73
Curso « SOLARSAFEWATER » Iguazu – Misiones (Argentina) 14-17 de Octubre de 2005 D D estrucci estrucci ó ó n de n de C C ontaminantes ontaminantes O O rg rg á á nicos nicos P P or or F F otocat otocat á á lisis lisis H H eterog eterog é é nea nea Jean Jean - - Marie HERRMANN* ( Marie HERRMANN* ( Juan Juan - - Mar Mar í í a a ARMI ARMI Ñ Ñ O) O) *Head of the Laboratory of Applied Environmental Chemistry Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université Claude Bernard Lyon 1, Bâtiment J. Raulin, 43 bd du 11 novembre 1918, Villeurbanne - France Phone : (33) 4 72 43 29 79 ; Fax : (33) 4 72 44 84 38 ; E-mail : [email protected]

Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Curso « SOLARSAFEWATER »

Iguazu – Misiones (Argentina) 14-17 de Octubre de 2005

DDestrucciestruccióón de n de

CContaminantesontaminantes OOrgrgáánicosnicos PPoror FFotocatotocatáálisislisis HHeterogeterogééneanea

JeanJean--Marie HERRMANN* (Marie HERRMANN* (JuanJuan--MarMarííaa ARMIARMIÑÑO)O)

*Head of the Laboratory of Applied Environmental ChemistryLaboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634,Université Claude Bernard Lyon 1, Bâtiment J. Raulin, 43 bd du 11 novembre 1918, Villeurbanne - France Phone : (33) 4 72 43 29 79 ; Fax : (33) 4 72 44 84 38 ; E-mail : [email protected]

Page 2: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

FOTOFOTO-- CatCatáálisislisis HeterogHeterogééneanea

1) 1) TransferenciaTransferencia de de loslos reactantesreactantes en la en la fasefase flufluíídada

2) 2) AdsorciAdsorcióónn de de loslos reactantesreactantes en la en la superficiesuperficie del del catalizadorcatalizador

3) 3) ReacciReaccióónn en la en la fasefase adsorbidaadsorbida

3.1 3.1 AdsorciAdsorcióónn de de loslos fotonesfotones porpor el el ssóólidolido (no (no fotoqufotoquíímicamica))

3.2 3.2 CreaciCreacióónn de de electroneselectrones y y huecoshuecos fotofoto--inducidosinducidos

3.3 3.3 ReaccionesReacciones de de transferenciatransferencia de de electroneselectrones ((ionosorciionosorcióónn, , neutralizacineutralizacióónn de de cargascargas elelééctricasctricas, , formaciformacióónn de de radicalesradicales, , reaccionesreaccionesququíímicasmicas en en fasefase adsorbidasadsorbidas))

4) 4) DesorciDesorcióón de n de loslos productosproductos finalesfinales

5) 5) EvacuaciEvacuacióón de n de loslos productosproductos finales en/finales en/porpor la la fasefase flufluíída da

Page 3: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

EnergyEnergy bandband diagramdiagram of of titaniatitania

Oxidation (H++OH° )Valence Band

Conduction Band

h+

e-

3.2 eV

Recombinaisonof charges

UV-irradiationλ<400 nm

Adsorption (O2)

Reduction (O2• -

Adsorption ( H2O)Adsorption(POLLUTANT P )

POLLUTANT POxidation (P° + )

DEGRADATION

Semiconductor (TiO2)

)

EE

Electron Energy

Page 4: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

(λ ≤ 400 nm)

TiO2

OXIDATIONRed2 → Ox2 + ne-

REDUCTIONOx1 + ne- → Red1

e-

e-

e-

-

+

Conduction band

ADSORPTION

ADSORPTION

Eg ≈ 3,2 eV(anatase)

Valence band

surface

Page 5: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Fate of electrons and holes within a spherical particle of titania in the presence of an acceptor (A) and of a donor (D) molecule (after the late Dr. H. Gerisher (1993))

Page 6: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

magneticstirrer

Watercell

UV lamp(125 W)

H2O(295 K)

septum

photoreactor

valve

TiO2slurry

GC/FIDor

GC/MS

Scheme of a laboratory-scale slurry photoreactor

Page 7: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

m

mopt

Ar

EG

λ

Br

EG

80°C 20°C

Dlog r

Ea = Et - αQA

Ea = Et ≈ 0

Ea = Et + αQP

1/T

C

r = k[KC/(1+KC)]

C0

r

r

Φ

r ∝ Φr ∝ Φ1/2

EInfluence of the different physical parameters which govern Influence of the different physical parameters which govern the reaction rate. (A): mass of catalyst; (B): wavelength; (C): the reaction rate. (A): mass of catalyst; (B): wavelength; (C): initial concentration of reactant; (D): temperature; (E): radianinitial concentration of reactant; (D): temperature; (E): radiant t flux.flux.

Page 8: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Los Los DoceDoce PrincipiosPrincipios de la de la QuQuíímica Verdemica Verde**

1. Prevención2. Economía de átomos3. Síntesis de productos químicos menos peligrosos4. Diseño de productos más seguros5. Disolventes y corrientes auxiliares más seguros6. Diseño para la eficiencia energética7. Uso de materias primas renovables8. Reducción de sub-productos9. Catálisis10. Diseño para la degradación11. Análisis en tienpo real para la prevención de la contaminación12. Química intrínsecamente más segura para la prevención de accidentes

*Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, p.30. By permission of Oxford University Press.

