75
Diffraction Theory 1

Diffraction Theory 355 fall... · 43 In summary, far-field diffraction: 1. Single Slit 2. Double Slit 3. Rectangular Aperture 4. Circular Aperture , , = 0 𝑖 −𝜔 𝑅 𝑖 𝑘

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Diffraction Theory

    1

  • 2

  • 3

    𝑟1

    𝑟2

    𝐸 Ԧ𝑟, 𝑡 = 𝐸1 Ԧ𝑟, 𝑡

    𝐸 Ԧ𝑟, 𝑡

    𝐸 Ԧ𝑟, 𝑡 =𝐸0,1

    𝑟1𝑒𝑖 𝑘 𝑟1−𝜔 𝑡 + 𝜀1 +

    𝐸0,2𝑟2

    𝑒𝑖 𝑘 𝑟2−𝜔 𝑡 + 𝜀2

    + 𝐸2 Ԧ𝑟, 𝑡

    𝑟3

    +𝐸0,3𝑟3

    𝑒𝑖 𝑘 𝑟3−𝜔 𝑡 + 𝜀3

    𝑟4

    + 𝐸3 Ԧ𝑟, 𝑡 + 𝐸4 Ԧ𝑟, 𝑡

    𝑟5

    +𝐸0,4𝑟4

    𝑒𝑖 𝑘 𝑟4 −𝜔 𝑡 + 𝜀4

    + 𝐸5 Ԧ𝑟, 𝑡

    +𝐸0,5𝑟5

    𝑒𝑖 𝑘 𝑟5 −𝜔 𝑡 + 𝜀5

    =

    𝑖

    𝐸𝑖 Ԧ𝑟, 𝑡

    +⋯

    + …

    =

    𝑖

    𝐸0,𝑖𝑟𝑖

    𝑒𝑖 𝑘 𝑟𝑖 −𝜔 𝑡 + 𝜀𝑖

  • 4

    Huygens-Fresnel Principle

  • 5

    𝐸 𝑌, 𝑍, 𝑡 =

    𝑖

    𝐸0,𝑖𝑟𝑖

    𝑒𝑖 𝑘 𝑟𝑖 −𝜔 𝑡 + 𝜀𝑖

    = ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧

    𝑟 𝑦, 𝑧𝑒𝑖 𝑘 𝑟 𝑦, 𝑧 − 𝜔 𝑡 + 𝜀 𝑦, 𝑧 𝑑𝑦 𝑑𝑧

    𝑟 𝑦, 𝑧 = 𝑠2 + 𝑌 − 𝑦 2 + 𝑍 − 𝑧 2

    𝑟

    𝑠

    𝑍

    𝑌

    𝑧

    𝑦

    𝑖 𝑦, 𝑧

    𝑖

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝑑𝑦 𝑑𝑧

  • 6

    𝑟 𝑦, 𝑧 ≅ 𝑠 1 +𝜁2

    2

    Fresnel Approximation𝑘 𝑠 𝑚𝑎𝑥𝜁4

    8≪ 𝜋

    = 𝑠 1 +𝜁2

    2−𝜁4

    8+𝜁6

    16−5 𝜁8

    128+ ⋯

    𝑟 𝑦, 𝑧 = 𝑠2 + 𝑌 − 𝑦 2 + 𝑍 − 𝑧 2 = 𝑠 1 +𝑌 − 𝑦 2

    𝑠2+

    𝑍 − 𝑧 2

    𝑠2 = 𝑠 1 + 𝜁2

    𝜁2 ≡𝑌 − 𝑦 2

    𝑠2+

    𝑍 − 𝑧 2

    𝑠2

    Fresnel Diffraction

    = 𝑠 +𝑌2 + 𝑍2

    2 𝑠−

    𝑌 𝑦 + 𝑍 𝑧

    𝑠+

    𝑦2 + 𝑧2

    2 𝑠

    = 𝑠 1 +𝑌 − 𝑦 2

    2 𝑠2+

    𝑍 − 𝑧 2

    2 𝑠2

  • 7

    𝑟 𝑦, 𝑧 ≅ 𝑠 +𝑌2 + 𝑍2

    2 𝑠−

    𝑌 𝑦 + 𝑍 𝑧

    𝑠+

    𝑦2 + 𝑧2

    2 𝑠

    Fresnel Approximation𝑘 𝑠 𝑚𝑎𝑥𝜁4

    8≪ 𝜋

    𝐸 𝑌, 𝑍, 𝑡 = ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧

    𝑟 𝑦, 𝑧𝑒𝑖 𝑘 𝑟 𝑦, 𝑧 − 𝜔 𝑡 + 𝜀 𝑦, 𝑧 𝑑𝑦 𝑑𝑧

    ≅ ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧

    𝑠𝑒𝑖 𝑘 𝑠 +

    𝑌2+𝑍2

    2 𝑠 −𝑌 𝑦+𝑍 𝑧

    𝑠 +𝑦2+𝑧2

    2 𝑠 −𝜔 𝑡 + 𝜀 𝑦, 𝑧 𝑑𝑦 𝑑𝑧

  • 8

    𝑘𝑚𝑎𝑥 𝑦2 + 𝑧2

    2 𝑠≪ 𝜋

    𝑚𝑎𝑥 𝑦2 + 𝑧2

    𝜆 𝑠≪ 1

    Fraunhofer Approximation

    Fraunhofer Diffractionalso known as Far-Field Diffraction

    𝑟 𝑦, 𝑧 ≅ 𝑠 +𝑌2 + 𝑍2

    2 𝑠−

    𝑌 𝑦 + 𝑍 𝑧

    𝑠+

    𝑦2 + 𝑧2

    2 𝑠

    Fresnel Approximation𝑘 𝑠 𝑚𝑎𝑥𝜁4

    8≪ 𝜋

    In addition to Fresnel Approximation:

