29
Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1 , Pierre Haag 1 , JosØ Lages 1 , Dima Shepelyansky 2 1 Equipe PhAs - Physique ThØorique et Astrophysique Institut UTINAM - UMR CNRS 6213 Observatoire de Besanon UniversitØ de Franche-ComtØ, France 2 Laboratoire de Physique ThØorique - UMR CNRS 5152 UniversitØ Paul Sabatier, Toulouse, France Dynamics and chaos in astronomy and physics, Luchon 2016 Papers : J. L., D. Shepelyansky, Dark matter chaos in the Solar system , MNRAS Letters 430, L25-L29 (2013) G. Rollin, J. L., D. Shepelyansky, Chaotic enhancement of dark matter density in binary systems , A&A 576, A40 (2015) P. Haag, G. Rollin, J. L., Symplectic map description of Halley’s comet dynamics , Physics Letters A 379 (2015) 1017-1022

Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Chaotic capture of (dark) matter by binary systems

Guillaume Rollin1, Pierre Haag1, José Lages1, Dima Shepelyansky2

1Equipe PhAs - Physique Théorique et AstrophysiqueInstitut UTINAM - UMR CNRS 6213

Observatoire de BesançonUniversité de Franche-Comté, France

2Laboratoire de Physique Théorique - UMR CNRS 5152Université Paul Sabatier, Toulouse, France

– Dynamics and chaos in astronomy and physics, Luchon 2016 –

Papers :J. L., D. Shepelyansky, Dark matter chaos in the Solar system, MNRAS Letters 430, L25-L29 (2013)G. Rollin, J. L., D. Shepelyansky, Chaotic enhancement of dark matter density in binary systems, A&A 576, A40 (2015)P. Haag, G. Rollin, J. L., Symplectic map description of Halley’s comet dynamics, Physics Letters A 379 (2015) 1017-1022

Page 2: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

(Dark) matter capture – Three-body problem

Possible DMP capture (or comet capture) due to Jupiter and Sun rotations around the SSbarycenter.

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 3: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations

mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (wide encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 2009)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 4: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (wide encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 2009)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 5: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (wide encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 2009)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 6: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (wide encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 2009)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 7: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Restricted circular three-body problem

Newton’s equations mDMP � mX � m�

r =1− mX∥∥r�(t)− r

∥∥3

(r�(t)− r

)+

mX∥∥rX(t)− r∥∥3

(rX(t)− r

)G = 1, mX + m� = 1,

∥∥rX∥∥ ' 13km.s−1

= 1,∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (wide encounter)

F ∼mXm�

∥∥rX∥∥2 ' 10−3

Assuming a Maxwellian distribution of Galactic DMP veloci-ties

f (v)dv ∼ v2 exp(−3v2

/2u2)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among GalacticDMPsMost of the capturable DMPs have close to parabolic ap-proaching trajectories (E ∼ 0)Direct simulation of Newton’s equations is difficult : veryelongated ellipses, not many particles can be simulated,CPU time consuming (Peter 2009)

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50uDMP candidates

for capture

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 8: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Kepler map

x : Jupiter’s phase when particle at pericenter (x = ϕ/2π mod 1)w : particle energy at apocenter (w = −2E/mDMP)

Symplectic Kepler map

w = w + F(x) = w + W sin(2πx) ← energy change after a kickx = x + w−3/2 ← third Kepler’s law

Map already used in the study of :I Cometary clouds in Solar systems (Petrosky 1986)I Chaotic dynamics of Halley’s comet (Chirikov & Vecheslavov 1986)I Microwave ionization of hydrogen atoms (see e.g. Shepelyansky, scholarpedia)

Advantage : if the kick function F(x) is known the dynamics of a huge number of particles cansimulated.

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 9: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Let’s make a digression ...