Page 9: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Fine Fine ChemicalsChemicals vs vs EnvironmentalEnvironmental andand Green Green ChemistryChemistryin in PhotocatalysisPhotocatalysis

Influence Influence ofof thethe nature nature ofof thethe relatedrelated active active speciesspecies

O* vs OH°

Page 10: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Fine Chemicals in Photocatalysis

Page 11: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Fine Fine ChemicalsChemicals vs vs EnvironmentalEnvironmental andand Green Green ChemistryChemistryin in PhotocatalysisPhotocatalysis

Influence Influence ofof thethe nature nature ofof thethe relatedrelated active active speciesspecies

O* vs OH°

Page 12: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Fine Fine ChemicalsChemicals vs vs EnvironmentalEnvironmental PhotocatalysisPhotocatalysis

ParametersParameters Fine Fine ChemicalsChemicals EnvironmentalEnvironmental CatalysisCatalysis

CatalystPhotoreactorsmediumActivation ProcessKinetic laws

TiO2, Pt/TiO2

Batch, plug flowGas and liquid phasePhotonic absorption

Langmuir-Hinshelwood

TiO2

Batch plug flowGas and liquid phasePhotonic absorption

Langmuir-Hinshelwood

Main reaction Mild oxidation Total oxidation

Initial selectivity 100% No selectivity

Final products for organics CO2

Medium Dry medium Water, Humid air

Active species O* OH°

Reaction of Formation

(TiO2) +

O- (ads) + h+ → O*(ads)

hν → e- + h+

(H2O ⇄ H+ + OH-) + h+ → H+ + OH°

C O

CommonCommonFeaturesFeatures

OppositeOppositeFeaturesFeatures

Page 13: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Fine Fine ChemicalsChemicals : Case : Case studystudy of of tertiobutyltertiobutyl--tolualdehydetolualdehyde

PerfumePerfume IndustryIndustry

5 C4H9-C6H4 - CH3 + 4 KMnO4 + 6 H2SO4

CHO

4 MnSO4 + 2 K2SO4 + 11 H2O + 5 C4H9 - C6H4 - CHO

+ KMnO4 + by products

ManyMany byby--productsproducts as as expectedexpected in fine in fine chemistrychemistry

Page 14: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Fine Fine ChemicalsChemicals : Case : Case studystudy of of tertiobutyltertiobutyl--tolualdehydetolualdehyde

TheThe photocatalyticphotocatalytic solutionsolution

C4H9- C6H4 - CH3 + O2 C4H9 - C6H4 - CHO + H2OTiO2 + hν

(air)

- Selectivity S = 100% - Reaction is performed in air, at room temperature-Typical « environmentally friendly reaction » (« Green Chemistry ») whichcan be carried out in gas and/or pure liquid organic phase

Page 15: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Environmental Photocatalysis in Water

Page 16: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

PHOTOCATALYTIC TOTAL DEGRADATION OF INORGANICS

(CHEMICALS, POLLUTANTS, TOXICS ….)PHOTOCATALYTIC TOTAL DEGRADATION OF INORGANICS

(CHEMICALS, POLLUTANTS, TOXICS ….)

Page 17: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

H2S + 2 O2 → SO42- + 2 H+

SH- + 2 O2+ → SO42- + H+

S2- + 2 O2 → SO42-

SO32- + 1/2 O2 → SO4

2-

S2O32- + 2 O2 + H2O → 2 SO4

2- + 2 H+

NO2- + 1/2 O2 → NO3

-

NH4+ + 1/2 O2 + H2O → NO3

- + 2 H2O + 2 H+

H3PO3 + 1/2 O2 → H3PO4

CN- + 1/2 O2 → OCN- [ OCN- + 2 H2O→ CO32- + NH4

+]

CATALYSTSCATALYSTS

PHOTOCATALYTIC OXIDATION OF AQUEOUS INORGANICSPHOTOCATALYTIC OXIDATION OF AQUEOUS INORGANICS

TiO2 >> ZnO* > ZrO2 > CeO2 ≈ SnO2 > CdS*> MoO3 ≈ WO3 >>V2O5 = 0

(*: photocorrodes)

Page 18: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

HeavyHeavy metalmetal removalremoval

By photocatalytic oxidationTiO2

Pb2+ ⎯→ PbO2hυ + air

By photocatalytic reduction

Mn+ + n /2 H2O → M° + nH+ + n/4 O2 (g)

- Toxic metals : Hg2+

- Precious metals :

Ag+ > Pd2+ > Au3+ > Pt4+ >> Rh3+ >> Ir4+

Recovery of silver from photographic baths

Abatement to less than 0.1 ppm

Separation from common metals

J.M. HERRMANN et al, J. Phys. Chem. 90, (1986), 6028 ; J.M. HERRMANN et al , J. Catal. 113, (1988), 72

Page 19: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

PHOTOCATALYTIC TOTAL DEGRADATION OF ORGANICS

(POLLUTANTS, PESTICIDES, DYES….)PHOTOCATALYTIC TOTAL DEGRADATION OF ORGANICS

(POLLUTANTS, PESTICIDES, DYES….)

