CE 404-SEC11

Embed Size (px)

Citation preview

  • 8/17/2019 CE 404-SEC11

    1/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    PRACTICE 1

    Horizonta l a l ignment

    2016CE 404. Highway Engineering

    1

    HIGHWAY ENGINEERING

    (CE 404)

    سم هللا لرحن لرحيم

     By

    Sight Distances

    2016CE 404. Highway Engineering

    2Stopping Sight Distance(SSD)

    brake reaction distance = d1 = v x t  (meters)  . t=2.5 sec

    If‘ V’ is the design speed in (m/sec) and ‘t’ is thetotal reaction time of the driver in seconds,

     brake reaction distance

     braking distance  braking distance on grade

    a deceleration rate of at least

    3.4 m/s2

  • 8/17/2019 CE 404-SEC11

    2/20

  • 8/17/2019 CE 404-SEC11

    3/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    Sight Distances

    2016CE 404. Highway Engineering

    5

    Passing Sight Distance (PSD)

    Sight Distances

    2016CE 404. Highway Engineering

    6Passing Sight Distance (PSD)

  • 8/17/2019 CE 404-SEC11

    4/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    Sight Distances

    2016CE 404. Highway Engineering

    7

    Passing Sight Distance (PSD)

    Sight Distances

    2016CE 404. Highway Engineering

    8Passing Sight Distance (PSD)

  • 8/17/2019 CE 404-SEC11

    5/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    Table

    2016CE 404. Highway Engineering

    9

    Table

    2016CE 404. Highway Engineering

    10

  • 8/17/2019 CE 404-SEC11

    6/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    Table

    2016CE 404. Highway Engineering

    11

    Table

    2016CE 404. Highway Engineering

    12

    Stopping Sight Distance in HorizontalCurve Design

    To find R min , V max

  • 8/17/2019 CE 404-SEC11

    7/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    Superelevation

    2016CE 404. Highway Engineering

    13

    oDesign of Superelevation

    Step‐1:The Superelevationfor75 percent of  design speed (v m/sec/kmph) is calculated 

    neglecting the friction.

    Step‐2:If  the calculated value of  ‘e’ is less than 6% (rural road),4%(urban road) the value 

    so obtained is provided. If  the value of  ‘e’ as step‐1 exceeds emax then provides maximum 

    Superelevation equal to emax and proceed with step‐3 or 4.

    Step‐3:Check the coefficient of  friction of  friction developed for the maximum value of  e 

    = emax at the full value of  design speed.

    If  the value of  f  thus calculated is less than 0.12 the Superelevation of  emax is safe for the 

    design speed. If  not, calculate the restricted speed as given in step ‐4.

    Superelevation

    2016CE 404. Highway Engineering

    14

    oDesign of SuperelevationStep‐4 The allowable speed (Va m/sec. or Va Kmph) at The curve is calculated by 

    considering the design coefficient of  lateral friction and the maximum Superelevation.

    If  the allowed speed, as calculated above is higher than the design speed, then the design 

    is adequate and provides a Superelevation of  ‘e’ equal to emax.

    •If  the allowable speed is less than the design speed, the speed is limited to the allowed 

    speed Va kmph

     calculated

     above

     and

     Appropriate

     warning

     sign

     and

     speed

     limit

     regulation

     

    sign are installed to restrict and regulate the speed.

  • 8/17/2019 CE 404-SEC11

    8/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    Superelevation runoff and Tangent runout

    2016CE 404. Highway Engineering

    15

    Normal crown

    Normal crown

    Full

    Superelevation

    Circular Arc Tangent

    Runout

    Runoff 

    PC

    PT

    1/3 Runoff 

    1/3 Runoff 

     Attainment of superelevation

    2016CE 404. Highway Engineering

    16

    Theoretical 

    point of  

    normal 

    crown 

    Theoretical  

    point of  full 

    superelevation  

  • 8/17/2019 CE 404-SEC11

    9/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    Superelevation

    2016CE 404. Highway Engineering

    17

    o Calculate superelevation runoff and Tangent runout

    To determine  Superelevation runoff 

    Step‐1: use  Maximum Relative Gradients

     Attainment of superelevation

    2016CE 404. Highway Engineering

    18

    Step‐2: The Adjustment Factor for Number of  Lanes Rotated is calculated by

    Or from this table 

  • 8/17/2019 CE 404-SEC11

    10/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

     Attainment of superelevation

    2016CE 404. Highway Engineering

    19

    Step‐3: The Superelevation runoff  is calculated by

    Step‐4: The Tangent runout is calculated by

    Step‐5: The Theoretical point of  normal crown is calculated by

    Step‐6: Theoretical point of  full superelevation  is calculated by

    Step‐7: Draw Diagram

    EXAMPLE 1

    2016CE 404. Highway Engineering

    20

     You are asked to design a horizontal curve for a two-lane road . The road has 3.65m lanes . Due toexpensive excavation, it is determined that amaximum of 10.4 m can be cleared from the road'scenterline toward the inside lane to provide forstopping sight distance . Also, local guidelines dictatea maximum superelevation of 0 .08 m/m . What is the

    highest possible design speed for this curve ?

