73
Considération du temps de collecte dans les mesures d’accès aux sources d’approvisionnement en eau potable dans les pays en voie de développement Mémoire Alexandra Cassivi Maîtrise en aménagement du territoire et développement régional Maître en aménagement du territoire et développement régional (M.ATDR) Québec, Canada © Alexandra Cassivi, 2017

Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

Considération du temps de collecte dans les mesures d’accès aux sources d’approvisionnement en eau potable dans les pays en voie de développement

Mémoire

Alexandra Cassivi

Maîtrise en aménagement du territoire et développement régional Maître en aménagement du territoire et développement régional (M.ATDR)

Québec, Canada

© Alexandra Cassivi, 2017

Page 2: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

Considération du temps de collecte dans les mesures d’accès aux sources d’approvisionnement en eau potable dans les pays en voie de développement

Mémoire

Alexandra Cassivi

Sous la direction de :

Edward Owen Douglas Waygood, directeur de recherche Caetano Dorea, codirecteur de recherche

Page 3: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

iii

Résumé    

Bien qu’il soit reconnu comme un droit humain par les Nations Unies, l’accès à l’eau potable constitue toujours

une lacune à l’échelle mondiale. Malgré le caractère criant de cette problématique, il est évalué que 42,5% de

la population mondiale n’avait pas accès à une source d’eau potable améliorée à domicile en 2015. Néanmoins,

l’indicateur actuellement utilisé afin d’établir le portrait de la situation à l’échelle mondiale chiffre la proportion de

population ayant accès à une source d’eau potable à 91%. Mise de l’avant par plusieurs organisations, cette

statistique repose sur le type de source utilisé par les ménages, sans porter considération à la localisation de la

source ni même à la qualité de celle-ci. L’objectif de cette étude est d’effectuer un portrait rigoureux des conditions d’accès et des inégalités actuellement observées dans les pays en voie de développement. En

s’intéressant au temps de collecte nécessaire pour atteindre une source d’eau depuis son point d’utilisation, il

est possible de déterminer le potentiel pour tous d’accéder aux services d’approvisionnement en eau potable.

L’analyse des données des enquêtes démographiques et de santé (DHS) de l’Agence des États-Unis pour le

développement (USAID) et des enquêtes à indicateurs multiples (MICS) de l’UNICEF permet de reconnaitre

l’impact du temps de collecte pour 27 pays en voie de développement.

Page 4: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

iv

Abstract  Although it is recognized as a human right by the United Nations, a lack of access to safe drinking water still

remains widespread worldwide. Despite its importance, an estimated 42.5% of the world’s population did not

have access to an improved drinking water source on premises in 2015. However, the indicator currently used

to monitor the global picture of access measured the proportion of the population with access to drinking water

as 91%. This statistic is based on the type of source used by households, but does not consider the location nor the quality of the source. The objective of this study is to provide a rigorous picture of drinking water access

conditions and inequalities currently observed in developing countries. By considering time required to reach a

water source from its point of use, it is possible to determine the potential access for a sufficient amount of

drinking water. The impact of water fetching collection time for 27 developing countries is determined through

data analysis of household surveys from United States Agency for International Development (USAID)

Demographic and Health Surveys (DHS) and UNICEF Multiple Indicator Cluster Surveys (MICS).

   

Page 5: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

v

Table  des  matières  

Résumé ............................................................................................................................................................... iii

Table des matières ............................................................................................................................................... v

Liste des tableaux ................................................................................................................................................ vi

Liste des figures ................................................................................................................................................. vii

Liste des annexes .............................................................................................................................................. viii

Liste des abréviations .......................................................................................................................................... ix

Remerciements : .................................................................................................................................................. x

Avant-propos ....................................................................................................................................................... xi

Chapitre 1. Introduction ....................................................................................................................................... 1

Chapitre 2. ........................................................................................................................................................... 7 Revisiting water access MDG targets in terms of distance and time: Examples in Eastern Africa ................. 8

Chapitre 3. ......................................................................................................................................................... 14 Access to Drinking Water in Least Developed Countries of Eastern Africa, Southern Africa and Southern Asia ............................................................................................................................................................... 15

Chapitre 4. ......................................................................................................................................................... 28 Access to Drinking Water : Time Matters ...................................................................................................... 29

Chapitre 5. ......................................................................................................................................................... 37 Collection time inequalities : Fetching water in Ethiopia ............................................................................... 38

Chapitre 6. Conclusion ...................................................................................................................................... 45

Bibliographie ...................................................................................................................................................... 49

Annexes ............................................................................................................................................................. 50

Page 6: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

vi

Liste  des  tableaux  

Table C1- 1: Pays étudiés dans les articles insérés au présent mémoire ........................................................... 5   Table C3- 1: General information on data sources used. .................................................................................. 18  Table C3- 2: Time needed to fetch water in minutes. ........................................................................................ 20   Table C4- 1 : General information on data used by country .............................................................................. 31  Table C4- 2: Collection time in minutes by 30-minutes threshold and type of source ....................................... 32   Table C5- 1 : Average collection time with regards to different household characteristics .............................. 41      

Page 7: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

vii

Liste  des  figures  

Figure C1- 1: Relation entre le temps de collecte et la quantité d’eau consommée (Cairncross et Feachem, 1993) ........................................................................................................................................................... 2  

Figure C2- 1 : Proportion of the population using an improved drinking water source ...................................... 10  Figure C2- 2 : Time to get water (round-trip) ..................................................................................................... 11  Figure C2- 3 : Impact of the distance on access to water ................................................................................. 12   Figure C3- 1 : National population with access to water according to the indicator .......................................... 22  Figure C3- 2 : Type of water source used by the population who need more than 30 minutes to fetch water .. 24   Figure C4- 1 : Collection time needed to fetch water from an improved water source classified with a 30-minute

threshold. .................................................................................................................................................. 33  Figure C4- 2 : Water service level ..................................................................................................................... 34   Table C4- 1 : General information on data used by country .............................................................................. 31  Table C4- 2: Collection time in minutes by 30-minutes threshold and type of source ....................................... 32  

Page 8: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

viii

Liste  des  annexes  

Annexe A : Contributions scientifiques .............................................................................................................. 50  Annexe B : Liste des bénéficiaires de l’APD établie par le CAD. 2014-2015-2016 ........................................... 61  

Page 9: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

ix

Liste  des  abréviations    

DHS : Demographic and Health Surveys / Enquêtes démographiques et de santé JMP : Joint Monitoring Programme for Water Supply and Sanitation MDG/OMD : Millenium Development Goals / Objectifs du Millénaire pour le développement MICS : Multiple Indicator Cluster Surveys / Enquêtes à indicateurs multiples SDG/ODD : Sustainable Development Goals / Objectifs de développement durable UNICEF : United Nations International Children's Emergency Fund / Fonds des Nations Unies pour l'enfance UN/ONU : United Nations / Organisation des Nations Unies USAID : United States Agency for International Development / Agence des États-Unis pour le développement international WaSH : Water, Sanitation and Hygiene / Eau, assainissement et hygiène WHO/OMS : World Health Organization / Organisation mondiale de la santé    

Page 10: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

x

Remerciements  :    

La réalisation de ce projet de recherche et les résultats découlant permettent une avancée considérable des

connaissances au sujet de l’accès à l’eau potable dans les pays en voie de développement. L’implication et les

contributions de différentes parties pour l’accomplissement de cette recherche se doivent d’être soulignées.

Ce projet de recherche fut, avant tout, possible grâce à l’instigation des professeurs E. Owen D. Waygood et

Caetano Dorea. La plus grande gratitude leur est portée pour leurs innombrables idées, leur support sans limites

et leur dévouement pour ce projet. Leur précieuse aide pour la réalisation de ces recherches a permis de mettre sur pieds un projet d’envergure et de développer d’importantes contributions scientifiques.

Une reconnaissance particulière est, par ailleurs, accordée à Richard Johnston pour sa présence à titre de

superviseur lors du stage de recherche effectué à l’OMS et sa collaboration subséquente à titre de coauteur.

Un grand remerciement est également porté à l’unité WaSH de l’OMS et plus spécialement à l’équipe

UNICEF/WHO Joint Monitoring Programme for Water and Sanitation (JMP) pour leur accueil et leur expertise.

Ce mémoire et les nombreuses contributions scientifiques furent possibles par le support financier du Conseil

de recherches en sciences naturelles et en génie du Canada (CRSNG), de l’Institut Hydro-Québec en environnement, développement et société (Institut EDS) ainsi que par l’obtention de divers prix (AFDU Québec)

et bourses (bourses de rayonnement et mobilité).

Page 11: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

xi

Avant-­propos    

Cette recherche a été réalisée dans le cadre de la maîtrise en aménagement du territoire et développement

régional (M.ATDR) avec mémoire à l’Université Laval. Les résultats de cette recherche ont en partie été obtenus

lors d’un stage de recherche effectué de mai à août 2016 au sein de l’unité Water, Sanitation and Hygiene

(WaSH) de l’Organisation mondiale de la santé (OMS/WHO) à Genève en Suisse.

Ce présent mémoire de maîtrise, livrable pour l’obtention du grade M.ATDR, a été monté sous forme d’articles.

Le document se divise en six chapitres contenant une introduction, quatre articles ainsi qu’une conclusion attenante.

Les articles insérés dans le mémoire constituent les dernières versions disponibles à ce jour. Aucune

modification n’a été portée aux articles depuis leur insertion dans ce mémoire. Les articles scientifiques rédigés

dans le cadre de ce mémoire sont exposés aux chapitres 2, 3, 4 et 5 du présent document. Pour une meilleure

intégration dans le mémoire, un paragraphe introspectif fut ajouté au début de chaque article.

Le premier article (Chapitre 2) fut soumis pour une conférence et publié dans un acte de conférence (39th Water,

Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, rédigé en février 2016, a été produit avec des résultats préliminaires constituant ainsi un document de nature

exploratoire. L’article visait à soulever la problématique associée au choix de l’indicateur utilisé pour mesurer

l’accès à l’eau potable. Il a été ajouté au mémoire dans le but de démontrer les avancées autant au niveau des

résultats que de la démarche.

Le deuxième article (Chapitre 3) a été soumis pour publication dans Transportation Research Record : Journal

of the Transportation Research Board en août 2016. Cet article présente un portrait du temps de collecte et des

inégalités entre les milieux urbains et ruraux dans les pays les moins avancés de l’Afrique et de l’Asie. Ne traitant

pas suffisamment du domaine des transports, l’article fut refusé pour publication. Les auteurs se sont concentrés sur la rédaction d’autres articles (Chapitre 4 et 5) avec l’intention de publier dans un journal tourné davantage

sur le domaine de l’eau. Néanmoins, des modifications pourront tout de même ultérieurement être portées au

manuscrit pour une publication future.

Le troisième article (Chapitre 4) découla d’analyses étendues et approfondies effectuées avec l’Organisation

mondiale de la santé (OMS). De type courte communication, cet article a été rédigé entre septembre et

décembre 2016 donnant suite aux résultats obtenus lors des recherches effectuées au sein de l’OMS entre juin

Page 12: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

xii

et août 2016. Cet article présente un portrait global de l’accès à l’eau dans les pays en voie de développement.

L’article a été soumis à Journal of Water and Health le 7 mars 2017 et est toujours en attente d’acceptation.

Le quatrième article (Chapitre 5) a été rédigé avec le but d’approfondir l’étude des inégalités en termes d’accès

à l’eau potable observées précédemment. Un seul pays, l’Éthiopie, a été sélectionné pour cette étude de cas.

Rédigé en février 2017, cet article a été soumis pour une conférence (40th Water, Engineering and Development

Centre (WEDC) International Conference. 24 au 28 juillet 2017). L’article a été accepté en mars 2017 et sera

publié dans les actes de conférence en juillet 2017.

Les résultats présentés dans ces quatre articles proviennent d’analyses effectuées par l’étudiante sous la

supervision des coauteurs. Les articles ont entièrement été rédigés par l’étudiante de ce mémoire et ensuite

révisés par les coauteurs. L’étudiante tient le rôle d’auteure principale pour les quatre articles. Les professeurs

E. Owen D. Waygood, Ph.D (Université Laval, QC, Canada) et Caetano Dorea, Ph.D (University of Victoria, BC,

Canada et Université Laval, QC, Canada) sont coauteurs pour les quatre publications. Par ailleurs, Richard

Johnston, Ph.D (Organisation mondiale de la santé, Genève, Suisse) est coauteur de l’article présenté en

chapitre 4.

Outre la rédaction d’articles, les recherches de l’étudiante ont faites l’objet de plusieurs présentations dans le cadre de conférences avec comité de sélection. Les propositions de communications soumises et acceptées

pour les communications scientifiques suivantes se trouvent en Annexe A du présent mémoire.

-   International Conference on Transport and Health (Juin 2017)

-   Midi-conférence de l’Institut EDS (Mars 2017) (Sur invitation)

-   21e Colloque étudiant pluridisciplinaire du Centre de recherche en aménagement et développement (Mars

2017)

-   Colloque annuel de l’Institut EDS 2017 (Mars 2017)

-   2017 Colorado WASH Symposium (Mars 2017)

-   2016 Water and Health Conference : Where Science Meets Policy at UNC Water Institute (Octobre 2016) -   International Hydrological Programme (IHP) of UNESCO and International Association of Hydrological

Sciences (IAHS) Kovacs Colloquium (Juin 2016)

-   30th Eastern Canadian Symposium on Water Quality and Research (Mai 2016)

-   Colloque annuel de l’institut EDS 2016 (Mars 2016) (Sur invitation)

-   5e Colloque étudiant en développement international de la Chaire en développement international (Février

2016)

Page 13: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

1

Chapitre  1.   Introduction  [Note1 : Les renvois contenus dans ce chapitre réfèrent uniquement aux figures et tables du présent chapitre. Le préfixe C1 a été ajouté aux figures et tables afin de rattacher les renvois au présent chapitre.]

L’accès à l’eau potable constitue toujours une lacune à l’échelle mondiale et plus particulièrement dans les pays les

moins développés, bien qu’il soit reconnu comme un droit humain par les Nations Unies. Considérant que 42,5% de

la population mondiale, soit plus de 3 milliards de personnes, n’ont pas accès à une source d’eau courante, il est

essentiel de porter toute considération à cette grande proportion de la population qui doit aller chercher de l’eau pour survivre (ONU, 2015). La mesure de l’accès à l’eau potable est fortement influencée par sa définition et les indicateurs

choisis. Généralement basées sur le type de source utilisé, les mesures d’accès couramment utilisés pour effectuer le

portrait de l’accès à l’eau potable ne tiennent pas compte de la localisation de la source et du temps nécessaire pour

l’atteindre depuis son point d’utilisation. En appliquant des variables relatives au temps de collecte, on observe l’impact

de cette tâche sur l’évaluation globale d’accès à un service d’approvisionnement. Alors que plusieurs études traitent

de composantes connexes, très peu d’études démontrent actuellement l’importance de la distance sur l’accès à l’eau

potable dans les pays en voie de développement. Les études existantes sur le sujet ont été conduites dans les années

1960 et ont été effectuées dans un contexte anthropologique. Cette présente recherche prévoit donc pourvoir une

meilleure compréhension des déplacements effectués pour aller chercher de l’eau, et ce dans le contexte des pays en voie de développement.

Revue de la littérature

L’année 2015 marque la fin des Objectifs du Millénaire pour le développement (OMD) mis en place en 2000 par les

États membres de l’Organisation des Nations-Unies. La cible 7C des OMD était de réduire de moitié, de 2000 à 2015,

le pourcentage de la population n’ayant pas accès à un approvisionnement en eau potable (ONU, 2015). L’indicateur

établi pour les OMD était la proportion de la population utilisant une source d’eau améliorée, se rattachant plus

particulièrement au type de système d’approvisionnement utilisé. Cette cible a été atteinte pour 2015 alors que la

proportion de la population mondiale ayant accès à l’eau potable a augmenté de 76% à 91%.

Une source améliorée est une source qui, de par la nature de sa construction, protège l’eau de façon satisfaisante de

toute contamination extérieure, en particulier des matières fécales (WHO/UNICEF, 2015). L’indicateur d’accès étant

actuellement uniquement basé sur la technologie de la source d’eau (p. ex. connexion domestique, fontaine publique,

sources et puits protégés, etc.). Le temps pour aller chercher l’eau, la quantité et la qualité de l’eau se voient ignorés

dans la proportion de la population ayant accès à l’eau en 2015. L’omission de ces différentes caractéristiques

entrainerait une surestimation de la proportion de la population ayant réellement accès à l’eau (Devi et Bostoen, 2009;

Godfrey et al.,2011; Bain et al.,2012; Onda et al., 2012; Ho et al., 2014). En comparant l’accès à une source améliorée

et l’accès à une source dite améliorée répondant aux normes de l’Organisation mondiale de la santé (OMS) quant à

Page 14: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

2

la qualité microbienne et chimique de l’eau, une diminution dans la proportion de la population ayant accès à l’eau a notamment été observée (Bain et al.,2012). L’indicateur étant critiqué par plusieurs auteurs, il est essentiel de se

questionner sur les progrès effectués dans le cadre des OMD. Au même titre que pour la qualité de l’eau, la distance

de la source et la quantité d’eau utilisée sont des propriétés qui doivent être incluses dans l’indicateur d’accès. Afin de

porter l’attention sur les populations qui doivent se déplacer pour s’approvisionner en eau, il importe plus

particulièrement de s’intéresser aux mesures de distance.

La collecte d’eau implique différentes conséquences directes et indirectes sur la qualité de vie et sur la santé des

individus. Le temps pour aller chercher l’eau influencerait d’abord la quantité d’eau collectée par les ménages

(Cairncross et Feachem, 1993). Une relation non linéaire serait observée entre ces deux variables. Un temps de collecte inférieur à 3 minutes permettrait de transporter une grande quantité d’eau. Une importante diminution de la

quantité d’eau serait ensuite observée après 3 minutes, se manifestant sous forme de plateau jusqu’à 30 minutes

(Figure C1-1). Lorsque la source d’eau est située en deçà de 30 minutes de marche de son point d’utilisation, le fait

de la rapprocher n’entrainerait pas une augmentation de la quantité d’eau consommée sauf si elle est installée à moins

de 3 minutes. Enfin, une corrélation négative serait observée entre les variables lorsque le temps de collecte est

supérieur à 30 minutes. L’augmentation du temps de collecte au-dessus de 30 minutes entrainerait effectivement une

diminution de la quantité d’eau collectée (Cairncross et Feachem, 1993).