Page 20: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Photocatalytic OH° Radicals Generation

In water, UV-irradiated titania is able to generate OH° radicals, known as strongly oxidative (second best after fluorine) but poorly selective agents:

(TiO2) + hν e- + h+

O2 + e- O2-

H2O OH- + H+

OH- + h+ OH°

O2- + H+ HOO°

2 HOO° O2+ H2O2

H2O2 2 OH°

R-H + °OH R° + H2O

R° + °OH R-OH

R-OH + °OH Intermediates CO2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Loss of one carbon atom via the “photo-Kolbe” reaction:

R-COO- + h+ R° + CO2

Page 21: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Importance of Importance of thethe «« PhotoPhoto--KolbeKolbe »»** ReactionReaction** Firstly described by B. KRAEUTLER and A.J. BARD (1978)

(TiO2) + hν e- + h+

R – COO- + h+ R COO°

R – COO° R° + CO2

First step of carbon mineralization : Cn Cn-1 + CO2

Many carboxylic acids present in Nature (formic, acetic, oxalic, butyric, fatty acids (palmitic, stearic, …))

Possible subsequent reactions :

R’ + OH° R – OH R’ – CHO R COOH Cn-2 + CO2

In In waterwater : Step-by-step decarboxylations : Cn n CO2

In In humidhumid airair : side reactionsR° + H° RH ( )R° + OH° ROH ( ) > C = O ( )

(acceleration of self-cleaning by evolution of gaseous intermediates)

Page 22: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Photocatalytic degradation of Biomass

HOOC-CH=CH-COOH

HOOC-CH 2 -CHOH-COOH

CH3 -CHOH-COOH HOOC-CHOH-CHOH-COOH

HOOC-CHOH-COOH

HOOC-CH 2 -CHO

H2 C=CH-COOH

HOOC-CHO

HOOC-CH 2 OH

HOOC-COOH

CH3 -COOH

HCOOH

CH3 -CO-COOH

CH3 -CHO

CO2

TiO 2 -UV

Reaction pathway of the photocatalytic degradation of malic acidin contact with TiO2 at λ ≥ 290 nm.

malic acid

2-hydroxypropanoic acid

propanedioic acid

acetic acid

formic acid oxalic acid

formylmethanoic acid

hydroxyethanoic acid

propenoic acid

2-oxopropanoic acid

3-oxopropanoic acid

butenedioic acid (trans/cis)

acetaldehyde

(1) (2)

(3)(4)

HOOC-CH 2 -COOH2-hydroxypropanedioic acid

2,3-dihydroxybutanedioic acid(lactic acid)

(pyruvic acid)

(malonaldehydic acid)

(malonic acid)(acrylic acid)

(glycolic acid)

(glyoxylic acid)

(tartaric acid)

(tartronic acid)

(fumaric/maleic acid)

a,b

a,b a,b,c

a

a,b,c

a

a

a

a

a,b,ca

b,e

identification:a: HPLCb: GC/MSc: Capillary electrophoresisd: GCe: LC/MS

c

Page 23: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Photocatalytic degradation of Pesticides

FenitrothionFenitrothion

O NO 2

CH3

PCH3O

CH3OS

PhosphorothioicPhosphorothioic acidacid O,O,OO--dimethyldimethyl--OO--(3(3--methylmethyl--44--nitrophenyl) esternitrophenyl) ester

(insecticide, (insecticide, cholinesterasecholinesterase inhibitorinhibitor))

Page 24: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

TIME (MIN)

KineticsKinetics of of thethe formation of formation of inorganicinorganic ions ions duringduring FenitrothionFenitrothion catalyticcatalytic photodegradationphotodegradation

O NO2

CH3

PCH3O

CH3OS

KineticsKinetics of of disappearancedisappearance of of FenitrothionFenitrothionA = TiOA = TiO22 + UV +air ; B = TiO+ UV +air ; B = TiO22 darkdark ; C= UV ; C= UV alonealone

Page 25: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

SchematicSchematic photocatalyticphotocatalytic degradationdegradation pathwaypathwayof of FenitrothionFenitrothion

Page 26: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

DyeDye Model Model MoleculesMolecules

N N

SO3Na

ORANGE GORANGE G

O

O

OHOH

SO3Na

ALISARINALISARIN

N N

HOOC

(H3C)2N

METHYL REDMETHYL RED

S+

N

N(CH3)2Cl-

(H3C)2N

METHYLENE BLUEMETHYLENE BLUE

NH2

N NNH2

SO3NaSO3Na

N N

CONGO REDCONGO RED

Page 27: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

DECOLORIZATIONDECOLORIZATION

MethyleneMethylene blueblue

0min 15min 30min 55min

S+

N

N(CH3)2

Cl-(H3C)2N 0min 15min 30min 60min 120min 180min

CONGO REDCONGO RED

NH2

N NNH2

SO3NaSO3Na

N N

Page 28: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

NITROGEN MASS BALANCE IN AZONITROGEN MASS BALANCE IN AZO--DYES DEGRADATIONDYES DEGRADATION

AZOIC or AZOAZOIC or AZO--dyes :dyes :

They contain a stable internal –N=N- functional group

They are the most abundantly used

Page 29: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

EVOLUTION of NITROGENEVOLUTION of NITROGEN--CONTAINING FINAL PRODUCTSCONTAINING FINAL PRODUCTS

Case of ammonium ions

NH4+ ions originate from amino-groups without any change of the oxidation degree of nitrogen equal to

–3.This can occur via successive attacks by H° atoms:

R-NH2 + H° → R° + NH3 followed by : NH3 + H+ ⇔ NH4+

H° atoms can be generated either

(i) by reduction of protons by photogenerated electrons (moderate driving force)H+ + e- → H°or (ii) by transient alcohol intermediate photodehydrogenation (Herrmann et al. (1980))R-CH2OH → R-CH2O- + H+ → R-CHO + 2 H°or (iii) by other redox reactions such as the photo-Kolbe reaction of formate penultimate metabolite:H-COO- + h+ → H° + CO2By comparing the initial rates, NH4

+ appears as a primary product by contrast to NO3-

No nitrogen balance in solution for both No nitrogen balance in solution for both azoazo--dyes. dyes. ⇒⇒ deeper analyses in the gas phasedeeper analyses in the gas phase

Page 30: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Case of dinitrogen

Experimental evidence for dinitrogen formation:

MS analysis in a static vacuum-tight cell

GC analysis in an air-tight batch slurry photoreactor

For Congo Red, the mass balance in nitrogen was equal to 100 %.

