14
Sirius T erm S - Livre du professeur Chapitre 26. Transmettre et stocker de l’information © Nathan 2012 24 / 37 Exercices d’application 5 minutes chrono ! 1. Mots manquants a. émetteur ; récepteur b. pixels ; octets ; octet c. une infinité ; un nombre fini d. analogique ; numérique ; fréquence d’échantillonnage ; petit ; grand e. guidée ; libre f. grand ; bits −1 (ou octets −1 ) g. dB ; dBm −1 h. d’interférence ; diffraction 2. QCM a. magenta b. le signal analogique contient plus d’informations c. se transmet de manière plus fidèle d. 20 dB e. 101 ---------------------------------------------------------------------------------------------------------------- Compétences exigibles 3. Dispositif Téléphone mobile Téléphone « pot de yaourt » Type de signal Ondes électromagnétiques Ondes mécaniques Milieu de propagation Air (puis câbles en cuivre ou de fibres optiques des réseaux de communication) Fil Émetteur Antenne du téléphone Fond du pot de yaourt Récepteur Antenne du téléphone Fond du pot de yaourt -----------------------------------------------------------------------------------------------------------------

Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 24 / 37

Exercices d’application

5 minutes chrono !

1. Mots manquants

a. émetteur ; récepteur

b. pixels ; octets ; octet

c. une infinité ; un nombre fini

d. analogique ; numérique ; fréquence d’échantillonnage ; petit ; grand

e. guidée ; libre

f. grand ; bits−1

(ou octets−1

)

g. dB ; dBm−1

h. d’interférence ; diffraction

2. QCM

a. magenta

b. le signal analogique contient plus d’informations

c. se transmet de manière plus fidèle

d. 20 dB

e. 101

----------------------------------------------------------------------------------------------------------------

Compétences exigibles

3.

Dispositif Téléphone mobile Téléphone « pot de yaourt »

Type de signal Ondes électromagnétiques Ondes mécaniques

Milieu de

propagation

Air (puis câbles en cuivre ou de

fibres optiques des réseaux de

communication)

Fil

Émetteur Antenne du téléphone Fond du pot de yaourt

Récepteur Antenne du téléphone Fond du pot de yaourt

-----------------------------------------------------------------------------------------------------------------

Page 2: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 25 / 37

4. Convergence entre téléphonie fixe et mobile, convergence entre l’audiovisuel et les

communications électroniques. Les communications tendent à toutes transiter par le réseau

Internet. Voici ci-dessous un schéma issu du site Internet :

http://ant.developpement-durable.gouv.fr

-----------------------------------------------------------------------------------------------------------------

5. a. Le premier pixel est bleu, le second est jaune (superposition d’une lumière rouge et

d’une lumière verte d’intensité identique).

b. Le cyan est obtenu par superposition d’une lumière verte et bleue dans des proportions

identiques, donc un pixel cyan a pour code RVB : « 0 ; 255 ; 255 ».

c. Un pixel blanc en niveau de gris est associé à la valeur la plus grande d’un octet : « 255 ».

-----------------------------------------------------------------------------------------------------------------

6. a. Un signal analogique transmet une information représentée par une infinité de valeurs

(sous la forme de variations continues d’une grandeur), alors qu’un signal numérique transmet

une information associée à un nombre fini de valeurs déterminées.

b. Pour le signal (a), la tension ne prend que deux valeurs différentes, il s’agit donc d’un

signal numérique. Pour le signal (b), la tension prend une infinité de valeurs différentes, il

s’agit donc d’un signal analogique.

-----------------------------------------------------------------------------------------------------------------

7. a. Ces signaux sont numériques car ils sont représentés par un nombre fini de valeurs

déterminées.

b. Le pas p d’une conversion correspond au plus petit écart de tension possible entre deux

points de mesure. Dans les deux cas, p = 0,05 V.

c. Dans le premier cas, la période d’échantillonnage vaut Te = 1 ms, donc la fréquence

d’échantillonnage vaut :

3

e 3

e

1 110 Hz

10f

T , soit fe = 1 kHz

Dans le deuxième cas, fe = 2 kHz.

Page 3: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 26 / 37

d. La numérisation est la plus fidèle dans le second cas car davantage de points de mesure

sont enregistrés pour une même durée d’acquisition (de manière générale, une acquisition est

d’autant plus fidèle que le pas est petit et que la fréquence d’échantillonnage est grande).