  • 8/17/2019 CE 404-SEC11

    11/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    EXAMPLE 1

    2016CE 404. Highway Engineering

    21

    necessary middle ordinate distance is thedistance from the center1ine minus 1/2 theinside lane

     Assume the SSD = 105 m

    From table 3.1 at SSD =105 m calculate speed V= 70 km/h

    EXAMPLE 1

    2016CE 404. Highway Engineering

    22

     Assume the SSD = 130 m

    calculate middle ordinate distance

    this is less than 8.57 m ok 

    From table 3.1 at SSD =130 m calculate speed V= 80 km/h

    calculate middle ordinate distance

    this is larger than 8.57m, so design speed is too high

    so 70 km/h is the maximum design speed

  • 8/17/2019 CE 404-SEC11

    12/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    EXAMPLE 2

    2016CE 404. Highway Engineering

    23

     A horizontal curve on a single-lane highway has its PC at station 24 + 10 and its PI atstation 31 + 40 . The curve has a superelevation of 0 .06 m/m and is designed for 110km/h . What is the station of the PT?

    calculate radiusf= 0.11 from table 3.5R = 560m or we can use this equationcalculate tangent lengthT=PI station -. PC station = 730m

    knowing tangent length and radius, solve for central angle

    EXAMPLE 2

    2016CE 404. Highway Engineering

    24

     A horizontal curve on a single-lane highway has its PC at station 24 + 10 and its PI atstation 31 + 40 . The curve has a superelevation of 0 .06 m/m and is designed for 110km/h . What is the station of the PT?

    calculate length

    calculate PT stationPT station =PC station +. L =24+36.3

  • 8/17/2019 CE 404-SEC11

    13/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    EXAMPLE 3

    2016CE 404. Highway Engineering

    25

    surface is determined to have a coefficient of sidefriction of 0 .08, and the curve's superelevation is 0 .0 9 m/m . What is the stationing of the PC and PT and what is the safe vehicle speed ?

    calculate PC station

    PC station =PI station -. T = 840-155.5 = 684.5 m = 6+84.5

    EXAMPLE 3

    2016CE 404. Highway Engineering

    26

    calculate safe vehicle speed

    calculate radius

    calculate length

    calculate PT stationPT station =PC station +. L =9+84.5

    Since the road is 4 lanes with 3 m lanes, the distance from the

    centerline to centerline of first lane is 3 m+1.5 m

  • 8/17/2019 CE 404-SEC11

    14/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    EXAMPLE 4

    2016CE 404. Highway Engineering

    27

     A new interstate highway is being built with a design speed of 110 km/h . For oneof the horizontal curves, the radius (measured to the innermost vehicle path) istentatively planned as 275 m . What rate of superelevation is required for thiscurve?

    Calculate coefficient of side frictionf= 0 .11 from table 3.5

    Calculate superelevation e

    EXAMPLE 5

    2016CE 404. Highway Engineering

    28

    Calculate coefficient of side frictionf= 0 .11 from table 3.5

  • 8/17/2019 CE 404-SEC11

    15/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    EXAMPLE 5

    2016CE 404. Highway Engineering

    29

    calculate length

    calculate degree of curvature

    EXAMPLE 6

    2016CE 404. Highway Engineering

    30

    A horizontal curve on a single-lane freeway ramp is 122 m long, and the design speed of

    the ramp is 70 km/h . If the superelevation is 10% and the station of the PC is 17 + 35,

    what is the station of the PI and how much distance must be cleared from the center of the

    lane to provide adequate stopping sight distance ?

    station of the PC = 17 + 35 superelevation e = 10% ramp long L = 122m

    Design speed = 70km/h

    since the ramp is single-lane, R=R  v 

    calculate cleared distance M v 

    since the stopping sight distance SSD=105m fromtable 3.1 is less than ramp long

  • 8/17/2019 CE 404-SEC11

    16/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    EXAMPLE 7

    2016CE 404. Highway Engineering

    31

    Design speed = 60 km/h =16.7 m/s

    calculate the required SSD.calculate cleared distance M v 

     A horizontal curve with a radius of 245 m connects the tangents of a two-lane highway that has aposted speed limit of 60 km/h. If the highway curve is not superelevated, , determine thehorizontal sightline offset that a large billboard can be placed from the centerline of the insidelane of the curve, without reducing the required SSD. Perception-reaction time is 2.5 sec, and f=0.35.