The mol fraction xN of N atoms in the final dinitrogen produced by CR degradation is equal to:

xN = 2 nN2 / [(nNH4+ + nNO3-)+ 2 nN2] = 0.65 ≈ 2/3

The ratio 2/3 is just the mol fraction of N atoms contained in the double -N = N- azo-groups of Congo-Red. Similar results were found with the single azo- group dye in Amaranth.

The photocatalytic degradation of “azo” groups generates gaseous nitrogen.

Page 31: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

FORMATION OF NFORMATION OF N22 FROM DIAZOIC DYESFROM DIAZOIC DYES

It can be accounted for by a simple reaction with a radical, referring indifferently to an oxidation or to a reduction process such as:

RR--N=NN=N--RR’’ + OH+ OH°° →→ RR--N=NN=N°° + R+ R’’--OHOHor :

RR--N=NN=N--RR’’ + H+ H°° →→ RR--N=NN=N°° + R+ R’’--HHor :

RR--N=NN=N--RR’’ + R+ R’’’’°° →→ RR--N=NN=N°° + R+ R’’--RR’’’’

Then : RR--N=NN=N°° →→ RR°° + N+ N≡≡NN

Radicals R° subsequently follow the same degradation process by additional OH°radicals.

N2 evolution constitutes the ideal case for a decontamination reaction involving totally innocuous nitrogen-containing final product.

Page 32: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Mineralization of Mineralization of CONGO REDCONGO RED heteroatomsheteroatomsNH2

N NNH2

SO3NaSO3Na

N N

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500t (min)

N a

tom

s µm

ol

NH4+ NO3-N2N total

N total = N NH4+ + N NO3- + 2 N N2

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500t (min)

N a

tom

s µm

ol

NH4+ NO3-N2N total

N total = N NH4+ + N NO3- + 2 N N2

0

20

40

60

80

100

120

140

0 500 1000 1500 2000t (min)

µmol

/L S

O

SO4 2-

0

20

40

60

80

100

120

140

0 500 1000 1500 2000t (min)

µmol

/L S

O

SO4 2-

Page 33: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Case study of the photocatalytic degradation of theprohibited alimentary dye Amaranth

(PhD thesis of Mrs Maithaa Karkmaz-Le Du)

N = NNaSO3

HO NaSO3

NaSO3

NN

O SO3Na

SO3Na

NaO3S

H

Azo form Hydrazone form

Page 34: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Establishment of the Establishment of the stoichiometricstoichiometric coefficients in Amaranth coefficients in Amaranth (C(C20 20 HH1111 NN22 OO1010 SS33 NaNa33) ) photocatalyticphotocatalytic degradationdegradation

C20H11 N2 O10 S33-

DCO

TOC

N2

H+

CO2

H2O

SO42-

Element inC20 H11 N2 O10S3

3-Analytical

MethodFinal productcontainingthe element

Stoichiometriccoefficients

found

CarbonC20H11 N2 O10 S3

3-20

HydrogenpH 3

NitrogenC20H11 N2 O10 S3

3-GC 1

SulfurC20H11 N2 O10 S3

3-ionic HPLC 3

OxygenC20H11 N2 O10 S3

3- + xO2(g)

20 CO2+ N2+ 3 SO42- + 3H++ 4H2O

ΣnO = 56

xO2 = 23

C20H11N2O10S33- + 23 O2

Page 35: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Case study of the photocatalytic degradation of twotextile dyes polluting waters in Vietnam

(PhD thesis of Miss Thu Hoai BUI)

SO3Na

SO3NaNNSNaO3SOCH2CH2

O

O

H2N

HO

NNSNaO3SOCH2CH2

O

O

Reactive Black - 5 (Remazol Black B); λmax = 597 nm

NaO3S

NHC

O

SO3Na

N N NH

N N

N NH

SO3Na

Cl

NaO3S

OH

Reactive Red - 4 (Cibacron Brilliant Red 3B-A); λmax = 517 nm

Page 36: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Degradation scheme of Reactive Red 4 into aromatic products

N a O 3S

N HC

O

S O 3N a

N N N H

N N

N N H

S O 3N a

C l

N aO 3 SO H

H O

N N

N N H 2

O H

H 2 N

N N

N N H 2

O H

H O

N N

N O H

O H

H O 3S

N H 2

S O 3H

N N

N a O 3SO H

H O 3S

O H

S O 3H

N N

O H

H 2OC O 2

(A m m elin e )

(A m m elid e )

( C yan u ric ac id )

.... . ... ..

m /z = 503

m /z = 424

.

.

.

.