----------------------------------------------------------------------------------------------------------------

8. a. La télévision n’est pas fournie par les réseaux de téléphonie classique car, dans les câbles

en cuivre de ces réseaux, l’atténuation est trop importante pour des débits élevés comme ceux

nécessaires aux services de télévision.

b. Un opérateur de télévision par câble doit parfois régénérer le signal avant de le fournir à un

abonné car l’atténuation dans les câbles coaxiaux est assez élevée pour des débits élevés

comme ceux nécessaires aux services de télévision.

c. Les réseaux internationaux de télécommunication doivent transmettre rapidement beaucoup

de données sur de longues distances. La fibre optique est donc privilégiée car elle permet de

transmettre une information avec un grand débit et peu d’atténuation.

-----------------------------------------------------------------------------------------------------------------

9. 30 images de 5,0 Ko doivent être transmises en une seconde, donc le débit binaire

nécessaire à la connexion est de 30 × 5,0 = 1,5×102 Kos

−1.

-----------------------------------------------------------------------------------------------------------------

10. L’affaiblissement en puissance est tel que :

E

S

110log

donc : E

S

0,20 50log 1,0 dB

10 10

ainsi : E

S

10

Le signal est dix fois moins puissant en sortie qu’en entrée de câble.

-----------------------------------------------------------------------------------------------------------------

11. a. Dans le cas où le spot laser est situé sur une alvéole :

- des rayons du faisceau laser se réfléchissent sur un plat et d’autres sur un creux ;

- ces deux types de rayons sont en opposition de phase lorsqu’ils se réfléchissent ;

- le signal détecté est minimum (interférences destructives).

b. Dans le cas où le spot laser n’est pas situé sur une alvéole :

- les rayons du faisceau laser se réfléchissent sur un plat ;

- tous les rayons réfléchis sont en phase ;

- le signal détecté est maximum (interférences constructives).

-----------------------------------------------------------------------------------------------------------------

12. La capacité de stockage d’un disque optique est limitée par le phénomène de diffraction.

En effet, la diffraction du faisceau laser par le système de focalisation lui impose de converger

non pas en un point, mais sur une certaine surface (le spot). Ainsi, la taille des alvéoles, donc

l’information stockée sur le disque, est limitée car le principe de lecture contraint les alvéoles

d’avoir une taille proche de celle du spot.

Afin d’augmenter la capacité des disques, on cherche à limiter le phénomène de diffraction

pour réduire la taille du spot, et donc des alvéoles, en :

- utilisant un laser d’écriture de longueur d’onde plus petite (IR, rouge puis violet pour

les lasers des technologies CD, DVD puis Blu-ray) ;

- concevant un système de focalisation plus convergent.

-----------------------------------------------------------------------------------------------------------------

Page 4: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 27 / 37

Exercices de méthode

13. Exercice résolu.

-----------------------------------------------------------------------------------------------------------------

14. 1. a. Le premier support depuis le domicile pour la téléphonie par Internet avec ADSL est

le câble téléphonique classique (documents 1 et 2).

b. Le transmission d’informations par ADSL n’affecte pas les communications classiques car

cette technologie utilise d’autres fréquences (plus grandes) que celles nécessaires au transport

de la voix par téléphonie classique (documents 1 et 3).

2. a. L’ADSL2+ autorise des débits plus importants car cette technologie utilise davantage de

fréquences différentes pour les signaux transmettant l’information (document 3).

b. Le domicile est en général éloigné du répartiteur le plus proche, donc la transmission sur le

câble du réseau de téléphonie classique est longue et ne permet pas d’obtenir des débits plus

importants que ceux utilisant la technologie ADSL (document 4).

-----------------------------------------------------------------------------------------------------------------

15. a. L’indication « 12 Mpixels » faire référence au nombre de pixels composant les

photographies enregistrées par l’appareil, comme le montre la dimension « 4000 × 3000 »

correspondant aux nombres de pixels en largeur et hauteur.

En codage RVB, un pixel est décrit par trois octets.

Ainsi, 12×106

× 3 = 3,6×107 octets codent une photographie.

Puisque 1 Mo = 1024 Ko = (1024)² octets, la conversion du nombre précédent donne :

3,6×107 octets =

7

2

3,6 10

1024

Mo = 34 Mo

b. La taille indiquée dans les propriétés du fichier image est bien plus petite puisqu’elle vaut

3,06 Mo. L’hypothèse selon laquelle les pixels de la photographie sont enregistrés par le code

RVB est donc fausse.