  • 9

    𝐸 𝑌, 𝑍, 𝑡 = ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧

    𝑟 𝑦, 𝑧𝑒𝑖 𝑘 𝑟 𝑦, 𝑧 − 𝜔 𝑡 + 𝜀 𝑦, 𝑧 𝑑𝑦 𝑑𝑧

    ≅ ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧

    𝑅𝑒𝑖 𝑘 𝑅 −

    𝑌 𝑦 + 𝑍 𝑧𝑅 −𝜔 𝑡 + 𝜀 𝑦, 𝑧 𝑑𝑦 𝑑𝑧

    =𝑒𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧 𝑒𝑖 𝜀 𝑦,𝑧 𝑒− 𝑖

    𝑘 𝑌 𝑦 + 𝑍 𝑧𝑅 𝑑𝑦 𝑑𝑧

    𝑟 𝑦, 𝑧 = 𝑠2 + 𝑌 − 𝑦 2 + 𝑍 − 𝑧 2

    𝑅2 ≡ 𝑠2 + 𝑌2 + 𝑍2

    = 𝑅2 − 2 𝑌 𝑦 − 2 𝑍 𝑧 + 𝑦2 + 𝑧2

    = 𝑅 1 +−2 𝑌 𝑦 − 2 𝑍 𝑧 + 𝑦2 + 𝑧2

    𝑅2≅ 𝑅 −

    𝑌 𝑦 + 𝑍 𝑧

    𝑅

  • 10

    𝐸 𝑌, 𝑍, 𝑡 =𝑒𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧 𝑒𝑖 𝜀 𝑦, 𝑧 𝑒− 𝑖

    𝑘 𝑌 𝑦 + 𝑍 𝑧𝑅 𝑑𝑦 𝑑𝑧

    𝑟

    𝑠

    𝑍

    𝑌

    𝑧

    𝑦

    𝑅

    Fraunhofer Diffraction

    𝑅2 ≡ 𝑠2 + 𝑌2 + 𝑍2

  • 11

    Illumination at the Aperture:

    In the examples to follow, we will consider a flat wavefront at normal incidence on the aperture

    𝐸0 𝑦, 𝑧 𝑒𝑖 𝜀 𝑦, 𝑧 =

    𝐸0

    0

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝑒− 𝑖𝑘 𝑌 𝑦 + 𝑍 𝑧

    𝑅 𝑑𝑦 𝑑𝑧

    Inside the aperture

    Outside the aperture{

  • 12

    Apertures considered here:

    1. Single Slit

    2. Double Slit

    3. Rectangular Aperture

    4. Circular Aperture

  • 13

    1. Single Slit

    𝑟

    𝑠

    𝑍

    𝑌

    𝑧

    𝑦

    𝑅

    𝑅 ≡ 𝑌2 + 𝑠2

    𝑑

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅න

    − ൗ𝑑 2

    + ൗ𝑑 2

    𝑒− 𝑖𝑘 𝑌𝑅 𝑦𝑑𝑦

    𝜃

    𝑠𝑖𝑛 𝜃 =𝑌

    𝑅

    𝑦

    𝑧

  • 14

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑑 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑑

    2 𝑅

    1. Single Slit, cont.

    𝐼 ≡ 𝐸2

    𝐼 𝑌, 𝑍 = 𝐼0 𝑠𝑖𝑛𝑐2

    𝑘 𝑌 𝑑

    2 𝑅𝐼0 ≡

    𝐸02

    2 𝑅2𝑑2

    𝑑 = 50 µ𝑚

    𝜆 = 0.6 µ𝑚

    𝑠 = 1 𝑚

    𝑘 𝑌𝑚 𝑑

    2 𝑅= 𝑚 𝜋

    𝑚 = ±1, ±2,±3

    𝑅 ≅ 1 𝑚

    𝑌𝑚 = 𝑚𝜆 𝑅

    𝑑

    𝑠𝑖𝑛 𝜃𝑚 =𝑌𝑚𝑅

    = 𝑚𝜆

    𝑑

    𝑌(𝑚𝑚)

    𝑌1

    ൗ𝐼 𝐼0

    zeros atgeometrical

    shadow

    𝑌−1

    with

    𝑌

    𝑍

  • 15

    Mathematica

    FraunhoferDiffractionAtASingleSlit.cdf

  • 16

    2. Double Slit

    𝑑

    𝑑

    𝑎

    𝑦

    ൗ𝑎 2 − ൗ𝑑2

    ൗ𝑎 2 + ൗ𝑑2

    ൗ−𝑎 2 − ൗ𝑑2

    ൗ−𝑎 2 + ൗ𝑑2

    𝑧

  • 17

    𝑟

    𝑠

    𝑍

    𝑌

    𝑧

    𝑦

    𝑅

    𝑅 ≡ 𝑌2 + 𝑠2

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅න

    ൗ−𝑎 2− ൗ𝑑2

    ൗ−𝑎 2+ ൗ𝑑2

    𝑒− 𝑖𝑘 𝑌𝑅

    𝑦𝑑𝑦 + න

    ൗ𝑎 2− ൗ𝑑2

    ൗ𝑎 2+ ൗ𝑑2

    𝑒− 𝑖𝑘 𝑌𝑅

    𝑦𝑑𝑦

    𝜃

    𝑠𝑖𝑛 𝜃 =𝑌

    𝑅

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑑 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑑

    2 𝑅2 𝑐𝑜𝑠

    𝑘 𝑍 𝑎

    2 𝑅

  • 18

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑑 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑑

    2 𝑅2 𝑐𝑜𝑠

    𝑘 𝑌 𝑎

    2 𝑅

    𝐼 𝑌, 𝑍 = 4 𝐼0 𝑠𝑖𝑛𝑐2

    𝑘 𝑌 𝑑

    2 𝑅𝑐𝑜𝑠2

    𝑘 𝑌 𝑎

    2 𝑅𝐼0 ≡

    𝐸02

    2 𝑅2𝑑2

    Mathematica

    𝑑

    𝑎

    DoubleSlitDiffractionForParticles.cdf

  • 19

    3. Rectangular Aperture

    𝑎

    𝑏

    𝑦

    𝑧

  • 20

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝑒− 𝑖𝑘 𝑌 𝑦 + 𝑍 𝑧

    𝑅 𝑑𝑦 𝑑𝑧

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅න

    ൗ−𝑏 2

    ൗ𝑏 2

    𝑒− 𝑖𝑘 𝑌𝑅 𝑦𝑑𝑦 න

    ൗ−𝑎 2

    ൗ𝑎 2

    𝑒− 𝑖𝑘 𝑍𝑅 𝑧𝑑𝑧

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑏 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑏

    2 𝑅𝑎 𝑠𝑖𝑛𝑐

    𝑘 𝑍 𝑎

    2 𝑅

  • 21

    𝑌

    𝑍

    𝐼 𝑌, 𝑍 = 𝐼0 𝑠𝑖𝑛𝑐2

    𝑘 𝑌 𝑏

    2 𝑅𝑠𝑖𝑛𝑐2

    𝑘 𝑍 𝑎

    2 𝑅

    𝐼0 ≡𝐸0

    2

    2 𝑅2𝑎2 𝑏2

  • 22

    Emission of Semiconductor Laser

  • 23

    4. Circular Aperture

    𝑎𝜑

    𝑦 = 𝜌 𝑠𝑖𝑛 𝜑𝜌

    𝑧 = 𝜌 𝑐𝑜𝑠 𝜑𝑧

    𝑦

  • 24

    Observation Plane

    Φ

    𝑌 = 𝑞 𝑠𝑖𝑛 Φ

    𝑞

    𝑍 = 𝑞 𝑐𝑜𝑠 Φ𝑍

    𝑌

  • 25

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝑒− 𝑖𝑘 𝑌 𝑦 + 𝑍 𝑧

    𝑅 𝑑𝑦 𝑑𝑧

    𝑌 𝑦 + 𝑍 𝑧 = 𝑞 𝑠𝑖𝑛 Φ 𝜌 𝑠𝑖𝑛 𝜑 + 𝑞 𝑐𝑜𝑠 Φ 𝜌 𝑐𝑜𝑠 𝜑

    = 𝜌 𝑞 𝑐𝑜𝑠 𝜑 − Φ

    𝑑𝑦 𝑑𝑧 = 𝜌 𝑑𝜑 𝑑𝜌

    𝐸 𝑞,Φ, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅න

    0

    𝑎

    𝜌 𝑑𝜌න

    0

    2𝜋

    𝑑𝜑 𝑒 − 𝑖𝑘 𝜌 𝑞 𝑐𝑜𝑠 𝜑 −Φ

    𝑅

    Φ = 0Due to axial symmetry, we can choose:

    = 𝑞 𝜌 𝑐𝑜𝑠 Φ 𝑐𝑜𝑠 𝜑 + 𝑠𝑖𝑛 Φ 𝑠𝑖𝑛 𝜑

  • 26

    𝐸 𝑞,Φ, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅න

    0

    𝑎

    𝜌 𝑑𝜌න

    0

    2𝜋

    𝑑𝜑 𝑒 − 𝑖𝑘 𝜌 𝑞 𝑐𝑜𝑠 𝜑

    𝑅

    A couple of integrals to solve:

  • 27

    1

    2 𝜋න

    0

    2𝜋

    𝑑𝜑 𝑒𝑖 𝑢 𝑐𝑜𝑠 𝜑 ≡ 𝐽0 𝑢Bessel function of order zero

    𝐸 𝑞,Φ, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅න

    0

    𝑎

    𝜌 𝑑𝜌න

    0

    2𝜋

    𝑑𝜑 𝑒 − 𝑖𝑘 𝜌 𝑞 𝑐𝑜𝑠 𝜑

    𝑅

  • 28

    𝐸 𝑞,Φ, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 − 𝜔 𝑡

    𝑅2 𝜋න

    0

    𝑎

    𝜌 𝑑𝜌 𝐽0 −𝑘 𝑞

    𝑅𝜌

    𝑢 ≡ −𝑘 𝑞

    𝑅𝜌

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 − 𝜔 𝑡

    𝑅2 𝜋

    𝑅

    𝑘 𝑞

    2

    0

    −𝑘 𝑞𝑅 𝑎

    α 𝑑α 𝐽0 α

    𝛼 ≡−𝑘 𝑞

    𝑅𝜌 𝜌 𝑑𝜌 =

    𝑅

    𝑘 𝑞

    2

    α 𝑑α

  • 29

    0

    𝛼

    𝛼 𝐽0 𝛼 𝑑𝛼 ≡ 𝛼 𝐽1 𝛼

  • 30

    𝐸 𝑞,Φ, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 − 𝜔 𝑡

    𝑅2 𝜋

    𝑅

    𝑘 𝑞

    2

    0

    −𝑘 𝑞𝑅 𝑎

    α 𝑑α 𝐽0 α

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 − 𝜔 𝑡

    𝑅2 𝜋

    𝑅

    𝑘 𝑞

    2−𝑘 𝑎 𝑞

    𝑅𝐽1

    −𝑘 𝑎 𝑞

    𝑅

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝜋 𝑎2

    2 𝐽1𝑘 𝑎 𝑞𝑅

    𝑘 𝑎 𝑞𝑅

  • 31

    𝐼 𝑞,Φ = 𝐼0

    2 𝐽1𝑘 𝑎 𝑞𝑅

    𝑘 𝑎 𝑞𝑅

    2

    𝐼0 ≡𝐸0

    2

    2 𝑅2𝜋 𝑎2 2

    𝑘 𝑎 𝑞

    𝑅

    ൗ𝐼 𝐼0

  • 32

    zeros at𝑘 𝑎 𝑞

    𝑅= 3.832, 7.016, 10.173, …

    𝑘 𝑎 𝑞1𝑅

    = 3.832

    𝑞1𝑅= 𝑠𝑖𝑛 𝜃1 = 3.832

    𝜆

    2 𝜋 𝑎= 1.22

    𝜆

    2 𝑎

    first zero at

    Light is essentially confined

    inside the cone: 𝒔𝒊𝒏 𝜃1 < 𝟏. 𝟐𝟐𝝀

    𝟐 𝒂

  • 33

    Circular Aperture

    𝑧

    𝑦

    𝑠

    𝑦

    𝑌

    𝑍

    𝑌

    𝑠𝑖𝑛 𝜃1 =𝑞1𝑅= 1.22

    𝜆

    2 𝑎

    𝑅2𝑎

    Airy’spattern

    𝑎𝑞1

    𝑞1𝜃1

  • 34

    𝑧

    𝑦

    2𝑎

    𝑠

    𝑅

    𝜃1

    } = 0

  • 35

    𝑦

    2𝑎

    𝜃1𝜃1

    𝑠𝑖𝑛 𝜃1 = 1.22𝜆

    2 𝑎

    tan 𝜃1 =𝑞1𝑓

    𝑞1

    𝑞1 ≅ 1.22𝜆 𝑓

    2 𝑎

    𝑓

    Smallest spot size:

    𝑞1 ≅ 1.22𝜆 𝑓

    𝐷𝑙𝑒𝑛𝑠

    𝐷𝑙𝑒𝑛𝑠

    = 1.22𝜆𝑜 𝑓

    𝑛 𝐷𝑙𝑒𝑛𝑠

    𝑛

    Smallest angular width:

    𝑞1𝑓= 1.22

    𝜆𝑜𝑛 𝐷𝑙𝑒𝑛𝑠

  • 36

    Diameter of primary mirror 2.4 m

    Wavelength 0.55 µm

    Angular width 0.28 × 10-6 rad

  • 37

    𝑡𝑎𝑛 𝜃𝑚𝑎𝑥 ≡𝐷𝑙𝑒𝑛𝑠2 𝑓

    𝐷𝑙𝑒𝑛𝑠

    𝜃𝑚𝑎𝑥

    𝑁𝐴 ≡ 𝑛 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 ≅𝑛 𝐷𝑙𝑒𝑛𝑠2 𝑓

    𝑓

    𝑓

    #=

    𝑓

    𝐷𝑙𝑒𝑛𝑠

  • 38

    Numerical Aperture

    𝑁𝐴 ≡ 𝑛 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥

  • 39

    𝑞1 = 1.22𝜆𝑜2 𝑁𝐴

    Smallest spot size from a lens

    𝑦

    2𝑎 = 𝐷𝑙𝑒𝑛𝑠

    𝜃1𝜃1

    𝑞1

    𝑓

    𝐷𝑙𝑒𝑛𝑠

    𝑛

    𝑞1 = 1.22𝜆𝑜 𝑓

    𝑛 𝐷𝑙𝑒𝑛𝑠

    𝑁𝐴 ≡ 𝑛 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 ≅𝑛 𝐷𝑙𝑒𝑛𝑠2 𝑓

  • 40

    Rayleigh Criteria for Resolution

    Barely resolved

    Resolved

    Not resolved

  • 41

    𝑞1 = 1.22𝜆𝑜2 𝑁𝐴

    𝜆𝑜 = 0.55 𝜇𝑚

    3.36 𝜇𝑚 1.34 𝜇𝑚 0.52 𝜇𝑚 0.27 𝜇𝑚

    Examples of Diffraction Limit of Objective Lenses

  • 42

    𝐸 𝑌, 𝑍, 𝑡 =𝑒𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧 𝑒𝑖 𝜀 𝑦, 𝑧 𝑒− 𝑖