.

m /z = 12 7

m /z = 128

m /z = 129

O rg a n ic ac id s

+

Page 37: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

NaO3S

NHC

O

SO3Na

N N NH

N N

N NH

SO3Na

Cl

NaO3SOH

HO

N N

N NH2

OH

H2N

N N

N NH2

OH

HO

N N

N OH

OH

HO3S

NH2

SO3H

N N

HO3SOH

HO3S

OH

SO3H

N N

OH

HO3S

OH

SO3H

OHHO

HO

OH

OH

OH

SO3H

SO3H

OH OH

OHC

O

OH

(Ammeline)

(Ammelide)

( Cyanuric acid)

m/z = 481 (503 -23 +1)

m/z = 424

m/z = 127

m/z = 128

m/z = 129

N2++

m/z = 320 m/z = 94

m/z = 192 m/z = 160

m/z = 158

m/z = 174

CO2 , H2O

(10)(1)

(2)

(3)

(5) (6)

(4)

(9)

(8)

(11)

(12)

m/z = 122

(7)

Organic Acids

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

t (h)C

(µm

ol/L

)

Ammeline

Ammelide Cyanuric Acid (ACY)

Page 38: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Temporal variations of intermediate products containing a triazinic aromatic ring and identified by UV-HPLC during the photocatalytic degradation of Reactive Red 4

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

t (h)

C (µ

mol

/l)

Am m eline

Am m elide Cyanuric Acid (ACY)

Page 39: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Kinetics of Nitrogen-containing final products

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

t (h)

nN (µ

mol

)

NH4+

NO3-

ACY

N2

Somme

nN(max) = nNH4+ + nNO3- + 2nN2 + 3nACY

nNmax

Page 40: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

ReactionReaction pathwaypathway of of thethe formation of formation of organicorganic acidsacidsduringduring RN5 RN5 photodegradationphotodegradation

Page 41: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

a)

b)12

OD 48

60º

77

60 60

154

UV

Solar CollectorV1 = 108 L

pump

Tank

c)

a)

b)12

OD 48

60º

77

60 60

154

UV

Solar CollectorV1 = 108 L

Tank

c)

UV

Solar CollectorV1 = 108 L

Tank

c)

Vtot = 250 L

SlurrySlurry solarsolar photoreactorphotoreactor atat PSA (3 modules in PSA (3 modules in seriesseries))

Page 42: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Pilot experimentations at Plataforma Solar de Almeria

RecirculatingTank

CPC module

Pump Pump

STEP(21steps)

RecirculatingTank

RecirculatingTank

RecirculatingTank

CPC module

Pump Pump

STEP(21steps)

RecirculatingTank

RecirculatingTank

The two pilotphotoreactorsused in the experiment performed in the presence of (A) TiO2 powder(CPC photoreactor) and (B) coatedtitania (STEP photoreactor)

CPC: Compound Parabolic Collector

Page 43: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Degradation of 4Degradation of 4--ChlorophenolChlorophenol

0

5

10

15

20

25

30

-1 0 1 2 3 4 5t(h)

TOC

ppm

AhlstromCPC

ComparisonComparison of of AhlstromAhlstrom andand CPC CPC photoreactorsphotoreactors withwith 0.2g/L P0.2g/L P--2525

Page 44: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Pulverisation of pesticides

Domaine Latour ( Burgundy, France)

Page 45: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Washing of the tractor(+ tank + nebulizors)

Collection and transport of the effluent

Page 46: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

with UV-A lamps tested in 2001-2002 with natural UV-A in 2000

PhotocatalysisPhotocatalysis treatmenttreatment of of thethe effluentseffluents

Page 47: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Examples of some typical bad-smelling molecules totallydegraded by photocatalysis

French patent on Photocatalytic elimination of odors in refrigerators (2004)

Name Formula Origin

Butadione CH3-CO-CO-CH3 Odor of rancid butter

Dimethyl-disulfide CH3-S-S-CH3 Odor de cabbage

FurfuralOdor of burnt milk

Valeric Acid Odor of corporal perspiration

2-heptanone Odor of strong cheese(Roquefort,…)

OCHO

CH3-(CH2)3-COOH

CH3-CO-(CH2)4-CH3

Page 48: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

BIOLYSE

Photocatalytic device for air and odor treatment in domestic refrigerators

French Patent (n° 0403448 (01/04/04)) Odor treatment device, especially in refrigeratorsC.GUILLARD, JM HERRMANN, JP CHEVRIER, C BERTRAND, E. PHILIBERT

Patent immediately followed by 40,000 units production

Page 49: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

nn--doping by Mdoping by M5+5+ ((NbNb, Ta, , Ta, SbSb))

nn--doping by Mdoping by M6+ 6+ (Mo)(Mo)

pp--doping by Mdoping by M3+ 3+ ((CrCr, , GaGa, , FeFe, Al), Al)

Page 50: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

EFFECT OF CrEFFECT OF Cr3+3+--DOPING OF TiODOPING OF TiO22 FOR VARIOUS REACTIONS AND MEDIAFOR VARIOUS REACTIONS AND MEDIA

liquid organic

aqueous aqueous phasephase

25

25

55

∼ 85

∼ 103

gaseous gaseous organicorganic

surfacesurface

Cyclo-C6H12 + O2 cyclo-C6H10O + H2O

CH3 - CHOH - CH3 (liq) + ½ O2 H2O + CH3 – CO-CH3

CH2 = CH - CH3 (g) + ½ O2 CH2 - CH - CH3

HC2O4-

(aq) + ½ O2 + H+ 2CO2 + H2O

18O = 18O (g) + 16OS 18O = 16O (g) + 18OS

MediumMedium ReactionReaction Inhibition Inhibition factorfactor

liquidliquidorganicorganic

liquidliquidorganicorganic

O

Page 51: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

SubstitutionalSubstitutional doping of doping of titaniatitania by Mby M3+3+ dissolved trivalent dissolved trivalent cationscations(M = (M = FeFe ; Cr; Cr ; Ga); Ga)

