulation dans le cycle de l’instruction, l’entraînement ou la préparation de

mission ? La vision ne doit pas se limiter à l’aspect technique de l’outil, mais aussi porter sur la manière dont

pourra évoluer l’ensemble de la chaîne des activités d’entraînement et de préparation opérationnelle.

2. La capitalisation

Cependant l’ensemble de ces observations et avis doit être considéré comme un capital à faire fructifier. En

effet, il ne suffit pas de compiler les observations dans un compte rendu, aussi précis et synthétique soit-il. Il

faut pouvoir retrouver une information, parfois quelques années plus tard, ou sous un angle qui n’est pas

celui initialement prévu. Ainsi, des observations faites sur les architectures techniques virtuelles, initialement

destinées aux ateliers de développement peuvent intéresser celui qui cherche à organiser des exercices multi-

sites.

Le travail de capitalisation de la connaissance est le dernier maillon de l’activité de veille technologique. Plus

qu’important, il est indispensable sous peine de voir dépensée en vain l’énergie pour des recherches.

Pour cela, l’expérience montre que deux éléments sont capitaux :

La tenue annuelle d’un séminaire au sein de l’armée de Terre pour exploiter les observations faites par les

différents traitants du domaine de la simulation : partage des connaissances, établissement des axes de

recherche pour l’année à venir sont au programme.

La mise à disposition de moyens simples et conviviaux offerts par la technologie tels qu’un outil dénommé

WIKI38 qui permet à l’ensemble des traitants d’apporter leur contribution, et à tout visiteur, par le jeu du moteur

et des liens, de retrouver la connaissance sur un sujet.

Ce dernier outil est un appui précieux, pour peu qu’il soit enrichi et actualisé. Mais il reste que seul l’esprit

humain est capable de faire des rapprochements, des analogies et surtout d’être créatif. L’expérience reste

un atout.

Page 87: CAHIER Simulation

La simulation pour la préparation opérationnelle

8787

3. Les réalisations, les perspectives

Il est difficile d’exhiber une réalisation spectaculaire directement issue de l’activité de veille technologique. C’est

dans la durée que se verra l’efficacité de ce travail long, méthodique, parfois ingrat car ponctué de leurres et de

fausses pistes qui ne se révèlent comme telles qu’une fois qu’on est arrivé au bout.

Pourtant, il suffit de voir l’évolution de l’interface JANUS depuis 20 ans pour comprendre que si la veille

technologique ne produit rien, rien ne se produit sans elle.

Les évolutions de JANUS :Les évolutions de JANUS :

Loin de l’image idéalisée du savant dans un laboratoire, la veille technologique et la capitalisation des

connaissances sont des activités pour lesquelles patience et longueur de temps sont les maîtres mots. Mais

elles sont indispensables à ceux qui contribuent à l’amélioration des systèmes de simulation car elles les

arment de connaissances qui tiennent en respect les bonimenteurs, assurent l’indépendance de leur jugement,

et leur permettent de faire valoir les intérêts des forces.

Les axes de recherche sont nombreux et évoluent au cours des années, certaines idées étant abandonnées au

profit d’autres. Citons toutefois le cas évoqué dans un chapitre précédent de l’intelligence artificielle. Elle devrait

rendre l’animation encore plus réaliste et immerger l’entraîné dans des situations complexes qui prennent en

compte non seulement les affrontements directs, mais aussi les luttes d’influence, le jeu des alliances, la dimension

médiatique, l’action d’un individu isolé comme celle du groupe.

Page 88: CAHIER Simulation

La simulation pour la préparation opérationnelle

8888

Page 89: CAHIER Simulation

ANNEXES : ANNEXES :

La simulation pour la préparation opérationnelle

8989

Page 90: CAHIER Simulation

9090

La simulation pour la préparation opérationnelle

Page 91: CAHIER Simulation

2D : Se dit d’une représentation ou d’un affichage

graphique en deux dimensions (typiquement X et Y).

C’est le type d’affichage utilisé, le plus souvent, par les

simulations constructives, même si la prise en compte

de la planimétrie peut souvent faire assimiler leur

affichage à de la 2D et demi.

2D ½ (2D et demi, ou 2,5D) : Se dit d’une

représentation ou d’un affichage graphique à mi-

chemin entre 2D et 3D, n’affichant par exemple que

certaines informations en trois dimensions sur un

décor en deux dimensions pour économiser les

ressources matérielles d’affichage. Ces informations

peuvent être par exemple une partie de la planimétrie

(hauteur des forêts, bâtiments…) ou du nivellement

(pentes) en modifiant les couleurs des pixels dans le

but de générer l’ombrage dû au soleil.

3A (Analyse après action, AAA ou 3A) : Analyse

Après Action (AAR, after action review) : Dépouillement

d’un exercice ou d’une mission, réel ou simulé.

L’analyse après action est une des phases essentielles

si ce n’est la raison d’être d’une simulation

d’entraînement. Elle permet d’identifier et d’apprécier

les bonnes et mauvaises actions de l’élève ou de la

formation dans le double but de corrections des

erreurs et d’évaluation de la progression. Elle permet

également d’améliorer l’outil lui-même. Elle consiste

à collecter un ensemble d’enseignements tirés d’un

exercice fondé sur les données relevées au cours de

son déroulement. Dans le cas d’exercices avec

simulation, elle repose sur un rejeu et sur l’analyse

statistique de données de simulation enregistrées puis

mises en forme pour une exploitation pédagogique

adaptée. S’y ajoute l’expertise métier d’analystes qui

relèvent des observations au cours des exercices pour

évaluer le degré d’atteinte des objectifs

d’entraînement et en déduire des pistes d’amélioration

possibles.

3D : Se dit d’une représentation ou d’un affichage

graphique en trois dimensions (volume). Exemple :

affichage d’un simulateur de vol. C’est le type

d’affichage utilisé généralement par les simulations

virtuelles pour renforcer leur caractère immersif.

Accréditation : Approbation officielle d’un modèle ou

d’une simulation pour un usage donné, en principe

attribué après vérification et validation. Voir : VV&A.

Agent : Entité logicielle autonome, ayant des capacités

d’adaptation à son environnement, collaborant avec

d’autres agents pour accomplir une mission donnée. Les

agents sont également de plus en plus utilisés dans le

cadre des forces synthétiques. Voir définition de CGF.

Agrégation : Regroupement d’entités individuelles (par

ex. des fantassins) en un groupe d’entités (agrégat) de

plus haut niveau (par ex. une compagnie d’infanterie), afin

de simplifier les calculs, la prise en compte de

9191

La simulation pour la préparation opérationnelle

Le monde de la simulation militaire utilise un jargon spécifique souvent dérivé determes ou de locutions provenant des Etats-Unis. En outre, ce vocabulaire particulierpeut être faussement proche du registre utilisé par la plupart des militaires, ce quiinduit fréquemment au mieux des approximations, voire des confusions ou au piredes contresens. C’est pourquoi la plupart des acronymes et expressions sontexplicités ici.

GLOSSAIREGLOSSAIRE

Page 92: CAHIER Simulation

La simulation pour la préparation opérationnelle

9292

comportements de plus haut niveau, la représentation ou

le nombre d’opérateurs nécessaires pour animer un

exercice, tout en conservant les effets des

comportements individuels et des interactions entre

entités simples. Le processus inverse est appelé

désagrégation. L’agrégation est d’autant plus utilisée que

le niveau de la simulation est élevée, et est quasiment

systématique dans les simulations constructives.

Aléatoire : Qui dépend du hasard. Syn. : stochastique.

AL NG : Armes légères de nouvelle génération.