L’augmentation de la quantité d’eau potable collectée et ultérieurement utilisée est essentielle pour améliorer la santé

et le bien-être des personnes. La prévalence des maladies diarrhéiques dans les pays en voie de développement

résulte principalement de la présence de microorganismes pathogènes dans l’eau et les excréments. L’accès à une

quantité d’eau suffisante pour la consommation et l’hygiène serait associée à une diminution générale des maladies

Figure C1- 1: Relation entre le temps de collecte et la quantité d’eau consommée (Cairncross et Feachem, 1993)

Page 15: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

3

reliées à l’eau (Curtis, 1986; Cairncross et Feachem,1993; Cairncross, 1999; Bartram, 2005; Fry et al, 2010). Ces dernières touchent près de la moitié de la population des pays en voie de développement et les maladies diarrhéiques

associées constituent la deuxième cause de mortalité infantile à l’échelle mondiale (Bartram, 2005). Plusieurs études

confirment l’association entre l’amélioration de l’hygiène et la réduction des cas de diarrhée (Esrey, 1991; Cairncross

et al., 2010; Wolf et al., 2013). La disponibilité en eau pouvant directement réduire l’incidence des maladies

diarrhéiques, il incombe d’améliorer son accessibilité en vue d’assurer la santé globale des populations et de réduire

la portée de ce fléau (WHO, 2013).

Une relation entre le temps de collecte et la prévalence de maladies chez les enfants peut également être attribuable

au temps perdu pour effectuer la tâche. Certes, le temps et l’énergie nécessaires pour aller chercher l’eau ne peuvent être investis dans d’autres activités. Supposant que les déplacements pour aller chercher l’eau sont majoritairement

effectués par les femmes et les enfants, il est nécessaire de connaitre l’impact de cette tâche sur les autres activités,

notamment sur l’hygiène, l’éducation, le travail et les autres tâches parentales (Curtis, 1986). Le temps et l’énergie

perdus lors de la collecte de l’eau constitueraient donc un coût indirect aux lacunes d’accessibilité. L’amélioration de

la sécurité et des conditions de déplacements associés à la collecte d’eau pourrait par ailleurs permettre de réduire

les risques de blessures encourues par les individus (Curtis, 1986).

En portant considération aux répercussions potentielles sur la santé des individus, il apparait nécessaire de prendre

en considération la distance et ses impacts sur l’accès à l’eau potable. Pour faire suite aux Objectifs du Millénaire pour le développement, une nouvelle cible fut établie dans le cadre des Objectifs de développement durable (ODD) qui

s’étendront, quant à eux, jusqu’en 2030. La cible correspondante est d’assurer l’accès universel et équitable à l’eau

potable, à un coût abordable (PNDU, 2016). La couverture de l’accès à l’eau reposant néanmoins sur l’indicateur

choisi, il s’avère essentiel de réviser les progrès effectués précédemment en vue d’assurer un approvisionnement en

eau accessible, abordable et sécuritaire pour tous. Une connaissance plus approfondie de ces déplacements serait

des plus bénéfiques pour assurer la mise en place de projet de développement propre à chaque population. Très peu

d’études portent actuellement considération au temps de collecte nécessaire pour l’approvisionnement en eau potable

alors que plus du tiers de la population mondiale n’a toujours pas accès à cette ressource à domicile. Cette réalité,

souvent oubliée, constitue sans aucun doute l’un des problèmes les plus pressants à adresser pour pourvoir au développement des pays les moins avancés du monde.

Page 16: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

4

Objectifs et hypothèses : L’objectif général de cette recherche est de connaitre les impacts du temps de collecte sur l’approvisionnement en eau

potable dans les pays en voie de développement. Deux objectifs spécifiques découlent de cette dernière :

1)   Dresser le portrait de l’accès à l’eau potable dans les pays les moins développés en considérant le temps

de collecte. 2)   Révéler les inégalités occurrentes reliées au temps de collecte pour l’approvisionnement en eau potable

au sein de pays en voie de développement.

Les hypothèses portées aux objectifs de cette recherche sont les suivantes :

1)   L’ajout du temps de collecte dans les mesures d’accès aux sources d’eau potable aurait un impact sur

les estimations de la couverture d’accès à l’échelle mondiale.

2)   Différentes inégalités associées aux caractéristiques des ménages et des individus seraient percevables

en ce qui a trait à l’accessibilité aux services d’approvisionnement en eau potable. Au niveau du ménage,

la région ainsi que le milieu de résidence (urbain/rural) constitueraient des facteurs d’inégalités au sein des pays. Au niveau individuel, différentes caractéristiques sociales touchant l’éducation et le régime

familial seraient déterminantes du niveau d’accès et du temps de collecte.

Les nouvelles connaissances apportées par la réponse à ses objectifs visent à soulever l’étendue de la problématique

à l’échelle mondiale. Ultimement, ces résultats permettront de cibler les populations les plus vulnérables et ainsi

d’assurer la mise en œuvre de programmes d’approvisionnement en eau potable centrés sur les besoins réels.

Page 17: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

5

Méthodologie : Cette recherche s’inscrit, globalement, dans le contexte des pays en voie de développement. Les pays considérés à

titre de pays en voie de développement se retrouvent sur la liste des bénéficiaires d’aide publique au développement

(APD). Tel que défini par la Direction de la coopération pour le développement (DCD-CAD), cette liste regroupe

l’ensemble des pays à revenu national brut classé comme faible ou intermédiaire par la Banque mondiale, excluant

les pays de l’Union européenne et les pays membres du G8 (Annexe B). Dans le cadre de ce mémoire, la priorité a

été portée sur les pays les moins avancés (PMA), définis par l’Organisation des Nations Unies comme les pays les

plus pauvres et les plus faibles du monde. Des analyses ont été effectuées sur l’ensemble des pays les moins avancés,

mais certains pays ont toutefois été priorisés pour la rédaction des articles contenus dans le présent mémoire. Les

quatre articles traitent chacun une zone d’étude différente, mais certains pays se retrouvent étudiés dans plusieurs articles (Table C1- 1). Un total de 27 pays seront traités dans le présent mémoire. Le choix des pays à l’étude est

détaillé dans la section méthodologie de chaque article.

Région (UNICEF) Pays PMA Pays étudiés Chapitre 2 Chapitre 3 Chapitre 4 Chapitre 5

Afrique de l'Est et australe

Burkina Faso x x Burundi x x x x Comoros x x x Éthiopie x x x x Kenya x Lesotho x x Madagascar x x x Malawi x x x Mozambique x x x Rwanda x x x Soudan du Sud x x x Tanzanie x x Ouganda x x x Zambie x x

Afrique de l'Ouest et du Centre

Liberia x x Niger x x Nigeria x Rép. centrafricaine x x Rép. démocratique du Congo

x x

Sierra Leone x x Tchad x x Togo x x

Amérique latine et Caraïbes Haïti x x Asie du Sud

Afghanistan x x Bangladesh x x Bhoutan x x Népal x x

Table C1- 1: Pays étudiés dans les articles insérés au présent mémoire

Page 18: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

6

L’ensemble des données qui ont été analysées dans le cadre du présent mémoire proviennent des enquêtes démographiques et de santé (DHS) de l’Agence des États-Unis pour le développement international (USAID) et des

enquêtes à indicateurs multiples (MICS) de l’UNICEF. Ces enquêtes auprès des ménages sont harmonisées et

peuvent être utilisées communément lors d’analyses. Contenant un échantillon représentatif à l’échelle nationale, les

enquêtes DHS et MICS utilisent l’échantillonnage par grappe stratifié en deux dégrées selon la région et le milieu

(urbain, rural). L’utilisation d’une constante méthodologie pour ces enquêtes permet d’analyser et de comparer les

données de différents pays. Le choix d’utiliser ces bases de données est justifié par leur utilisation pour mesurer la

cible 7C des OMD par OMS/UNICEF Joint Monitoring Programme for Water Supply and Sanitation (JMP, 2015). Ces

enquêtes contiennent d’ailleurs plusieurs centaines de variables traitant de sujets variés (p. ex. fertilité, planification

familiale, éducation, transferts sociaux, énergie, utilisation d’insecticide, santé, hygiène) et utilisés pour mesurer d’autres cibles des OMD. Les variables concernant l’approvisionnement en eau potable (c.-à-d. type de source1, temps

de collecte, personne qui se déplace pour aller chercher l’eau, location de la source, traitements) et d’autres variables

d’ordre général (c.-à-d. taille du ménage, lieu de résidence, quintile de richesse) ont été extraites des bases de données

originales pour réaliser la présente recherche. Constituant actuellement le seul proxy disponible pour mesurer la

distance entre le point d’utilisation et la source d’eau, l’utilisation du temps de collecte pour les analyses est justifiée

quoique contestable. D’une part, les données, provenant des questionnaires d’enquêtes auprès des ménages, ont été

autodéclarées et le caractère subjectif de la variable temporelle peut constituer une limite. D’autre part, certaines

limitations quant à cette variable impliquèrent préalablement la désignation de différentes suppositions : tous les

déplacements sont effectués à pied et incluent le temps d’attente à la source. Sans néanmoins constituer une mesure absolue, un seuil d’accès fixé à 30 minutes, tel que proposé dans des recherches antérieures (Cairncross et Feachem,

1993) apparait être un choix juste pour mesurer l’impact du temps de collecte sur l’approvisionnement en eau potable.

Un indicateur de 30 minutes est par ailleurs utilisé par d’autres auteurs (Devi et al. 2009, Fry et al. 2010, Graham et

al. 2016) et reconnu par l’Organisation mondiale de la santé.

Les résultats présentés dans les articles scientifiques sont le produit d’analyses statistiques effectuées avec IBM SPPS

version 23 ou STATA MP version 14, tel que précisé dans chaque chapitre. Une méthodologie complète se retrouve

respectivement dans chaque article présenté ici-bas.

1 Basée sur cette variable, la définition d’une source améliorée utilisée dans ce mémoire varie entre les chapitres 2-3 et 4-5. Cette variation s’explique par le changement officiel de la définition par WHO/UNICEF JMP à l’été 2016. Pour les chapitres 4 et 5, les bouteilles/sachets d’eau ainsi que les camions citernes/à réservoir sont considérés comme des sources d’approvisionnement en eau améliorées.

Page 19: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

7

Chapitre  2.      

Une revue exhaustive de la littérature a permis de tirer profit des études précédentes et de confirmer l’importance

d’approfondir les recherches portant sur l’accès à l’eau potable. Tel que soulevé par d’autres auteurs, le choix de

l’indicateur utilisé pour mesurer la couverture d’accès à l’eau à l’échelle mondiale peut résulter en une représentation

erronée de la situation. Avec la fin des Objectifs du Millénaire pour le développement et l’avènement des Objectifs de

développement durable, la rédaction d’un premier article révisant l’indicateur d’accès et son impact sur les estimations

semblait des plus appropriée.

   

Page 20: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

8

Revisiting  water  access  MDG  targets  in  terms  of  distance  and  time:  Examples  in  Eastern  Africa  [Note1 : Ce chapitre est un article de type ‘’Conference paper’’ publié dans les actes de conférence de la 39th WEDC International Conference qui s’est tenue en juillet 2016 à Kumasi au Ghana. Le présent document est disponible en ligne http://wedc.lboro.ac.uk/resources/conference/39/Cassivi-2502.pdf .] [Note2 : Les références contenues dans ce chapitre sont celles de l’article original et sont rapportées indépendamment à la fin du présent chapitre] [Note3 : Les renvois originaux contenus dans ce chapitre ont été modifiés pour faire uniquement référence aux figures et tables du présent chapitre. Le préfixe C2 a été ajouté aux figures et tables afin de rattacher les renvois au présent chapitre.]

Authors / Auteurs: Cassivi A, Waygood EOD & Dorea CC Abstract / Résumé : Data from WHO and UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation show that 91% of the worldwide population have access to an improved source of water in 2015. However, this indicator does not reflect

the definition of water access considering distance to the source. This is an important factor to take into account considering that 42.5% of the world population don’t have access to water on their premises in 2015. This study

examined accessibility data from the JMP by taking distance into account for 5 Eastern African countries. As reported

by JMP, 72.6% of these countries population have access to an improved water source while our analysis revealed

that this figure falls to 58.5 % when considering distance in the access criterion. To achieve universal and equitable

access to safe and affordable drinking water for all, as desired in the new Sustainable Development Goals, this impact

must be considered to ensure reasonable access to water.

Les données du Joint Monitoring Programme de l’OMS et de l’UNICEF pour l’approvisionnement en eau et

l’assainissement (JMP) montrent que 91% de la population mondiale a accès à une source d’eau améliorée en 2015.

Cependant, cet indicateur ne reflète pas la définition de l’accès à l’eau, en omettant la distance de la source.

Néanmoins, c’est un facteur important à prendre en considération compte tenu du fait que 42,5% de la population n’a

pas accès à une source d’eau potable à domicile en 2015. Cette étude examine les données de JMP sur l’accessibilité en eau potable en considérant la distance pour 5 pays de l’Afrique de l’Est. Comme indiqué par JMP, 72,6% de ces

pays ont accès à une source d’eau améliorée alors que notre analyse relève que ce chiffre s’élève seulement à 58,5%

en considérant la distance dans le critère d’accessibilité. Afin d’atteindre un accès universel et équitable à l’eau potable,

à un coût abordable, tel que ciblé dans les nouveaux Objectifs de développement durable (ODD), cet impact doit être

pris en compte pour assurer un accès raisonnable à l’eau potable.

Page 21: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

9

Introduction and Background Year 2015 marks the end of the Millennium Development Goals (MDG) established in 2000 and the start of the Sustainable

Development Goals (SDG) that will extend until 2030. Target 7C of the MDG was to halve, by 2015, the proportion of the

population without sustainable access to safe drinking water and basic sanitation. The target was said to be met as the

proportion of the world population with access to water was reported to have increased from 76% to 91%. However, this

may only be true if the time to acquire the water is ignored. Considering that the definition of access to water by the WHO

and UNICEF Joint Monitoring Programme (JMP) includes measures of quality, quantity, and distance, the question

remains what the percentage of the population with access to water would be if a more holistic measure (e.g. quality and

distance) were used.

Following the previous objective (7C of the MDG), the SDG target is: By 2030, achieve universal and equitable access to safe and affordable drinking water for all. If one considers safe to be an improved water source, and affordable to relate

to the time costs of accessing the water, it is clear that this goal requires the data to be analysed with respect to those two

components, and not solely the first (improved water sources).

WHO and UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation ensures the follow-up of

progress towards the established goals. According to their definition, access to safe drinking water must respond a few

characteristics: the source must be at less than 1 kilometre from the home, it must be possible to get at least 20 litres per

persons per day and it must meet the guideline for drinking water quality (WHO, 2003). In spite of this definition, the

indicator chosen to measure access to water by WHO and UNICEF was the proportion of the population using an improved

drinking water source. Thus, only quality is being taken into consideration, while quantity and distance or time are ignored. To measure the progress towards the goal 7C, JMP uses household datasets from the UNICEF Multiple Indicator Cluster

Surveys and USAID Demographic and Health Surveys program that contain in particular the proportion of the population

using improved water sources but also other variables related to water such as: the time needed to fetch water, which

usually makes the trip, the location of the source, the availability of water and technologies used to ensure water quality.

Despite the availability of such information, the indicator chosen to measure the progress towards the MDG goal 7C did

not include the time to the water source nor the quantity of water consumed per day per person, but only if the water was

an improved source. Moreover, as suggest by Bain et al. (2012) the quality of the source is not even assured in an

improved water source. Consequently, one could suggest that the indicator does not reflect the definition of access to

water provide by the JMP. This is reflected in Dar and Khan’s article (2011), where it was argued that the target was inadequately defined and measured.

Considering that 42.5% of the world population do not have access to water on premises, we are particularly concerned

by this large segment of the population who must fetch water for their survival. By applying concepts from transportation

modelling to issues surrounding distance to source and water quantity we can assess the influence of these components

on drinking water accessibility.

Objective

The objective of this study was to estimate the progress in water accessibility by taking the distance into consideration.

Page 22: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

10

Methodology Data from the UNICEF Multiple Indicator Cluster Surveys and the USAID Demographic and Health Surveys program were

used. These surveys contained different questions, but only the household data were selected because that is the unit

used to measure the target by JMP. Data from these surveys are representative and available for over 90 countries

worldwide, mostly developing countries. Here the last available country datasets of five Eastern Africa countries were

studied at the national scale : Burundi (2010), Comoros (2012), Ethiopia (2011), Kenya (2009) and Uganda (2011). Through this research, IBM SPSS Statistics version 23 was used to conduct statistical analysis for different variables. In

a way to estimate the progress in water accessibility with the distance, models were created with this data. To ensure

realistic comparison, JMP official data were used (JMP, 2015).

Results and Discussion The target 7C of the Millennium Development Goals was said to have been met at the world scale in 2015 (ONU, 2015).

However, the target was not met in every country, and particularly not in African countries. Indeed, only 23% of East

African countries achieved the target to halve the proportion of the population with access to an improved water source

(Ethiopia, Malawi and Uganda). Among East African countries, 63.2% of the population had access to an improved water

source in 2015 against 38.2% in 1990. Despite this progress, if we consider water accessibility, the proportion of the

population who gained access to an improved water source on premises is less impressive with 12.1% in 2015 against

7% in 1990 (ONU, 2015). Accordingly, in 2015, 87.9% of the population of East Africa needed to fetch water, whether

they used an improved source or not. The types of source of water used by five African countries are shown in Figure C2-

1.

Figure C2- 1 : Proportion of the population using an improved drinking water source

Data source: JMP 2015

Page 23: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

11

Time lost By taking into consideration only the households needing to fetch water, the results shown in Figure 2 present the duration

of time reported for accessing water in Burundi, Comoros, Ethiopia, Kenya and Uganda. Three of these countries

(Ethiopia, Kenya, Uganda) had a median time of 30 minutes for the water-fetching trip. That is important as, according to

the JMP definition of access to water, the source must be situated at less than 1 km from home. At a walking speed of 4

km/hour, a 2 km round trip, without queuing at the tap, could be made within 30 minutes. As queuing time data is not available, we assumed that round-trips at 30 minutes or less would be considered “accessible” by JMP’s definition.

Therefore, for these three countries, 50% of the population still lack an accessible water source. For the other countries

(Burundi and Comoros), the medians of the distribution are respectively 25 minutes and 20 minutes. As shown in Figure

C2-2, the quartiles represent the distribution of the population with respect to the time required to fetch water. We can

note that, for two countries (Ethiopia and Uganda), the last quartile starts at 60 minutes, which means that ¼ (25%) of the

population still need more than 1 hour to get water.

Likewise, Cairncross (1999) suggest that when the water source is located farther than a 30 minutes round-trip, the

quantity of water consumed would decrease with the time increment. According to the JMP definition of access to water,

each household member should have at least 20L per day for drinking, cooking and personal hygiene. This, distance is

an important factor to estimate the quantity of water possibly consumed. To ensure a realistic representation of the drinking

water situation around the world, it’s necessary to take the distance to the source into consideration. Indeed, time costs

and energy expenditure are associated to the task of fetching water and as the current Sustainable Development Goals for 2030 specifically mention affordability, this concept must be taken into account. Indeed, trips to the water source, often

done by women or children, constitutes time lost at the expense of other activities and also a cost that call into question

the affordability of water.