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 10: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Halley map – Cometary caseKick functions of SS planets

-1

-0.5

0

0.5

1

1.5

0 0.25 0.5 0.75 1xi

F4 (

x 4 )

Mars (x10-5

)

-1

-0.5

0

0.5

1

F3 (

x 3 )

Earth (x10-4

)

-0.5

0

0.5

F2 (

x 2 )

Venus (x10-4

)

-0.2

-0.1

0

0.1

0.2F

1 (

x 1 )

Mercury (x10-6

)

-0.2

0

0.2

0 0.25 0.5 0.75 1xi

F8 (

x 8 )

Neptune (x10-4

)

-0.4

-0.2

0

0.2

0.4

F7 (

x 7 )

Uranus (x10-4

)

-1

-0.5

0

0.5

1

1.5

F6 (

x 6 )

Saturn (x10-3

)

-0.5

0

0.5

F5 (

x 5 )

Jupiter (x10-2

)

Rollin, Haag, J. L., Phys. Lett. A 379 (2015)1017-1022Our calculations match direct observationdata and previous numerical data (Yeomans& Kiang 1981)

F(x1, . . . , x8) '8∑

i=1

Fi(xi)

Fi(xi) = −2µi

∫ +∞

−∞∇(

r · ri

r3−

1‖r− ri‖

).r dt

Two main contributionsI Direct planetary Keplerian potentialI Rotating gravitational dipole potential

due to the Sun movement aroundSolar System barycenter

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 11: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Halley map – Cometary caseRenormalized kick function

fi(xi) = Fi(xi)/v2i /µi

Exponential decay with q for q > 1.5aiMore precisely

fi ' 21/4π

1/2(

qai

)−1/4

exp

(−

23/2

3

(qai

)3/2)

(Heggie 1975, Petrosky 1986, Petrosky & Broucke 1988, Roy & Haddow 2003, Shevchenko 2011,see also Rollin’s talk yesterday)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 12: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Halley map – Dynamical chaos

Poincaré section

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.25 0.5 0.75 1

x

w

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.25 0.5 0.75 1

x

w

0.45

0.46

0.47

0.48

0.49

0.5

0 0.25 0.5 0.75 1

x

w

0.45

0.46

0.47

0.48

0.49

0.5

0 0.25 0.5 0.75 1

x

w

0.27

0.28

0.29

0.3

0.31

0.32

0 0.25 0.5 0.75 1

x

w

1:6

1:7

2:132:133:19

3:19 3:19

3:203:20

3:20

0.27

0.28

0.29

0.3

0.31

0.32

0 0.25 0.5 0.75 1

x

w

1:6

1:7

2:132:133:19

3:19 3:19

3:203:20

3:20

Symplectic Halley map

x = x + w−3/2

w = w + F(x)

Chaotic dynamics of 1P/Halley

“Lifetime” ∼ 107 years

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 13: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Let’s come back to (dark) matter ...

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 14: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Dark map

Kick function determinationWe determine numerically the kick function for any pa-rabolic orbit (q, i, ω)

F(x) = Fq,i,ω(x)

By nonlinear fit we obtain analytical functions.

a : Halley’s cometb : q = 1.5, ω = 0.7, i = 0c : q = 0.5, ω = 0., i = π/2

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 15: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Dark matter capture – Dark map

Kick function determinationWe determine numerically the kick function for any pa-rabolic orbit (q, i, ω)

F(x) = Fq,i,ω(x)

By nonlinear fit we obtain analytical functions.

~25%

Chance to be captured with a givenenergy (w < 0↔ E > 0)

hq,i,ω(w)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 16: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Dark matter – Capture cross section

wcap =mXm�

∥∥rX∥∥2 ' 10−3

σp = π∥∥rX

∥∥2 area enclosed by Jupiter’s orbit

10-8

10-4

100

104

108

10-4

10-2

100

102

w / wcap

σ/

σp

| | | |

10-5

10-4

10-3

10-2

10-1

100

101

10-4

10-2

100

102

104

w / wcapd

N /

dw

/ N

p1/|w|

1/w2

σ/σp ' πm�mX

wcap

|w|in agreement with Khriplovich & Shepelyansky 2009

I Predominance of wide encounters as suggested by Peter 2009I Very small contribution from close encounters invalidating previous numerical results (Gould &

Alam 2001 and Lundberg & Edsjö 2004)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 17: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Dark map – Dark matter captureSimulation of the (isotropic) injection, the capture and the escape of DMPs during the whole lifetimeof the Solar system.Injection of Ntot ' 1.5× 1014 DMPs with energy |w| in the range [0,∞] with NH = 4× 109 DMPs inthe Halley’s comet energy interval [0,wH ].