En effet, l’image numérique est enregistrée au format JPEG, dont le but est de fournir un

fichier compressé n’attribuant pas un code de trois octets à chaque pixel de l’image, sans que

la qualité d’une photographie habituelle ne soit beaucoup affectée.

-----------------------------------------------------------------------------------------------------------------

16. Exercice résolu.

-----------------------------------------------------------------------------------------------------------------

17. 1. a.

Atténuation Rapport des

puissances

Part de la puissance

transmise

Part de la puissance

dissipée

1,0 dB 1,3 79 % 21 %

2,0 dB 1,6 63 % 37 %

3,0 dB 2,0 50 % 50 %

10 dB 10 10 % 90 %

20 dB 100 1 % 99 %

30 dB 1000 0,1 % 99,9 %

40 dB 10000 0,01 % 99,99 %

Page 5: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 28 / 37

b. Avantage : l’atténuation A en dB a des valeurs qui restent simples pour des situations où

l’affaiblissement est très différent.

Inconvénient : la donnée de l’atténuation A ne permet pas de connaître rapidement la fraction

de la puissance en sortie par rapport à la puissance du signal en entrée de ligne.

c. On a :

A =

Pour un signal donné, le coefficient d’atténuation étant une caractéristique de la ligne, il est

constant, donc l’atténuation d’un signal est proportionnelle à la longueur de la ligne.

2. a. La puissance est divisée par 3, donc :

e

s

3 ; d’où e

s

10log 10 log(3) 4,8 dBA

b. L’atténuation de la transmission vaut :

A = 0,220 × 100 = 22,0 dB

Le rapport des puissances vaut donc :

/10 22,0/10e

s

10 10 158A

La puissance est divisée par 158 en sortie de câble.

Les pertes correspondent à la part de puissance dissipée :

s

e

11 1 0,994 99,4 %

158

-----------------------------------------------------------------------------------------------------------------

18. a. D’après les données, un caractère est codé par un octet. Le SMS comportant 35

caractères, il y a transmission de 35 octets.

Le débit binaire correspond au nombre de bit ou octets transmis en une seconde, donc le débit

de cette transmission est de :

35

1, 23= 28,5 octets

−1

b. D’après les données, le codage RVB est utilisé ici, donc trois octets sont nécessaires pour

représenter un pixel. L’image comportant 320 × 240 = 76 800 pixels est donc décrite par :

3 × 76 800 = 230 400 octets

Pour la valeur du débit estimée précédemment, la durée de la transmission vaut :

230400

28,5= 8,08×10

3 s = 134 min = 2,25 h

Ce résultat n’est pas cohérent avec notre quotidien, puisque l’envoi d’une image classique,

comme ici, ne dure que quelques secondes. L’évaluation du débit de la transmission à la

question précédente est faussée par la durée d’initialisation plus grande que la durée de la

transmission des données. Il faudrait connaître précisément cette durée d’initialisation pour

établir une valeur significative du débit, qui serait bien plus importante que celle établie à la

réponse précédente.

-----------------------------------------------------------------------------------------------------------------

Page 6: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 29 / 37

Exercices d’entraînement

19. D’après les caractéristiques du tableau, la technologie de communication en champ proche

a l’avantage, vis-à-vis du service de paiement sans contact :

- d’être de courte portée (quelques centimètres) afin que le paiement s’effectue de

manière volontaire par approche du téléphone mobile vers le lecteur et que la

transmission des données bancaires soit sécurisée (pas d’interception des données,

bien qu’elles soient transmises dans l’air en propagation libre) ;

- de nécessiter une durée courte (inférieure à 0,1 s) pour établir la connexion pour que

le paiement soit rapide.

Le débit de la communication, limité dans le cas de la communication en champ proche, n’est

pas restrictif pour un paiement car l’échange de données bancaires ne fait pas intervenir

beaucoup de données.

-----------------------------------------------------------------------------------------------------------------

20. a. C’est le débit binaire d’une transmission qui est indiqué sur le graphique.

b. La télévision par Internet, nécessitant un débit de plusieurs Mbits−1

, n’était pas possible

en 1995.

c. ADSL (Asymetric Digital Subscriber Line) : ligne numérique asymétrique d'abonné.