Figure C2- 2 : Time to get water (round-trip)

Data source: JMP 2015

Page 24: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

12

As shown by Devi and Bostoen (2009), adding the quantity and the distance to the type of source in the same indicator to measured progress leads to a decrease of the proportion of the population with access to water. Effectively, adding the

30 minutes round-trip distance to the proportion of the population using an improved water source results in a major

change in the progress of the Millennium Development Goals. By taking distance into account in the measure of water

accessibility, the result shows an overestimation of the proportion of the population with access to water. The figure C2-3

exposes the proportion of the population with access to an improved water source compared to the proportion of the

population with access to an improved water source within 30 minutes of the house. First, the proportion of access to

improved water according to JMP (2015) was compared with our estimations (model 1) and after they both were compared

with the access to improved sources within 30 minutes. Model 1 corresponds to the proportion of the population with

access to an improved water source recalculated with the survey available. The results may differ from the proportions published by JMP in 2015, as they extrapolated the last available data. This model was made to ensure a realistic base

for model 2 which represent the population with access to an improved source within 30 minutes. Thus, these two models

could be analysed and compared together.

The indicator choice clearly influenced the proportion of the population with access to water. For these five countries, the

mean coverage for the proportion of people with access to an improved source is 72,6% (JMP 2015 and Model 1). By

adding the 30 minutes distance component, the proportion of this population with access to water decreased to 58,7%.

Each country comparison of accessibility confirmed the resulting overestimation related to the indicator used to measure

the progress of the Millennium Development Goals. The biggest difference in the proportion is seen in Uganda with an

overestimation of 21,4%. Of course, the proportion of the population with access to an improved water source was also

Figure C2- 3 : Impact of the distance on access to water

Data source: DHS Program - USAID

Page 25: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

13

used to count the starting coverage of access to water. The use of this indicator therefore reflects the overall coverage of access to water. Thus, to ensure a representative achievement of the actual definition of access to water the indicator

must be changed and the data recalculated since the beginning.

Conclusion Despite the importance of distance and water quantity on life quality, these factors aren’t taken into consideration in the

indicator used to measure the progress of the Millennium Development Goals. Moreover, it seems that this indicator does

not represent the definition of access to water given by WHO and UNICEF Joint Monitoring Programme. The cost of time

lost for this task is noteworthy and must be included in the indicator to ensure universal accessibility to water in the next

decades. Furthermore, the quantity of water should also be considered in the indicator. The challenge facing the new Sustainable Development Goals is to address this problem. It is not enough to add “improved” sources countries to ensure

a water access, access to a sufficient quantity of water at appropriate distances from their residence must also be

considered.

Acknowledgements The authors would like to thank Institut Hydro-Québec en environnement, développement et société (Institut EDS) for their financial support.

References DAR, O.A. and KHAN, S.K. 2011 Millennium development goals and the water target: details, definitions and debate.

Tropical Medicine and International Health Vol 16, No 5, pp.540-544. DEVI, A. and BOSTOEN, K. 2009 Extending the critical aspects of the water access indicator using East Africa as an

example. International Journal of Environmental Health Research Vol 19, No 5, pp.329-341. CAIRNCROSS, Sandy 1999 Trachoma & Water. Community Eye Health Vol 12, No 32, p.58-59. JAMES, W.P.T. and SCHOFIELD, E.C. 1990 Human energy requirements. A manual for Planners and Nutritionists.

Oxford University Press: New-York. SOULE, R.S. and GOLDMAN, R.F. 1972 Terrain coefficients for energy cost prediction. Journal of Applied Physiology

Vol 32, No 5, pp.706-708. ONU 2015 Objectifs du Millénaire pour le développement: Rapport 2015. Organisation des Nations Unies.

Département des affaires économiques et sociales de l’ONU. WHO 2003 Domestic Water Quantity, Service Level and Health. World Health Organization. WHO Document

Production Services: Geneva. JMP 2015 WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation. www.wssinfo.org WHITE, Gilbert F., BRADLEY, David J. and White, Anne U. 1972 Drawers of Water. Domestic Water Use in East

Africa. The University of Chicago Press: Chicago and London.    

Page 26: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

14

Chapitre  3.      

La pertinence des résultats obtenus dans le premier article justifie la rédaction d’un article plus complet sur le sujet. Il

parut essentiel de confirmer que l’impact associé à l’ajout du temps de collecte dans l’indicateur d’accès était perçu à

plus grande échelle. Offrant un portrait plus détaillé du temps de collecte, ce deuxième article permet de soulever les

lacunes en termes d’accès à l’eau dans l’ensemble des pays les moins avancés de l’Afrique de l’Est et du Sud ainsi

que de l’Asie du Sud (15 pays). La caractérisation du temps de collecte selon le milieu de résidence (urbain / rural)

constitua un ajout essentiel pour assurer une plus grande précision quant aux estimations.

   

Page 27: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

15

Access  to  Drinking  Water  in  Least  Developed  Countries  of  Eastern  Africa,  Southern  Africa  and  Southern  Asia  

[Note1 : Ce chapitre est un article qui a été soumis le 1er août 2016 pour publication dans Transportation Research Record : Journal of the Transportation Research Board (Ref. 17-02914). L’article fut refusé en octobre 2016 parce que l’aspect de transport n’était pas suffisamment mis de l’avant. Certaines modifications ont ultérieurement été apportées au manuscrit soumis et apparaissent dans le présent chapitre. ]. [Note2 : Les références contenues dans ce chapitre sont celles de l’article original et sont rapportées indépendamment à la fin du présent chapitre] [Note3 : Les renvois contenus dans ce chapitre réfèrent uniquement aux figures et tables du présent chapitre. Le préfixe C3 a été ajouté aux figures et tables afin de rattacher les renvois au présent chapitre.]

Authors / Auteurs: Cassivi A, Waygood EOD & Dorea CC Abstract / Résumé: Despite the achievement of the Millennium Development Goals (MDGs) with regards to drinking water, time to collect water remains high in countries where water on premises is not commonly provided. In 2015, 42.5% of the world

population did not have access to water on premises and needed to fetch it. By using collection time as a proxy, we

aim to describe access to drinking water in the Least Developed Countries (LDC) of Southern Asia, Eastern Africa and

Southern Africa. This study highlights the widespread burden of fetching water and the significant disparities between urban and rural areas. Results show that 25% of the Eastern and Southern African LDCs population need to walk more

than 30 minutes. In all countries studied, the proportion of the population that need to walk more than 30 minutes to

fetch water was found to be higher in rural than in urban areas. Considering the importance of time to fetch water on

an individual’s health and well-being, we demonstrate how collection time impacts the coverage of access to water.

Malgré la réalisation des Objectifs du Millénaire pour le développement (OMD) en ce qui concerne l’eau potable, le

temps de collecte reste élevé dans les pays ou l’eau à domicile n’est pas communément fournie. En 2015, 42,5% de

la population mondiale n’avait pas accès à l’eau à domicile et devait se déplacer pour la collecter. En utilisant le temps

de collecte comme un proxy, nous cherchons à décrire l’accès à l’eau potable dans les pays les moins avancés (PMA)

de l’Asie du Sud, de l’Afrique de l’Est et de l’Afrique du Sud. Cette étude met en évidence le fardeau généralisé de

l’approvisionnement en eau et les disparités importantes entre les zones urbaines et rurales. Les résultats montrent

que 25% de la population des PMA de l’Afrique de l’Est et de l’Afrique du Sud doit parcourir plus de 30 minutes pour collecter de l’eau. Dans tous les pays étudiés, la proportion de la population qui devait parcourir plus de 30 minutes

était plus élevée dans les zones rurales que dans les zones urbaines. Compte tenu de l’importance du temps de

collecte sur la santé et le bien-être des populations, nous démontrons comment le temps de collecte affecte les

mesures d’accès à l’eau potable.

Page 28: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

16

1.   Introduction Worldwide access to drinking water was reported to have increased from 76% in 1990 to 91% in 2015 (1). The

proportion of the world’s population without access to an improved water source was reduced by half between 1990

and 2015, thus successfully attaining the target 7c of the Millennium Development Goals (MDGs) established in 2000.

The progress was monitored by an indicator of the proportion of the country’s population using an improved drinking

water source. (i.e. by the type of source and when it is properly used, an improved drinking water source adequately

protects the source from outside contamination, particularly faecal matter (1)). However, this indicator has been

criticised by several authors as, by taking into account only the technology of the source, this indicator for the most

part omits quality, quantity and distance components (2-7). The WHO’s definition of sustainable access to safe drinking water requires that certain criteria are met: access

to drinking water means that the source is less than 1 kilometre away from its place of use and that it is possible to

reliably obtain at least 20 litres per member of a household per day; safe drinking water is water with microbial, chemical

and physical characteristics that meet WHO guidelines or national water quality standards (8). Considering that this

definition of access to water includes measures of distance, quantity and quality, the question remains what the

progress related to the proportion of the population with access to water would be if a more holistic measure was

applied.

The aim of this present study is to describe access to water in terms of time needed to fetch water in the

LDCs. The objectives of this study are to estimate the coverage of access to water in urban and rural areas by taking into account the impact of the distance on water fetching and thus giving a more accurate picture of where access to

potable water is lowest and where efforts should be made towards the attainment of universal access to water.

2.   Background The proportion of the world’s population without access to an improved water source was reduced by half between

1990 and 2015, thus successfully attaining the target 7c of the Millennium Development Goals (MDGs) established in

2000. However, that is an average and certain countries did not achieve this goal. In countries that are designated as

Least Developed Countries (LDC) (9), the target was not met since the proportion of the population with access to an

improved water source only increased from 51% to 69%. In Southern Asia the target has been met in each LDC. However, in Eastern and Southern African LDC’s, only Ethiopia and Malawi has reduced by half the population with no

access to an improved drinking water source.

Despite the high coverage of the world’s population with access to an improved water source, many people

still do not have water on premises. According to the WHO and UNICEF Joint Monitoring Programme for Water Supply

and Sanitation (JMP), in 2015 42% of the world’s population had no water on premises, meaning that they need to

fetch water for their survival. Furthermore, in the LDCs, only 12% of the national population have access to water on

premises in 2015. Disparities are also observed between urban and rural regions where the proportion of the population

with access to water on premises in 2014 are respectively 32% and 3% in urban and rural areas (1). Further, previous

Page 29: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

17

research has shown that the prevalence of the population without access to water on premises that need more than 30 minutes to collect water is higher in rural than in urban area in almost all Sub-Saharan countries (7).

Access to an improved drinking water source on premises needs to be raised. The task of fetching water can

have different impacts on individual health. First, without access to piped water on premises, households are more

likely to use alternative sources which can be located further away and, as a result, the quantity of water used is

expected to be reduced (10) which is related health problems. The relationship between the distance to fetch water

and the prevalence of water related diseases can be explained by the time associated to the trip and the possible

quantity of water carried.

The relationship between the quantity of water used and the time to fetch water is non-linear. Previous

research has shown that there is a steep decline from “on premises” to about three minutes, after which the amount used plateaus until 30 minutes where a further decline is observed. However, it was also shown that moving a source

of water within 30 minutes will not necessarily enhance the water consumption unless the source is installed in the

residence (10). Households with access to a piped water source will consume around three times more water per

person compared to households without a piped connection (11; 12). An insufficient quantity of water available for

consumption and hygiene enhance the exposition risk to feco-oral water-washed diseases (13). Globally, access to

safe drinking water can prevent the incidence of diarrhoeal diseases that kills around 760,000 children under the age

of five per year (14).

The problem related to personal health relates to time and energy costs expended through fetching water.

Time and energy associated to collecting water can be considered lost at the expense other activities such as education, work, healthcare and childcare, which could lead to a lack of hygiene and other quality of life measures (15).

Finally, the task of fetching water can result in different injuries like physical disorders, accident and violence (15; 16).

Considering the impacts on the individual of health, time, and energy, the issue of water accessibility warrants

further research. Taking into account that the current definition ignores distance, but that distance plays a crucial roles

on those impacts, it is clear that including a distance measure in the portrait of accessibility will improve understanding

of this critical problem.

3.   Method Countries classified as least developed by the United Nations were targeted for this study. This recognition is based on three criteria which are: the per capita income, human assets, and economic vulnerability. This group currently (as

of May 2016) includes 48 countries (9). Countries from Eastern and Southern Africa (ESA) and Southern Asia (SA)

regions of UNICEF were selected as the focus of this study because of their vulnerability in terms of access to water.

In Eastern and Southern Africa, least developed countries (LDCs) are Burundi, Comoros, Eritrea, Ethiopia, Lesotho,

Madagascar, Malawi, Mozambique, Rwanda, Somalia, South Sudan, United Republic of Tanzania, Zambia. Southern

Asia LDC’s classified countries are Afghanistan, Bangladesh, Bhutan and Nepal.

Household surveys from the UNICEF Multiple Indicator Cluster Surveys (MICS) and USAID Demographic and

Health Surveys (DHS) program were used in the analysis for each country. These datasets are available publicly and

Page 30: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

18

were downloaded online (17; 18). MICS and DHS surveys utilise a two-stage sample design and are nationally representative of the population. The two datasets use the same methodology and surveys for collecting information,

thus they are compatible. Their results were compared for overlapping countries, and no statistically different results

were found (analysis not shown in this paper). For this study, the most recent household survey for each country was

selected. Eritrea and Somalia were excluded because no recent national datasets were accessible. A total of 15

countries were included in this study (Table C3-1).

Country Region Survey year Sample (n) Rural (%) Average water fetching time (min.)

Afghanistan* SA 2011 13 468 73 13.30 Bangladesh SA 2014 17 300 66 4.48 Bhutan* SA 2010 15 400 78 1.76 Burundi ESA 2012 4 866 82 25.49 Comoros ESA 2012 4 482 58 9.59 Ethiopia ESA 2011 16 702 69 47.05 Lesotho ESA 2014 9 402 70 21 Malawi ESA 2014 3 405 64 16.96 Madagascar ESA 2009 18 171 70 15.52 Mozambique ESA 2011 13 919 63 32.21 Nepal SA 2011 10 826 71 7.47 Rwanda ESA 2015 12 699 77 29.26 South Sudan ESA 2010 9 950 74 38.09 Tanzania ESA 2012 10 040 77 32.83 Zambia ESA 2013 15 920 56 16.85

*Source of data is from MICS; all other data is from DHS. Different relevant variables were extracted from MICS and DHS datasets to be analysed: cluster number, household

number, number of members per household, population weight, wealth index, region, type of place of residence,

education level of head of household, source of drinking water, time to get to water source, location of water source

and person fetching water. Of the variables available from the data set, the interval variable, "Time to get to the water

source" reflects the time needed to fetch water as a round trip without consideration to the type of source. Previous

research has found that after roughly three minutes, the quantity of water used by a household plateaus (10), but as

this the time is not clearly stated (a graph demonstrates the relationship), and so here we use under five minutes as a

threshold. Thus the variable was recoded in an ordinary categorical variable, which includes these categories "0 minutes", "Less than 5 minutes" "Between 5 and 30 minutes", "More than 30 minutes" and "Don’t know/ Missing".

Second, with the available variables "Source of drinking water" and "Time to get to the water source", another variable

was created to aggregate the different sources of water into service level categories: “Improved”, “On premises”, and

“Improved source located at 30 minutes or less”. It is necessary to note that the category "On premises" only included

people who answered that they have a source on their premise as the question asked the location of the source of

water. Where the time to fetch water was not reported, the variable was coded as "On premises". This classification of

the different sources was based on WHO/UNICEF JMP definitions of improved (i.e. Piped water into dwellings, piped

water to yard/plot, public tab or standpipes, tubewell or borehole, protected dug well, protected spring and rainwater)

Table C3- 1: General information on data sources used.

Page 31: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

19

and unimproved (i.e. Unprotected spring, unprotected dug well, cart with a small tank/drum, tanker-truck, surface water, bottled of water) water sources (19). Bottles of water were considered as unimproved, excepted if the second source

was an improved water source.

Finally, a variable “population weight” was created by multiplying the number of de jure members of the

household (i.e. those that are usually present, regardless of whether they are present or absent at the time of the

survey) by the existing household weight variable. Population weight was applied to all analysis in order to ensure an

accurate representation of the national population. National results were also disaggregated by the type of place of

residence to reduce disparities that can occur between urban and rural areas. The different analyses were conducted

with STATA MP version 14.

4.   Results

4.1 Collection time Disparities in drinking water collection time are observed between Southern Asia (SA) and Eastern and Southern Africa

(ESA), but also within the regions and among the countries (Figure C3-2). In general, collection time is lower in Southern Asia countries than in Eastern and Southern African. The

proportion of the population with access to water sources on site (0 minutes) is also greater in Southern Asia than in

Eastern and Southern Africa with respective coverage of 69% and 16%. In Southern Asia, more than 25% of the

population need more than 0 minutes but less than 30 minutes to fetch water. This proportion doubles in Eastern and

Southern Africa where more than 55% of the population must walk up to 30 minutes to fetch water. The portion of the

population who need to walk more than 30 minutes to fetch is 3% in Southern Asia, while in Eastern and Southern

Africa nearly one quarter of the population (27%) must do so.

Within Southern Asia’s Least Developed Countries, important disparities can be observed between the

countries. With coverage above 90%, Bhutan stands out from the other countries with a high level of access to water on site. At the opposite end, Afghanistan has an on-site coverage of 45% and the highest proportion of the population

who need to walk more than 30 minutes to fetch water (8%).

In the Eastern and Southern African Least Developed Countries, time needed to collect water also varies. The

proportion of the population with access to water on site is lower than 25% in all countries except Comoros where the

coverage reaches 67% of the population. In more than one third of the countries, the proportion of the population with

access on site is lower than 10% (Burundi; 6%, Ethiopia; 10%, Madagascar; 8%; South Sudan; 2%). Except in

Comoros, the proportion of the population who need to walk more than 5 minutes to fetch water is higher than 65% for

all of these LDCs. In South Sudan, 97% of the population walk more than 5 minutes to fetch water, which represents

the highest proportion in all Eastern and Southern African LDCs.

Page 32: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

20

Table C3- 2: Time needed to fetch water in minutes.