ALSP : Aggregate Level Simulation Protocol. Protocole

non temps réel (contrairement à DIS), destiné aux

simulations (i.e. jeux de guerre). Il a été remplacé par

HLA et TENA.

Animateur:  Voir joueur.

Animation : Dans un CAX (exercice utilisant une

simulation informatique, cf. infra), il s’agit de l’équipe

d’opérateurs chargés de fournir des situations

tactiques et des événements aux entraînés. Dans

certains exercices pour les PC de niveaux hauts, une

grande part des animateurs utilise les outils de

MELMIL (JEMM, GESTIM, EXONAUT, etc.).

API : Application Programming Interface, interface

fournie par un composant logiciel qui permet

l’interaction des programmes les uns avec les autres.

D’un point de vue plus technique, ensemble de

fonctions ou classes mises à disposition par un

programme pour permettre son interopérabilité avec

d’autres programmes.

Avatar : Représentation (pas forcément

ressemblante) d’un utilisateur dans un monde virtuel.

B2M : Blindé moyen et mitrailleuse.

Base de données d’environnement : Ensemble

des données décrivant l’environnement (notamment

naturel) d’un système simulé.

Bitmap : Se dit d’une image stockée sous la forme

d’une matrice de points (pixels), avec une résolution

fixe. Il s’agit d’une représentation par essence visuelle,

difficile à utiliser pour un traitement automatisé dans

une simulation où elle sert surtout à afficher un fond

de carte, sans signification particulière pour la

machine.

Carte raster : C’est l’équivalent numérique d’une

carte d’état-major : carte en 2D (photo aérienne, carte

scannée etc.) qui décrit une surface carré élémentaire

par carré élémentaire en jouant sur la couleur. La

carte est un bitmap. Les différences potentielles entre

le raster et les données vectorielles (confer infra)

expliquent souvent les divergences entre ce que voulait

faire un utilisateur et ce que la simulation a

effectivement réalisé (par exemple lorsqu’un axe

existe sur une carte raster mais pas sur la carte

vectorielle correspondante, il ne peut avoir de

signification pour la simulation car il ne s’agit que de

point d’une couleur différente de celle d’autres points).

Carte vectorielle : Carte qui décrit les attributs

(altitude, nature de l’objet etc.) de chaque sommet

d’une l’image, un segment étant décrit par ses deux

extrémités. Ce type de carte n’est pas altéré par des

zooms. Elles peuvent contenir un contenu sémantique

et sont donc susceptibles de faire l’objet de traitements

automatisés. Par exemple, une carte vectorielle donnera

le tracé des routes comme une carte raster, mais aussi

la nature de son revêtement, la capacité des ponts, son

profil sous réserve que ces données soient définies et

saisies. Elle est souvent générée à partir d’une base de

données d’environnement et permet généralement la

représentation de la planimétrie. Cette représentation

peut contrairement à un raster faire l’objet de

traitements numériques par la simulation (une route

d’une carte vectorielle sera vraiment considérée en tant

que telle, et plus comme une simple suite de points).

CAX : Computer-Aided Exercise, exercice assisté par

ordinateur. Terme utilisé pour les entraînements des

états-majors dans lesquels interviennent des

simulations, telles que des jeux de guerre, alliées à une

gestion d’évènements de type MEL MIL.

Page 93: CAHIER Simulation

La simulation pour la préparation opérationnelle

9393

CEB : Centre d’entraînement des brigades.

CEISIM : Centre d’expertise de l’infovalorisation et de

la simulation : organisme de l’armée de Terre voué à

l’appui technique des forces terrestres à l’infova-

lorisation. Créé par regroupement des entités dédiées à

la numérisation de l’espace de bataille (DANEB) et à la

simulation (partie simulation du CDEF et CPSIM de la

DRHAT/SDFE), il a pour objectif d’optimiser l’appui

technique (NEB et simulation) des forces terrestres à la

préparation et à l’engagement opérationnel, ainsi que de

préparer la montée en puissance de l’infovalorisation.

CENTAC : Centre d’entrainement au combat.

CENTAURE : Centre d’entraînement au combat et de

restitution des engagements (permet l’instrumentation

du camp de MAILLY au profit du CENTAC).

CENZUB : Centre d’entraînement aux actions en zone

urbaine.

CEPC  : Centre d’entraînement des postes de

commandement.

CERBERE : Centres d’entraînement représentatifs des

espaces de Bataille et de restitution des engagements

(succèdera à CENTAURE et à SYMULZUB en incluant des

fonctionnalités nouvelles dont une composante mobile).

CGF : Computer Generated Forces, Simulations

numériques d’entités, dans lesquelles on s’est efforcé

de modéliser suffisamment le comportement humain

pour que les forces représentées soient capables de

prendre quelques initiatives automatiquement (sans

recourir à une interaction humaine - définition IEEE).

Cherche-chemin (pathfinder) : Moyen permettant de

déterminer le meilleur chemin pour une entité qui doit

se déplacer d’un point à un autre en utilisant les données

vectorielles disponibles susceptibles d’influer sur

l’exécution du mouvement. Il s’appuie souvent sur des

techniques de recherche opérationnelle. Le meilleur

chemin peut être au plus rapide (temps ou distance), le

plus sûr (requiert de définir des zones de danger).

CMT : Cible multi porteur terrestre.

COTS : Commercial Off The Shelf, produit commercial sur

étagère. Se dit d’un produit que l’on peut acheter à une

société qui l’a déjà développé, par opposition à un

développement spécifique. Le COTS n’est pas toujours

totalement adapté au besoin, mais présente l’avantage

d’un coût d’acquisition et de possession très inférieur

aux produits dédiés.

Désagrégation : Voir: agrégation.

Déterministe : Se dit d’un système qui, placé dans un

état donné, évoluera toujours de la même façon (par

opposition à un système stochastique).

DIS : Distributed Interactive Simulation, protocole de

communication DIS (IEEE 1278) dédié aux simulations

distribuées en temps réel. Ce protocole ancien a été

remplacé par HLA et TENA, toutefois il est encore très

fréquemment utilisé malgré ses limites en raison de sa

simplicité de mise en œuvre.

Distribué : Qualifie un logiciel dont les composants

peuvent être traités par des processus différents. Ces

composants, réalisant un ensemble de fonctions donné

au sein de l’application distribuée, peuvent ou non

résider sur des machines différentes et bénéficient

d’une certaine autonomie. Ne pas confondre avec

parallèle, qui concerne l’exécution simultanée de

portions d’un même code.

Par extension, on parle de simulation distribuée

lorsqu’une simulation met en œuvre plusieurs

modules qui fonctionnent sur des ordinateurs distincts

ou lorsque plusieurs simulations différentes

communiquent entre elles.

L’entraînement distribué ou multi-sites a un sens

dérivé assez similaire, dans la mesure où les

différentes parties prenantes d’un exercice ne sont pas

toutes localisées au même endroit. Il peut ou non

induire l’utilisation de la distribution de simulation, ou

plus fréquemment la simulation distante.

Page 94: CAHIER Simulation

La simulation pour la préparation opérationnelle

9494

Double action : Un exercice est dit à double action quand

les forces antagonistes manœuvrent en obéissant à une

intelligence humaine. Il peut s’agir de deux entraînés

distincts, ou d’un entraîné opposé à une force adverse.

DTED : Digital Terrain Elevation Data, standard

représentant les données d’élévation (altitude) de

terrains numérisés (nivellement). Peut avoir plusieurs

niveaux de précisions (0, 1 ou 2), relatifs à l’équidistance

de la carte (respectivement 900m, 90 m et 30 m).