( -Cr3+-) + e- ⇆ [ (-Cr3+-)e-] ⇔ A + e- ⇆ A-A = acceptor centerN = neutral center

A + e- ⇆ A-

A- + h+ ⇆ A---------------------

Balance e- + h+ ⇆ N

[Cr3+] = 0.86 at.% ⇒ [Cr3+] = 2.50 x 1020 ions/cm3

Recombination rate R:- undoped sample : R = kR[e-] [h+]- doped sample : R’ = kR ([e-] + [A-]) [h+] = kR ([e-] + [2.50 x 1020]) [h+] ≈ k’R [h+]⇒ R’ >> R

The recombination rate R is of second order ⇒ It strongly increases with concentrations and becomes of apparent first order

Page 52: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

SOLAR PHOTOCATALYSIS: SOLAR PHOTOCATALYSIS: «« HELIOHELIO--PHOTOCATALYSISPHOTOCATALYSIS »»

Two European Programs on « Water Potabilization by Photocatalysis in Semi-Arid Countries »

Aim : Potabilization of 1m3 water per day by photocatalysis usingdeposited titania in a robust solar photoreactor.

AQUACAT ProjectAQUACAT ProjectCoordinator Jean-Marie HERRMANN (LACE, France) Europe (France, Spain, Portugal, Switzerland) – North Africa (Egypt, Morocco, Tunisia)

SOLWATER ProjectSOLWATER ProjectCoordinator Julian BLANCO (PSA, Spain) Europe(Spain, Portugal, France, Switzerland, Greece) – Latin America (México,

Peru, Argentina)

Page 53: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Life Applications

Purification of air in confined atmospheres :

Offices, workshops, cellars, planes, submarines, automotives, « molecular » air purityrequired in Electronics clean rooms – Joseph DUSSAUDJoseph DUSSAUD

Elimination of odors :

Toilets, refrigerators (Thomson-Brandt, French Patent (2004) + 40.000 units produced ;pig farms - PrPr Alain LAPLANCHEAlain LAPLANCHE

Self cleaning glasses (St Gobain, Pilkington, LACE) – Mrs Dr. Chantal GUILLARD, CNRSMrs Dr. Chantal GUILLARD, CNRS

Photocatalytic antibacteriologic Gas masks – Michael HOFFMANNMichael HOFFMANNResearch for US Army (future extension to civilians??)

Purification of used farming waters : elimination of usual pesticides - Joseph DUSSAUDJoseph DUSSAUD

Drink water production (1m3/d) for isolated populations in semi-arid countries by autonomous solarpilot plants

EuropeanEuropean Programmes AQUACAT (Programmes AQUACAT (coordinatedcoordinated by LACE) (by LACE) (NorthNorth AfricaAfrica) ) andandSOLWATER SOLWATER coordinatedcoordinated by J. Blanco (Latin by J. Blanco (Latin AmericaAmerica))

Page 54: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Present Challenges in Photocatalysis

1) Are we « condemned » to exclusively work with titania?

2) Can TiO2 be photosensitized in the visible by doping ?1) cationic doping = no ; 2) anionic doping = to be proved

3) Can we find a new photocatalyst different from TiO2 and directly active in the visible ?

4) Is photocatalysis suitable for preparative Fine Chemistry ?

5) Is photocatalysis enough bactericide in water and in air ?

6) Is Photocatalysis really « cancericide » ?

7) Are we able to define a few standardized tests for any photocatalytic system ?

Page 55: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

AdvantagesAdvantages of of thethe PhotocatalyticPhotocatalytic Purification of Purification of WaterWater

Total mineralization of aqueous pollutants (into CO2, H2O, Cl-, NO3-, SO4

2-, HPO42- ....)

in most cases (exception of atrazine → cyanuric acid)

Wide applicability (many pollutants treated)

Safety of the process (harmless TiO2 catalysts, no chemical additives to water)

Unexpensive reactants : air, cheap catalyst (≈ 15 € / kg)

High stability of the catalyst under UV at various pH and possibility of recycling it

Process active at room temperature (- 40 ≤ t°C ≤ 80°C) : no need of thermal energy for heating water (known as having a very high heat capacity

Efficient process for purifying air (suppression of odors)

Use of solar energy

Page 56: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université
Page 57: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

The Twelve Principles of Green ChemistryThe Twelve Principles of Green Chemistry**

1. Prevention2. Atom Economy3. Less Hazardous Chemical Syntheses4. Designing Safer Chemicals5. Safer Solvents and Auxiliaries6. Design for Energy Efficiency7. Use of Renewable Feedstocks8. Reduce Derivatives9. Catalysis10.Design for Degradation11.Real-time analysis for Pollution Prevention12.Inherently Safer Chemistry for Accident Prevention

*Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, p.30. By permission of Oxford University Press.

Page 58: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

The Twelve Principles of Green ChemistryThe Twelve Principles of Green Chemistry** (1)

1. PreventionIt is better to prevent waste than to treat or clean up waste after it has been created.

2. Atom EconomySynthetic methods should be designed to maximize the incorporation of all materials used in the

process into the final product.

3. Less Hazardous Chemical SynthesesWherever practicable, synthetic methods should be designed to use and generate substances that possess little

4. Designing Safer ChemicalsChemical products should be designed to effect their desired function while minimizing their toxicity.

5. Safer Solvents and AuxiliariesThe use of auxiliary substances (e.g., solvents, separation agents, etc.) should be made unnecessary wherever possible and innocuous when used.