Country Survey/ Year Region N

Population according to the time need to fetch water (%) 0 min < 5 min 5 -30 min > 30 min DK

Southern Asia

Afghanistan MICS 2011

Urban 3,681 74.2 0.4 20.58 3.9 0.92 Rural 9,787 36.93 1.64 49.94 9.2 2.3 National 13,468 43.52 1.42 44.74 8.26 2.06

Bangladesh DHS 2014

Urban 5,930 78.6 0.58 19.07 1.45 0.3 Rural 11,370 74.13 0.69 23.36 1.74 0.08 National 17,300 75.35 0.66 22.19 1.66 0.14

Bhutan MICS 2010

Urban 3,320 98 0.29 1.45 0.25 0.01 Rural 12,080 91.09 1.44 5.94 1.47 0.06 National 15,400 92.99 1.13 4.7 1.14 0.04

Nepal DHS 2011

Urban 3,148 79.16 1.59 17.72 1.42 0.12 Rural 7,678 54.98 1.17 40.57 3.23 0.05 National 10,826 58.17 1.22 37.56 2.99 0.06

Eastern and Southern Africa

Burundi DHS 2012 Urban 880 53.07 3.32 35.97 7.61 0.02 Rural 3,986 0.62 1.37 70.11 27.84 0.07 National 4,866 5.59 1.55 66.87 25.92 0.06

Comoros DHS 2012 Urban 1,892 71.87 2.65 16.85 6.72 1.9 Rural 2,590 65.16 2.87 17.49 9.85 4.63 National 4,482 67.27 2.81 17.29 8.87 3.77

Ethiopia DHS 2011 Urban 5,112 49.08 1.28 36.13 13.22 0.29 Rural 11,590 1.37 1.42 52.84 44.2 0.17 National 16,702 9.96 1.39 49.83 38.62 0.19

Lesotho DHS 2014 Urban 2,798 69 2.4 25.48 3.06 0.05 Rural 6,604 6.14 4.47 65.21 23.93 0.25 National 9,402 23.5 3.9 54.24 18.16 0.2

Malawi DHS 2014 Urban 1,211 57.73 5.72 27.52 5.79 3.24 Rural 2,194 16.66 7.44 54.6 19.24 2.07 National 3,405 23.72 7.14 49.95 16.92 2.27

Madagascar DHS 2009 Urban 5,442 21.31 5.78 48.49 23.79 0.63 Rural 12,729 0.85 1.98 58.99 37.77 0.41 National 18,171 7.84 3.28 55.4 32.99 0.48

Mozambique DHS 2011 Urban 5,092 41.26 7.78 39.05 10.52 1.38 Rural 8,827 5.46 3.98 54.23 33.88 2.46 National 13,919 16.71 5.17 49.46 26.54 2.14

Rwanda DHS 2015 Urban 2,895 44.53 2.07 43.51 9.88 0 Rural 9,804 3.88 1.24 58.46 36.38 0.04 National 12,699 10.67 1.38 55.96 31.95 0.04

South Sudan DHS 2010 Urban 2,600 6.68 0.31 60.87 31.46 0.67 Rural 7,350 0.8 0.72 59.71 38.51 0.27 National 9,950 2.19 0.62 59.98 36.84 0.36

Tanzania DHS 2012 Urban 2,262 36.77 3.26 52.45 7.05 0.47 Rural 7,778 7.84 1.04 59.29 31.62 0.2 National 10,040 14.08 1.52 57.82 26.32 0.26

Zambia DHS 2013 Urban 6,957 47.6 6.01 39.34 6.4 0.64 Rural 8,963 9.81 2.76 69.3 15.99 2.14 National 15,920 24.62 4.04 57.56 12.23 1.55

Page 33: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

21

In each country studied, without regarding to the region, similar trends can be observed. The proportion of the population with access to water on site (i.e. 0 minutes) is higher in urban than in rural areas. The most important

difference between urban and rural on-site coverage is observed in Lesotho with a variation of 63%. In the Southern

Asia LDCs the average proportion of the population who need to walk farther than 30 minutes is 1.8% in urban areas

and 3.7% in rural areas; thus it is double in the rural areas. A larger difference can be found in the Eastern and Southern

African LDCs where the urban and rural proportions are respectively 11% and 29% (nearly three times).

4.2 Distance as an indicator of access Further to simply having access to an improved water source, the time needed to fetch water is an essential variable

that needs to be considered in order to ensure an accurate picture of the access to water in Least Developed Countries.

Three measures of access to an improved water source are shown in Figure C3-1. First, simply the percentage of the population with access to an improved source of water. Second, a threshold of 30 minutes’ collection time was added

to that proportion. By considering that the improved water source needs to be located at no more than 30 minutes of

distance from the point of use, the estimation of the proportion of the population with access to water at the national

country scale will decrease from 0.5% to 3% with an average of 1.5% in Southern Asia (SA) and from 7 % to 23% with

an average of 14% in Eastern and Southern Africa (ESA). More specifically, in Southern Asia, the average proportion

of the population with access to an improved water slightly decreases from 86% to 84% with the addition of the 30

minutes threshold. In Eastern and Southern Africa, the average proportion of the population with access to an improved

water source of 63% declines to 49% with that addition. In five countries, more than half of the population don’t have

access to an improved water source at 30 minutes or less from the point of use: Ethiopia (33%), Madagascar (37%), Mozambique (41%), South Soudan (45%) and Tanzania (45%).

In urban areas, the difference between having access to an improved source and when the 30 minutes or less

threshold is added oscillates from 0.2 % to 2.2% in SA and from 2.1% to 21.3% in ESA. Such differences are greater

in rural areas where the proportion of the population with access to water decreases from 0.6% to 3.2% in SA and from

8% to 24.1% in ESA.

Significant differences are observed when the proportion of the population with access to an improved water

source is disaggregated by the location of the source. Indeed, the proportion of the population with access to water on

premises remains low, especially in ESA. Indeed, the coverage of access to improved water on premises only reaches

14% of the population at the national scale. Serious disparities are observed between areas in ESA where the coverage of access to water on premises in urban and rural areas is respectively 41% and 5%. In Southern Asia LDCs the

average coverage of access to an improved water source is 66% at the national scale, 79% in urban areas and 63%

in rural areas.

Page 34: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

22

56.71

97.38

96.13

87.95

79.01

87.14

50.79

82.2

83.21

50.09

52.36

72.34

68.68

55.08

63.14

53.7

95.99

95.64

86.91

61.05

78

32.78

70.96

68.26

37.34

41.89

52.02

45.31

45.04

55.93

32.47

74.81

91.99

57.05

5.59

62.93

9.47

23.2

21.38

7.63

14.45

10.64

2.11

11.81

20.67

0 10 20 30 40 50 60 70 80 90 100

Afghanistan

Bangladesh

Bhutan

Nepal

Burundi

Comoros

Ethiopia

Lesotho

Malawi

Madagascar

Mozambique

Rwanda

South Sudan

Tanzania

Zambia

South

ern

Asia

Easte

rn an

d So

uther

n Afric

a

Population (%)

Improved water source Improved water source by 30 minutes or less Improved water source on premises

Figure C3- 1 : National population with access to water according to the indicator

Page 35: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

23

4.3 Distance, urban-rural, and water source Finally, the considerations of improved water source, urban-rural, and access times over 30 minutes can be examined

together (Figure C3-2). Overall, of those who walk more than 30 minutes to fetch water, the proportion who uses an

improved water source oscillates from 47% to 95% in urban areas and from 9% to 75% in rural areas. The need to

walk more than 30 minutes to collect water is more likely to be associate to the use of an improved source in urban

areas than in rural areas. Thus the situation in urban areas is better in terms of time to fetch water (Table C3-2) and

whether the source is improved or unimproved (Figure C3-2). These findings could suggest that people in urban areas,

even if they must walk a long distance, are more likely to use, or at least have the choice to use, an improved water

source. It is not known whether they had unimproved sources of water closer. The necessity to walk more than 30

minutes for an unimproved water source likely reflects the absence of any other source closer to the house.

The average difference between urban and rural areas for the South Asian LDC countries is 35%, while in the

Eastern and Southern African LDCs it is 26 %. This suggests that while overall, the problem of access to water is less

severe in the South Asian region, the disparity between urban and rural areas is greater. The most extreme differences

can be seen in: Madagascar (79% difference), Nepal (63%), Bhutan (43%), Zambia (41%), Tanzania (35%) and

Ethiopia (32%). Considering that Madagascar and Tanzania are also countries where the majority of the population do

not have access to improved water sources under 30 minutes, those two countries may require increased aid. These

important differences between rural/urban groups in terms of access to an improved source raised some questions on

inequalities in water service.

Page 36: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

24

27.88

47.2

26.11

78.35

88.85

75.06

40.7

80.66

38.1

33.89

93.28

29.92

69.09

74.4

68.93

69.98

90.25

63.64

46.34

76.78

44.34

61.63

69.94

61.23

75.14

94.81

73.91

16.18

88.62

9.87

35.74

51.08

33.56

63.39

75.39

62.74

64.95

72.12

63.14

37.29

69.89

35.29

51.1

83.48

42.74

0 10 20 30 40 50 60 70 80 90 100

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

National

Urban

Rural

Afgh

anist

anBa

nglad

esh

Bhuta

nNe

pal

Buru

ndi

Como

ros

Ethio

piaLe

sotho

Malaw

iMa

daga

scar

Moza

mbiqu

eRw

anda

South

Sud

anTa

nzan

iaZa

mbia

South

ern

Asia

Easte

rn an

d So

uther

n Afric

a

Population (%)

Improved Unimproved

Figure C3- 2 : Type of water source used by the population who need more than 30 minutes to fetch water

Page 37: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

25

5. Discussion The present study first showed that the time to collect water remains generally high in Least Developed Countries.

Disparities were observed in time to collect water in Least Developed Countries of Southern Asia (SA) and Eastern

and Southern Asia (ESA). In most countries, time to collect water is shorter in SA than in EAS. In Eastern and Southern

African Least Developed Countries, 1 person out of 4 needs more than 30 minutes to fetch water. In Southern Asia,

the proportion of the population who need more than 30 minutes to collect water is lower than 5%. Sub-Saharan Africa

has been previously found to be the most vulnerable region in terms of access to water supply (1; 12).

In each country studied, we found that the proportion of the population who need to go further in order to fetch

water is considerably higher in rural than in urban areas. The variation between urban and rural populations with access

to water on site (0 minutes) is up to 63% in the Least Developed Countries of SA and ESA. This supports the assertion that improving water service coverage of the rural population should be prioritized to reduce inequalities between urban

and rural areas (20).

Previous research has shown that the prevalence of the population without access to water on premises that

need more than 30 minutes to collect water is higher in rural than in urban area for 20 countries off 24 Sub-Saharan

African countries (7). The present study confirms that, without excluding access to water on site, the proportion of the

population who need to walk farther than 30 minutes is higher in rural than in urban area. Moreover, disaggregation of

the population who need more than 30 minutes to fetch water time shows that the proportion of the population using

improved water sources located farther than 30 minutes is higher in urban areas than in rural areas.

Present results confirm that the time to collect water can have an impact on water accessibility in LDCs of Southern Asia and Eastern and Southern Africa. Reducing the distance required to fetch water is essential in order to

enhance water quantity, availability and reliability, and thus improved general health and quality of life (21). Increasing

the quantity of water constitutes a key strategy to control water-washed diseases (11; 13) and time required to fetch

water is linked to the quantity used (10). One study found that a reduction of 15 minutes walking time was associated

to a relative average reduction of 41% in diarrhoea and of an 11% reduction in under-five child mortality (22). Improving

access to water can also result in a reduction of injuries related to the task of carrying water (15). In addition to the time

need to fetch water, walking to fetch water implied expenditure in terms of energy. For a 54 kg woman, a 30-minute

round trip at a walking speed of 4 km/h with a 20 L one-way load would imply an energy expenditure of approximately

100 calories assuming best conditions (i.e. flat asphalt surface) (11). Considering that the prevalence of undernourishment reach 26.7% in LDCs, a reduction of the expenditure associated to the task of fetching water could

be valuable (23).Time and energy lost for fetching water can hence be considered lost at the expense of other activities.

Thus, a more complete indicator is needed which includes distance in order to ensure access to a sufficient quantity of

clean water at a reasonable distance.

By adding a 30 minutes threshold to the indicator “Improved water source” currently being used to measure

the progress of the Millennium Development Goal 7c, the proportion of the population considered as having access to

water decreases. We have identified that this is less a problem in the LDCs of South Asia (with an average decrease

of 1.5%), but it makes an important difference for the LDCs of Eastern and Southern Africa where the average decrease

Page 38: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

26

was 14% and four countries changed from a majority of people having access to an improved water source to the majority not having access (within 30 minutes). As described, that time burden has various impacts on the individual’s

health and well-being. Further research is required to better quantify such impacts.

Certain limitations related to data reliability must be stated. First, the variables used are self-reported values

which can lead to problems of accuracy with respect to time. Second, estimations related to time to collect water don’t

take into account the frequency of these trip. Water fetching trip frequency is not available in MICS and DHS surveys

which might have an impact on time and energy lost and on the quantity of water possibly available in a household.

Further, it is not known how much of that time is queuing time, and whether that might also affect frequency or quantity.

Finally, estimations shown might slightly differ from UNICEF and WHO Joint Monitoring Program (JMP) for Water and

Sanitation’s. The present study was based on the last DHS or MICS available survey, while JMP used linear regression with all year available surveys for a country to estimate coverage.

6. Conclusions Time to collect water remains high in several Least Developed Countries located in Southern Asia and Eastern and

Southern Africa. The research demonstrated that the inclusion of access time, in particular fetching times over 30

minutes, had a considerable impact on the portion of the populations considered to have access to improved water

sources for Eastern and Southern African LDCs, but that this was less of a problem in Southern Asian LDCs. The

disparity between urban and rural areas was apparent, with urban areas having a lower proportion of households

travelling for water, travelling over 30 minutes, and using unimproved sources of water. The disparity between urban and rural areas in Southern Asia was found to be larger on average.

Fifteen countries were included in this study and with the current definition of water access, the majority of the

population in each one of them has access to improved water sources. However, when the threshold of over 30 minutes

was taken into account, four countries did not. Those countries were: Madagascar, Mozambique, South Sudan, and

Tanzania.

Acknowledgements: The authors would like to thank UNICEF and WHO Joint Monitoring Programme for their precious support. This research was funded by Institut EDS en environnement, développement et société- Université Laval.

Page 39: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

27

References [1] WHO/UNICEF. Progress on Sanitation and Drinking Water. 2015 Uptdate and MDG Assesment.In, 2015. [2] Devi, A., and K. Bostoen. Extending the critical aspects of the water access indicator using East Africa as an example. International Journal of Environmental Health Research, Vol. 19, No. 5, 2009, pp. 329-341. [3] Godfrey, S., P. Labhasetwar, S. Wate, and S. Pimpalkar. How safe are the global water coverage figures? Case study from Madhya Pradesh, India. Environmental Monitoring and Assessment, Vol. 176, No. 1, 2011, pp. 561-574. [4] Bain, R. E. S., S. W. Gundry, J. A. Wright, H. Yang, S. Pedley, and J. K. Bartram. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries. Bulletin of the World Health Organization, Vol. 90, No. 3, 2012, p. 228. [5] Onda, K., J. LoBuglio, and J. Bartram. Global Access to Safe Water: Accounting for Water Quality and the Resulting Impact on MDG Progress. International Journal of Environmental Research and Public Health, Vol. 9, No. 3, 2012, pp. 880-894. [6] Ho, J. C., K. C. Russel, and J. Davis. The challenge of global water access monitoring: evaluating straight-line distance versus self-reported travel time among rural households in Mozambique. JOURNAL OF WATER AND HEALTH, Vol. 12, No. 1, 2014, p. 173. [7] Graham, J., M. Hirai, and S.-S. Kim. An Analysis of Water Collection Labor among Women and Children in 24 Sub-Sarahan Afrifcan Countries. PloS one, Vol. 11, No. 6, 2016. [8] WHO. Health through safe drinking water and basic sanitation. http://www.who.int/water_sanitation_health/mdg1/en/index.html. [9] UNCTAD. The Least Developed Countries Report 2015 - Transforming Rural Economies.In, Geneva, Switzerland, 2015. [10] Cairncross, S., and R. G. Feachem. Environmental health engineering in the tropics : an introductory text. J. Wiley, Chichester, 1993. [11] White, G. F., D. J. Bradley, and A. U. White. Drawers of water : domestic water use in East Africa. University of Chicago Press, Chicago, 1972. [12] Thompson, J., P. I.T, J. K. Tumwine, M. R. Mujwahuzi, N. Johnstone, and L. Wood. Drawers of water II. United Kingdom, 2001. [13] Cairncross, S., and V. Valdmanis. Water Supply, Sanitation, and Hygiene Promotion. Disease Control Priorities in Developing Countries, 2006, pp. 772-792. [14] WHO/UNICEF. Ending preventable child deaths from pneumonia and diarrhoea by 2025.In, Geneva, 2013. [15] Curtis, V. Women and the transport of water. Intermediate Technology Publications, London, 1986. [16] Geere, J. Health impacts of water carriage.In Routledge handbook of water and health, Routledge, London and New-York, 2015. p. 732. [17] UNICEF. Multiple Indicator Cluster Surveys http://mics.unicef.org/. [18] USAID. THE DHS PROGRAM. 2016. [19] WHO/UNICEF. Joint Monitoring Programme (JMP) for Water Supply and Sanitation. http://www.wssinfo.org/data-estimates/tables/2016. [20] Bain, R. E. S., J. A. Wright, E. Christenson, and J. K. Bartram. Rural: Urban inequalities in post 2015 targets and indicators for drinking-water. Science of the Total Environment, 2014. [21] Mara, D. D., and R. Feachem. Water- and excreta-related diseases: Unitary environmental classification. Journal of Envionnmental Engineering - ASCE, Vol. 125, No. 4, 1999, pp. 334-339. [22] Pickering, A. J., and J. Davis. Freshwater availability and water fetching distance affect child health in sub-Saharan Africa. Environmental science & technology, Vol. 46, No. 4, 2012, p. 2391. [23] FAO. The State of Food Insecurity in the World. Meeting the 2015 international hunger targets: taking stock of uneven progress.In, Food and Agriculture Organization of the United Nations, Rome, 2015.

Page 40: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

28

Chapitre  4.      

Les résultats des chapitres précédents exposent l’occurrence d’importants temps de collecte pour accéder aux

sources d’eau potable dans les pays en voie de développement. Considérant les fortes proportions de la

population n’ayant pas accès à domicile, l’impact du temps de collecte sur les mesures d’accès fût démontré et

la nécessité de revoir l’indicateur utilisé pour rapporter les progrès dans les Objectifs du Millénaire pour le

développement fût soulevée. Afin d’assurer un suivi juste des Objectifs de développement durable qui

s’étendront jusqu’en 2030, il incombe d’établir des critères d’accessibilité et de déterminer des seuils

référentiels. Avec la collaboration de l’Organisation mondiale de la santé, de nouvelles analyses ont été effectuées sur l’ensemble des pays où la proportion des personnes ayant accès à une source d’eau à domicile

était inférieure à 10% en 2015. Une nouvelle classification, nommée « Water Service Level », basée sur le type

de source utilisé et sur le temps de collecte fut établie pour définir le niveau d’accès aux services

d’approvisionnement en eau potable.