FTTH (Fiber to the home) : fibre optique jusqu’au domicile.

Supports en abord de domicile :

- câble de cuivre du réseau téléphonique classique pour la technologie ADSL ;

- fibre optique pour la technologie FTTH.

-----------------------------------------------------------------------------------------------------------------

21. a. Par mesure sur les graphiques :

Ue = 4,0 V et Us = 2,0 V ; d’où e

s

2,0U

U

donc le signal subit un affaiblissement en amplitude d’un facteur deux.

b. Si les puissances sont proportionnelles aux carrés des amplitudes, alors : 2

e e e

s s s

log log 2logU U

U U

Or : e

s

110log ;

donc : e

s

120log

U

U .

A.N. : 1120log(2,0) 0,38 dB m

16

.

-----------------------------------------------------------------------------------------------------------------

Page 7: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 30 / 37

22. a. La fréquence d’échantillonnage doit être maximale pour que la numérisation soit la

plus fidèle possible.

b. La fréquence d’échantillonnage fe est maximale lorsque les N = 1 000 échantillons

possibles sont réalisés. Pour l’enregistrement de durée t, cela revient à ce que la durée

entre deux mesures soit :

50,0404,0 10 s

1000

t

N

Cette durée correspond à la période d’échantillonnage Te la plus courte possible, donc la

fréquence d’échantillonnage maximale vaut :

4

e 5

e

1 12,5 10 Hz

4,0 10f

T

c. Ici fe > 20f, donc l’échantillonnage est satisfaisant.

-----------------------------------------------------------------------------------------------------------------

23. a. Chaque chromophore possède une intensité lumineuse liée au nombre compris entre 0

et 255 (valeur de l’octet) qui lui correspond. Le nouveau code du pixel montre que les

intensités lumineuses des chromophores sont plus petites, donc l’image a été assombrie.

b. Après sélection d’une zone restreinte autour de chaque œil, le logiciel convertit, dans le

fichier image, les pixels correspondant rouges, de codes proches de « 255 ; 0 ; 0 », en pixels

noirs, de codes proches de « 0 ; 0 ; 0 ».

-----------------------------------------------------------------------------------------------------------------

24. a. Cette image comporte 3 × 100 × 200 = 60 000 pixels.

b. En codage RVB, un pixel est défini par trois octets.

La taille de l’image est donc : 3 × 60 000 = 180 000 octets.

Puisque 1 Ko = 1024 octets, la taille du fichier vaut aussi :

180000

1024= 175,781 Ko

c. Capacité du disque en Ko :

4,0 Go = 4,0 × 1024 Mo = 4,0 × (1024)2 Ko = 4,2×10

6 Ko

On peut donc enregistrer : 64,2 10

175,781

= 2,4×10

4 images de ce type

-----------------------------------------------------------------------------------------------------------------

25. a. La voix est un signal analogique car elle transmet des informations sous la forme de

variations continues de l’intensité sonore (l’information qu’elle contient est associée à une

infinité de valeurs).

Elle est convertie en signal numérique au cours d’une communication VoIP, car l’information

est alors représentée par un nombre limité de valeurs définies de la tension à transmettre.

b. Les deux paramètres essentiels de la modulation d’impulsion codée sont la fréquence

d’échantillonnage et la résolution (nombre de bits) du convertisseur.

Pour l’exemple illustré :

- la fréquence d’échantillonnage vaut 4

e 6

e

1 14,3 10 Hz

23 10f

T

;

- il y 16 = 24 valeurs différentes possibles pour l’amplitude, donc le convertisseur a

une résolution de 4 bits.

-----------------------------------------------------------------------------------------------------------------

Page 8: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 31 / 37

26. a. Une démarche possible :

- On identifie, grâce à la première photographie, les principales raies d’émission du mercure.

- On utilise les positions x (en pixels, à partir de la limite gauche de la photographie) de ces

raies sur la deuxième photographie, ainsi que les longueurs d’onde correspondantes

indiquées dans les données de l’exercice, pour réaliser une courbe d’étalonnage x = f() (ou

pour attribuer une échelle au document, c’est-à-dire une correspondance position (en

pixels) ↔ longueur d’onde (en nm), si la dispersion varie linéairement avec la longueur

d’onde).