EAO : Enseignement assisté par ordinateur.

Entité : Au sein d’une simulation, désigne tous les objets

élémentaires participant à la simulation (systèmes,

unités, humains, matériels, etc.) et à propos desquels

sont stockées et gérées des informations.

Entraîné : Cible d’un exercice d’entraînement, qui peut

en fonction des objectifs et du degré de réalisme de

l’exercice être principal (PTA ou primary training audience)

ou secondaire (STA ou secondary training audience).

Entraînement : Entretien ou amélioration d’une

compétence préalablement acquise par le biais d’une

formation initiale (instruction individuelle ou collective).

Les activités d’entraînement font partie, avec l’instruction

individuelle et l’instruction collective, de la préparation

des forces.

Entraîneur : Simulateur piloté simplifié, par exemple

sans cabine mobile ni sphère de projection. Peu coûteux

en comparaison d’un simulateur Full-flight, il contribue à

la formation initiale de pilotes et des équipages, la

répétition de mission ou l’apprentissage de procédures.

Exemple : Edith pour les pilotes d’hélicoptère de l’ALAT.

Voir : FNPT, simulation virtuelle, simulation pilotée,

simulateur.

Environnement : Le domaine naturel (terrain,

atmosphère, océan, espace), les objets (i.e. autres

systèmes) et les processus (météo) extérieurs au

système étudié mais pouvant influencer son

comportement. On parle d’environnement naturel quand

le domaine naturel seul est concerné.

Environnement synthétique : Représentation du

monde réel à travers une simulation. Comprend les

entités de la simulation (y compris éventuellement du

matériel et des personnels réels), leur environnement

naturel, leur environnement tactique, leurs interactions.

On distingue plusieurs types d’environnements

synthétiques : les environnements dits géospécifiques

correspondent à une reproduction très fidèle du terrain

(par exemple, chaque fenêtre est exactement à la

même place sur une copie conforme des bâtiments

réels), les environnements dits géotypiques ont trait à

une reproduction probante mais pas forcément

identique (les fenêtres sont disposées de manière

cohérente avec ce qu’on trouve dans la réalité sur une

maison qui a le style de la région, mais n’est pas

forcément une copie fidèle de la réalité).

Environnement tactique : Le sous-ensemble de

l’environnement d’une simulation représentant les

entités extérieures au système étudié.

FAFD  : Federation Architecture and FOM Design.

Principes décrivant la manière dont les systèmes doivent

se connecter à une fédération HLA (voir ci-après) et le

traitement qu’ils doivent faire des données échangées.

FAI : Fusil d’arbitre interarmes.

Fédération : Regroupement d’applications (simulation,

outils...) inter opérant entre elles pour mener à bien un

objectif donné, par exemple réaliser un entraînement

collectif. Le terme fédération est utilisé pour HLA.

Fédéré : Une application membre d’une fédération.

Ce peut être une simulation, mais aussi un outil tel

qu’un visualiseur 3D (stealth viewer) ou un enregistreur

de messages (data logger).

FFS : Voir Full Flight Simulator et Full motion.

FNPT : Flight and Navigation Procedure Trainer,

entraîneur au vol et à la navigation, reproduisant le poste

de pilotage et pouvant comporter ou non un visuel.

Page 95: CAHIER Simulation

La simulation pour la préparation opérationnelle

9595

FTD : Flight Training Device, entraîneur pour l’instruction

et l’entraînement au pilotage. Voir aussi FNPT.

Fog of war : Littéralement «brouillard de la guerre».

Désigne par extrapolation de la notion clausewitzienne

le manque d’information des combattants et

commandants durant les combats (unités ennemies

non visibles, identification incertaine des unités

découvertes, etc.).

FOM : Federation Object Model. Dans HLA, description de

l’ensemble des données échangées entre les

simulations dans une logique de publication et de

souscription.

FORAD :  Force adverse.

Full flight simulator : Simulateur de vol comprenant

une reproduction de la cabine de pilotage d’un aéronef,

animée par des modèles fonctionnels (équipements...)

et physiques (vol...) complets. Un FFS est caractérisé

par un système de visualisation performant et un

système de mouvement assurant le retour de force. Voir

full motion, FTD, FNPT.

Full mission : Simulateur de mission, permettant

l’entraînement à des missions complètes, comprenant

l’emploi des systèmes d’armes, par opposition au full

flight, qui se destine à l’entraînement au pilotage.

Full motion : Simulateur comportant une plate-forme

mobile suivant six degrés de liberté (mais avec un

débattement limité) permettant de simuler les

mouvements, attitudes et accélérations du système

simulé. Dans le domaine des simulateurs de vol, on

parlera de simulation full flight. Voir FTD.

GOTS : Government off the shelf : composant logiciel mis

à disposition par l’administration (par analogie et

opposition avec COTS ou Commercial Off The Shelf,

c’est-à-dire disponible sur étagères dans l’industrie).

GRIM  : Consignes techniques pour connecter une

simulation à une fédération HLA, similaire au FAFD.

GTIA  : Groupement tactique interarmes (niveau

régiment/bataillon).

GUI : Graphic User Interface, voir: IHM

HLA : High Level Architecture. Standard de simulation

distribuée créé par le département de la défense

américain. La conformité à HLA passe par le respect

de dix règles, d’un formalisme objet et d’une

spécification d’interface. HLA correspond à une

approche «par composants» du développement des

simulations. Ce standard a remplacé ALSP et DIS.

IDEX : Initialisation et dépouillement des exercices.

IHM : Interface homme-machine (GUI en anglais).

Partie d’un programme permettant à l’utilisateur de

dialoguer avec le système.

Implémentation (implementation) : Anglicisme  :

Codage informatique d’un algorithme ou d’un modèle.

Instruction : Apprentissage initial d’une tâche, d’un

métier. Comprend la formation initiale et la

transformation. Voir également entraînement.

Intelligence artificielle (IA ou AI) : Reproduction, par des machines, de certains aspects

de l’intelligence humaine, tels que les facultés de

raisonnement et de déduction et l’apprentissage de

connaissances. Elle est au cœur de l’automatisation

des CGF.

Jeu de guerre : Simulation de combat dans laquelle

le comportement humain n’est pas entièrement

simulé, mais est assuré (totalement ou en partie) par

la présence de joueurs. Les principales utilisations des

jeux de guerre sont la formation, l’entraînement ou

l’analyse de situation tactique ou stratégique. Ils sont

souvent constitués de camps qui s’affrontent sur un

terrain donné. Ils peuvent être informatiques (ce sont

alors des simulations constructives) ou sur plateau

(carte papier, pions pour représenter les combattants,

dés pour simuler le hasard).

Page 96: CAHIER Simulation

La simulation pour la préparation opérationnelle

9696

Joueur : Le joueur est le personnel entraîné ou

instruit sur un simulateur, situé à un niveau N donné.

Sur certains types de simulateurs constructifs, le

joueur ne saisit pas directement ses directives. Cela

peut être fait à dessein, pour qu’il s’entraîne comme il

combattrait. Cela peut être aussi dû à une interface

homme/machine trop spécifique ou à un degré

d’automatisation trop faible. Ce sont les animateurs

(niveau hiérarchique N-1) qui le font, directement ou

par le biais d’opérateurs (niveau N-2) à qui ils donnent

des ordres tactiques. Cela permet d’accroître le

réalisme de l’entraînement, le joueur travaillant alors

avec ses outils usuels comme s’il était sur le terrain,

tandis que le service de la simulation est supporté par

d’autres, qui peuvent être entraînés secondaires

(niveau N-1) s’ils ne sont pas en contact direct avec la

simulation mais commandent des opérateurs.