    𝑘 𝑌 𝑦 + 𝑍 𝑧𝑅 𝑑𝑦 𝑑𝑧

    𝑟

    𝑠

    𝑍

    𝑌

    𝑧

    𝑦

    𝑅

    𝑅 ≡ 𝑌2 + 𝑍2 + 𝑠2

    Fraunhofer Diffraction

    𝑚𝑎𝑥 𝑦2 + 𝑧2

    𝜆 𝑠≪ 1

    𝑚𝑎𝑥 𝑌 − 𝑦 2 + 𝑍 − 𝑧 2

    𝜆 𝑠≪ 1

  • 43

    In summary, far-field diffraction:

    1. Single Slit

    2. Double Slit

    3. Rectangular Aperture

    4. Circular Aperture

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑑 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑑

    2 𝑅

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑑 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑑

    2 𝑅2 𝑐𝑜𝑠

    𝑘 𝑌 𝑎

    2 𝑅

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑏 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑏

    2 𝑅𝑎 𝑠𝑖𝑛𝑐

    𝑘 𝑍 𝑎

    2 𝑅

    𝐸 𝑞,Φ, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝜋 𝑎2

    2 𝐽1𝑘 𝑎 𝑞𝑅

    𝑘 𝑎 𝑞𝑅

  • 44

    𝐸 𝑌, 𝑍, 𝑡 =𝑒𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧 𝑒𝑖 𝜀 𝑦, 𝑧 𝑒− 𝑖

    𝑘 𝑌 𝑦 + 𝑍 𝑧𝑅 𝑑𝑦 𝑑𝑧

    𝐸 𝑌, 𝑍, 𝑡 =𝑒𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅ඵ

    −∞

    +∞

    𝜓 𝑦, 𝑧 𝑒− 𝑖 𝑘𝑦 𝑦 +𝑘𝑧 𝑧 𝑑𝑦 𝑑𝑧

    𝜓 𝑦, 𝑧 ≡𝐸0 𝑦, 𝑧 𝑒

    𝑖 𝜀 𝑦, 𝑧

    0

    inside aperture

    opaque obstruction

    𝑘𝑦 ≡𝑘 𝑌

    𝑅

    Fraunhofer Diffraction as a Fourier Transformation

    𝑘𝑧 ≡𝑘 𝑍

    𝑅

    {

  • 45

    Diffraction Gratings

  • 46

    Multiple Slits

    𝑏

    𝑎

    𝑦

    𝑎 −𝑏

    2

    𝑎 +𝑏

    2

    𝑧

    𝑵 (infinitely long) slits of width 𝒃 separated by distance 𝒂

    +𝑏

    2−𝑏

    2

    𝑁 − 1 𝑎 −𝑏

    2

    𝑁 − 1 𝑎 +𝑏

    2

  • 47

    𝑟

    𝑠

    𝑍

    𝑌

    𝑧

    𝑦

    𝑅

    𝑅 ≡ 𝑌2 + 𝑠2

    𝐸 𝑌, 𝑍, 𝑡

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅න

    −𝑏2

    +𝑏2

    + න

    𝑎 −𝑏2

    𝑎 +𝑏2

    + න

    2 𝑎 −𝑏2

    2 𝑎 +𝑏2

    +⋯ + න

    𝑁−1 𝑎 −𝑏2

    𝑁−1 𝑎 +𝑏2

    𝑒− 𝑖𝑘 𝑌𝑅 𝑦 𝑑𝑦

    𝜃

    𝑠𝑖𝑛 𝜃 =𝑌

    𝑅

  • 48

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑏 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑏

    2 𝑅

    𝑛 = 0

    𝑁−1

    𝑒− 𝑖𝑘 𝑌 𝑎𝑅

    𝑛

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑏 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑏

    2 𝑅

    1 − 𝑒−𝑖 𝑁𝑘 𝑌 𝑎𝑅

    1 − 𝑒−𝑖𝑘 𝑌 𝑎𝑅

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑏 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑏

    2 𝑅

    𝑒−𝑖 𝑁𝑘 𝑌 𝑎2 𝑅

    𝑒−𝑖𝑘 𝑌 𝑎2 𝑅

    𝑒+𝑖 𝑁𝑘 𝑌 𝑎2 𝑅 − 𝑒−𝑖 𝑁

    𝑘 𝑌 𝑎2 𝑅

    𝑒+𝑖𝑘 𝑌 𝑎2 𝑅 − 𝑒−𝑖

    𝑘 𝑌 𝑎2 𝑅

    =𝐸0 𝑒

    𝑖 𝑘 𝑅 −𝜔 𝑡

    𝑅𝑏 𝑠𝑖𝑛𝑐

    𝑘 𝑌 𝑏

    2 𝑅

    𝑒−𝑖 𝑁𝑘 𝑌 𝑎2 𝑅

    𝑒−𝑖𝑘 𝑌 𝑎2 𝑅

    sin 𝑁𝑘 𝑌 𝑎2 𝑅

    sin𝑘 𝑌 𝑎2 𝑅

  • 49

    𝐼 𝑌, 𝑍 = 𝐼0 𝑠𝑖𝑛𝑐2

    𝑘 𝑌 𝑏

    2 𝑅

    𝑠𝑖𝑛2 𝑁𝑘 𝑌 𝑎2 𝑅

    𝑠𝑖𝑛2𝑘 𝑌 𝑎2 𝑅

    𝐼0 ≡𝐸0

    2

    2 𝑅2𝑏2

    Intensity Pattern

    Mathematica

    𝑏 = 1

    𝑎 = 4

    𝑘 = 1

    𝑅 = 1

    MultipleSlitDiffractionPattern.cdf

  • 50

    𝑠𝑖𝑛𝑐2𝑘 𝑌 𝑏

    2 𝑅≅ 1

    𝐼 𝑌, 𝑍 ≅ 𝐼0

    𝑠𝑖𝑛2 𝑁𝑘 𝑌 𝑎2 𝑅

    𝑠𝑖𝑛2𝑘 𝑌 𝑎2 𝑅

    Small Width Approximation:

    𝑏 = 0.1

    𝑎 = 4

    𝑘 = 1

    𝑅 = 1

  • 51

    𝑘 𝑌 𝑎

    2 𝑅= 𝑚 𝜋 𝐼 𝑌, 𝑍, 𝑡 = 𝑁2 𝐼0

    Maxima (intensity peaks)

    𝑚 = 0,±1,±2,…

    𝑎 𝑠𝑖𝑛 𝜃𝑚 = 𝑚 𝜆grating equation

    grating order

  • 52

    𝑁𝑘 𝑌 𝑎

    2 𝑅= 𝑟 𝜋

    𝑟 = 1, 2, 3, … , (𝑁 − 1)

    Minima (zero intensity)