   

Page 41: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

29

Access  to  Drinking  Water  :  Time  Matters  [Note1 : Ce chapitre est un article scientifique de type ‘’Short communication’’ rédigé pour publication dans Journal of Water and Health. Une première version de l’article fut soumise le 7 mars 2017 au journal, mais des corrections furent nécessaires. Le manuscrit inséré dans le présent chapitre constitue une version révisée qui n’était toujours pas resoumise au journal au moment du dépôt final du présent mémoire.] [Note2 : Les références contenues dans ce chapitre sont celles de l’article original et sont rapportées indépendamment à la fin du présent chapitre] [Note3 : Les renvois contenus dans ce chapitre réfèrent uniquement aux figures et tables du présent chapitre. Le préfixe C4 a été ajouté aux figures et tables afin de rattacher les renvois au présent chapitre.] Authors / Auteurs: Cassivi A, Johnston R, Waygood EOD & Dorea CC Abstract / Résumé: Despite the reported achievement of the Millennium Development Goals (MDGs) with respect to drinking water, the amount of time spent in collecting water remains high in countries where access to drinking water supplies

located on-premises is not common. In 2015, 42.5% of the world population did not have access to water on-

premises and needed to travel to a water point, possibly queue, fill water containers, and carry them home. The

amount of time and effort used in water collection can be considerable, and household surveys increasingly provide data on collection time. This study draws on data from 17 household surveys to highlight the widespread

burden of fetching water and the impact that this burden has on estimates of coverage.

Malgré l’atteinte des Objectifs du Millénaire pour le développement (OMD) concernant l’eau potable, le temps

consacré à la collecte d’eau reste élevé dans les pays où l’accès à l’eau potable à domicile est limité. En 2015,

42,5% de la population mondiale n’avait pas accès à une source d’eau à domicile et devait se déplacer pour se

rendre à un point d’eau, éventuellement faire la queue, remplir des contenants d’eau et les transporter au

domicile. La quantité de temps et d’efforts nécessaires pour la collecte d’eau peuvent être considérables. Les

enquêtes auprès des ménages fournissent de plus en plus de données sur le temps de collecte nécessaire à

l’approvisionnement en eau. Cette étude s’appuie sur les données provenant de 17 enquêtes auprès des

ménages, pour mettre en évidence le fardeau généralisé de la collecte d’eau et l’impact important de cette

charge sur les estimations de la couverture d’accès.

Page 42: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

30

Introduction: Target 7C of the Millennium Development Goals (MDGs) was to halve, by 2015, the proportion of the population

without sustainable access to safe drinking water. The target was considered to have been met as the proportion

of the world population with access to an improved drinking water source was reported to have increased from

76% in 1990 to 91% in 2015 (WHO/UNICEF 2015). The indicator used by WHO/UNICEF Joint Monitoring

Programme (JMP) for Water Supply and Sanitation to track this target progress was the proportion of the

population using an improved drinking water source. An improved drinking water source was defined as one that

is designed to provide protection from outside contamination, particularly faecal matter. Thus, this indicator of

access to an improved water source only reflected the utilisation of a type of source (e.g. piped water, protected well, rainwater) and did not include any considerations related to the location or physical accessibility of the

source. According to WHO/UNICEF (2015), 42.5% of the world’s population didn’t have access to water on

premises and still had to fetch water off premises in 2015. Considering the aim of the Sustainable Development

Goals (SDGs) for universal and equitable access (i.e. 100%) to water by 2030, it is important to consider the

impact on this target of collection burden, in terms of time or distance.

Previous research has raised the issue of the weight of water fetching with regards to collection time in many

countries (Sorenson et al. 2011, Geere and Cortobius 2017). As women and children were found to be principally

responsible for water collection, gender differences were highlighted (Graham et al. 2016). Raising significant inequality issues related to the task, variation in time to collect water was also observed among urban and rural

areas (Geere and Cortobius 2017). Hence, Geere and Cortobius (2017) stated that fetching water constitutes

an important barrier for sustainable development and household water security in developing countries.

(Cairncross and Feachem 1993) building on research by White et al. (1972) and Feachem et al. (1978) has

shown that without access to piped water on premises, households were more likely to use alternative sources

located further away and, as a result, the quantity of water fetched was reduced. This has implications for the

overall quantity of water used by a household. The relation between the quantity of water used by the household

and the time to fetch water has been qualitatively described by Cairncross and Feachem (1993) as non-linear

with a steep decline from “on premises”, at roughly three minutes after which the amount of water fetched plateaus until 30 minutes, where a further decline is observed. This 30-minute threshold has been applied in

other water accessibility studies, which aimed at demonstrating the importance of time or distance to collect

water and their potential impact on monitoring access to water (Howard and Bartram 2003, Devi and Bostoen

2009, Graham et al. 2016).

The aim of this present study is to describe access to water coverage with consideration of the time needed to

fetch water with particular attention to countries where water on premises is the lowest-ranking. The objective of

Page 43: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

31

this study is to determine the effect of adding a time component to drinking water accessibility coverage

estimation and thus strengthen its validity as an indicator.

Methods: For this study, countries where the proportion of the population with access to water on premises was lower than

10% in the 2015 MDG Assessment report were selected, so as to focus on the countries where the time

component is likely most relevant (WHO/UNICEF 2015). A total of 22 countries were found to meet this first

selection criterion. In order to assess the most relevant situation, the most recent household survey from USAID

Demographic and Health Surveys (DHS) or UNICEF Multiple Indicator Cluster Surveys (MICS) was used (USAID

2016, UNICEF 2016). Eritrea, Guinea-Bissau, the Marshall Islands, Myanmar, and Papua New Guinea were then excluded from the present study due to data unavailability and, thus, 17 countries were included (Table C4-

1). In support of this selection process, Sub-Saharan Africa was previously found to be the most vulnerable

region in terms of access to water supply (Table C4-1).

Country Proportion of the population using

a water source located on premises (%) *

Data

Survey Year Sample (n) Burkina Faso 8.0 DHS 2010 14424 Burundi 7.0 DHS 2012 4866 Central African Republic 1.6 MICS 2010 11966 Chad 6.4 MICS 2010 17668 D. R. of the Congo 7.9 DHS 2014 18171 Haiti 9.8 DHS 2012 13181 Liberia 2.4 DHS 2013 9333 Madagascar 7.0 DHS 2009 17857 Malawi 7.9 DHS 2014 3405 Mozambique 8.6 DHS 2011 13919 Niger 8.7 DHS 2012 10750 Nigeria 2.3 DHS 2013 18546 Rwanda 9.2 DHS 2015 12699 Sierra Leone 5.4 MICS 2012 11923 South Sudan 1.8 MICS 2010 9950 Togo 5.5 DHS 2014 9549 Uganda 5.0 DHS 2011 9033

*Source: WHO/UNICEF 2015 Progress on Sanitation and Drinking Water. 2015 Update and MDG Assessment. The study is based on two variables that were disaggregated: the main source of drinking water used by the

household, and the time required to collect water from that source. The classification of water source type was

based on the new WHO/UNICEF JMP definition of improved sources,2 which differ from the ones used during

2 Included water piped into dwellings, water piped to yard/plot, public tap or standpipes, tubewell or borehole, protected dug well, protected spring, rainwater, cart with a small tank/drum, tanker-truck, and bottled water.

Table C4- 1 : General information on data used by country

Page 44: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

32

MDG reporting in that packaged and delivered water are classified as ‘improved sources’ for SDG reporting

(WHO/UNICEF, 2017). Households were classified on the basis of reported round-trip travel time (including any

time spent queuing) as using water supplies that are ‘on premises’, ’30 minutes or less’, or ‘over 30 minutes’. All

analyses were made with an analytic population weighting to ensure an accurate representation of the national

population. This weighting was generated by multiplying the number of de jure members of each household (i.e.

those members that are usually present, regardless of whether they are present or absent at the time of the

survey) by the existing household weighting variable (DHS/ICF 2006). All analyses were conducted with STATA

MP version 14.

Results and Discussion:

Across all countries in this study, results show that up to 40% of the national population needs more than 30

minutes to fetch water irrespective of the type of water source used by the household (Table C4-2). In over half

of the countries examined, more than 1 person out of 4 lives in a household in which over 30 minutes is needed

to collect water. About half of the countries show an average collection time higher than 30 minutes. The national

average time to collect water is the lowest in Madagascar, taking 14 minutes, and reaches 44 minutes in Uganda.

Results from disaggregation by type of source show that the average time to collect improved sources of water

is lower or equivalent than for unimproved sources. These findings suggest that the populations who must travel

further are often also using unimproved sources. Standard deviations show an important variation in collection time within each country, which could demonstrate high inequalities in terms of access to water.

Country Proportion of the population with collection time

> 30 minutes (%)

Average collection time in minutes (standard deviation)

National Type of source Improved Unimproved

Burkina Faso 15 20 (±19) 20 (±19) 20 (±20) Burundi 26 28 (±25) 26 (±24) 35 (±26) Central African Republic 33 33 (±40) 32 (±44) 36 (±31) Chad 31 37 (±48) 30 (±40) 44 (±54) D. R. of the Congo 33 32 (±31) 27 (±33) 38 (±28) Haiti 23 28 (±34) 22 (±30) 33 (±37) Liberia 11 17 (±19) 17 (±21) 17 (±15) Madagascar 4 14 (±38) 9 (±20) 18 (±43) Malawi 17 19 (±23) 18 (±24) 25 (±25) Mozambique 27 35 (±70) 23 (±67) 44 (±71) Niger 35 43 (±54) 35 (±47) 58 (±63) Nigeria 17 21 (±29) 19 (±28) 24 (±31) Rwanda 32 30 (±28) 27 (±27) 39 (±30) Sierra Leone 10 16 (±19) 14 (±21) 20 (±16) South Sudan 37 39 (±52) 36 (±44) 45 (±63) Togo 17 22 (±29) 17 (±22) 30 (±37) Uganda 40 44 (±49) 42 (±49) 49 (±47)

Table C4- 2: Collection time in minutes by 30-minutes threshold and type of source

Page 45: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

33

The average travel time to reach an improved water source remains high in most countries studied. The

collection time needed to fetch water within the population who have access to an improved water source is

shown in Figure C4-1, which indicates that large numbers of people live in households where the collection

burden is over 30 minutes. The proportions of the population fetching water at a distance of over 30 minutes

range from 2% of the population in Madagascar to 38% in Uganda. Thus it can be seen that simply taking into

account this threshold a non-negligible portion of the population should be considered as not having good access

to water.

Previous research has already shown that volumes of water used are lower as sources are more distant and

thus moving a source of water to a location within 30 minutes’ journey time will not necessarily enhance water

consumption as much as the installation of water sources within the residence (Cairncross and Feachem 1993).

These assumptions justify the necessity to enhance access to water and reduce distance when the time to fetch

water is higher than 30 minutes, in order to reach universal access to water by 2030, as proposed in the SDGs.

Further to simply having access to an improved water source, the collection burden appears to be an essential

variable that needs to be considered in order to ensure an accurate picture of access to water. The

disaggregation of the population in each country according to a water service level classification (which here

refers to the type of source used and the collection time) can be seen in Figure C4-2. In order to further analyze

the impact of time and improved source type, results were classified into four categories recently put forward by

WHO/UNICEF JMP (2017): “On premises,” including improved water sources located at 0 minutes from the point

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Uganda (70%)

Togo (62%)

South Sudan (64%)

Sierra Leone (56%)

Rwanda (72%)

Nigeria (57%)

Niger (66%)

Mozambique (40%)

Malawi (82%)

Madagascar (40%)

Liberia (74%)

Haiti (50%)

Democratic Republic of the Congo (50%)

Chad (49%)

Central African Republic (66%)

Burundi (79%)

Burkina Faso (76%)

Population (%)

Coun

try (P

opula

tion

using

an i

mpro

ved

water

sour

ce (%

))

30 minutes or less More than 30 minutes

Figure C4- 1 : Collection time needed to fetch water from an improved water source classified with a 30-minute threshold.

Page 46: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

34

of use; “Basic service,” referring to improved water source located between 1 minute and 30 minutes, inclusive;

“Limited service,” including improved water sources located farther than 30 minutes and; “Unimproved,” which

refers to all unimproved water sources irrespective of the collection time. The population using improved sources

is therefore composed of the populations using On premises, Basic, and Limited services. If one were to take

the distance threshold of the improved water source as being located at no more than 30 minutes’ round-trip of

distance from the point of use, only On premises and Basic service could be used to monitor access to water.

Comparing both indicators shows a significant impact in terms of accessibility, demonstrated by the Limited

services population of Figure C4-2. The population having Limited services reaches up to 27% of the national

populations and could reflect important problems of access for these populations.

Figure C4-2 shows that in all countries examined more than 1 person out of 4 either uses an unimproved water

source, or an improved source with over 30 minutes collection burden (i.e. limited service). In the previous

measure of access to water (MDG), the portion of the population identified as having “limited service” would have been considered as having access. In eight countries (Central African Republic, Chad, Democratic

Republic of the Congo, Haiti, Madagascar, Mozambique, Togo and Uganda), more than half of the population

use either an unimproved source or an improved water source located further than this 30-minute threshold. The

results demonstrate that when a threshold of 30 minutes is used, 6% to 27% of the population of these 17

countries would be considered not to have access to improved water sources.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Uganda

Togo

South Sudan

Sierra Leone

Rwanda

Nigeria

Niger

Mozambique

Malawi

Madagascar

Liberia

Haiti

Democratic Republic of the Congo

Chad

Central African Republic

Burundi

Burkina Faso

Population (%)

On premises Basic service Limited service Unimproved

Figure C4- 2 : Water service level

Page 47: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

35

This problem requires attention, as reducing the collection burden required to fetch water is essential to

enhancing water quantity, availability and reliability, and thus improving general health and quality of life (Mara

and Feachem 1999). Further research is required to identify the areas and segments of the population where

the time to access water is most problematic. Occurring inequalities must be reduced to ensuring sustainable

development in developing countries. This would be an important next step in targeting those areas or groups

that would likely require investment and resources to improve their access to water in order to reach universal

access by 2030.

Limitations Certain limitations related to MICS and DHS data reliability must be stated. First, the variables used are self-

reported values which are not necessarily objectively accurate with respect to time. However, we consider that

self-reported travel time remains valid as a subjective measure of the relative burden imposed by water fetching.

Second, estimations related to water collection time does not take into account trip frequency, and neither the

mode of transport used nor the road conditions are stated. Moreover, it is not known how much of the time to

collect water is queuing time, and whether that might also affect frequency or quantity. Finally, estimations shown

might differ slightly from the UNICEF and WHO Joint Monitoring Program for Water Supply and Sanitation (JMP),

because the present study was based on the last available DHS or MICS survey, while JMP used linear regression projections with all available data for a country.

Conclusions: This analysis demonstrated the impact that including an adjustment for the burden of collecting water from off-

premises sources has on the picture of water access. First, it showed (Figure C4-1) the portion of the population

who must walk over 30 minutes to access water. Next, combining time and quality, Figure C4-2 highlights the

portion of the population having “limited access” where previously they were considered as having access.

Adding a distance threshold to monitoring access to water is essential to indicate water service levels,

considering that the proportion of the population with access decreased up to 27% when time was added. A

more complete indicator which accounts for the collection burden is indeed needed in order to ensure access to

a sufficient quantity of clean water within the home. Acknowledgements: This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Institut Hydro-Québec en environnement, développement et société (Institut EDS).

Page 48: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

36

References: Cairncross, S. and Feachem, R.G. 1993 Environmental health engineering in the tropics : an introductory text,

J. Wiley, Chichester. Devi, A. and Bostoen, K. 2009 Extending the critical aspects of the water access indicator using East Africa as

an example. International Journal of Environmental Health Research 19(5), 329-341. DHS/ICF, M. 2006 Guide to DHS Statistics. Demographic and Health Surveys Methodology. Toolkit, D. (ed),

Maryland, USA. Geere, J.-A. and Cortobius, M. 2017 Who carries the weight of water? Fetching water in rural and urban areas

and the implications for water security. Water Alternatives 10(2), 513-540. Graham, J., Hirai, M. and Kim, S.-S. 2016 An Analysis of Water Collection Labor among Women and Children

in 24 Sub-Sarahan Afrifcan Countries. PloS one 11(6). Howard, G. and Bartram, J. 2003 Domestic water quantity, service level and health, p. 39, World Health

Organization. Mara, D.D. and Feachem, R. 1999 Water- and excreta-related diseases: Unitary environmental classification.

Journal of Envionnmental Engineering - ASCE 125(4), 334-339. Sorenson, S.B., Morssink, C. and Campos, P. 2011 Safe access to safe water in low income countries: Water

fetching in current times. Social Science & Medicine 72(9), 1522-1526. Thompson, J., I.T, P., Tumwine, J.K., Mujwahuzi, M.R., Johnstone, N. and Wood, L. 2001 Drawers of water II,

United Kingdom. UNICEF 2016 Multiple Indicator Cluster Surveys http://mics.unicef.org/ USAID 2016 The DHS Program http://dhsprogram.com/ WHO/UNICEF 2015 Progress on Sanitation and Drinking Water. 2015 Uptdate and MDG Assesment. WHO/UNICEF (2017). Safely managed drinking water.

Page 49: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

37

Chapitre  5.      

Les résultats exposés dans les articles précédents démontrent l’importance persistante du temps de collecte

pour l’approvisionnement en eau potable dans les pays en voie de développement. Des différences observées

en milieu urbain et rural soulèvent déjà des questions quant aux inégalités d’accès. La réalisation d’analyses de variances sur le temps moyen de collecte paru essentiel pour appuyer les résultats. En appliquant différentes

caractéristiques (c.-à-d. région, type de source d’eau utilisée, niveau d’éducation, personne qui effectue le

déplacement) les analyses effectuées et présentées dans ce dernier article visent à effectuer un portait des

inégalités pouvant être perçu au sein d’un même pays, ici l’Éthiopie. Tel que présenté au chapitre 3, l’Éthiopie

se démarque des autres pays de l’Afrique de l’Est et du Sud par la proportion la plus élevée de la population qui

se déplacent plus de 30 minutes (38.62%) pour accéder à une source d’eau potable. Ce dernier chapitre vise

donc à soulever l’importance des disparités présentes en termes de temps de collecte et d’analyser les

différences occurrentes au sein de ce pays.

   

Page 50: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

38

Collection  time  inequalities  :  Fetching  water  in  Ethiopia    [Note1 : Ce chapitre est un article de type ‘’Conference paper’’ rédigé et accepté en mars 2017 pour la 40th WEDC International Conference qui avait lieu en juillet 2017 à Loughborough au Royaume-Uni. L’article initial ne sera pas publié puisque les auteurs ne purent participer à la conférence. Des modifications ont été portées à l’article pour le dépôt final du présent mémoire et les auteurs ont l’intention de soumettre le présent manuscrit à un journal. ] [Note2 : Les références contenues dans ce chapitre sont celles de l’article original et sont rapportées indépendamment à la fin du présent chapitre] [Note3 : Les renvois contenus dans ce chapitre réfèrent uniquement aux figures et tables du présent chapitre. Le préfixe C5 a été ajouté aux figures et tables afin de rattacher les renvois au présent chapitre. ] Authors / Auteurs: Cassivi A, Waygood EOD & Dorea CC Abstract / Résumé: In 2015, WHO and UNICEF reported that only 12% of Ethiopia’s population have access to water on premises. High proportion of the population thus needs to fetch water for their survival. Considering the importance of time

to fetch water on an individual’s health and well-being, we aim to demonstrate where water fetching issues are

the most prevalent. This study highlights the widespread burden of fetching water and the significant disparities

in terms of accessibility with regards to the location of the source within population groups. Characterization of collection time by regions, type of source, education level and water fetcher illustrated which population groups

should be targeted to reach universal access to drinking water.