Kriegsspiel : Wargame prussien, utilisant une caisse

à sable pour faire évoluer des représentations des

unités.

LVC  : Live, virtual, constructive  : environnement de

simulation dans lequel interagissent des simulations

instrumentées, virtuelles et constructives.

Live simulation : Voir : simulation instrumentée.

M&S : Abréviation de «modélisation et simulation»,

particulièrement usitée chez les anglo-saxons,

désignant les activités de simulation.

MEL MIL : La MEL/MIL (master events list/main incidents

list) consiste à demander à une équipe d’animateurs

d’agrémenter un scénario d’incidents générés au

moment opportun qui prennent en compte les ordres du

joueur comme les instructions de la direction d’exercice

(DIREX). Ces incidents peuvent circuler aussi bien par le

biais d’un système d’enveloppes que sur un réseau de

messagerie électronique. Ils peuvent être gérés au

moyen d’outils spécifiques (JEMM, GESTIM, EXONAUT,

etc.) éventuellement couplés à une simulation si celle-

ci sait représenter les incidents déclenchés ou leurs

résultats.

Middleware : Logiciels relais utilisés entre un client et

un serveur, par exemple pour assurer la traduction ou

la transmission de requêtes.

MIM : Moyen d’instruction et de maintenance.

Mission rehearsal : Voir Répétition de mission.

Modèle : Représentation physique (maquette) ou

abstraite (mathématique, logique) de la réalité (système,

processus ou phénomène physique). Cette repré-

sentation peut être plus ou moins fidèle.

Modèle de comportement humain, modèlecomportemental : Modèle des activités humaines au

sein d’un système que l’on simule. Ces modèles

comprennent des aspects décisionnels (règles

cognitives, doctrine...) le plus souvent déterministes, et

des aspects facteurs humains (influence de la

psychologie et de la physiologie : peur, fatigue,

culture...).

Modélisation : Action de réaliser et d’utiliser un modèle, en vue d’un

objectif donné.

Monte-Carlo : Ensemble de techniques (mathéma-

tiques et informatiques) utilisées particulièrement dans

les simulations impliquant un modèle ou un processus

stochastique (aléatoire). Ces techniques visent à

résoudre un problème par la voie d’échantillonnages

statistiques, par exemple dans le cas où une solution

analytique n’existe pas ou est trop complexe.

Moteur de simulation : Voir CGF.

OAC : Observateur arbitre conseiller.

PAI : Pistolet d’arbitre interarmes.

Pas de temps : Temps entre deux itérations d’un calcul.

Dans une simulation, il s’agit typiquement du temps

entre deux calculs successifs de l’état du système.

Page 97: CAHIER Simulation

La simulation pour la préparation opérationnelle

9797

Pion : La plus petite entité manipulable dans une

simulation de type jeu de guerre. Cette entité peut

éventuellement être agrégée (cas où la simulation utilise

une représentation interne de plus bas niveau que celle

accessible à l’utilisateur).

Propriétaire : Un format ou un logiciel propriétaire est

limité dans sa duplication, sa modification, sa

distribution ou son utilisation en raison d’une licence

restrictive imposée par le propriétaire des droits qui le

concernent (le logiciel relève généralement du droit

d’auteur ou de notions proches comme le copyright, les

formats font eux souvent l’objet de brevets d’invention).

Protocole : Ensemble de conventions définissant le

format logique, physique et temporel des messages

échangés entre des matériels ou des logiciels se

communiquant des données.

Réalité augmentée : Superposition d’images

synthétiques à la vision du monde réel.

Réalité virtuelle : Qualifie un environnement

synthétique immersif, doté d’une IHM permettant à un

opérateur de visualiser, de manipuler et d’interagir avec

des données ou un environnement complexe.

Rejeu : Relecture, souvent accélérée, du déroulement

d’un exercice à des fins d’exploitation pédagogique en

3A. D’un point de vue technique, il s’agit soit d’un film

enregistré pendant l’action, soit d’une relecture des

données de simulation enregistrées au fur et à mesure

du déroulement du CAX.

Répétition de mission : Consiste à faire effectuer une

mission de manière simulée avant de l’effectuer sur le

terrain réel. Ainsi, des pilotes peuvent par exemple

connaître à l’avance leur objectif et leur zone

d’opération, ce qui augmente considérablement leur

efficacité... si toutefois la situation numérisée pour la

simulation correspond bien à la réalité. Derrière la

répétition de mission se cachent des besoins très lourds

en moyens de simulation, production rapide et gestion

de bases de données terrain et recueil de

renseignements. En anglais : mission reshearsal.

Retour de force : Force feedback. Utilisation de

périphériques physiques permettant le toucher

(haptiques) dans le cadre d’une simulation afin de

donner à l’utilisateur des informations tactiles (ex.

résistance d’un volant de véhicule).

RPR-FOM : Modèle objet de fédération (FOM) de

référence, destiné à faciliter l’intégration de

simulations héritées temps réel sous DIS dans une

fédération HLA.

Ce FOM particulier constitue la base du FOM du réseau

OTAN «NETN», qui est inclus dans le FOM de la

fédération de la Défense ELLIPSE. Un fédéré prévu

pour fonctionner avec le RPR-FOM nécessitera donc

relativement peu de travaux pour s’intégrer dans une

fédération.

RTI : Run-Time Infrastructure. Dans le standard HLA,

logiciel de type middleware fournissant les services

d’interface durant l’exécution d’une fédération.

Run  : Instance de simulation. Dans le cas de

simulations d’étude mettant en œuvre des processus

aléatoires, il faudra un certain nombre de runs pour en

tirer des conclusions. A l’opposé, si l’on utilise une

simulation totalement déterministe, chaque run ou jeu

de simulation donnera le même résultat donc un run

unique sera nécessaire.

SACOD : Simulation pour l’aide à la conception de

l’outil de défense, domaine de la simulation défini par

la DGA, et comprenant essentiellement la simulation

technico-opérationnelle.

SAF ou SAFOR : Semi-Automated Forces. simulation

d’entités de type CGF, généralement à des niveaux

plates-formes, modélisant de façon plus ou moins

complète les décisions des humains impliqués dans le

fonctionnement de l’entité simulée (engagement d’un

ennemi découvert, contournement d’un obstacle...).

Toutefois, les décisions de haut niveau (commandement,

mission, conduite à tenir...) ou le maintien du réalisme

d’ensemble requièrent la présence dans la boucle d’un

opérateur humain, d’où le qualificatif de «semi-

automatique».

Page 98: CAHIER Simulation

La simulation pour la préparation opérationnelle

9898

SEDRIS : Synthetic Environment Data Representation and

Interchange Specification, standard permettant

l’interopérabilité des bases de données d’environnement

entre elles et avec des simulations. SEDRIS est aussi un

standard de l’OTAN (STANAG).

SGTIA : Sous-groupement tactique interarmes (niveau

compagnie/escadron).

SIM-C : Système interactif mines-chars.

Simulateur : Dispositif matériel et logiciel permettant

d’effectuer une simulation (notamment une simulation

pilotée).

Simulation : Implantation dynamique, en fonction

d’une ou plusieurs variables (le plus souvent le temps

ou l’espace), d’un ou plusieurs modèles dans un but

déterminé. Désigne également l’activité d’utilisation

de ces modèles en vue d’un objectif donné, ainsi que

l’ensemble des techniques de modélisation et

simulation (ce que les anglo-saxons appellent M&S).

Simulation constructive : Simulation numérique

faisant intervenir une modélisation du facteur humain.