    𝑘 𝑌 𝑎

    2 𝑅=𝑟

    𝑁𝜋

    𝑏 = 0.1

    𝑎 = 4

    𝑘 = 1

    𝑅 = 1

    0 <𝑘 𝑌 𝑎

    2 𝑅< 𝜋

    𝑚 = 0 𝑚 = 1

    10−1 𝑚2−2

    𝐼 𝑌, 𝑍 ≅ 𝐼0

    𝑠𝑖𝑛2 𝑁𝑘 𝑌 𝑎2 𝑅

    𝑠𝑖𝑛2𝑘 𝑌 𝑎2 𝑅

  • 53

    Angular Width

    𝑘 𝑎 𝑠𝑖𝑛 𝜃𝑚 +∆𝜃2

    2= 𝑚 𝜋 +

    1

    𝑁𝜋

    𝑘 𝑌 𝑎

    2 𝑅=𝑘 𝑎 𝑠𝑖𝑛 𝜃

    2

    ∆𝜃 =2 𝜆

    𝑁 𝑎 𝑐𝑜𝑠 𝜃𝑚

    𝑘 𝑎 𝑐𝑜𝑠 𝜃𝑚 𝑠𝑖𝑛∆𝜃2

    2≅1

    𝑁𝜋

    𝑚

  • 54

    Spectral Resolution

    𝑎 𝑠𝑖𝑛 𝜃𝑚 = 𝑚 𝜆

    𝑎 𝑐𝑜𝑠 𝜃𝑚 𝑑𝜃 = 𝑚 𝑑𝜆

    ∆𝜆𝑟𝑒𝑠 =𝜆

    𝑚 𝑁

    𝑑𝜃 ≡∆𝜃

    2=

    𝜆

    𝑁 𝑎 𝑐𝑜𝑠 𝜃𝑚𝑑𝜆 ≡ ∆𝜆𝑟𝑒𝑠

  • 55

    Free Spectral Range

    𝑎 𝑠𝑖𝑛 𝜃 = 𝑚 + 1 𝜆 = 𝑚 𝜆 + ∆𝜆𝐹𝑆𝑅

    ∆𝜆𝐹𝑆𝑅 =𝜆

    𝑚

  • 56

    Oblique Incidence

    Normal Incidence

    𝑎 𝑠𝑖𝑛 𝜃 − 𝑎 𝑠𝑖𝑛 𝜃𝑖𝑛𝑐 = 𝑚 𝜆

    𝑎 𝑠𝑖𝑛 𝜃𝑚 − 𝑠𝑖𝑛 𝜃𝑖𝑛𝑐 = 𝑚 𝜆

    𝑎 𝑠𝑖𝑛 𝜃𝑚 = 𝑚 𝜆

  • 57

    Fresnel Diffraction

    Going beyond the Fraunhofer (far-field) approximation

    or

    getting closer to the aperture

  • 58

    𝑟 𝑦, 𝑧 = 𝑠2 + 𝑌 − 𝑦 2 + 𝑍 − 𝑧 2

    𝑟

    𝑠

    𝑍

    𝑌

    𝑧

    𝑦

    𝑟 𝑦, 𝑧 ≅ 𝑠 +1

    2 𝑠𝑌 − 𝑦 2 +

    1

    2 𝑠𝑍 − 𝑧 2

    𝐸 𝑌, 𝑍, 𝑡 = ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧

    𝑟 𝑦, 𝑧𝑒𝑖 𝑘 𝑟 𝑦, 𝑧 − 𝜔 𝑡 + 𝜀 𝑦, 𝑧 𝑑𝑦 𝑑𝑧

    = 𝑠 1 +𝑌 − 𝑦 2

    𝑠2+

    𝑍 − 𝑧 2

    𝑠2

    𝑘 𝑠𝑚𝑎𝑥 𝑌 − 𝑦 2 + 𝑍 − 𝑧 2 2

    𝑠4≪ 𝜋

  • 59

    𝐸 𝑌, 𝑍, 𝑡 =𝑒𝑖 𝑘 𝑠 − 𝜔 𝑡

    𝑠ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝐸0 𝑦, 𝑧 𝑒𝑖 𝜀 𝑦, 𝑧 𝑒𝑖

    𝑘2 𝑠 𝑌−𝑦

    2+ 𝑍−𝑧 2 𝑑𝑦 𝑑𝑧

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑠 − 𝜔 𝑡

    𝑠ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝑒𝑖𝜋𝜆 𝑠

    𝑌−𝑦 2+ 𝑍−𝑧 2𝑑𝑦 𝑑𝑧

    𝐸0 𝑦, 𝑧 𝑒𝑖 𝜀 𝑦, 𝑧 =

    𝐸0

    0

    Inside the aperture

    Outside the aperture{

    Flat Wavefront Illumination

  • 60

    𝛾 ≡2

    𝜆 𝑠𝑌 − 𝑦

    𝑑𝑦 = −𝜆 𝑠

    2𝑑𝛾

    𝛿 ≡2

    𝜆 𝑠𝑍 − 𝑧

    𝑑𝑧 = −𝜆 𝑠

    2𝑑𝛿

    𝐸 𝑌, 𝑍, 𝑡 =𝐸0 𝑒

    𝑖 𝑘 𝑠 − 𝜔 𝑡

    𝑠ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝑒𝑖𝜋𝜆 𝑠

    𝑌−𝑦 2+ 𝑍−𝑧 2𝑑𝑦 𝑑𝑧

    =𝐸0 𝑒

    𝑖 𝑘 𝑠 − 𝜔 𝑡

    𝑠

    𝜆 𝑠

    2ඵ

    𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒

    𝑒𝑖𝜋2 𝛾

    2+ 𝛿2 𝑑𝛾 𝑑𝛿

    =𝜆 𝐸0 𝑒

    𝑖 𝑘 𝑠 − 𝜔 𝑡

    2න

    𝛾1

    𝛾2

    𝑒𝑖𝜋2 𝛾

    2𝑑𝛾 න

    𝛿1

    𝛿2

    𝑒𝑖𝜋2 𝛿

    2𝑑𝛿

  • 61

    𝛾1

    𝛾2

    𝑒𝑖𝜋2𝛾2 𝑑𝛾 = න

    𝛾1

    𝛾2

    cos𝜋

    2𝛾2 𝑑𝛾 + 𝑖 න

    𝛾1

    𝛾2

    sin𝜋

    2𝛾2 𝑑𝛾

    = 𝒞 𝛾2 − 𝒞 𝛾1 + 𝑖 𝒮 𝛾2 − 𝒮 𝛾1

    𝛿1

    𝛿2

    𝑒𝑖𝜋2𝛿2 𝑑𝛿 = න

    𝛿1

    𝛿2

    cos𝜋

    2𝛿2 𝑑𝛿 + 𝑖 න

    𝛿1

    𝛿2

    sin𝜋

    2𝛿2 𝑑𝛿

    = 𝒞 𝛿2 − 𝒞 𝛿1 + 𝑖 𝒮 𝛿2 − 𝒮 𝛿1

    𝒞 𝑥 ≡ න

    0

    𝑥

    cos𝜋

    2𝑥2 𝑑𝑥 𝒮 𝑥 ≡ න

    0

    𝑥

    sin𝜋

    2𝑥2 𝑑𝑥

  • 62

    × 𝒞 𝛾2 − 𝒞 𝛾1 + 𝑖 𝒮 𝛾2 − 𝒮 𝛾1

    × 𝒞 𝛿2 − 𝒞 𝛿1 + 𝑖 𝒮 𝛿2 − 𝒮 𝛿1