- On détermine les longueurs d’onde des raies principales du cadmium en exploitant la

courbe d’étalonnage (ou en utilisant l’échelle de la photographie).

b. Détermination des longueurs d’onde des raies principales du cadmium :

- En utilisant SalsaJ (sélection rectangulaire de la plupart de la photo du deuxième

spectre), on obtient le profil en intensité de la photographie. On utilise l’option

"liste", puis on sélectionne toutes les coordonnées (CTRL + A), données qui sont

copiées dans un tableur-grapheur (par exemple dans Regressi, faire : « Fichier » /

« Nouveau » / « Presse-papiers »), permettant un pointage précis des positions x (en

pixels) des raies.

- On réalise le pointage des positions x des 5 raies du mercure identifiées d’après le

premier spectre. Les valeurs obtenues, attribuées aux longueurs d’onde données dans

l’énoncé, sont les suivantes :

Position de la raie sur la

photographie (en pixels) 380 548 676 1147 1284

Longueur d’onde du

rayonnement (en nm) 365 405 436 546 578

Page 9: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 32 / 37

- Dans le tableur, on réalise un nouveau fichier (sous Regressi : « Fichier » /

« Nouveau » / « Clavier ») pour rentrer manuellement ces mesures. On trace la

courbe d’étalonnage x = f() : les points sont alignés (écart relatif du modèle affine de

0,22 %), donc la dispersion est une fonction affine de la longueur d’onde (la

dispersion varie linéairement en fonction de la longueur d’onde dans le cas d’un

réseau).

- Le pointage ou le calcul à partir du modèle donne alors les valeurs de longueurs

d’onde suivantes pour les raies du cadmium :

Position de la raie sur la

photographie (en pixels) 809 858 984 1580

Longueur d’onde du

rayonnement (en nm) 466 480 508 648

Remarque : une des raies (celle à 481 nm) est en fait due à la présence de zinc dans les

vapeurs de la deuxième source, qu’il a été choisi de passer sous silence pour ne pas

compliquer cet exercice.

----------------------------------------------------------------------------------------------------------------

27. Éléments de réponse a. Introduction possible

Le Wi-Fi et le Li-Fi sont des technologies de transmission libre (sans fil). Le Wi-Fi utilise des

ondes hertziennes, et le Li-Fi des ondes lumineuses.

Le Wi-Fi est une technologie de réseau informatique sans fil à haut débit, qui est devenue un

moyen d'accès à Internet populaire, avec beaucoup d’avantages mais aussi des inconvénients.

b. Avantages du Wi-Fi (d’après le document 1)

- propagation libre donc utilisation nomade ;

- haut débit d’information ;

- débits symétriques ;

- installation simple (pas de câble) ;

- coûts réduits ;

- bande de fréquence d'utilisation libre ;

- de nombreux équipements disposent de cette technologie ;

Page 10: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 33 / 37

- le Wi-Fi peut apporter une solution d'accès alternative dans les zones blanches de

l'ADSL ;

- l'avènement de nouveaux objets communicants et leurs usages promet encore un bel

avenir au Wi-Fi ;

- des protocoles de sécurité existent pour cette transmission libre donc forcément

disposée au piratage.

c. Problèmes liés au Wi-Fi (d’après les documents 1, 2 et 3)

Pour le Wi-Fi à domicile :

- portée limitée (cela peut-être un avantage pour la sécurité) et sensibilité aux

obstacles ;

- cohabitation des fréquences, problèmes d’interférences et de brouillage ;

- manque de sécurité parfois.

Pour Wi-Fi en point d’accès au réseau Internet :

- portée limitée (cela peut-être un avantage pour la sécurité) et sensibilité aux

obstacles ;

- cohabitation des fréquences, problèmes d’interférences et de brouillage, donc

limitation de la capacité de transfert de données sur les fréquences hertziennes déjà

saturées (problème de "capacité") ;

- problèmes énergétiques et économiques ("efficacité") ;

- accès pas possible partout ("disponibilité") ;

- problème de piratage ("sécurité").

d. Solutions qu’apporterait le Li-Fi (d’après les documents 2 et 3)

- il réduirait le problème de capacité de transmission de données car les fréquences

utilisables sont davantage disponibles dans le domaine visible (et pas d’interférences si

transmission en ligne droite) ;

- il serait plus efficace car utiliserait des dispositifs d’éclairage utiles par ailleurs ;

- il serait disponible dans certains cas où le Wi-Fi ne l’est pas (hôpitaux, avions, …) ;

- il serait plus sécurisé car la transmission serait limitée à la zone d’éclairage.

e. Conclusion possible

Le Wi-Fi ne pourra sans doute être remplacé par le Li-Fi que pour des usages très particuliers.