Un opérateur peut être dans la boucle, mais sans être la

source principale des stimuli de la simulation. Des

systèmes d’armes simulés sont donc mis en œuvre par

des humains virtuels qui obéissent aux ordres

d’opérateurs à travers une boucle décisionnelle plus ou

moins complexe (en fonction du degré d’automatisation

et de la granularité de la simulation). JANUS, ROMULUS

et SCIPIO sont des simulations constructives.

Simulation distante : Utilisation concurrente de tout

ou partie des composants d’une ou plusieurs

simulations en plusieurs endroits distants pour éviter

de déplacer tous les animateurs et les joueurs au

même endroit. L’emploi de la simulation distante

permet l’entraînement distribué (distributed training).

Simulation distribuée : Simulation constituée de

composants autonomes (dont les codes sont distincts).

Cette autonomie est généralement destinée à

permettre leur fonctionnement sur des machines

différentes, afin, par exemple, de répartir les calculs.

Elle permet également une approche par composants

de la conception des simulations. Voir : HLA, DIS. Cela

revient concrètement à utiliser une seule simulation

dont les composants sont répartis sur plusieurs

machines ou bien à faire fonctionner plusieurs

simulateurs différents ensemble au sein d’une

fédération. La simulation distribuée peut éventuel-

lement être distante, mais les deux notions ne sont pas

équivalentes (une simulation distribuée peut être

utilisée sur un réseau local).

Simulation à événements discrets : Simulation

dont l’évolution est basée sur l’arrivée d’événements

(exemples : arrivée d’un client, panne, détection d’une

cible, évènement de tir à résoudre...). En anglais :

discrete event simulation (DES).

Simulation hybride : Simulation comprenant du

matériel réel, mise en œuvre dans un environnement

simulé, typiquement à des fins d’essais de ce matériel

(qualification, test...).

Simulation interactive : Simulation dont certaines

des entrées sont fournies par l’opérateur humain.

Simulation instrumentée : Simulation utilisant un

environnement réel (terrain de manœuvre) où des êtres

humains réels utilisent des systèmes réels dont les

effets sont simulés (typiquement, des matériels

spécialement équipés). Par exemple, des fantassins dont

les fusils sont munis d’émetteurs lasers pour simuler

les tirs au CENTAC ou au CENZUB. Parfois désignée par

l’anglicisme «simulation vivante» (live simulation).

Simulation opérationnelle : Simulation destinée à

être employée par les Armées, par opposition à la

simulation technique, représentée par la simulation

pour l’acquisition et la simulation technico-

opérationnelle (simulation d’étude).

Simulation pilotée : Simulation dans laquelle la

principale source d’entrées vient d’un opérateur humain,

et dont l’interface reproduit celle du système réel.

Exemple : simulateur de vol.

Page 99: CAHIER Simulation

La simulation pour la préparation opérationnelle

9999

Simulation virtuelle : Traduction de l’anglais virtual

simulation. Simulation mettant en œuvre des opérateurs

réels sur un système et dans un environnement simulés.

L’exemple typique est la simulation pilotée.

SISO : Simulation Interoperability Standards Organization.

Organisation cofinancée par des industriels, des

universitaires, le gouvernement des Etats-Unis et ses

membres traitant des standards d’interopérabilité de

simulations tels que DIS, HLA ou SEDRIS, et organisant

notamment les ateliers SISO (SISO Workshops) depuis

1989 (actuellement deux fois l’an à Orlando, en Floride,

aux Etats-Unis d’Amérique).

SOM : Simulation Object Model. Dans HLA, ensemble de

tables suivant le formalisme des OMT, et décrivant les

objets, attributs, interactions et paramètres qu’il est

susceptible de partager avec le reste de la fédération.

STC : Simulateur de tir de combat.

SYMULZUB  : Système pilote pour la simulation

instrumentée du centre d’entraînement des actions en

zone urbaine (équivalent de CENTAURE).

Système distribué : Qualifie un système dont les

composants ne sont pas nécessairement localisés au

même endroit (cas typique d’un logiciel dont les

différents modules s’exécutent concurremment mais

de façon coopérative sur des machines distinctes).

Validation : Processus visant à s’assurer qu’un

modèle ou une simulation représente le monde réel

(au sens où ce mot est employé en simulation) d’une

façon suffisamment précise pour remplir les besoins

d’une utilisation donnée. Il est très important de noter

que la validation n’est valable que pour un domaine

d’emploi donné et doit être remise en question pour

toute nouvelle utilisation sortant de ce domaine. Voir :

VV&A, domaine de validité.

Vectoriel : Mode de représentation d’une image dans

lequel l’objet ou la scène est décomposé en segments

de droites et en surfaces élémentaires. Ce format a

l’avantage de prendre relativement peu de place et de

pouvoir être agrandi à volonté sans perte de qualité,

contrairement au bitmap.

Vérification : Processus visant à s’assurer que

l’implémentation d’un modèle ou d’une simulation

correspond bien à la spécification qui en a été faite. La

vérification se fait par examen du code et par des

procédés basés sur les techniques de génie logiciel. De

préférence, la vérification doit se faire tout au long du

développement, et non uniquement a posteriori. Voir :

VV&A.

Virtualité augmentée : Système de réalité virtuelle

dans laquelle ont été ajoutés des éléments réels

(par exemple captés par une caméra). Voir : réalité

augmentée.

Virtuel : Qualifie un objet ou un environnement simulé

informatiquement.

Visuel : Dans un simulateur, dispositif permettant la

restitution de l’environnement visuel synthétique :

écran vidéo, sphère de projection, HMD...

VV&A : Sigle global pour les opérations de vérification,

validation, accréditation des données, modèles et

simulations.

Page 100: CAHIER Simulation

La simulation pour la préparation opérationnelle

100100

Page 101: CAHIER Simulation

La simulation pour la préparation opérationnelle

101101

LES PRINCIPAUX SIMULATEURS UTILISÉSLES PRINCIPAUX SIMULATEURS UTILISÉSPAR L’ARMÉE DE TERREPAR L’ARMÉE DE TERRE

Le code couleur du tableau est le suivant :

Simulation instrumentée.

Simulation virtuelle.

Simulation constructive.

Nom Nom étendu Description

3DRV Maquettage 3D

et réalité virtuelle

Outil permettant de générer des modèles virtuels en 3Dà partir de photographies, de prendre des mesuresréalistes (métrage) à partir des images obtenues, demodéliser l’intérieur de bâtiments, notamment en vue dela préparation de missions.

APLETAide à la Planification

d’Engagement Tactiqueterrestre

Outil d’aide à la décision mettant en œuvre unesimulation pour la confrontation des modes d’actionMA/ME lors de l’élaboration des ordres de la brigadeinterarmes (BIA). APLET est interopérable avec SICF etle sera à terme avec les SIO des niveaux 1 à 3 et 4 à 7.

ASTEC

Outil fondé sur le moteur du logiciel SCIPIO auquel ilservait à l’origine de débogueur. Il permet de valider lesmodèles des automates de SCIPIO, de conduire desétudes doctrinales (ex. étude contre-rébellion), demener des exercices d’auto-entraînement à titreindividuel ou au sein d’un état-major. Il peut être utilisépour la formation et a été utilisé comme support pourl’EVTA «simulation téléchargeable» (SCALPED). Cetoutil est commercialisé sous le nom de SWORD.

CALIPSO

Outil destiné aux cellules G5 et G35 des états-majorsde niveau 1 pour faciliter le choix du mode d’action leplus favorable lors de la confrontation des MA/ME enphase d’intervention et de stabilisation.Effectué dansle cadre d’un PEA mais logiciel non utilisé.