6. Design for Energy EfficiencyEnergy requirements of chemical processes should be recognized for their environmental and economic impacts and

should be minimized. If possible, synthetic methods should be conducted at ambient temperature and pressure.

or no toxicity to human health and the environment.

*Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, p.30. By permission of Oxford University Press.

Page 59: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

The Twelve Principles of Green ChemistryThe Twelve Principles of Green Chemistry** (2)

7.Use of Renewable FeedstocksA raw material or feedstock should be renewable rather than depleting whenever technically and economically practicable.

8.Reduce DerivativesUnnecessary derivatization (use of blocking groups, protection/ deprotection, temporary modification of physical/chemical processes) should be minimized or avoided if possible, because such steps

require additional reagents and can generate waste.

9.CatalysisCatalytic reagents (as selective as possible) are superior to stoichiometric reagents.

10. Design for DegradationChemical products should be designed so that at the end of their function they break down into innocuous degradation products and do not persist in the environment.

11. Real-time analysis for Pollution PreventionAnalytical methodologies need to be further developed to allow for real-time, in-process monitoring

and control prior to the formation of hazardous substances.

12. Inherently Safer Chemistry for Accident PreventionSubstances and the form of a substance used in a chemical process should be chosen to minimize the potential

for chemical accidents, including releases, explosions, and fires.

*Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, p.30. By permission of Oxford University Press.

Page 60: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Agricultural Perspectives

AGRICULTURAL AREA OF EL EJIDO (SPAIN)

100 000 HA OF GREEN HOUSES

5X106 CONTAINERS

106 M3 OF CONTAMINATED WATERS TO BE RECYCLED

A PILOT PLANT HAS BEEN BUILD FOR COLLECTING, RINSING AND RECYCLING PLASTIC OF USED BOTTLES OF PESTICIDES : WATER IS PURIFIED BY SOLAR PHOTOCATALYSIS FOR ITS RECYCLING.

BURGUNDY (FRANCE)

PHOTOCATALYTIC PURIFICATION OF USED WATERS RESULTING FROM THE RINSING OF AGRICULTURAL MACHINERY (TRACTORS, NEBULIZERS, EMPTY PEST BOTTLES…) BEFORE THEIR RELEASE TO THE RIVER.

Page 61: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

PossibilitiesPossibilities

Small photocatalytic units for recovering silver from photographic baths.

Use of UV-lamps working at night (cheap electricity out of rush hours)

High final ratios mAg/mTiO2

Easy separation of Ag from TiO2(chemical treatment in HNO3, sonolysis, decantation, filtration).

Need of more stringent environmental regulations

Page 62: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Figure 1

:

Photocatalytic filter (SEM observation)

Page 63: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Imidaclopride / Step Reactor

0

2

4

6

8

10

12

14

-20 0 20 40 60 80 100 120 140 160 180 200 220 240

time (min)

Con

cent

ratio

n (m

g/L)

C = 5,5 mg/L C = 13 mg/L C = 0,6 mg/L

Page 64: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Comparison of the disappearance of 4 -chlorophenol and of its TOC when using suspended MillenniumPC500 and Degussa P25 in CPC and Millennium PC500 coated on non -woven paper in the STEP photoreactor .

0 5 10 15 20 25 30 350

10

20

30

40

50

60

Ads

orpt

ion

in th

eda

rk

TOC, P-25 (CPC)4-CP, P-25 (CPC)TOC, PC-500 (CPC)4-CP, PC-500 (CPC)TOC, STEP4-CP, STEP

Q (kJ L-1)

C (m

g L-1

)

Page 65: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

ORIGIN OF GASEOUS DINITROGEN EVOLUTIONORIGIN OF GASEOUS DINITROGEN EVOLUTION

Two favorable reasons :(i) the–N=N- azo-group appears as an easy potential precursor of N≡N, with already one

double bond existing ; (ii) nitrogen atoms in -N=N-, are already formally at an oxidation state close to zero, i.e.that of nitrogen in N2 (by convention).

Actually, what is the oxidation degree of nitrogen in an azoic dye?

RR--N=NN=N--RR’’

1st attempt of calculation:R-N=N-R’ is a “di-imide-like” product ⇒⇒ 2 + 2x = 0 2 + 2x = 0 ⇒⇒ x = x = --11

2nd attempt of calculation:

R-N=N-R’ results from Rδ--Hδ+ ⇒⇒ --2 + 2x = 0 2 + 2x = 0 ⇒⇒ x = +1x = +1

3rd attempt of calculation (based on R-N=N-R’synthesis) :R-NH2 + O=N-R’ → R-N=N-R’ + H2O(+1)(-3) (-2)(+3)(-1) (+1)(x)(x)(-1) ⇒⇒ 2x + 12x + 1--1 = 0 1 = 0 ⇒⇒ x = 0x = 0

Page 66: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

OtherOther exampleexample (Ch. Giannotti)

O

adamantoneadamantoneadamantaneadamantane

Page 67: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

m

mopt

Ar

EG

λ

Br

EG

80°C 20°C

Dlog r

Ea = Et - αQA

Ea = Et ≈ 0

Ea = Et + αQP

1/T

C

r = k[KC/(1+KC)]

C0

r

r

Φ

r ∝ Φr ∝ Φ1/2

EInfluence of the different physical parameters which govern Influence of the different physical parameters which govern the reaction rate. (A): mass of catalyst; (B): wavelength; (C): the reaction rate. (A): mass of catalyst; (B): wavelength; (C): initial concentration of reactant; (D): temperature; (E): radianinitial concentration of reactant; (D): temperature; (E): radiant t flux.flux.