Mais le Li-Fi peut être un autre moyen de transmission pour éviter le problème de capacité

des transferts de données, lié à la limitation du spectre encore disponible.

La sécurité n’est pas véritablement un problème du Wi-Fi, des solutions existent, qu’il faudra

perfectionner.

Le problème énergétique n’est pas un problème pour le Wi-Fi à domicile, le Li-Fi peut être

une solution parmi d’autres pour réduire la consommation énergétique des

télécommunications.

-----------------------------------------------------------------------------------------------------------------

Page 11: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 34 / 37

Exercices de synthèse

28. a. Le signal transmis par la tête de la parabole est numérique car l’information qu’il

transmet est associé à deux valeurs de la phase (valeur positive ou négative) auxquelles

correspondent deux valeurs binaires représentant l’information.

b. E

S

110log ; donc : E 10

S

10

; d’où : 10S E 10

.

Ici, le signal possède une fréquence de 2 400 MHz, donc l’atténuation de la transmission vaut

38,8 dB pour une longueur de câble de 100 m, d’après les indications du fabricant.

Dans ces conditions, le coefficient d’atténuation du câble vaut :

138,80,388 dB m

100

Or, la longueur du câble vaut = 25 m d’après les indications du fabricant.

Ainsi : 0,388 25

10S 2,0 10 0,21 mW

----------------------------------------------------------------------------------------------------------------

29. a. La technologie Blu-ray utilise un laser de lecture de petite longueur d’onde par rapport

aux technologies CD et DVD, afin de réduire l’effet de la diffraction sur la taille du spot laser.

Ce dernier n’est pas aussi étalé et permet la lecture de données enregistrées par des alvéoles

plus petites : ceci augmente la capacité de stockage du disque.

b. Émetteur : lecteur Blu-ray ; récepteur : télévision ; support de propagation : câble HDMI.

c. La résolution est de 16 bits sur deux voies, donc il y a 2 × 16 = 32 bits de données pour

chaque échantillon enregistré. D’après la fréquence d’échantillonnage utilisé pour

l’enregistrement, il y a, en une seconde, 44,1 × 103 échantillons qui sont transférés, donc le

débit de la transmission audio est de :

32 × 44,1×103 = 1,41×10

6 bits

−1 = 1,41 Mbits

−1

d. Dans l’hypothèse du codage RVB, trois octets sont nécessaires à la détermination d’un

pixel, donc une image est décrite par :

3 × 1 920 × 1 080 = 6 220 800 octets

e. D’après la fréquence d’affichage du téléviseur, 60 images sont traitées en une seconde,

donc le débit de la transmission vidéo est de :

60 × 6 220 800 = 3,7×108 octets

−1

Un octet correspondant à 8 bits, le débit se ramène à :

8 × 3,7×108 = 3,0×10

9 bits

−1 = 3,0 Gbits

−1

Ce débit est plus de mille fois supérieur à celui lié à la transmission du signal audio.

f. Si on ne considère que le signal vidéo, la capacité totale du disque permet une durée

d’enregistrement de : 3

2

8

50 (1024)1,5 10 s

3,7 10

, soit à peine plus de deux minutes

Ce résultat n’est pas satisfaisant car on n’a pas pris en compte la compression des données

vidéo alors décrites par un nombre plus faible d’octets sans modifier sensiblement la qualité

de la vidéo. La durée totale d’enregistrement est ainsi bien plus grande en pratique.

----------------------------------------------------------------------------------------------------------------

Page 12: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 35 / 37

30. a. Contrairement à l’œil, l’appareil photographique est sensible à une partie du domaine

du rayonnement infrarouge.

b. Par mesure graphique, on détermine la période du signal : 5T = 550 ms, donc T = 110 ms.

Ainsi : 3

1 19,09 Hz

110 10f

T

.

c. Il s’agit d’un signal numérique car l’information qu’il transporte est binaire. Un 1 est codé

par une transition haute et un 0 par une transition basse de la tension toutes les 1 800 s.

d. Les enregistrements ont des fréquences d’échantillonnages bien trop petites pour pouvoir

apprécier cette fréquence.