CAN20 Simulateur de tir au canonCnMit 20mm modèle f2

Outil de formation et d’entraînement au pointage et autir sur cible aérienne ou terrestre avec le canon de20 mm. Il s’agit d’un matériel relié à un affût 53T2,installé dans une salle équipée d’une alimentationélectrique en tension alternative de 220V/50Hz.

Page 102: CAHIER Simulation

Nom Nom étendu Description

CENTAURECentre d’entraînement

au combat et de restitutiondes effets

Système de conduite et d’analyse des exercicesinstrumentés fédérant les systèmes de tir de combat(STC). Sa capacité est de 3 SGTIA équipés au maximum.

Centre d’Instruction VABReco NBC

Le centre d’instruction VAB Reco NBC est composé dedeux parties principales : un ensemble véhicule complet(EVC) simulant un VAB Reco NBC et un ensemblespectrométrie complet mm1 (ESP) permettantl’apprentissage de l’utilisation du spectromètre demasse.

CMT Cible multiporteur terrestre

Cible utilisée sur différents véhicules, compatiblenotamment avec les STC AC.

CPT NH90 NFH +TTH Cockpit Procedure Trainer NH90

Cockpit d’entraînement aux procédures techniques etopérationnelles du NH 90.

CPT TIGRE Cockpit Procedure Trainer TIGRE

Cockpit d’entraînement aux procédures techniques etopérationnelles du TIGRE. Cet outil permet, suivant lecockpit inséré, d’instruire ou d’entraîner un pilote ou untireur. Deux entraîneurs couplés sont nécessaires pourentraîner un équipage TIGRE. Existe en deux versions (CPT et CPT LFOV, large field ofview).

DX 138 HOT Simulateur de tir HOTthermique.

Simulateur monté sur armature au format de la cellulede la Gazelle.Il permet de réaliser du drill de tir de missiles HOT envue optique directe ou en vue thermique pour former lechef de bord de l’hélicoptère.Pour l’instant le simulateur est monté sur un appareil quireste au sol parce que le simulateur n’est pas autoriséen vol.

DX 143 MILAN Simulateur de tir MILAN

Simulation des tirs techniques et tactiques sur systèmed’arme MILAN.

DX 147 HOT Simulateur de tir HOT jour

Simulateur de tir HOT jour monté sur armaturereproduisant la cellule de la Gazelle ou bien surl’appareil au sol ou en vol.

DX 166 ERYX Simulateur de tir ERYX

Simulation des tirs techniques et tactiques sur systèmed’arme ERYX portable.

DX 407 SITERYX Simulateur de tir ERYX

Simulation pour instruire les tireurs à l’utilisation duS.A ERYX (liée à une infrastructure).

EDITH Entraîneur Didactique

Interactif TactiqueHélicoptère

Simulation 3D (PC et triple écrans) pour l’entraînementdes commandants d’escadrille d’hélicoptères.

La simulation pour la préparation opérationnelle

102102

Page 103: CAHIER Simulation

Nom Nom étendu Description

EFA aquatique EFA - Entraîneur depilotage aquatique

Simulateur composé d’une plate-forme équipée d’unposte de pilotage EFA permettant l’instruction de miseen œuvre et l’apprentissage au pilotage aquatique del’EFA (naviguer, embarquer, débarquer et accoupler).

EFA routier EFA Entraîneur de conduiteroutière

Simulateur composé d’une cabine de conduite routièrede l’EFA permettant l’instruction de la mise en œuvreet l’apprentissage à la conduite routière de l’EFA.

EFI Entraîneur générique deFormation Initiale

Simulateur pour le pilotage de base deshélicoptères sur un châssis fixe. Les entraînements auxrègles de vol aux instruments (Instrumental Rules -IR),en montagne et aux procédures d’urgences sont aussipossibles.

EMSET Entraîneur Multi SéquencesDe Tir AMX 10RC

Simulateur composé d’un poste tireur commutableselon le type de matériel qui représente le palonnierdu tireur tourelle observant face à un paysage pourl’instruction du tir au niveau individuel tireur.Simulateur travaillant face à 3 cibles pré-planifiées surtrajectoires.

ENTRAINEUR DE VOLFENNEC FNPT II

Simulateur pour l’instruction [ex : qualification de typeIR (Instrument Rules)] et pour l’entraînement selon lesrègles de vol à vue, vol de combat, vol TBA, vol de nuit,en montagne, sous JVN et aux procédures d’urgence.L’entraîneur d’équipages FENNEC est sur châssis fixe.Il est composé d’un cockpit représentatif d’unhélicoptère FENNEC générique, d’un poste instructeuret d’un visuel avec portique de projection

EP Leclerc Entraîneur de pilotageLeclerc

Simulateur travaillant sur une base de données terrainsur laquelle évoluent des animations commandées parjalons permettant l’instruction de mise en œuvre etl’apprentissage à la conduite du char Leclerc au niveauindividuel pilote.

EPSA Entraîneur de Pilotage et deSystème d’Arme

Entraîneur de pilotage et de systèmes d’armesGAZELLE

ETT Equipage Entraîneur aux techniquesde tir équipage Entraîneur pour AMX 10RC et ERC 90

ETT XL Entraîneur aux Techniquesde Tir LECLERC

Simulateur d’entraînement aux techniques soustourelle travaillant face à 5 cibles pré-planifiées surtrajectoires permettant l’instruction de mise en œuvreet du tir au niveau chef de char ou tireur ou équipe detourelle.Il est composé de 4 ou 6 cabines élèves représentantla tourelle et d’un poste instructeur pour chaquegrappe d’entraîneur.Pour le shelter : 1 poste élève / 1 poste instructeur.

La simulation pour la préparation opérationnelle

103103

Page 104: CAHIER Simulation

Nom Nom étendu Description

FENNEC FNPT II

Simulateur permettant d’instruire à toutes les phasesde stages qualification de type IR aux normes JAR.Il permet de plus d’entraîner les équipages de l’EAALATen VICAM.Les entraînements selon les règles de vol à vue, vol decombat, vol TBA, vol de nuit, en montagne, sous JVN etaux procédures d’urgence sont aussi possibles.

FMS NH90 NFH + TTH Full Mission

Simulator NH90Simulateur de vol en environnement synthétique pourl’entraînement aux missions de combat du NH90.

FMS TIGRE Full Mission Simulator TIGRE

Simulateur de vol en environnement synthétique pourl’entraînement aux missions de combat du TIGRE. Ilpermet suivant le cockpit inséré d’instruire oud’entraîner un pilote ou un tireur. Deux simulateurscouplés sont nécessaires pour entraîner un équipageTIGRE.

IFDS NH90 Instrumental Flight Display System NH90

INSTINCT INSTruction de l’INfanterie

au Commandement et à la Tactique

Simulation virtuelle de formation aux actesélémentaires et combat du groupe et de la sectiond’infanterie.

JANUS Simulation terre de niveau tactique pour l’entraînementdes PC de niveau 3 à 6 (le niveau 4 étant la cibleprincipale) et pour mener des études doctrinales.

JTLS Joint Theater Level Simulation

Simulateur interarmées de combat intégrant desfonctions de logistique, de renseignement et des forcesspéciales. Il permet l’analyse, l’évaluation aucommandement et à la planification ainsi quel’évaluation à la conduite d’opération interarmées auniveau opératif.

Kit PC NC1 Kit PC de simulation etd’instruction pour NC1MISTRAL et ROLAND

Ce système comprend un véhicule d’exploitation (VE duNC1 40) ou un véhicule principal (VP du NC1 30) et unordinateur portable.