En 2015, l’OMS et l’UNICEF ont reporté que seulement 12% de la population de l’Éthiopie avait accès à l’eau

potable à domicile. Une proportion importante de la population doit donc collecter de l’eau pour leur survie.

Considérant l’importance du temps de collecte sur la santé et le bien-être d’un individu, nous voulons démontrer

où les problèmes d’approvisionnement en eau potable sont les plus répandus. Cette étude souligne le fardeau

associé à la collecte d’eau et les disparités significatives en termes d’accessibilité en ce qui concerne

l’emplacement de la source d’eau au sein des groupes de population. La caractérisation du temps de collecte

par région, type de source, niveau de scolarité et collecteur d’eau illustre quels groupes de population devraient

être ciblés pour atteindre l’accès universel à l’eau potable.

Page 51: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

39

Introduction and Background In Ethiopia, the proportion of the population with access to an improved water source was reported by WHO

and UNICEF to have increased from 13.5% to 57.3% between 1990 and 2015, thus successfully attaining target

7C of the Millennium Development Goals (MDGs) established in 2000. Despite this reported achievement, the

burden of fetching water remains widespread where water on premises is not commonly provided. In 2015,

87,9% of Ethiopia’s national population did not have access to water on premises and needed to fetch it (JMP,

2015). In previous work we showed that the inclusion of collection time, in particular fetching times over 30

minutes, had a considerable impact on the portion of the populations considered to have access to improved

water sources. When a threshold of over 30 minutes was taken into account, the proportion of the population with access decreased of more than 15% (Cassivi et al. 2016).

Location of the source is likely to have an impact on water accessibility (White et al. 1972). It was shown that

moving a source of water within 30 minutes will not necessarily enhance the water consumption unless the

source is installed in the residence (Cairncross and Feachem, 1993). Households with access to a piped water

source will consume around three times more water per person compared to households without a piped

connection (White et al. 1972). An insufficient quantity of water available for consumption and hygiene enhance

the exposition risk to feco-oral water-washed diseases (Cairncross and Feachem, 1993). Personal health

problem also relates to time expended through fetching water. Time associated to collecting water can be

considered lost at the expense other activities such as education, work, healthcare and childcare, which could lead to a lack of hygiene and other quality of life measures (Curtis, 1986). Finally, the task of fetching water can

result in different injuries like physical disorders, accident and violence (Geere, 2015).

The proportion of the population with access to water on premises in Ethiopia differs by settlement type. The

majority of households in urban areas were reported to have on premise access (56.2%), while in rural areas this

drops to only 1.5% (JMP, 2015). It was previously shown that time to collect water was generally higher in rural

than in urban areas worldwide and among Sub-Saharan countries (Bain et al. 2014; Graham et al. 2016). The

prevalence of households without water on premise and collection time higher than 30 minutes in rural Ethiopia

was among the highest in Sub-Saharan African (i.e. after Mauritania and Somalia) (Graham et al. 2016).

Considering that Ethiopia has one of the highest rural populations in the world with a proportion reaching 81% in 2015 (World Bank, 2016), it is clear that taking the location of households into account when considering access is

important. Within both rural and urban locations, the population will differ by other factors that likely influence water

access including education level.

A higher income would generally allow individuals to live where better infrastructure exists. Even where

infrastructure for water does not exist, those with greater wealth may still occupy locations with better access to

Page 52: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

40

essential resources such as water. Thus, another means of examining access to water would be household income.

Unfortunately, the wealth quintiles developed for this dataset were based on household assets including the type

of water access and sanitation facilities (DHS, 2006), thus it cannot be used in this study. However, Yang et al.

(2012) excluded water supply assets in their wealth quintiles, that were called “socio-economic status”, and found

that the proportion of the population in Ethiopia using an improved water source was considerably higher in the

highest socio-economic groups. That suggests that this is indeed an important consideration. Although direct

measures of incomes are not available, a proxy for higher income could be educational achievement, which is

available and will therefore be used in this research.

The influence of location relates to environmental context and education level relates to the household. Other

important considerations relate to the individual. It has been noted that women are more likely to fetch water than

men (Sorenson et al. 2011), but differences may occur for the time spent accessing water between the genders.

Further, for households with children, differences may exist depending on the gender of the child. In cases where

men fetch water, are they more likely to travel shorter or longer distances? Are there differences between adults

and children? Do girls travel longer distances than boys?

Thus, the objective of this research is to examine inequalities based on a three levels of measures: environmental

context, household context, and individuals.

Methodology The data source for this study comes from Ethiopia’s Demographic and Health Survey (EDHS) 2011 which was

implemented by the Ethiopian Central Statistical Agency (CSA) as part of the DHS Program of the United States

Agency for International Development (USAID). The dataset contains a sample of 16,702 households, selected

with a stratified two-stage cluster design, which is representative of the population at the national and the residence

(urban-rural) level.

The sample was not self-weighting and thus a population weight was applied to all analysis in order to ensure an accurate representation of the population. The variable “population weight” was created by multiplying the number

of de jure members of the household (i.e. those that are usually present, regardless of whether they are present or

absent at the time of the survey) by the existing household weight variable. Multiple variables were used for this

study: places of residence, head of the household, education level, main source of drinking water, location of the

main source, time to collect water (i.e. return trip including queuing), water fetcher (i.e. person who usually collect

drinking water). Main source of drinking water was disaggregated within improved/unimproved WHO classification

(i.e. Improved water sources included water piped into dwellings, water piped to yard/plot, public tap or standpipes,

Page 53: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

41

tubewell or borehole, protected dug well, protected spring, rainwater, cart with a small tank/drum, tanker-truck, and

bottled water). One-way analyses of variance (ANOVA) were completed with these factor variables on collection

time average. Post-hoc multiple-comparison tests (Bonferroni, Scheffe and Sidak) were then applied in order to

identify which groups were statistically different from each other when more than one category existed. The different

statistical analyses were conducted with STATA SE version 14.

Results and Discussion The average collection time to fetch water reached 49 minutes at the national scale. Withdrawing households

with access to water on premises results in an average of 54 minutes. This small difference is explained by the fact that few people have access to a water source on premises (19%). Without access to piped water on

premises, households are more likely to use alternative sources which can be located further away and, as a

result, the quantity of water used is expected to be reduced which is related health problems.

Considering the impacts on the individual of health the issue of water accessibility warrants further research.

Disaggregation of the population in different groups (i.e. urban/rural; improved/unimproved, education level,

water fetcher) can further elucidate where specific disparities might occur (Table C5-1).

Groups / Characteristics

Location of the source

All sources Off premises

n Mean (Minutes) n Mean (Minutes)

National 16 608 49.03 13 471 54.46

Region*** Urban 5 077 17.85 2 219 35.16

Rural 11 531 55.87 11 252 56.64

Type of source a Improved 10 344 47.46 7 241 58.43

Unimproved 6 261 50.71 6 227 51.04

Education level (Head of the household) b c No education 9 256 52.99 8 400 55.84

Primary 4 998 47.62 4 029 53.29

Secondary 1 181 30.05 554 48.07

Higher 1 130 21.07 454 41.45

Water fetcher

Woman - - 9 726 53.12

Man d - - 1 456 68.94

Table C5- 1 : Average collection time with regards to different household characteristics

Page 54: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

42

Girl under 15 y/o - - 1 587 52.68

Boy under 15 y/o - - 516 54.12

*** p<0.001 a Variables improved and unimproved are statistically different to each other at p<0.005 for all sources and at p<0.001 for off premises sources b For all source, all variables are statistically different to each other at p<0.001, except secondary vs higher at p<0.01. c For off premises sources, only higher education and no education are statistically different to each other at p<0.001 d Man is statistically different from all other variables at p<0.001. The remaining variables are not statistically different.

Urban- Rural A significant difference (p<0.001) is observed between urban and rural areas regardless of the consideration of the

source’s location (i.e. all or only off premises). It is clear that time collection to fetch water is considerably higher in

rural (56 min.) than in urban areas (18 min.). The difference in time collection between regions is larger when all

types of source is considered, which can be explained by the fact that access to water on premises (i.e. 0 minutes)

is more commonly provided in urban area. Considering that more than 3 people out of four live in a rural area, Bain

et al.’s (2014) assertion that improving water service coverage of the rural population should be prioritized to reduce

inequalities between urban and rural areas, is supported.

Improved – Unimproved Significant differences in collection time are also observed when the type of drinking water source is taken into consideration. First, without regards to the location of the source, time to collect water is higher for unimproved than

for improved sources (p<0.005). When only off premises sources are considered, the average time to collect water

is 7 minutes longer when an improved water source is reached (p<0.001). These findings could suggest that people

without access to water on premises, even if they must walk a long distance, are more likely to use, or at least opt

to use, an improved water source. It is not known whether they had unimproved sources of water closer. The

necessity to walk farther for an unimproved water source would likely reflect the absence of any other source closer

to the house. Future research should examine if there is a difference in the willingness to travel further for a higher

quality source of water.

Education Level Important disparities are observed regarding the highest education level achieved by a household member. The

average collection time for off premises sources reaches up to 56 minutes when the head of the household has no

education. For all types of sources, the average ranged from 21 minutes for households with higher education to

53 minutes for households with no education. Results show that the average collection time decreases when

education level increases, for both all and off premises sources. Differences within education level groups for all

types of sources were found to be significant. For off premises sources, only higher education and no education

levels were found to be statistically different to each other (p<0.001). This finding could be explained by the small

Page 55: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

43

number of people with higher education (7%) and by the fact that more than 40% of them had access to water on

premises while fewer than 10% of the population with no education has access to water on premises. This may,

however, relate to overall problems of developing infrastructure, whether it be essential services such as water and

sanitation or social services such as education.

Water Fetcher Because collection times are not of relevance when the water source used is on premises, analysis related to water

fetcher was only conducted for off premises sources. Significant differences in collection time were only found for

males and the others (p<0.001) compared to the other types (i.e. adult woman, girl, boy). The average collection

time for males was 69 minutes while for women and children under 15-year-olds the average was about 53 minutes

to collect water. These results suggest that men might be more likely to fetch water when the trips are the longest.

It could also be that men who live independently may live in more isolated locations. It should also be noted that a

man was the water fetcher in roughly 11% of households. No difference was found between women and children’s

access times. These findings can be explained by the task sharing within the household. As estimated in previous research, Ethiopia is the Sub-Saharan African country with the highest number of women (4.7M) and children

(1.3M) who spend more than 30 minutes to fetch water (Graham et al. 2016). This again may have implications for

educational achievement due to time constraints. Present results confirm that women are the primary collectors in

Ethiopia with about 70% of the work load. As also suggested by Graham et al. (2016), gender ratios and

women/children implication in water collection should be considered for measuring accessibility to water.

Differences in collection time are observed within all groups. The variables here are probably correlated.

Individuals with higher education are more likely to live in urban areas and have access to water on premises.

Further, the percentage of individuals living in urban areas is considerably smaller. It may also be that men who fetch water are much more likely to live in rural than urban areas, explaining the long distances. Thus it will be

necessary to conduct multi-variate regression analysis so that these interrelations are accounted for.

Certain limitations related to data reliability must also be stated. First, the variables used are self-reported values

which can lead to problems of accuracy with respect to time. Recall bias can lead to round off estimations of

collection time. Moreover, time to fetch water was reported by the head of the household and constitute an

assessment which was not verified by the survey holder. Second, estimations related to time to collect water

doesn’t take into account the frequency of these trips. Water fetching trip frequency is not available in DHS

surveys which might have an impact on time lost. Finally, it is not known how much of that time is queuing time, and whether that might also affect frequency.

Page 56: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

44

Conclusion Water access inequalities within Ethiopia’s population can be characterizing with collection time analyses. The

research shows differences in average fetching time within population groups. Disparities between urban and rural

population were found to be significant, with urban areas having a lower average than rural areas. Results illustrate

that people walk farther for an improved than for an unimproved source when water on premises is not provided.

This study also confirmed that collection time decrease with education level increase. Differences within water

fetcher, finally, raised gender equity issues. Yet considerably fewer, men were found to spend more time collecting

water than women and children. This study attempted to target the most vulnerable population to prioritize

intervention regarding access to water improvements. However, more complete statistical analyses are needed to confirm groups correlations.

Acknowledgements The authors would like to extend thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Institut Hydro-Québec en environnement, développement et société (Institut EDS). References BAIN, R. E. S., WRIGHT, J. A., CHRISTENSON, E. and BARTRAM, J. K. 2014. Rural: Urban inequalities in

post 2015 targets and indicators for drinking-water. Science of the Total Environment CASSIVI, A., WAYGOOD, E.O.D, DOREA, C.C. 2016 “Revisiting MDGs in view of accessibility with particular

attention to distance: examples in Eastern Africa.” Conference paper: 39th WEDC International Conference, Kumasi, Ghana

CAIRNCROSS, S. and FEACHEM, R. G. 1993. Environmental health engineering in the tropics : an introductory text. Chichester, J. Wiley.

CURTIS, V. 1986. Women and the transport of water. Intermediate Technology Publications, London DHS/ICF, M. 2006 Guide to DHS Statistics. Demographic and Health Surveys Methodology. Toolkit, D. (ed),

Maryland, USA. GEERE, J. 2015. Health impacts of water carriage. Routledge handbook of water and health. J. Bartram. London

and New-York, Routledge, p. 732. GRAHAM, J., MITSUAKI, H, and SEUNG-SU, K. 2016. An Analysis of Water Collection Labor among Women

and Children in 24 Sub-Sarahan African Countries. PloS one. Vol 11, No. 6. JMP. 2015. WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation.

www.wssinfo.org SORENSON, S. B., MORSSINK, C. and CAMPOS, P. (2011). Safe access to safe water in low income countries: Water fetching in current times. Social Science & Medicine Vol. 72. No. 9. p. 1522-1526. TRANVAG, E., ALI, M. and NORHEIM, O.F. 2013. Health inequalities in Ethiopia : modeling inequalities in length

of life within and between population groups. International Journal for Equity in Health. Vol 12. No. 52. YANG, H., BAIN, R., BARTRAM, J., GUNDRY, S., PEDLEY, S. and WRIGHT, J. 2012. Water Safety and

Inequality in Access to Drinking-water between Rich and Poor Households. Environmental Science & Technology. Vol 47. pp.1222-1230.

WHITE, G. F., BRADLEY, D. J. and WHITE, A. U. 1972. Drawers of water : domestic water use in East Africa. Chicago, University of Chicago Press

WORLD BANK. 2016. World Bank Open Data. www.data.worldbank.org

Page 57: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

45

Chapitre  6.   Conclusion    

Faute d’accès à domicile, près de 3 milliards de personnes doivent toujours se déplacer en 2015 pour

s’approvisionner en eau potable. Cette réalité constitue sans aucun doute l’un des problèmes les plus pressants

de l’humanité et nécessite la plus grande attention. L’indicateur couramment utilisé pour faire le portrait de

l’accès à l’eau à l’échelle mondiale ne tient pas compte de la localisation de la source d’eau. En faisant

uniquement référence au type de source d’eau, la proportion de la population mondiale ayant accès à l’eau

potable est portée à 91% en 2015. L’utilisation d’une mesure incluant une composante associée au temps de

collecte révèle néanmoins une réduction de la proportion de la population ayant accès à une source d’eau, à l’égard d’un indicateur portant uniquement sur le type de source d’eau utilisé. Justifié par des études antérieures

et par la reconnaissance de l’OMS, un seuil de 30 minutes a été sélectionné comme critère d’accessibilité. Cette

recherche dévoile aujourd’hui un portrait plus juste du temps nécessaire pour collecter l’eau potable dans les

pays en voie de développement. Tel que visé initialement, les résultats soulèvent les lacunes actuelles en termes

d’approvisionnement en eau potable et permettent des avancées considérables en termes de connaissances.

Les résultats de cette recherche démontrent, d’une part, l’importance de réviser l’indicateur utilisé pour mesurer

les progrès en matière d’accès aux services d’approvisionnement en eau potable dans les pays en voie de

développement. L’inclusion du seuil de 30 minutes à l’indicateur initialement utilisé pour mesurer les progrès (c.-à-d. proportion de la population utilisant une source d’eau améliorée) entraine une réduction allant jusqu’à 27%

de la proportion de la population étant considérée comme ayant accès à l’eau potable. Les écarts les plus

importants sont perçus dans les pays de l’Afrique Sub-Saharienne. L’utilisation de niveaux de service (c.-à-d.

on premises, basic service, limited serviced, unimproved) permet de faire un portrait beaucoup plus juste de la

situation à l’échelle mondiale. Il est évident qu’une grande partie de la population des pays les moins avancés

doit se déplacer pour s’approvisionner en eau et le choix d’un seuil de 30 minutes reste encore très limitant.

L’étude approfondie du temps de collecte a permis néanmoins d’assurer une meilleure représentation de la

situation au sein des différents pays.

Les résultats des analyses de moyennes démontrent, d’autre part, l’ampleur du temps de collecte d’eau dans

plusieurs pays du monde et à nouveau plus particulièrement de l’Afrique Sub-Saharienne. Dans les pays les

moins avancés de l’Afrique de l’Est et du Sud, un ménage sur quatre doit parcourir plus de 30 minutes pour

atteindre une source d’eau, qu’elle soit améliorée ou non. Le temps de collecte moyen oscille entre 14 et 44

minutes dans les pays où plus de 90% de la population doit se déplacer pour s’approvisionner. D’importants

écarts types ont été notés dans les analyses du temps moyen de collecte. Ces résultats soulèvent la présence

Page 58: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

46

de fortes inégalités en termes d’accès au sein même des frontières nationales des pays étudiés. À la lumière

de ces résultats, il parut essentiel de désagréger les données selon différentes caractéristiques. L’analyse de

variance selon les caractéristiques suivantes a permis de cibler les populations les plus vulnérables : la région,

le type de source, le niveau d’éducation et la personne qui effectue le déplacement.

Premièrement, pour tous les pays les moins avancés de l’Asie du Sud, de l’Afrique de l’Est et de l’Afrique du

Sud, la proportion de la population devant parcourir plus de 30 minutes pour collecter de l’eau est égale ou plus

élevée dans les zones rurales que dans les zones urbaines. Une différence significative est d’ailleurs confirmée

en Éthiopie où le temps moyen pour collecter de l’eau est supérieur en milieu rural qu’en milieu urbain (55,87 minutes ; 17,85 minutes (p<0.0001)).