Pour avoir accès à cette fréquence, l’enregistrement aurait dû utiliser une fréquence

d’échantillonnage fe au moins du même ordre que fIR.

Or, pour fe = fIR ≈ 1014

Hz, il s’écoule une durée entre deux mesures de valeur :

14

e

e IR

1 110 sT

f f

Le temps de réponse du montage captant le signal étant de 10 s = 1,0×10−5

s, il ne peut pas

faire apparaître des variations rapides comme celles qui seraient nécessaires pour déterminer

sur l’enregistrement la fréquence du signal infrarouge.

----------------------------------------------------------------------------------------------------------------

31. a. Signal 1 : deux niveaux ; signal 2 : six niveaux.

b. Signal 1 : 1 bit est transmis toutes les 10 s, donc le débit binaire est de :

5 1 2 1

6

11,0 10 bit s 1,0 10 kbit s

10 10

Signal 2 : 3 bits sont transmis toutes les 20 s, donc le débit binaire est de :

5 1 2 1

6

31,5 10 bit s 1,5 10 kbit s

20 10

Le signal 2 permet un débit de transmission plus grand.

c. Les valeurs plus petites du signal s’expliquent par le phénomène d’affaiblissement

(dissipation d’énergie vers le milieu extérieur).

d. Si les puissances sont proportionnelles aux carrés des tensions, alors : 2

e e e

s s s

log log 2logu u

u u

Or : e

s

110log

avec la longueur du parcours considéré dans le câble.

Donc : e

s

120log

u

u

D’autre part, par comparaison avant et après transmission, on peut considérer que le rapport

des tensions vaut deux environ pour chacun des signaux.

Ainsi : 1120log(2) 0,06 dB m

100

e. C’est dans le cas (d) que des erreurs de transmission risquent d’être nombreuses, car des

niveaux de tension se chevauchent à cause du bruit.

Dans le cas (c), on peut facilement repérer les niveaux haut et bas, par exemple en fixant le

critère suivant :

- pour une tension supérieure à 1 V, le niveau est haut ;

- pour une tension inférieure à 1 V, le niveau est bas.

Page 13: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 36 / 37

f. Pour avoir une transmission de haut débit, il faut que le signal porteur de l’information varie

rapidement. Or, pour des fréquences grandes, l’atténuation devient importante et risque de

faire superposer les niveaux de tensions (comme c’était le cas pour le signal (b) étudié

précédemment) pour des transmissions à grande distance, rendant le signal reçu inexploitable.

g. Les répéteurs ont pour rôle de régénérer le signal numérique à l’identique de ce qu’il était à

l’émission, de manière à s’affranchir de l’atténuation lors de la propagation du signal.

Il est probable que le traitement du signal par les répéteurs nécessite une certaine durée qui

affecte le débit de la transmission.

----------------------------------------------------------------------------------------------------------------

32. Exemples d’éléments que l’on peut retrouver dans la synthèse

a. Introduction possible

Les offres des fournisseurs d’accès à Internet répondent à des situations variées qui doivent

prendre en compte les multiples besoins de la population et les différentes configurations des

territoires.

b. Différents besoins des usagers

Les besoins diffèrent d’un usager à l’autre et selon la situation dans laquelle il se trouve.

Certains usagers ont besoin :

- d’un débit très élevé (en particulier pour les usages multimédia) ;

- de temps de réponse courts (applications interactives comme les jeux vidéo en

ligne) ;

- d’une connexion permanente (mobilité de la téléphonie mobile par exemple) ;

- de débits symétriques (pour le télétravail par exemple).

D’autres privilégient le coût de l’abonnement.

c. Distinction entre les niveaux de transport, collecte et desserte

Le réseau Internet est structuré en trois niveaux aux besoins différents :

- le réseau de transport (au niveau international et national) doit supporter des débits

énormes et utilise uniquement la fibre optique comme milieu de propagation des

signaux, car celle-ci permet les meilleurs débits et des atténuations des signaux

acceptables sur de longues distances ;

- le réseau de collecte (au niveau de la région et du département) utilise de la même

manière la fibre optique, parfois le réseau téléphonique avec les technologies DSL

moins performantes (débits moyens et portée limitée à cause d’une atténuation bien

plus importante) mais nécessitant moins d’investissement, et les technologies sans fil