Page 68: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Falling film and slurry solar Falling film and slurry solar photoreactorsphotoreactors

Page 69: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Ahlstrom photocatalytic coating

TiO2 TiO2TiO2

Substrate

Binder

Ahlstrom patentEP1069950 grantedAU 735798 grantedUS 09/467650 pendingJP 2000-542104 pending

Adsorbent Inorganic binder• not destroyed by photocatalysis• transmits UV irradiation

Photocatalytic TiO2

• selection of the most efficient TiO 2 according to • pollution to be treated• radiation system (visible, UV)

Adsorbent• removes pollution peak• regenerated by photocatalysis

Development of a photocatalytic slurry/coating process to coat substrates• to avoid the necessary postfiltration stage to separate TiO2 particles

from treated effluent

Page 70: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

ExampleExample

Coating• slurry = as a paint• many substrates such as fibrous ones (filters)

TiO2

SEM image of a photocatalytic glassfiberpaper (without adsorbent)

Page 71: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

0 1 2 3 4 50

2

4

6

8

10

t (h)

TOC

(mg

L-1 )

10:00 11:00 12:00 13:00 14:00 15:00 16:00

0

10

20

30

40

50Local time

Sola

rFlu

x (W

/m2 )

0 5 10 15 20 25 30 350

2

4

6

8

10

12

CPCSTEPTOC

(mg

L-1)

Q (kJ L-1)

Degradation of a pesticide mixture as a function of the total energy collected per litre of solution.In the inset, the variations in the overall solar UV -flux and of TOC concentration are shown as a function of local time.

Page 72: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

Ch. DelbecqueGeneral Secretary

JeanJean--Marie Marie HerrmannHerrmann (DR1)(DR1)HEADHEAD

A.BorA.Borééaveave, IE2, , IE2, SpectroSpectro MasseMasseC. Duchamp, TRCE, MicroscopieC. Duchamp, TRCE, MicroscopieP. P. ConchonConchon, TRF, TRF

FacilitiesFacilities

N. N. LapierreLapierre (AGT), C. (AGT), C. ChanuChanu (AGT)(AGT)G. G. ChapuisChapuis (CDD (CDD EzusEzus))

Administrative Administrative andand FinancialFinancial ManagementManagement

S. S. ChChéétrittrit (ADT) 20%, S. Fernandez (AST) (ADT) 20%, S. Fernandez (AST) 50%, B. 50%, B. NuhajNuhaj (CDD) 50%(CDD) 50%

MaintenanceMaintenance

Redox Redox CatalysisCatalysis for for thethe EnvironmentEnvironmentGroup LeaderGroup Leader : F. Gaillard: F. Gaillard

PhotocatalysisPhotocatalysis –– PhotochemistryPhotochemistryGroup LeaderGroup Leader : C. : C. GuillardGuillard FunctionalizedFunctionalized MaterialsMaterials

Group LeaderGroup Leader : R. Lamartine: R. Lamartine

CatalyticCombustion

DeNOxCatalysis

Progressive Reforming of

Methane

Oxidation of Traces

NEMCA Effect

EnvironmentalPhotocatalysis

Photochemistryof Pesticides

AtmosphericPhotochemistry

InorganicSyntheses

SoilDecontamination

ActivatedCarbons

SupramolecularChemistry

Page 73: Destrucción de Contaminantes Orgánicos Por Fotocatálisis … · 2015. 12. 16. · Laboratoire d’Application de la Chimie à l’Environnement (LACE), UMR CNRS 5634, Université

DOMAINS OF COMPETENCES OF THE LACEDOMAINS OF COMPETENCES OF THE LACE

- Synthesis of thermostable catalysts -Synthesis of water-and sulfur-resistantcatalysts

- Utilization of solar energy- Valorisation of biomass : Hydrogen production

- Catalytic combustion of natural gas (withoutformation of NOx)- Reforming of methane-- Production of hydrogen for fuel cells (SOFC)-- Exhaust catalysts

- Adsorption–desorption of pesticides in soils- Soil treatment by thermodesorption and/or by extraction under reduced pressure - Analyses and treatments of gaseousemissions

- Solar photochemical degradation of phytosanitaryagents- Purification of surface waters-- Natural photocatalytic processesSOILSSOILS

- Elaboration of selective adsorbingmaterials- Grafting of macrocycles on supports - Heavy ions selective traps

- Total degradation of organic pollutants(pesticides,dyes….)- Potabilisation of water by photocatalysis- Solar photocatalytic engineering

WATERWATER

- Synthesis of adsorbants- Activation of carbons- Grafting of macrocycles on supports- On site adsorption of volatile pollutants

- Degradation of VOC ‘s- Elimination of Odors- Reactivity and fate of atmospheric pollutants- Role of water in atmospheric chemistry-- Air purification in confined atmospheres-- Ultrapurification of air(cleans rooms)

- Catalytic combustion - DeNOx catalysis-- Elimination of traces by catalytic combustion atlow temperature-- Diesel exhaust catalysts

AIRAIR

FunctionalizedFunctionalized MaterialsMaterialsAdsorptionAdsorption

PhotocatalysisPhotocatalysisPhotochemistryPhotochemistry

Redox Redox CatalysisCatalysisThemesThemes

EnvironmentalEnvironmental DomainsDomains

CLEAN ENERGYCLEAN ENERGY