Deuxièmement, dans les pays où la proportion de la population ayant accès à une source d’eau à domicile est

inférieure à 10%, le temps moyen pour collecter l’eau dans une source améliorée est soit inférieur ou équivalent

au temps nécessaire pour atteindre une source non améliorée. Les analyses de variance effectuées sur les

données de l’Éthiopie confirment que le temps de collecte est significativement plus élevé vers une source d’eau

améliorée. La proportion de la population qui utilise une source améliorée située à plus de 30 minutes est par

ailleurs supérieure en milieu urbain. Ces résultats suggèrent que les populations en milieu urbain auraient

davantage l’opportunité d’utiliser une source améliorée. La nécessité de marcher plus de 30 minutes pour une source non améliorée reflète néanmoins l’absence de d’autres sources localisées à proximité.

Troisièmement, l’analyse approfondie des inégalités dans les groupes de population au sein de l’Éthiopie permet

de confirmer une diminution significative du temps de collecte d’eau lors d’une augmentation du niveau

d’éducation des ménages. Une potentielle relation entre le niveau d’éducation et la localisation des ménages

serait à évaluer.

Quatrièmement, une différence significative est observée dans le temps de collecte lorsque la personne qui

effectue la tâche est un homme. Quoique moins nombreux à effectuer la tâche, les hommes effectuent des déplacements plus longs que les femmes et les enfants. Les différences de temps de collecte observées

soulèvent donc des questions quant à l’équité entre les genres.

Somme toute, l’analyse de ces différentes caractéristiques et les résultats découlant permettent de mettre en

lumière les inégalités au temps de collecte dans les pays en voie de développement. D’autres analyses devront

ultérieurement être menées pour approfondir la relation entre ces différentes variables et leurs impacts sur les

variations en termes de temps de collecte.

Page 59: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

47

L’importance du temps associé à la collecte d’eau dans les pays en voie de développement parait évidente et

présage des impacts considérables sur la qualité de vie de plusieurs milliards d’individus. En vue d’assurer un

accès universel et équitable pour tous, à un coût abordable, d’ici 2030, tel que ciblé dans les Objectifs de

développement durable (ODD), une révision et un suivi des composantes d’accès sont nécessaires. Les

résultats démontrent que jusqu’à 27% de la population utilisant une source d’eau potable dite améliorée doit se

déplacer plus de 30 minutes, restreignant l’accès au service d’approvisionnement. Ces nouvelles estimations

confirment la nécessité d’ajouter une mesure relative à la localisation de la source dans l’indicateur utilisé pour

mesurer les progrès des ODD.

Une meilleure compréhension des conditions d’accès aux services d’approvisionnement en eau potable est

nécessaire pour assurer la mise en œuvre de projets de développement profitables pour répondre aux besoins

réels des populations. Il n’est pas suffisant de développer des programmes visant à augmenter le nombre de

sources améliorées accessibles par la population, il est essentiel que les populations aient accès à une source

d’eau potable à une distance raisonnable de son point d’utilisation.

Limites et critiques D’une part, certaines limites spécifiques à l’analyse des données ont été relevées, tel que précisé à même

chaque article présenté en chapitre 2-3-4-5. Des lacunes ont été notées relativement au manque d’informations

sur les déplacements effectués par les répondants des enquêtes de USAID et de l’UNICEF. L’absence

d’information sur la quantité d’eau transportée, la fréquence des déplacements, le mode de transport utilisé ainsi

que le temps d’attente à la source limite l’analyse des habitudes de déplacement des populations. Les temps

de collecte utilisés pour cette étude étant des données autodéclarées, le caractère subjectif des réponses doit

être soulevé. Il est néanmoins assumé que ce biais est généralisé pour l’ensemble des enquêtes.

D’autre part, certaines critiques générales quant à cette étude peuvent être rapportées. Traitant uniquement de

27 pays, cette étude n’est pas exhaustive et l’élargissement de la zone d’étude sera nécessaire pour effectuer

un portrait global de l’accès à l’eau potable dans le monde. Par ailleurs, d’autres propriétés relatives à la quantité

d’eau et à la qualité d’eau n’ont pas été incluses dans cette étude, quoiqu’essentielles pour assurer une

représentativité complète de l’accès à l’eau. Le caractère exploratoire de cette étude limite donc la portée des

conclusions rapportées. En s’appuyant sur la quantité et la qualité de l’eau, des analyses supplémentaires seront

essentielles afin de déterminer la relation entre le temps de collecte et l’approvisionnement en eau potable. Différentes composantes associées à la caractérisation des déplacements (c.-à-d. conditions de la route, pente,

vitesse de marche, etc.) et à la dépense énergétique, préalablement considérées, ont finalement été omises

Page 60: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

48

dans cette étude. L’impact du temps de collecte sur les mesures d’accès est également limité par le choix du

seuil de 30 minutes. Une analyse approfondie de l’incidence du temps de collecte sur la quantité d’eau

transportée permettrait de justifier le choix du seuil d’accessibilité. La portée des recherches fut finalement

restreinte par la durée de la maîtrise et de la charge de travail associée.

Contributions et recommandations Les travaux de recherches réalisés dans le cadre de cette maitrise présentent d’importantes retombées. La

collaboration avec l’Organisation mondiale de la santé a permis à l’étudiante de participer aux discussions de

JMP concernant l’élaboration du nouvel indicateur pour les Objectifs de développement durable et donc de soulever l’importance d’y ajouter une composante traitant du temps de collecte. La construction du nouvel

indicateur est également basée sur le traitement de données effectué par l’étudiante et présenté au chapitre 5

du présent mémoire. Cette collaboration démontre d’ailleurs l’importance associée à la question de l’accessibilité

aux services d’approvisionnement en eau potable. La participation et la présentation des travaux de recherche

à de nombreux congrès constituent d’importantes contributions et démontrent l’attention portée à la diffusion

des résultats et du partage des connaissances. Les résultats présentés dans ce mémoire démontrent l’ampleur

toujours considérable du temps nécessaire pour accéder à une source d’eau potable dans certaines régions du

monde. L’évaluation du temps de collecte, selon différentes caractéristiques des ménages, permet, par ailleurs,

de soulever d’importantes inégalités d’accès au sein même des pays à l’étude et soulève la nécessité de porter davantage considération aux différents groupes de populations en vue d’assurer l’accès universel à l’eau

potable. Des efforts supplémentaires doivent être assurés pour rejoindre les populations les plus vulnérables.

Une meilleure connaissance du temps de collecte pour l’approvisionnement en eau potable est essentielle afin

d’assurer une représentation appropriée de l’accessibilité à la ressource. Afin de mettre en place des projets

durables visant l’amélioration de l’accès à l’eau, il incombe de comprendre les déplacements effectués par les

populations locales et leurs habitudes de vie. L’ajout de source d’eau améliorée ne signifie pas nécessairement

une amélioration de l’accès aux services d’approvisionnement en eau potable. Ces travaux de recherche

présentent avant tout des résultats descriptifs, mais permettent le renforcement des perspectives de recherche

associées au temps de collecte. Des recherches portant sur l’impact des composantes environnementales sur le temps de collecte seront notamment poursuivies par l’étudiante dans le cadre d’études doctorales.

Page 61: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

49

Bibliographie  [Note : Les références contenues dans la présente section regroupent uniquement les sources citées dans le résumé, l’introduction et la conclusion du mémoire. Les références utilisées pour les articles présentés aux chapitres 2, 3 4 et 5 se retrouvent respectivement à la fin de chaque chapitre.]

Bain, R. E. S., Gundry, S. W., Wright, J. A., Yang, H., Pedley, S. and Bartram, J. K. (2012). "Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries." Bulletin of the World Health Organization 90(3): 228.

Bartram, J., Lewis, K., Lenton, R. and Wright, A. (2005). "Focusing on improved water and sanitation for health." The Lancet 365(9461): 810-812.

Cairncross, S. (1999). "Trachoma and Water." Community Eye Health 12(32): 58-59. Cairncross, S. and Feachem, R. G. (1993). Environmental health engineering in the tropics : an introductory text.

Chichester, J. Wiley. Cairncross, S., Hunt, C., Boisson, S., Bostoen, K., Curtis, V., Fung, I. and Schmidt, W.-P. (2010). "Water,

sanitation and hygiene for the prevention of diarrhoea." International Journal of Epidemiology 39: i193-i205. Curtis, V. (1986). Women and the transport of water. London, Intermediate Technology Publications. Devi, A. and Bostoen, K. (2009). "Extending the critical aspects of the water access indicator using East Africa

as an example." International Journal of Environmental Health Research 19(5): 329-341. Esrey, S., Potash, J., L, R. and C, S. (1991). "Effects of improved water supply and sanitation on ascariasis,

diarrhoea, dracunculiasis, hookworm infection, schistosomiasis and trachoma." Bulletin of the World Health Organization 69: 609-621.

Fry, L. M., Cowden, J. R., Watkins, D. W., Clasen, T. and Mihelcic, J. R. (2010). "Quantifying health improvements from water quantity enhancement: an engineering perspective applied to rainwater harvesting in West Africa." Environmental science & technology 44(24): 9535.

Graham, J., Hirai, M. and Kim, S.-S. (2016). "An Analysis of Water Collection Labor among Women and Children in 24 Sub-Sarahan Afrifcan Countries." PloS one 11(6).

Godfrey, S., Labhasetwar, P., Wate, S. and Pimpalkar, S. (2011). "How safe are the global water coverage figures? Case study from Madhya Pradesh, India." Environmental Monitoring and Assessment 176(1): 561-574.

Ho, J. C., Russel, K. C. and Davis, J. (2014). "The challenge of global water access monitoring: evaluating straight-line distance versus self-reported travel time among rural households in Mozambique." Journal of Water and Health 12(1): 173.

UN (2015). Objectifs du Millénaire pour le développement. Rapport 2015: 75. UNDP (2016). Le PNUD appuie la mise en oeuvre de l'Objectif de développement durable 6. New-York. WHO/UNICEF (2013). Proposal for consolidated drinking water, sanitation and hygiene targets, indictors and

definitions WHO/UNICEF (2015). Progress on Sanitation and Drinking Water. 2015 Uptdate and MDG Assesment. Wolf, J., Bonjour, S. and Pruss-Ustun, A. (2013). "An exploration of multilevel modeling for estimating access to

drinking-water and sanitation." Journal of Water and Health 11(1): 64-77.

Page 62: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

50

Annexes  Annexe A : Contributions scientifiques

   

Page 63: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

International Conference on Transport and Health Barcelone, Espagne. Juin 2017

51

Title : Quality of life impacts related to the time to access drinking water in Malawi Authors: Cassivi A.*,Waygood E.O.D., Dorea C.C. Background: Universal and equitable access to safe and affordable drinking water for all by 2030 is one target stipulated in the Sustainable Development Goals (SDGs). As of 2015, 92% of the population in Malawi did not have access to water on premises and needed to fetch it. Thus, the issue of water accessibility warrants further research, particularly since the time/energy expenditure needed can impact the affordability of water and thus the quality of life and health of the population. This is perhaps the inverse problem of wealthy developed nations where greater active travel is required for improved health. Methodology: Malaria Indicator Survey (MIS) 2014 Household survey datasets from Health Surveys program was analysed in STATA MP 14 for the aim of this study (n=3405). Time to fetch water was applied as a proxy of the distance to estimate energy expenditure. Results : Two models were created to show the quality of life impacts of the distance to access water. First, by using the indicator initially apply by JMP to monitor the MDG target (i.e. proportion of the population with access to an improved water source irrespective of the time), the proportion of the population with access would be 86%. However, by adding a 30 minutes round-trip distance as a key threshold to the proportion of the population using an improved water source the proportion of the population with access would decrease to 72% (statistically significant different, p < 0.001). Next, the energy impacts of such trips are estimated. By generating scenarios with different characteristics (e.g. slope, type of soil, physical health, load weight) the expenditure associated to the trip was estimated. A 30-minute trip at walking speed of 4 km/h without stopping (i.e.two kilometre round trip) would require for a 54 kg woman, an energy expenditure ranging from 100 to 760 calories with a 20 L one-way load (20 L is a minimum healthy amount). Considering that the Minimium Dietary Energy Requirement is 1706 calories in Malawi, this shows that a 30-minutes trip could cost between 6 and 45% of the daily energy intake, which could have serious impacts on the individual’s quality of life. Conclusion : In order to develop appropriate interventions to improve drinking water access and overall quality of life, the distance between the source and the point of use must be quantified to determine where thresholds and limits may exist.

Page 64: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

21e Colloque étudiant pluridisciplinaire du Centre de recherche en aménagement et développement Québec, QC, Canada. Mars 2017

52

Titre : Approvisionnement en eau potable : Quels sont les impacts du temps de collecte sur l’accessibilité ? L’année 2015 marque la fin des Objectifs du Millénaire pour le développement (OMD) et l’avènement des Objectifs de développement durable (ODD). À l’aube de cette nouvelle période, il est essentiel de se questionner sur les progrès accomplis précédemment en vue d’atteindre les cibles en 2030. La cible 7C des OMD était de réduire de 50% le pourcentage de la population n’ayant pas accès à une source d’eau améliorée. La cible a été atteinte alors que la proportion de la population mondiale ayant accès à l’eau potable est passée de 76% à 91%. Ces statistiques reposent sur un indicateur bien précis soit la proportion de la population utilisant une source d’eau potable améliorée, référant uniquement au type de technologie utilisé.

Cependant, considérant que 42,5% de la population mondiale n’a toujours pas accès à une source d’eau à domicile en 2015, on se questionne sur l’accessibilité à l’eau de ces personnes qui doivent toujours se déplacer pour s’approvisionner. L’objectif de cette recherche est de déterminer l’impact du temps de collecte sur l’accès à l’eau potable. Dans le but de cibler les populations les plus vulnérables, les pays où le pourcentage de la population ayant accès à une source d’eau à domicile était inférieur à 10% en 2015 furent d’abord étudiés, pour un total de 17 pays. Les enquêtes à indicateurs multiples de l’UNICEF et les enquêtes démographiques et de santé de l’USAID, contenant notamment des variables sur l’approvisionnement en eau potable, ont été analysés à l’aide du logiciel STATA MP14.Il fut ainsi possible de mettre en relation les temps de déplacements et le type de source utilisé afin d’établir un portrait plus réaliste de l’accès à l’eau potable.

Les résultats démontrent une importante variation dans le temps de collecte moyen pour chacun des pays, se chiffrant entre 14 minutes et 44 minutes. Les résultats par pays montrent que jusqu’à 40% de la population nationale doit se déplacer plus de 30 minutes pour collecter de l’eau, peu importe le type de source d’eau utilisé. En ajoutant un seuil de 30 minutes à l’indicateur d’accès initial, soit d’avoir accès à une source d’eau potable améliorée, une réduction de la population ayant accès à l’eau atteignant jusqu’à 27% est observée. L’incidence associée à l’ajout du temps de collecte à titre d’indicateur d’accès soulève ainsi la nécessité de revoir les mesures actuellement utilisées. La modélisation de la distance et de différents facteurs (e.g. pente, type de sol, quantité d’eau) permet finalement d’estimer l’impact du temps de collecte sur l’accessibilité en eau potable.

L’application de modèles de transport à la question de l’approvisionnement en eau potable est essentielle afin d’assurer une bonne compréhension des habitudes de déplacement des populations concernées. Ces nouvelles connaissances sont aujourd’hui indispensables, en vue d’atteindre l’accès universel à l’eau potable d’ici 2030 tel que ciblé dans les ODD.

Page 65: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

Colloque annuel de l’Institut EDS Québec, QC, Canada. Mars 2017

53

Titre : Approvisionnement en eau potable : Quels sont les impacts du temps de collecte sur l’accessibilité ? L’année 2015 marque la fin des Objectifs du Millénaire pour le développement (OMD) et l’avènement des Objectifs de développement durable (ODD). À l’aube de cette nouvelle période, il est essentiel de se questionner sur les progrès accomplis précédemment en vue d’atteindre les cibles en 2030. La cible 7C des OMD était de réduire de 50% le pourcentage de la population n’ayant pas accès à une source d’eau améliorée. La cible a été atteinte alors que la proportion de la population mondiale ayant accès à l’eau potable est passée de 76% à 91%. Ces statistiques reposent sur un indicateur bien précis soit la proportion de la population utilisant une source d’eau potable améliorée, référant uniquement au type de technologie utilisé. Les enquêtes à indicateurs multiples de l’UNICEF et les enquêtes démographiques et de santé de l’USAID utilisées pour calculer cet indicateur incluent également des données sur le temps pour aller chercher l’eau. Quoique disponible, cette variable n’est pas prise en compte dans le calcul de l’indicateur d’accès à l’eau potable, entraînant ainsi une surestimation de la population ayant réellement accès à l’eau. Considérant que 42,5% de la population mondiale n’a toujours pas accès à une source d’eau à domicile en 2015, on s’interroge sur l’accessibilité à l’eau de ces personnes qui doivent toujours se déplacer pour s’approvisionner. À l’aide des données disponibles, il fut possible de mettre en relation les temps de déplacements et le type de source utilisé afin d’établir un portrait plus réaliste de l’accès à l’eau potable. Dans le but de cibler les populations les plus vulnérables, les pays où le pourcentage de la population ayant accès à une source d’eau à domicile était inférieur à 10% en 2015 furent d’abord étudiés, pour un total de 17 pays. Le temps de collecte moyen pour chacun des pays présente une importante variation, se chiffrant entre 14 minutes et 44 minutes. Les résultats par pays montrent que jusqu’à 40% de la population nationale doit se déplacer plus de 30 minutes pour collecter de l’eau, peu importe le type de source d’eau utilisé. En ajoutant un seuil de 30 minutes à l’indicateur d’accès initial, soit d’avoir accès à une source d’eau potable améliorée, une réduction de la population ayant accès à l’eau atteignant jusqu’à 27% est observée. Les personnes qui effectuent les déplacements, particulièrement les femmes et les enfants, sont affectées à cette tâche plusieurs heures par jour aux dépens d’autres activités. Non seulement le déplacement demande du temps, mais il requiert aussi de l’énergie. La modélisation de la distance et de différents facteurs (e.g. pente, type de sol, quantité d’eau) permet d’estimer l’impact associé à la collecte d’eau. L’application de modèles de transport à la question de l’approvisionnement en eau potable permet une meilleure compréhension des habitudes de déplacement des populations et se voit aujourd’hui indispensable pour atteindre l’accès universel d’ici 2030 telle que ciblée dans les ODD.

Page 66: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

Colorado WASH Symposium Boulder, CO,USA. Mars 2017

54

Title : Access to drinking water: Does collection time matter ? Authors: Cassivi A.*, Johnston R. ,Waygood E.O.D., Dorea C.C. Introduction Proportion of the world’s population with access to an improved water source was reported by WHO and UNICEF to have increased from 76% to 91% between 1990 and 2015, thus successfully attaining the target 7c of the Millennium Development Goals (MDGs) established in 2000. The indicator used to measure access to water currently takes into account the type of source used only referring to the supply’s technology (i.e. proportion of the population with access to an improved water source). Despite the reported achievement of the MDGs with regards to drinking water, time to collect water remains high in countries where water on premises is not commonly provided. In 2015, 42.5% of the world population did not have access to water on premises and needed to fetch it. By using collection time as a proxy, we aim to describe access to drinking water. Considering the importance of time to fetch water on an individual’s health and well-being, we demonstrate how collection time impacts the coverage of access to water. This is a timely exercise in view of the new target which is to reach universal and equitable access to safe and affordable drinking water for all by 2030 as set in the Sustainable Development Goals (SDG).