LMT 150

Simulateur permettant de réaliser le drill desprocédures de vol aux instruments pour former : - la technique du pilotage aux instruments sur HL et

HM - les mécanismes de positionnement et de sauvegarde

en vol aux instruments des équipages de l’ALAT.

LORA IILOgistique desRavitaillements

Simulateur d’apprentissage de métier permettant auxjoueurs de s’entraîner à la gestion d’un îlot au seind’une base logistique.

MES Missile d’entraînementSystème

Simulateur de tir MISTRAL monté sur panier lance-missile sur le Tigre en vol d’instruction.

MISTRAL NG 4 Simulateur sur poste de tir MISTRAL à terre. Permetd’entraîner le personnel au tir et aux procédures.

La simulation pour la préparation opérationnelle

104104

Page 105: CAHIER Simulation

Nom Nom étendu Description

NEMERTES

Nouvel EnseignementMaintenance et

Ravitaillement TransportEn Simulation

Simulation dédiée aux actions de déploiementslogistiques au sein d’une base logistique de l’armée deTerre. Développement de la nouvelle version lié à celuide ROMULUS v6.

ODESSA Simulateur utilisé pour le déploiement des piècesd’artillerie sol-air afin de juger de l’efficacité d’undispositif anti-aérien.

OFP Operation French Point

Simulation virtuelle de formation aux actesélémentaires et combat du peloton de la cavalerieblindée. Elle permet :- l’instruction des actes élémentaires du combat niveau

patrouille, groupe équipe équipage et peloton.2 pelotons peuvent travailler simultanément ;

- la sensibilisation et l’apprentissage en zone urbaine ;- la mise en situation face à des évènements diversifiés :

foule, manifestation, attentat…

OPOSIA

Outil de PréparationOpérationnelle des Sous-

groupements tactiquesInterArmes

Simulation pour la préparation des SGTIA, sections etpelotons numérisés au CENTAC en remplacement deSYSIMEV, et dans une deuxième phase, dans les autrescentres, organismes de formation et régiments.

PPS SA TIGRE Poste de Pilotage SimplifiéSystème d’Arme TIGRE

PPS Vecteur TIGRE Poste de Pilotage SimplifiéVecteur TIGRE

ROMULUS 5

Simulateur permettant l’apprentissage aux procéduresde combat des niveaux peloton, SGTIA et GTIA etl’apprentissage aux procédures logistiques du TC2. Iltravaille en parallèle avec un système de simulationradio (S3RI) mettant en œuvre 15 fréquences.

ROMULUS 6

Simulateur permettant l’apprentissage aux procéduresde combat des niveaux peloton, SGTIA et GTIA etl’apprentissage aux procédures logistiques du TC2. Sescaractéristiques reprennent globalement celles deRomulus 5. S’y ajoutent la prise en compte desnouvelles conflictualités, des fonctions interarmes,interarmées et l’utilisation d’automates.

S3RISimulateur de Réseau

Radio sur RéseauInformatique

Outil permettant de simuler le réseau radioopérationnel. Il peut être utilisé avec des combinés àpédale. Il a remplacé le simulateur de réseau radio(SRR).

SAPHIR

Système d’APprentissageHors Infrastructure

Routière

Simulateur pour l’apprentissage de la conduite desvoitures de gamme commerciale de classe moyenneavec leur ergonomie et dans des conditions météoparticulières : pluie, brouillard et neige. Cabines desimulation de conduite VL.

La simulation pour la préparation opérationnelle

105105

Page 106: CAHIER Simulation

Nom Nom étendu Description

SCALPED

Simulation de CombatAutomatique

en Libre-service pourl’Enseignement à Distance

Simulation basée sur ASTEC pour s’entraîner à latactique à domicile sur un ordinateur personnel ou dansles organismes de formation (dans le cadre d’uneEVTA).

SCIPIO

Simulation de CombatInterarmes pour

la Préparation Interactivedes Opérations

Simulation de niveau tactique pour l’entraînement desPC de niveau division et brigade.

SCOA NG Simulateur de Combat desObservateurs d’Artillerie

Nouvelle Génération

Simulation pour la formation des observateursd’artillerie à  la manœuvre au sein d’une compagnied’infanterie ou d’un escadron de char et au dialogueavec son détachement de liaison ainsi que soncommandant d’unité appuyé.

SDA Système

de décontaminationapprofondie

Simulateur de nacelle de décontamination approfondie.

SDBC AUF1

Simulateurde Diagnostique du Banc

de ChargementAuto 155 AUF1

Maquette de chargement du 155 AU F1 version H et T.Système constitué à partir de cartes électroniquespermettant de simuler des pannes de fonctionnement.

SDC LECLERC Simulateur

de Diagnostique du Char LECLERC

Simulateur de diagnostique du char LECLERC sous laforme d’une salle équipée en moyens informatiques.Les chaînes fonctionnelles sont modélisées eninformatique. Tous les pupitres de commandes(interfaces homme/machine) sont simulés.

SEE - SEP LECLERC Simulateur EntraînementÉquipage / Peloton Leclerc

Simulateur composé de 2 cabines représentant lechâssis et la tourelle : il permet l’instruction techniqueet tactique de l’équipage et peut être couplé au niveaubinôme ou peloton en fonction du plan d’équipement. Iltravaille face à un générateur de forces interactif.

SEIS SIR ASA Simulation des échangesd’informations entre des

stations SIR ASA

Simulateur qui permet de former et entraîner lepersonnel à la mise en œuvre de SIR ASA.

SEMSIC

Simulateurd’Environnement pour

la Manœuvre des Systèmesd’Information et deCommunications

Simulation constructive pour l’entraînement des chefsde pion RITA, la formation des officiers traitants desCMO SIC, l’entraînement à distance des CMO SIC, lecommandement d’un réseau de zone réellementdéployé sur le terrain.

SET ERC 90 Simulateur

d’Entraînement au Tir

Simulateur pour l’instruction individuelle du tireur à lamise en œuvre et au tir sur l’ERC 90 et l’instructioncollective de l’équipage à la mise en œuvre et au tir surl’ERC 90 au sein du peloton.

SHERPA Simulateur HÉlicoptèrepour la tRansformation

des Pilotes de l’ALAT

Simulateur conçu dans les années 90 pour permettre latransformation des pilotes de type Puma/Cougar. Il aété un des premiers simulateurs à six degrés de liberté.

La simulation pour la préparation opérationnelle

106106

Page 107: CAHIER Simulation

La simulation pour la préparation opérationnelle

107107

Nom Nom étendu Description

SHERPA Réno

Simulateur HÉlicoptèrepour la TRansformation

des Pilotes de l’ALAT Rénové

Simulateur utilisé qui permet de former et d’entraînerles équipages Cougar et Puma.

SIEP Simulateur d’Instruction

et d’Entrainementau Pilotage, Engin Blindé

Simulateur générique pour les châssis d’engin blindé :8 VBCI, 2 AMX10RC, 1 AMX10P, 1 AMX30D.

Simulateur de tir au canonCNMIT 20MM MLE f2

Simulateur pour la formation et l’entraînement aupointage et au tir sur cible aérienne ou terrestre.

Simulateur de tour de contrôle

Simulateur qui permettra l’entraînement descontrôleurs aériens aux normes européennes (nonencore contractualisé).

SITTAL Simulateur d’infanterie

de tir techniqueaux armes légères

Simulation virtuelle pour l’instruction au tir des armeslégères et le tir coordonné du groupe d’infanterie.