    𝐸 𝑌, 𝑍, 𝑡 =𝜆 𝐸0 𝑒

    𝑖 𝑘 𝑠 − 𝜔 𝑡

    2

    𝐼 𝑌, 𝑍 =𝐼04× 𝒞 𝛾2 − 𝒞 𝛾1

    2 + 𝒮 𝛾2 − 𝒮 𝛾12

    × 𝒞 𝛿2 − 𝒞 𝛿12 + 𝒮 𝛿2 − 𝒮 𝛿1

    2

  • 63

    𝒞 𝑥 ≡ න

    0

    𝑥

    cos𝜋

    2𝑥′2 𝑑𝑥′

    𝒮 𝑥 ≡ න

    0

    𝑥

    sin𝜋

    2𝑥′2 𝑑𝑥′

    𝒞 𝑥

    𝒮 𝑥

    𝑥

    𝑥

    𝑥

    𝒞 𝑥

    𝒮 𝑥

  • 64

    𝒞 𝑥 ≡ න

    0

    𝑥

    cos𝜋

    2𝑥2 𝑑𝑥

    𝒮 𝑥 ≡ න

    0

    𝑥

    sin𝜋

    2𝑥2 𝑑𝑥

    𝑑𝒞 𝑥 = cos𝜋

    2𝑥2 𝑑𝑥

    𝑑𝒮 𝑥 = sin𝜋

    2𝑥2 𝑑𝑥

    𝒮 𝑥

    𝒞 𝑥

    𝑑𝒞 2 + 𝑑𝒮 2 = 𝑑𝑥 2

    𝑑𝒞

    𝑑𝒮𝑑𝑥

  • 65

    Applications of Fresnel Diffraction

    1.No obstruction

    2.Straight edge

    3. Single slit

    4. Rectangular aperture

    5. Opaque circular disk

  • 66

    𝐼 𝑌, 𝑍 =𝐼04× 𝒞 𝛾2 − 𝒞 𝛾1

    2 + 𝒮 𝛾2 − 𝒮 𝛾12

    × 𝒞 𝛿2 − 𝒞 𝛿12 + 𝒮 𝛿2 − 𝒮 𝛿1

    2

    1. No Obstruction

    𝛾 ≡2

    𝜆 𝑠𝑌 − 𝑦

    𝛿 ≡2

    𝜆 𝑠𝑍 − 𝑧

    𝑦

    𝑧

    𝛾2 = −∞

    𝛾1 = +∞

    𝛿2 = −∞ 𝛿1 = +∞

    =𝐼04× −0.5 − 0.5 2 + −0.5 − 0.5 2 × −0.5 − 0.5 2 + −0.5 − 0.5 2

    = 𝐼0 No surprises here, just the obvious result !!

  • 67

    𝐼 𝑌, 𝑍 =𝐼04× 𝒞 𝛾2 − 𝒞 𝛾1

    2 + 𝒮 𝛾2 − 𝒮 𝛾12

    × 𝒞 𝛿2 − 𝒞 𝛿12 + 𝒮 𝛿2 − 𝒮 𝛿1

    2

    𝛾 ≡2

    𝜆 𝑠𝑌 − 𝑦

    𝛿 ≡2

    𝜆 𝑠𝑍 − 𝑧

    𝑦

    𝑧𝛾2 =

    2

    𝜆 𝑠𝑌

    𝛾1 = +∞𝛿2 = −∞ 𝛿1 = +∞

    =𝐼04

    × 𝒞2

    𝜆 𝑠𝑌 − 0.5

    2

    + 𝒮2

    𝜆 𝑠𝑌 − 0.5

    2

    × 2

    2. Straight Edge

  • 68

    𝒮 𝑥

    𝒞 𝑥

    𝑌 = 0

    𝑌 > 0

    𝑌 < 0 𝐼 𝑌, 𝑍, 𝑡 /𝐼0

    𝑌

    𝜆 𝑠 = 2

    𝐼 𝑌, 𝑍 =𝐼02

    × 𝒞2

    𝜆 𝑠𝑌 − 0.5

    2

    + 𝒮2

    𝜆 𝑠𝑌 − 0.5

    2

  • 69

  • 70

    𝐼 𝑌, 𝑍 =𝐼04× 𝒞 𝛾2 − 𝒞 𝛾1

    2 + 𝒮 𝛾2 − 𝒮 𝛾12

    × 𝒞 𝛿2 − 𝒞 𝛿12 + 𝒮 𝛿2 − 𝒮 𝛿1

    2

    𝛾 ≡2

    𝜆 𝑠𝑌 − 𝑦

    𝛿 ≡2

    𝜆 𝑠𝑍 − 𝑧

    𝑦

    𝑧

    𝛾2 =2

    𝜆 𝑠𝑌 − 𝑑

    2

    𝛾1 =2

    𝜆 𝑠𝑌 + 𝑑2𝛿2 = −∞ 𝛿1 = +∞

    =𝐼04

    × 𝒞2

    𝜆 𝑠𝑌 − 𝑑

    2− 𝒞

    2

    𝜆 𝑠𝑌 + 𝑑

    2

    2

    + 𝒮2

    𝜆 𝑠𝑌 − 𝑑

    2− 𝒮

    2

    𝜆 𝑠𝑌 + 𝑑

    2

    2

    × 2

    3. Single Slit

    𝑑

  • 71

    𝒮 𝑥

    𝒞 𝑥

    𝑌 = 0

    𝑌 > 0

    𝑌 < 0

    𝐼 𝑌, 𝑍 =𝐼02

    × 𝒞2

    𝜆 𝑠𝑌 − 𝑑

    2− 𝒞

    2

    𝜆 𝑠𝑌 + 𝑑

    2

    2

    + 𝒮2

    𝜆 𝑠𝑌 − 𝑑

    2− 𝒮

    2

    𝜆 𝑠𝑌 + 𝑑

    2

    2

    𝛾1 − 𝛾2 =2

    𝜆 𝑠𝑑

    𝛾1 + 𝛾22

    =2

    𝜆 𝑠𝑌

  • 72

    𝑑 = 10 𝜆

    𝑑

    𝑁𝐹 ≡𝑑2

    4 𝜆 𝑠

    𝑁𝐹 = 10

    𝑁𝐹 = 1

    𝑁𝐹 = 0.5

    𝑁𝐹 = 0.1

    𝜆 = 1

    𝑠 = 2.5 𝜆

    𝑠 = 25 𝜆

    𝑠 = 50 𝜆

    𝑠 = 250 𝜆

    Near field

    Far field

    Fresnel number

  • 73

    Mathematica

    SingleSlitDiffractionPattern.cdf

  • 74

    4. Rectangular Aperture

  • 75

    5. Circular Objects

    Poisson (Arago) spot