(faisceaux hertziens, liaison satellite, …) permettent un accès géographiquement plus

large sans nécessité de réaliser beaucoup d’infrastructures ;

- le réseau de desserte (au niveau des villes et des quartiers) nécessite des débits plus

limités, mais il doit atteindre un maximum d’abonnés et utilise ainsi divers supports et

technologies de transmission selon la configuration des territoires.

d. Configuration du territoire et desserte des communications

Les technologies utilisées en desserte sont en grande partie déterminées par la configuration

du territoire :

- les secteurs urbains et denses permettent l’emploi de technologies performantes mais

souvent à fort investissement (fibres optiques jusqu’au domicile, ADSL2+, 3G,

WiMAX, …) ;

- les secteurs isolés et peu denses imposent d’autres technologies moins performantes

du fait de l’atténuation importante pour les grandes distances de transmission (ADSL

au lieu de ADSL2+, ReADSL, …) mais nécessitant des investissements moins

conséquents (ADSL ou ReADSL en propagation guidée, WiMAX ou Wi-Fi en

propagation libre, …) ;

Page 14: Chapitre 26 Transmettre et stocker de l'informationtdcprod.free.fr/correction_exos_TS/TS_chap_26.pdf · 2014-11-11 · Le débit de la communication, limité dans le cas de la communication

Sirius Term

S - Livre du professeur

Chapitre 26. Transmettre et stocker de l’information

© Nathan 2012 37 / 37

- les secteurs avec peu d’obstacles et des points hauts se prêtent bien aux réseaux

hertziens (WiMAX, Wi-Fi, …) ;

- les infrastructures présentes (réseau téléphonique, réseau optique déjà présent, …)

permettent de réduire les coûts de mise en œuvre de certaines technologies en évitant

des travaux lourds.

e. Complémentarité des technologies de desserte

Les technologies au niveau de la desserte peuvent se compléter :

- dans les zones peu denses, la desserte haut débit par les réseaux filaires n'est pas

toujours assurée, on parle de « zones blanches ADSL », car la zone de desserte de

l’ADSL est limitée à quelques kilomètres autour du répartiteur téléphonique et que le

niveau de service est conditionné par la distance entre l'abonné et le répartiteur, à

cause du phénomène d’affaiblissement : dans ce cas, le Wi-Fi ou le WiMAX par

exemple sont des solutions possibles, car bien adaptées à la couverture rapide de

zones où la clientèle est dispersée ; la desserte par satellite est également possible car

elle couvre de très grandes étendues, mais offre des performances plus limitées ;

- contrairement à l’ADSL, l’offre SDSL autorise les débits symétriques généralement

utiles aux entreprises mais pas aux particuliers.

Les technologies de desserte peuvent aussi se concurrencer selon les usages possibles, les

performances et les coûts :

- dans une zone urbaine, un opérateur peut proposer de l'ADSL (peu coûteux, débit

moyen) tandis qu'un autre offre du FttH (plus coûteux, débit élevé) ; chaque abonné

choisit la technologie qui répond le mieux à ses besoins ;

- sur un même territoire, une technologie sans fil (WiMAX, WiFi, …) permet aux

usagers de se connecter en déplacement mais aussi à leur domicile, tandis qu'une

technologie filaire (DSL, fibre au domicile) offre des accès uniquement résidentiels

mais généralement plus performants ;

- dans les zones peu denses, la desserte haut débit par les réseaux filaires n'est pas

toujours assurée (zones blanches ADSL), dans ce cas, le Wi-Fi ou le WiMAX par

exemple sont des solutions possibles, car bien adaptées à la couverture rapide de zones

où la clientèle est dispersée ; la desserte par satellite est également possible car elle

couvre de très grandes étendues, mais offre des performances limitées.

f. Conclusion possible

Du fait des situations variées selon les besoins et les contextes géographiques, aucune

technologie n’offre de solution universelle à la desserte des communications Internet. Les

fournisseurs d’accès à Internet font appel à une association de technologies complémentaires,

chacune avec ses avantages et ses inconvénients, en termes de performances (débit, temps de

réponse), de portée (liée à l’atténuation des signaux transmis et fonction des débits désirés),

de coûts, de caractéristiques techniques (propagation libre ou guidée, mobilité, symétrie,

facilité de mise en œuvre, …).

----------------------------------------------------------------------------------------------------------------