Methodology Countries with available data where the proportion of the population with access to water on premises was the lowest (i.e. less than 5%) in 2015 JMP report were selected for the aim of this study. A total of 5 countries were included: Central African Republic, Liberia, Nigeria, South Sudan, and Uganda. Datasets from the UNICEF Multiple Indicator Cluster Surveys and USAID Demographic and Health Surveys program, used by UNICEF and WHO Joint Monitoring Programme to track the MDGs, were analysed. Only the last survey available for each country was considered for this study while JMP use regression analysis with all available surveys for a country. This might cause difference between our results and the ones found in JMP report. These surveys revealed valuable information about the source used by each respondent (e.g. sources used by the household, time needed to fetch water, who fetched water). Statistical analysis was done with STATA MP version 14.

Table 1: Data used by country

Country Proportion of the population with

access to on premises water source (%) *

Data Survey Year Sample

(n) Central African Republic 1,6 MICS 2010 11966 Liberia 2,4 DHS 2013 9333 Nigeria 2,3 DHS 2013 18546 South Sudan 1,8 MICS 2010 9950 Uganda 5,0 DHS 2011 9033

*Source: WHO/UNICEF 2015 Progress on Sanitation and Drinking Water. 2015 Update and MDG Assessment.

Results A 30-minute threshold was first applied to measure the impact of collection time. As shown in previous research there is a non-linear relationship between time to collect water and quantity consumed. It is widely held that, there would be a steep decline in water consumption from “on premises” to about three minutes, after which the amount used would plateau until 30 minutes where a further decline would be observed (Cairncross and Feachem, 1993). The five survys analysed show that the population who need to fetch water farther than 30 minutes in these countries reaches up to 40% without any regards to the type of source used. Within studied countries, average time to collect water ranged from 17 minutes to 44 minutes at the national scale. Results show that time to collect water is either the same or higher when the source used is unimproved.

Table 2 : Collection time

Page 67: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

55

Country Proportion of the population

with collection time > 30 minutes (%)

Average collection time in minutes (SD)

National Type of source Improved Unimproved

Central African Republic 33 33 (±40) 32 (±44) 36 (±31) Liberia 11 17 (±19) 17 (±21) 17 (±15) Nigeria 17 21 (±29) 19 (±28) 24 (±31) South Sudan 37 39 (±52) 36 (±44) 45 (±63) Uganda 40 44 (±49) 42 (±49) 49 (±47)

To measured access to water, the 30-minute threshold was secondly applied as an accessibility compound to determine water service levels in each country. Four categories were defined: On premises (i.e. access to water at the point of use), Basic (i.e. access to an improved water source in 30 minutes or less), Limited (i.e. access to an improved water source farther than 30 minutes) and Unimproved (i.e. no access to an improved source). These categories show the differences that could occur according to the indicator access’s definition. While the indicator of access to an improved water source would include populations with on premises, basic and limited service, the addition of the 30-minute threshold reduce the access to on premises and basic service. Results show significant reductions in the proportion of the population with access to water when limited service is not included: 19% in Central African Republic, 9% in Liberia, 8% in Nigeria, 22% in South Sudan and 27% in Uganda. Figure 1 : Water service level

Conclusion Time to collect water remains high in these five countries, averaging more than 15 minutes in all countries. The research demonstrated that the disaggregation of those with access to improved sources into those with limited and basic services gives a more accurate picture about the quality of service that people are experiencing. With only consideration to the access to an improved water source, the majority of the population in each country would be considered to have access to improved water sources. However, when the threshold of over 30 minutes was taken into account, the proportion of the population with access decreased up to 27%. To ensure universal and equitable access to water as intended in the water-related SDGs target, distance to water should thus be considered in the indicator used to measure the proportion of the population with access to a certain water service. In order to develop appropriate interventions to improve drinking water access and overall well-being of individuals, the impacts of the distance between the source and the point of use must also be quantified to determine where thresholds and limits may exist.

References Cairncross, S. and Feachem, R. G. (1993). Environmental health engineering in the tropics : an introductory text. Chichester, J. Wiley.

0 10 20 30 40 50 60 70 80 90 100

Central African Rep.

Liberia

Nigeria

South Sudan

Uganda

Population (%)

On premises Basic service Limited service Unimproved

Page 68: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

2016 Water and Health Conference : Where Science Meets Policy at UNC Water Institute Chapel Hill, NC, USA. Octobre 2016

56

Title: Impacts of water fetching distance on water accessibility in developing countries. Universal and equitable access to safe and affordable drinking water for all by 2030 is necessary to achieve the target stipulated in the Sustainable Development Goals (SDGs). “Sustainable access” to drinking water, as defined by WHO/UNICEF Joint Monitoring Programme (JMP), requires that a few criteria need to be heeded: the source must not be further than one kilometre away from the point of use, it should be possible to get at least 20 L per person per day, and the drinking water quality ought to meet WHO guidelines or national standards. Despite the achievement of the Millennium Development Goals (MDGs) with regards to drinking water, in 2015, 42.5% of the world population did not have access to water on premises and needed to fetch it. Thus, the issue of water accessibility warrants further research, particularly since the time/energy expenditure needed can impact the affordability of water. The objective of this research was to examine how distance can impact access and baseline (i.e. time and energy) cost of drinking water. Datasets from the UNICEF Multiple Indicator Cluster Surveys and USAID Demographic and Health Surveys program, used by JMP to monitor the MDGs, were analysed. These surveys revealed valuable information about the source used by each respondent (e.g. sources used by the household, time needed to fetch water, who fetched water). Since exact distance to water was unknown, time was applied as a proxy of the distance. Walking speed, land conditions (e.g. gradients, ground) and other externalities were considered in order to to measure the impact of the time on access and affordability. Next, the energy expenditure associated to a certain time was estimated. The energy expenditure associated to the trip was analysed by taking into consideration characteristics such as physical health, land conditions or load weight which could cause variations. By generating different scenarios with these characteristics, the energy expenditure associated to a certain distance was estimated. Time and energy expenditure, associated to the task of fetching water, constitute losses at the expense of other activities. For example, at a walking speed of 4 km/h without stopping, a two kilometre round trip would take 30 minutes which represent a time investment. For a 54 kg woman, this would require an energy expenditure of approximately 100 calories assuming best conditions (i.e. flat asphalt surface) with a 20 L one-way load. The cost of the expenditure could be measured with respect to the daily base in terms of caloric intake. In Ethiopia for instance, the Dietary Energy Supply (national average energy supply in calories) is 2192 calories per person per day. For a 54 kg woman, the Basal Metabolic Rate (minimal energy expenditure compatible with life) is 1350 calories, which represent 62% of the daily intake. Assuming this, there is only 812 calories remaining for all daily activities including fetching water. In order to meet the 20 L needs for one person, the 30 minutes trip will represent, depending on the conditions (i.e. land conditions, walking speed, etc.), 12% to 94% of the daily remaining energy. Whereas the global trend may not be too different from the Ethiopian case, the prevalence of undernourishment, which reaches 32% in Ethiopia , should be taken into consideration for further applications of energy expenditure. Considering the importance of daily calorie intake, a reduction of the expenditure associated to the task of fetching water could be valuable in several ways. First, additional time and energy could be invested in other activities. Second, if time or energy is limited, those two components could affect the trip frequency and so the quantity of water carried per day. Thus, a reduction of the distance to the water source could increase the quantity of water consumed by a household and help to reduce the incidence of water-washed diseases. Third, the proximity of a safe drinking water source could reduce the utilization of lower quality source located closer. In order to develop appropriate interventions to improve drinking water access and overall well-being of those individuals, these impacts of the distance between the source and the point of use must be quantified to determine where thresholds and limits may exist.

Page 69: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

International Hydrological Programme (IHP) of UNESCO and International Association of Hydrological Sciences (IAHS) Kovacs Colloquium Paris, France. Juin 2016

57

TITLE: A more complete picture of access to water INTRODUCTION Target 7C of the Millennium Development Goals (MDG) was to halve, by 2015, the proportion of the population without sustainable access to safe drinking water. The target was considered to have been met as the proportion of the world population with access to water was reported to have increased from 76% in 1990 to 91% in 2015. These proportions are based on the percentage of the population with sustainable access to an improved water source. As defined by WHO/UNICEF Joint Monitoring Programme (JMP) for Water supply and Sanitation, an improved water source is one that adequately protects the source from outside contamination, particularly faecal matter (e.g. piped water, tubewell or boreholes, protected dug well or spring, rainwater). However, according to JMP a few characteristics need to be heeded to ensure sustainable access to drinking water: the source must not be further than one kilometre away from the point of use, it should be possible to get at least 20 litres per person per day and the drinking water quality ought to meet WHO guidelines or national standards. Several suggest that the indicator used to monitoring the target does not reflect the definition of access to water provided by JMP (Bain and al, 2012 ; Dar and Khan, 2011). Indeed, the indicator “improved sources” reflects only the technology of the source; the distance, the quantity and the actual quality are all omitted. The new target of the Sustainable Development Goals (SDGs) related to water is to achieve universal and equitable access to safe and affordable drinking water for all by 2030. However, how complete of a picture is a measure solely based on having an improved source? Thus, reviewing the indicator is essential to ensure a more inclusive picture of access to water. In order to implement and monitor the target, a detailed definition of access to water must first be provided. Equitable, safe and affordable must also be defined to ensure that the analyse will respect these components. Considering that 42.5% of the world population must fetch water because they do not have access to water on premises (2015), a particular attention to distance must be heeded. The objective of this study is to evaluate the impacts of using the distance to fetch water to measure accessibility and affordability of water access with available data. The methods used to aim this objective will be discussed in order to propose their use in the implementation of the Sustainable Development Goals. MATERIAL AND METHODS Datasets from the UNICEF Multiple Indicator Cluster Surveys (MICS) and USAID Demographic and Health Surveys program (DHS), the same ones used by JMP to measure the progress towards the MDG 7C, are particularly valuable to the aims of this study. Beyond the type of source used by the household, time needed to fetch water is also available in these surveys, for over 20 years. First, statistical analyse can be made at a country scale to improve the portrait of water accessibility by adding a distance component. Next, energy expenditure measures can be applied as a means to consider affordability as point out in the SDG. RESULTS & DISCUSSION For accessibility, time needed to fetch water can be used to estimate the distance to the water source. In order to respect the definition proposed by JMP, the source must be less than 1 kilometre from the point of use. At a reasonable walking speed (e.g. 4 km/h), the two-kilometre round-trip without queuing would be accomplished in 30 minutes. Next, previous research found that the quantity of water collected is stable for round-trips between three and 30 minutes, but after that point, the quantity of water carried and consumed decreases with increasing time (Cairncross and Feachem, 1993). Thus, 30 minutes is a clear threshold to apply to accessibility. By adding this new accessibility compound to the indicator used to measured access to water, we note a significant reduction in the proportion of the population with access to water. For example, in Burundi the proportion of the population with access to an improved source of water is 76% following the “improved source” measure, but the proportion is reduced to 56% by adding a 30-minute distance threshold.

Page 70: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

58

Adding a distance threshold to the indicator used to monitoring access to water is also allowing for affordability to be taken into account. Indeed, besides the fact that water might have a financial cost, the time cost of fetching water must also be taken into consideration. Further to time costs, there is the energy consumed by this physical activity that relates to the distance travelled. Different components such as slope and type of soil can be used to measure the energy expenditure associated to a certain distance. Here, daily energy thresholds such as the minimum amount of calories required or the average calories consumed can be used to contextualise this impact. Time and energy associated to the task cannot be invested in other activities, which may call into question the affordability of water. Thus, in order to ensure affordable access to water it is essential to define the thresholds associated to the cost (e.g. financial, time and energy). However, to have access to water it is clear that the resource must be available. Indeed, the availability of water (i.e. hydrological regime) could affect the accessibility to a nearby water source. Further, the distance to the water source has an impact on the quantity of water consumed (e.g. Cairncross and Feachem, 1993; The Sphere Project, 2011). Thus, reducing the time to fetch water could help to increase the quantity of water consumed by the individual. As shown in several studies, increasing the quantity of water is essential to reducing the prevalence of water-washed diseases and improving quality of life. In order to ensure equitable access to water as intended in the water-related SDGs target, distance to water and its impacts on quantity should also be considered in the indicator used to measure the proportion of the population with access to water. CONCLUSION In order to achieve the SDGs target ‘’universal and equitable access to safe and affordable drinking water by 2030’’, much work remains. The indicator “improved source”, currently used to monitoring the MDG, only focuses on the technology of the source. As demonstrated, access to a sufficient water quantity at a reasonable distance, as proposed in the definition given by JMP, would for some countries significantly alter the proportion of the population with access to water. Thus, in order to achieve the new water-related target this method will help to guide intervention and prioritize the most vulnerable countries in terms of accessibility. Moreover, to ensure affordable access to drinking water, methods to assess the impacts of the distance on time and energy expenditures can be integrated. Regardless of the impacts associated to the distance between the source and the point of use (e.g. accessibility, affordability and quantity/equity) it is essential to choose a relevant indicator for the implementation of the Sustainable Development Goals. REFERENCES Bain, R. E. S., Gundry, S. W., Wright, J. A., Yang, H., Pedley, S. and Bartram, J. K. (2012). Accounting for

water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries. Bulletin of the World Health Organization 90(3), 228.

Cairncross, S. and Feachem, R. G. (1993). Environmental health engineering in the tropics : an introductory text. Chichester, J. Wiley.Dar, O. A. and Khan, M. S. (2011). Millennium development goals and the water target: details, definitions and debate. Tropical Medicine & International Health 16(5), 540-544.

The Sphere Project (2011) Humanitarian Charter and Minimum Standards in Disaster Response. Practical Action, UK

Page 71: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

30th Eastern Canadian Symposium on Water Quality and Research Ottawa, ON, Canada. Mai 2016

59

Title : Taking stock of the Millennium Development Goals: Access to safe drinking water* Authors: Alexandra Cassivi, E. Owen D. Waygood, Caetano C. Dorea

Abstract : Adequate water supply and treatment together with sanitation and appropriate hygiene behaviour are known collectively as WASH (Water and Sanitation, Hygiene). WASH-based interventions are among the most effective tools to improve public health and limit the incidence of diarrhoeal diseases. Children under the age of 5 years and other vulnerable populations are most at risk from preventable enteric infections, including diarrhoeal diseases, which can also lead to malnutrition and stunting as a result of the inability to retain and absorb nutrients. Further to the health benefits of reducing diarrhoea, its prevention (9.1% of global disease burden) could result in 320 million extra working days, US$7 billion in healthcare savings, and 272 million extra school attendance days per year. Recent estimates of the global population without access to safe drinking water vary between 0.8 and 1.8 billion people. In 2000, Millennium Development Goals (MDGs) were set and sought to halve, by 2015, the proportion of the population without sustainable access to safe drinking water (Target 7C) amongst other goals. The objective of the work presented here was to examine the developments in the sector and highlight where further work is needed. Official results regarding the drinking water target were said to be met as the proportion of the world population with access to water was reported to have increased from 76% to 91%. However, upon closer examination of the criteria utilised to define “access” it becomes evident that from a water quality and accessibility (i.e. time or distance to water source) perspective, this success story merits reconsideration. For example, Bangladesh was reported to have 87 % (Joint Monitoring Program) of the population being served by an “improved” water source. However, when considering relevant water quality aspects (i.e. E. coli and As) it is revealed that only 53 % of the population have access to safely managed drinking water. Next, if accessibility is considered, the proportion of the population with access to an improved water source is also reduced. For instance, in Ethiopia, the proportion of the population with access to an improved source of 57% would be reduced to 46% if a threshold of 30 minutes is applied as an accessibility criterion. An increased distance may also increase the likelihood of a lower quality source being used or of post collection contamination. Thus, the two considerations show that considerable work likely remains to improve conditions in many countries. This is a timely exercise in view of the new targets set in the Sustainable Development Goals (SDG) that will extend until 2030.

Page 72: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

5e Colloque étudiant en développement international de la Chaire en développement international Québec, QC, Canada. Février 2016

60

Titre : Objectifs de développement durable et accessibilité en eau potable. Quel est le défi ? Mots-clés: Eau potable, Développement durable, Modélisation, Accessibilité Résumé L’année 2015 marque la fin des Objectifs du Millénaire pour le développement (OMD) et l’avènement des Objectifs de développement durable (ODD). À l’aube de cette nouvelle période, il est essentiel de se questionner sur les progrès accomplis précédemment en vue d’atteindre les cibles en 2030. La cible 7C des OMD était de réduire de 50% le pourcentage de la population n’ayant pas accès à une source d’eau améliorée. La cible a été atteinte alors que la proportion de la population mondiale ayant accès à l’eau potable est passée de 76% à 91%. Ces statistiques reposent sur un indicateur bien précis : la proportion de la population utilisant une source d’eau potable améliorée. En analysant les données des enquêtes à indicateurs multiples de l’UNICEF et des enquêtes démographiques et de santé de l’USAID, on constate l’omission de divers éléments dans le choix de l‘indicateur, entrainant une surestimation de la proportion de la population ayant réellement accès à l’eau. Considérant que 42,5% de la population mondiale n’a toujours pas accès à une source d’eau à domicile en 2015, on s’interroge sur l’accessibilité à l’eau de ces personnes qui doivent toujours se déplacer pour s’approvisionner. Ces personnes, particulièrement des femmes et des enfants, se voient affectées à cette tâche plusieurs heures par jour aux dépens d’autres activités. Non seulement le déplacement demande du temps, mais il requiert aussi de l’énergie. L’alimentation et la consommation caloriques sont, de surcroit, des éléments qui influencent la capacité à se déplacer. À l’aide de la modélisation de la distance et de différents facteurs (pente, le type de sol, poids de l’eau), il sera possible d’estimer la dépense calorique ainsi que l’influence des facteurs sur la quantité d’eau potable consommée. Ces nouvelles connaissances amèneront une meilleure compréhension des habitudes de déplacement des populations, de leurs besoins et de l’accès à l'eau potable à l’échelle mondiale. L’application de modèles de transport à la question de l’approvisionnement en eau potable permettra d’assurer une gestion de programme appliquée aux besoins des populations concernées par cette réalité.

Page 73: Considération du temps de collecte dans les mesures d ......Engineering and Development Centre (WEDC) International Conference. 11 au 15 juillet 2016). Cet article, Cet article, rédigé

61

Annexe B : Liste des bénéficiaires de l’APD établie par le CAD. 2014-2015-2016