    Radius = 245 m Perception-reaction time = 2.5 sec

    f= 0.35.

    EXAMPLE 8

    2016CE 404. Highway Engineering

    32

     A horizontal curve is to be designed for a two-lane road in mountainous terrain. Thefollowing data are known: Deflection angle: 40 degrees, tangent length= 133.12 m,station of PI: 2700+10.65, fs = 0.12, e = 0.08.Determine:(a) design speed(b) station of the PC(c) station of the PT(d) deflection angle and chord length to the first 100 ft station

    (a) From the given horizontal curve data, the radius can be calculated,

    calculate the design speed

  • 8/17/2019 CE 404-SEC11

    17/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    EXAMPLE 8

    2016CE 404. Highway Engineering

    33

     A horizontal curve is to be designed for a two-lane road in mountainous terrain. Thefollowing data are known: Deflection angle: 40 degrees, tangent length= 133.12 m,station of PI: 27+10.65, fs = 0.12, e = 0.08.Determine:(a) design speed(b) station of the PC(c) station of the PT

    (b) station of the PC c) station of the PT

    PC station =PI station - T. = 25+77.5 PT station =PC station + L = 25+77.5

    EXAMPLE 9

    2016CE 404. Highway Engineering

    34

    Building is located 5.8 m from the centerline of the inside lane of a curved section of highway with a 122 m radius. The road is level; e = 0.10. Determine the appropriatespeed limit (to the nearest 10 km/h) considering the following conditions: stopping sightdistance and curve radius.

    For stopping sightFor curve radius

    M v =5.8 m Radius = 122 m e = 0.10

    to the nearest 10 km/h

    to the nearest 10 km/h

  • 8/17/2019 CE 404-SEC11

    18/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    EXAMPLE 9

    2016CE 404. Highway Engineering

    35

    The stopping sight distance for a speed of 100 km/h and a down grade of 4.5% is mostnearly:(A) 194.5 m(B) 191.4 m(C) 199 m(D) 182.3

     Answer: (C)

    EXAMPLE 10

    2016CE 404. Highway Engineering

    36

    lane 7.3 m single carriageway road has a horizontal curve of radius of 600 m. If theminimum sight stopping distance required is 160 m, calculate in metres the requireddistance to be kept clear of obstructions if the length of the curve is:(a) 200 m;(b) 100 m.

    (a) The length of the curve 200 m > 160 m. So the required sight distance S lies wholly within the length of the curve.

    (b) The length of the curve 100 m < 160 m. So the required sight distance S lies

    outside the length of the curve. Applying equation (4.9), the required offset

  • 8/17/2019 CE 404-SEC11

    19/20

    2/28/20

    GE201: Dr.

     N.

     A.

     Siddiqui

    EXAMPLE 11

    2016CE 404. Highway Engineering

    37

    Calculate the safe stopping for design speed of 50 kmph for (a)two way traffic on atwo lane road (b) two-way traffic on a single lane road.? Assume coefficient offriction as 0.37 and reaction time of driver as 2.5 sec

    Stopping sight distance with single lane= 2*64.1 =122.8m

    SSD = 0.278vt + (v²/254f)= 0.278*50*2.5 + (50²/254*0.37)=61.4m

    Stopping sight distance when there are two lanes= stopping distance= 61.4m

    EXAMPLE 12

    2016CE 404. Highway Engineering

    38

    For second car, SD2= 0.278vt + (V²/254f)= 0.278*60*2.5 + (60²/(254*0.35))

    =82.2m

    Calculate the minimum sight distance required to avoid a head-oncollision of two cars approaching from the opposite direction at 90 and60 kmph. Assume a reaction time of 2.5 sec, coefficient of friction of 0.7and brake efficiency 50%?

    Sight distance to avoid head-on collision of twoapproaching cars = SD1+SD2= 153.2+82.2=235.4m

    f= 0.5*0.7 = 0.35

    Stopping sight distance for first car, SD1=0.278vt + (V²/254f)= 0.278*90*2.5 +(90²/(254*0.35))=153.6m

  • 8/17/2019 CE 404-SEC11

    20/20

    2/28/20

    Thank You

    2016CE 404. Highway Engineering

    39