105

106

107

108

109

101

102

103

104

105

106

107

t

Ncap

0 0.05 0.1 0.15 0.20

0.5

1

wx

10-6

10-5

10-4

10-3

10-2

10-1

1

(w)

10-4

10-3

10-2

10-1

10-6

10-5

10-4

10-3

10-2

10-1

1

w

(w)

w-3/2

(w)~alpha centauri

r<100au

Slow

Chaotization

Chaotic

component

Islands

of stability

Last invarian

KAM curve

I Equilibrium reached after a time td ∼ 107yr similar to the diffusive escape time scale of theHalley’s comet (Chirikov & Vecheslavov 1989) −→ Equilibrium energy distribution ρ(w)

I The dynamics of dark matter particles in the Solar system is essentially chaotic

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 18: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Back to real space – Density distribution of captured DMPs

Nowadays equilibrium density distribution ( tS = 4.5× 109yr )

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6

r

ρ(r)

0.001

0.01

0.1

0.2 0.5 5 1 10

r

ρ(r)/r2

I The profile of the radial density ρ(r) ∝ dN/dr is similar to those observed for galaxieswhere DMP mass is dominant. Indeed ρ(r) is almost flat (increases slowly) right afterJupiter orbit (r = 1) −→ according to virial theorem the circular velocity of visible matter isconsequently constant as observed e.g. in Rubin 1980Virial theorem : v2

m ∼∫ r

0 dr′ρ(r′)/r ∼ ρ(r) ∼ r2 (ρ(r)/r2) ∼here

r2r−1.53 ∼ r1/2

Ergodicity along radial dynamics : dµ ∼ dN ∼ ρ(r)dr ∼ dt ∼ dr/vr ∼ r1/2drConsequently, vm ∝ r0.25 (Dark map) to compare to vm ∝ r0.35 (Rubin 1980)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 19: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Back to real space – Density distribution of captured DMPs

Surface density

ρs(z, R) ∝ dN/dzdR

where

R =√

x2 + y2

Volume density

ρv(x, y, z) ∝ dN/dxdydz

Ecliptic

Ecliptic

Ecliptic

Ecliptic

z

x1

1

y

x1

1

y

x

1

1

z

x

1

1

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 20: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?

The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 21: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 22: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 23: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

How much dark matter is present in the Solar system ?The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞0

dv v f (v)σ(v) ≈ 35ρgtSG∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =3MX4πr3X≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solarsystem, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 ofthe density of actually capturable DMPs.

=⇒

The long rangeinteraction capturemechanism is veryefficient for binarysystems (1+2) with

m1 � m2

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 24: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

(Dark) matter capture in binary systems

104

10-2

10-1 1 10

1

(u)

u

chaoti

c e

nhancem

en

t fa

cto

r

w ~w ~0.005cap H

w > ucap

1/2w < u

cap

1/2

u=220km/s

G. Rollin, J. L., D. Shepelyansky, A&A 576, A40 (2015)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 25: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

(Dark) matter capture in binary systems

104

10-2

10-1 1 10

1

(u)

u

chaoti

c e

nhancem

en

t fa

cto

r

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50u

DMP candidates

for capture

w ~w ~0.005cap H

wcap

1/2

w << ucap

w > ucap

1/2w < u

cap

1/2

1/2

u=220km/s

G. Rollin, J. L., D. Shepelyansky, A&A 576, A40 (2015)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 26: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

(Dark) matter capture in binary systems

104

10-2

10-1 1 10

1

(u)

u

chaoti

c e

nhancem

en

t fa

cto

r

0

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50u

DMP candidates

for capture

w ~w ~0.005cap H

0

5

10

15

20

25

30

35

0 0.02 0.04 0.06 0.08 0.1u wcap

1/2

wcap

1/2

w ~ ucap

w << ucap

w > ucap

1/2w < u

cap

1/2

1/2

1/2

e.g.

Black hole

+

Star companion

V~c/40star

u=220km/s

G. Rollin, J. L., D. Shepelyansky, A&A 576, A40 (2015)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 27: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

(Dark) matter capture in binary systems

G. Rollin, J. L., D. Shepelyansky, A&A 576, A40 (2015)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 28: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

(Dark) matter capture in binary systems

G. Rollin, J. L., D. Shepelyansky, A&A 576, A40 (2015)

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016

Page 29: Chaotic capture of (dark) matter by binary systems · UTINAM IInnssttiitut Chaotic capture of (dark) matter by binary systems Guillaume Rollin 1, Pierre Haag , José Lages1, Dima

UTINAMInstitut

UTINAMInstitut

Thank You !

Dynamics and chaos in astronomy and physics, Luchon, Sept. 22th 2016