SMP COUGAR

Simulateur de maintenance et de procédures

du COUGAR

Panneaux de simulation de maintenance et de procédurespour hélicoptères. Les plates-formes comprennent 4 et3 panneaux explicatifs du fonctionnement de partiesmécaniques du COUGAR AS 532. Les différents panneauxsont reliés, dans chaque salle, à un système informatique(ordinateur, clavier, écran).

SOTA NG Système d’Observation

des Tirs d’ArtillerieNouvelle Génération

Simulation qui permet l’observation des tirs d’artillerie,utilisée pour la formation technique et le maintien descompétences des observateurs d’artillerie. SOTA NG aremplacé SOTA.

SPRAT Conduite Système de pose rapide de travures

Formation technique à la pose de moyens defranchissement.

SRR Simulateur de Réseau Radio

Système d’interphones reproduisant fidèlementl’utilisation des postes radio militaires.

SS NBC Adt

Système de Simulation NBC

de l’Armée de Terre

Système de simulation NBC utilisant la propagation d’uneonde électromagnétique pour simuler les retombéesradioactives et les zones de danger chimiques. Il estcomposé d’un certain nombre d’équipements quisimulent les détecteurs NBC existant en dotation dansl’armée de Terre, à savoir : le RUP 403 (émetteur), leROMROR 309 (simulateur du DOMDOR 309), le RUK RUR440 (simulateur du DUK DUR 440), le SIMAPACC(simulateur de l’AP2C) et de 3 lots grande antenne (1 auCDNBC et 2 au GDNBC).

Page 108: CAHIER Simulation

La simulation pour la préparation opérationnelle

108108

Nom Nom étendu Description

STC ALNG

Simulateur de Tir de Combat pour Armes

Légères NouvelleGénération

Simulateur permettant de s’entraîner au tir de jour etde nuit, au cours d’exercices tactiques et de parcoursde tir avec des cibles adaptées et coopérantes. Lesimulateur reproduit sans danger, lors des exercices,les effets du feu, tout en exigeant des servantsl’exécution de tous les gestes significatifs de laséquence de tir.

STC B2M Simulateur de Tir de Combat B2M

Le STC B2M est destiné à remplacer le DX 175 (cf. infra)qui équipe les AMX 30B2, AMX 10 RC et ERC 90 ainsiqu’à équiper les véhicules utilisant une conduite de tir(AMX 10 P, VBCI) et les armes de calibre 12,7 survéhicules (VAB, VBL, GBC 180 Torpédo) ou à terre (MIT50 et FR12,7).

STC DX 175 STC DX 175 : AMX30 B2 –AMX10 RC – ERC90

Simulateur composé d’un ensemble calculateur de tirrelié à des balises réceptrices permettant l’instructiondu tir équipage et peloton par la mise en place de ciblescapteurs et l’instruction tactique par le montaged’exercice de duels le tout arbitré par un fusil d’arbitre.Chaque exercice technique ou tactique peut êtreanalysé grâce à la valise de dépouillement des tirs.

STC LECLERC STC XL : LECLERC

Simulateur permettant l’instruction du tir équipage etpeloton par la mise en place de cibles capteurs etl’instruction tactique par le montage d’exercice de duelsle tout arbitré par un fusil d’arbitre.Il est composé d’un ensemble calculateur de tir relié àdes balises réceptrices. Chaque exercice technique outactique peut être analysé grâce à la valise dedépouillement des tirs.

STES VBCI Simulateur de Tird’Equipage et de Section

Simulateur destiné au VBCI pour faire acquérir lesavoir-faire équipage consistant à la coordination duchef d’engin et du tireur.

STIVAD

Simulateur de TIr et de Visée Assiste par

Digitalisateur - Équipage /Peloton AMX 10RC – AMX30B2 - ERC90 – Leclerc

Simulateur composé d’une table traçante et d’un crayonoptique monté sur le canon et branché à la mise de feudu tireur. Le tout est relié à un poste de suivi et decontrôle de la visée permettant l’instruction du tir del’équipe tourelle et pouvant être couplé pourl’instruction du tir de peloton. Il travaille face à unscénario pré-établi avec un choix de 20 cibles jour ounuit ami/ennemi possibles à éclipses à distance réduiteou distance réelle (cibles Rugiérri).

STP Simulateur de Tir Équipage

Peloton AMX 10RC – AMX 30B2 (STP)

Simulateur composé de 4 cabines représentant latourelle de l’AMX 30B2 et de 3 cabines représentant latourelle de l’AMX 10RC. Il permet l’instruction de miseen œuvre et du tir de l’équipe tourelle. Il peut êtrecouplé pour l’instruction du tir de peloton : observation,répartition des objectifs et conduite des feux par le chefde peloton. Simulateur travaillant face à un scénariopré-établi avec un choix de 20 cibles ami\eni possiblesse déplaçant sur des trajectoires.

Page 109: CAHIER Simulation

La simulation pour la préparation opérationnelle

109109

Nom Nom étendu Description

SYMULZUB

Système pilote pour la simulation

instrumentée du centred’entraînement aux actions

en zone urbaine

Ensemble de moyens dédiés à la conduite et l’analysed’exercices d’un niveau DIA (détachement interarmes).Il permettra à une section renforcée de mener desexercices face à une force adverse en présenced’instructeurs en mesure de recueillir les élémentsnécessaires à une analyse après action.

SYSIMEV SYstème de SIMulation et d’Entraînement Virtuel

Simulateur servant à la préparation des SGTIA avantrotation au CENTAC.

WAGRAM WArGame

pour l’entRaînement de l’Armée de Terre

Brique d’entraînement terre demandée par l’EMA auprofit des postes de commandement terre de niveauopératif.

Page 110: CAHIER Simulation
Page 111: CAHIER Simulation

Rédacteur : Colonel Philippe COSTE, commandant le centre de simulation pour la formation, l'entraînement et l'expérimentation. : 01 44 42 40 25 - Ce document a été réalisé en collaboration avec les experts du domaine.

Crédits photos : © Armée de Terre - Monsieur Emmanuel CHIVA de la société SILKAN

Maquette : Christine VILLEY

Impression : Imprimerie BIALEC - 95 boulevard d’Austrasie - BP 10423 - 54001 Nancy cedex

Diffusion : établissement de diffusion, d’impression et d’archives du commissariat de l’armée de Terre de Saint-Etienne

La version électronique de ce document est disponible sur le site http://www.cdef.terre.defense.gouv.fr (intraterre).

Contact : groupement simulation - Satory - : 01 39 67 37 02

Page 112: CAHIER Simulation

Rédacteur : Colonel Philippe COSTE, commandant le centre de simulation pour la formation, l'entraînement et l'expérimentation. : 01 44 42 40 25 - Ce document a été réalisé en collaboration avec les experts du domaine.

« Ce cahier a pu être réalisé grâce à la participation des experts du domaine de la simulation de l’armée de Terre et à l’aimablecontribution de M. Guillaume Lasconjarias de l’IRSEM, de M. Lionel Khimeche du DGA/CATOD, de M. Emmanuel Chiva de la sociétéSILKAN et de M. Jean Yves Donnart du groupe THALES. »

Crédits photos : © Armée de Terre - Monsieur Emmanuel CHIVA de la société SILKAN

Maquette : Christine VILLEY

Impression : Imprimerie BIALEC - 95 boulevard d’Austrasie - BP 10423 - 54001 Nancy cedex

Diffusion : établissement de diffusion, d’impression et d’archives du commissariat de l’armée de Terre de Saint-Etienne

La version électronique de ce document est disponible sur le site http://www.cdef.terre.defense.gouv.fr (intraterre).

Contact : groupement simulation - Satory - : 01 39 67 37 02

Page 113: CAHIER Simulation